Supplementary data for: ## A first appraisal of the seismogenic and tsunamigenic potential of the largest fault systems of the westernmost Mediterranean Laura Gómez de la Peña^{1*}, Eulàlia Gràcia², Francesco Emanuele Maesano³, Roberto Basili³, Heidrun Kopp^{1, 4}, Cristina Sánchez-Serra², Antonio Scala⁵, Fabrizio Romano³, Manuela Volpe³, Alessio Piatanesi³, César R. Ranero^{2, 6} ¹GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany. ²Barcelona Center for Subsurface Imaging, Marine Sciences Institute (ICM-CSIC), Barcelona, Spain. ³Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy. ⁴Department of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany. ⁵Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Italy. ⁶ICREA, Barcelona, Spain. * Corresponding author ## **Contents of this file:** - Comparison of the tsunami scenarios for the ARFS planar fault and realistic geometry fault. ## Comparison of the tsunami scenarios for the ARFS planar fault and realistic geometry fault. **Fig. S1:** Comparison between the resulting tsunami scenario using (a) a planar geometry for the fault plane and (b) a realistic geometry of the same rupture area (both scenarios modelling the tsunami associated with a M_w 6.8 earthquake). c) Difference in the maximum wave amplitudes between the realistic fault geometry result and the planar geometry result. There are differences >±0.3 on the 10 m isobath, and in general the planar scenario underestimated the maximum wave amplitude (red areas in Figure c).