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Researchers have recognized the potential of enzymes and metabolic pathways hidden
among the unseen majority of Earth’s microorganisms for decades now. Most of
the microbes expected to colonize the seafloor and its subsurface are currently
uncultured. Thus, their ability and contribution to element cycling remain enigmatic.
Given that the seafloor covers ∼70% of our planet, this amounts to an uncalled
potential of unrecognized metabolic properties and interconnections catalyzed by this
microbial dark matter. Consequently, a tremendous black box awaits discovery of novel
enzymes, catalytic abilities, and metabolic properties in one of the largest habitats on
Earth. This mini review summarizes the current knowledge of cultivation-dependent
and -independent techniques applied to seafloor habitats to unravel the role of the
microbial dark matter. It highlights the great potential that combining microbiological
and biogeochemical data from in situ experiments with molecular tools has for providing
a holistic understanding of bio-geo-coupling in seafloor habitats and uses hydrothermal
vent systems as a case example.

Keywords: hydrothermal vents, uncultured microbial majority, microbial dark matter, functional metagenomics,
in situ technologies, activity-based screening, novel enzymes

INTRODUCTION

The ocean’s seafloor covers ∼70% of our planet’s surface and is vastly underexplored. Through
its pivotal role for processing deposited material in marine sediments, the seafloor is critically
involved in the extent to which carbon sequestration, nutrient recycling, carbonate dissolution
and methane production occur (cf. Middelburg, 2018; LaRowe et al., 2020). Most of the seafloor
is in the deep-sea and is hallmarked by hostile conditions, i.e., no light, high pressure, food
scarcity, and is mostly characterized by comparatively low turnover rates (Middelburg et al., 1993).
Although hydrothermal deep-sea vent ecosystems can be associated with even more extreme
conditions, such as high temperatures or the presence of toxic compounds (Perner et al., 2014;
McDermott et al., 2018), the emitted inorganic energy sources and chemosynthetic microbes
capable of coping with local extreme conditions transform deep-sea hydrothermal vents into
hot spots of activity. Venting is also a significant metal source to the ocean, with metal-organic
complexation facilitating long-distance transport and potentially impacting primary production
in the ocean’s surface (Sander and Koschinsky, 2011; Resing et al., 2015; Fitzsimmons et al.,
2017; Ardyna et al., 2019). Additionally, hydrothermal environments are relevant for providing
bioactive trace metals (Li et al., 2014; Cohen et al., 2021) and organic carbon (Toner et al., 2009;
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Bennett et al., 2015; Longnecker et al., 2018), and give insights
into the origin of life and its limits (Martin et al., 2008).

Microbes make up most of the total biomass on Earth.
However, the majority of prokaryotic cells resist cultivation
and remain uncharacterized (Lloyd et al., 2018; Zamkovaya
et al., 2021). It is estimated that this uncultured prokaryotic
majority, often referred to as microbial dark matter, accounts
for up to 91 and 96% of uncultured bacteria and 87 and 96%
of uncultured archaea in marine sediments and hydrothermal
vents, respectively (Lloyd et al., 2018). Sequencing of prokaryotic
(meta)genomes has demonstrated that up to 40% of annotated
genes cannot be allocated to a known or predicted function (Baric
et al., 2016) and only as little as 16% of ocean metagenomic DNA
encoding hypothetical proteins could be linked to proteins with
an experimentally verified function (Sunagawa et al., 2015). One
way to address this sequence-based limitation is the development
of novel computational approaches like, e.g., the CSBFinder-S
software. It allows identification of operon structures by inferring
conserved synthetic blocks (CSBs), providing a functional
context for unassignable enzymes (Svetlitsky et al., 2020).

So far, meta’omics has given us valuable insights into the
taxonomic diversity, metabolic potential and gene expression
patterns of microbial communities from extreme seafloor
habitats (Fortunato and Huber, 2016 and references therein).
Albeit, activity-based screening of metagenomic libraries is the
only methodology that currently allows detection of entirely
novel enzymes from known and unknown microbes for which
homologies to known motifs lack and is a promising approach
to overcome shortcomings associated with sequence-based
strategies (Handelsman, 2004; Böhnke and Perner, 2014; Adam
and Perner, 2018; Pushkarev et al., 2018). However, recombinant
expression of metagenomic fragments in a surrogate host can be
troublesome due to manifold reasons (divergent codon usage,
translation, correct folding etc.), often leading to low hit rates
that require high screening throughput which is the reason
why functional metagenomic approaches might be very time-
consuming and cost intensive (Perner et al., 2011b). Another way
to study yet uncultured microbes is to perform the corresponding
investigations directly in the natural habitat, i.e., in situ. Here, the
main challenge is not only to further develop sensor technology
and to optimize the collection and preservation of sample
material, but also to provide technologies that synchronize in situ
microbiological and geochemical investigations in space and
time (Figure 1).

THE NOT YET CULTIVATED MICROBIAL
MAJORITY AND ITS POTENTIAL FOR
ELEMENT CYCLING AT
HYDROTHERMAL VENT HABITATS

Deep-sea hydrothermal vent environments form along spreading
ridges, where hot, highly reduced hydrothermal fluids mix with
cold, oxygenated seawater, thereby creating steep thermal and
chemical gradients. Chemosynthetic microorganisms exploit this
thermodynamic disequilibrium by generating energy through
redox reactions potentially fueling autotrophic carbon fixation.

Since the discovery of hydrothermal vents (Ballard, 1977;
Corliss et al., 1979), great cultivation efforts have been made
to describe metabolic activities and physiological properties of
respective microbes (reviewed in Dick, 2019). Cultivation is
irreplaceable and includes (i) traditional and steadily improved
techniques on liquid or solid media (cf. Reysenbach and
Götz, 2001; Hansen and Perner, 2015; Zhang et al., 2018;
Zeng et al., 2021 and references therein), (ii) gradient tube
incubations (Emerson and Moyer, 1997), enrichments (iii) in
bio-electrochemical systems (Pillot et al., 2018), (iv) on in situ
enrichment carriers (Stokke et al., 2020), or (v) possibly–
in the near future–even on synthetically grown hydrothermal
vents (Barge and White, 2017; Martinez et al., 2019; Sanchez,
2021), and high-pressure laboratory techniques (Kato, 2011).
Information from meta’omic data holds great promise to further
improve the cultivation success by guiding the development
of new cultivation technologies and strategies that are more
responsive to the requirements of uncultured lineages (Gutleben
et al., 2018). Once strains are in culture, the next step is the
generation of a pure culture, but isolation of microbes is far
from trivial. Strains often tend to grow in close co-culture
with other strains and a variety of different isolation strategies
include plating techniques (cf. Sass and Perner, 2020), role-
tube isolations (cf. Zeng et al., 2013), dilution to extension
approaches (cf. Adam et al., 2021), single cell separation micro
tweezer technologies (Fröhlich and König, 2000; cf. Sass et al.,
2020), flow cytometry (Ferrari et al., 2012), diffuse chamber
incubation (Kaeberlein et al., 2002) etc. These approaches have
resulted in the description of some hundred microbial species
with hydrothermal origin (Jebbar et al., 2015). Nevertheless,
sequence-based metagenome studies disclose a large discrepancy
between microbes present in a certain environment and those
that are cultivable (Rinke et al., 2013; Hug et al., 2016; Zamkovaya
et al., 2021). With respect to hydrothermal systems and marine
sediments, this corresponds to 4 and 9% cultured bacteria and
4 and 13% cultured archaea, respectively (Lloyd et al., 2018).
Despite technical progress and relentless efforts, hydrothermal
vents are still among the ecosystems with particularly high
numbers of uncultivated representatives (Lloyd et al., 2018).
Meta’omic studies of hydrothermal vent habitats suggest that
the functional differences between closely related microbial
species or strains are substantial (Hug et al., 2016; Dombrowski
et al., 2017). This highlights an unprecedented potential for
various new metabolic pathways and enzyme functions hidden
among the non-cultured majority of hydrothermal vent microbes
(Zamkovaya et al., 2021). In order to cope with the ever-
increasing amount of sequence information and to prevent the
gap between physiological and sequence-based information from
widening, (high-throughput) approaches linking sequences with
functions urgently need to be further developed and advanced.

METAGENOMICS: TOWARDS
UNDERSTANDING THE METABOLIC
MICROBIAL NETWORK

Metagenomics refers to the entire genetic information of
a given ecosystem (Handelsman et al., 1998). The original
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FIGURE 1 | Future perspective for hydrothermal vent in situ incubations. A mini chamber lander and the related work flow is shown next to a hydrothermal vent. The
mini chamber is equipped with various sensors to measure the local environmental parameters like O2, H2, H2S, pH, temperature, redox potential, and conductivity.
Sampling may take place as a time series and/or controlled through the change in certain environmental parameters. Moreover, it is possible to simulate particular
what-if scenarios as the syringe samplers may also function as injectors. This allows for manipulation of certain environmental conditions in the chamber as
incubation proceeds. The subsamples collected during incubation are filtered and preserved in situ using appropriated fixation reagents. Finally, once on board, filters
are stored at –80◦C until further processing in the home laboratory. Mini chamber lander systems comparable to the here illustrated one have successfully been used
to investigate benthic fluxes at the sediment-water interface zone of shallow waters or in the deep-sea (Thoms et al., 2018; Vonnahme et al., 2020; Kononets et al.,
2021 and references therein). However, we are not aware of any published work that has reported data generated from the here presented approach where in situ
incubation at hydrothermal vent environments with sensor-triggered sampling, in situ preservation, and subsequent microbiological analyses has been combined to
elucidate interrelationships and interdependencies between abiotic factors and the biological world.

metagenomic approach was based on sequence- or function-
based screening of metagenomic libraries that contained cloned
environmental DNA (Lam et al., 2015). In 2004, the large marine
whole genome shotgun sequencing project of the Sargasso Sea,
provided, for the first time, a glimpse into the complex microbial
community compositions of ocean habitats (Venter et al.,
2004), pioneering future metagenome projects. The progress in
next generation sequencing technologies has been rapid and
together with bioinformatic tool development has allowed the
subfields of metatranscriptomics and metaproteomics to further
revolutionize meta’omic research (Simon and Daniel, 2011), as
gene expression and protein profiles now enable insights into
active metabolic processes and functional adaptations (Wilmes
et al., 2015; Shakya et al., 2019). In this context, the term
functional metagenomics has popped up frequently. This is
rather misleading, as this term was originally used for function-
based screening of metagenomic libraries seeking specific enzyme

activities or valuable compounds (Handelsman, 2004). In the
following we use the term functional metagenomics as it was
initially coined.

However, high-throughput meta’omic approaches nowadays
result in the rapid accumulation of DNA, RNA, and protein
sequences, but current databases only allow the assignment
of candidate functions based on homologs of already known
motifs (Daniel, 2005). Thus, the vast majority of predicted
enzyme functions have never been experimentally proven.
Indeed, about one-third of the genes found in genomes of
cultured and uncultured prokaryotes cannot even be assigned
a predicted function due to the lack of homologies (Lloyd
et al., 2018). One possible approach suited to verify if a
predicted function is true is to clone and express targeted
genes in a surrogate host (Yang et al., 2016; Danso et al.,
2018; Oppermann et al., 2019). However, one major drawback
of this strategy is that the original gene proximity and thus
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relevant chaperones, transcriptional regulators and/or activators
are missing, likely causing corresponding gene products to
remain inactive (Böhnke and Perner, 2017). Although the use of
large insert metagenomic libraries has the potential to counteract
some of these challenges, problems with heterologous gene
expression in the surrogate host, e.g., failed gene expression
and incorrect post-transcriptional processing, remain one of the
major limitations of functional metagenomic approaches (Perner
et al., 2011b; Johnson et al., 2017). The use of custom expression
strains, alternative vector systems, ionic liquids, or even in vitro
recombinant transcription systems are promising techniques to
mitigate these shortcomings (Lam et al., 2015; Kinfu et al., 2017;
Mital et al., 2021).

Implementing a functional metagenomic approach requires
two further major challenges to be overcome. First, there is
the need to construct metagenomic libraries whereby isolation
of high-quality environmental DNA is critical for successful
cloning. The second major bottleneck is the often very time
consuming and tedious establishments of high-throughput
screening methods. A large range of biotechnologically motivated
screening technologies for identifying novel biocatalysts or
valuable biomolecules with industrial, commercial, clinical
or bioremediational applications from uncultured microbes
has identified proteases, oxidoreductases, esterases, amylases,
phosphatases, chitinases, cellulases, glycosyltransferases, and
decarboxylases (cf. Perner et al., 2011b; Rabausch et al., 2013;
Berini et al., 2017; Johnson et al., 2017). However, functional
metagenomic approaches with ecologically oriented objectives
are extremely rare; although some enzymes discovered out
of a biotechnological interest may also offer insights into
ecologically relevant metabolic processes. Recently, one of the few
purely ecologically and biogeochemically motivated functional
screening approaches available targeted the distribution of
active ribulose-1,5-bisphosphate carboxylases (RubisCO) at
different hydrothermal vents (Böhnke and Perner, 2019).
The study managed to place the identified RubisCOs (and
respective uncultivated microbes) into an ecological context and
demonstrated some possible RubisCO-protein interactions with
neighboring gene products (Böhnke and Perner, 2017). As part
of this work, some of the previously annotated “hypothetical
proteins with unknown functions,” could be assigned the
probable role as RubisCO transcriptional regulators and post-
translational activators or repressors.

Additionally, a second ecologically motivated function-
based screen was developed that also targets RubisCO activity
(Varaljay et al., 2016). Since Varaljay et al. (2016) used a
different host-vector system, this heterologous complementation
based functional metagenomic screen likely expands the
spectrum of detectable active RubisCOs (Varaljay et al., 2016).
Another ecologically and biogeochemically motivated functional
metagenomic approach focused on hydrogenase activities (Adam
and Perner, 2017). The screening detected three H2-uptake
expressing active metagenomic clones without any known
hydrogenase-encoding genes or motifs on their DNA insert
(Adam and Perner, 2018) suggesting novel hydrogenases. The
discovery of heliorhodopsin, a globally abundant and widely
distributed light-sensing rhodopsin, has also been enabled by

functional metagenomics (Pushkarev et al., 2018). These studies
highlight the tremendous diversity of currently unknown dark
matter proteins and underline the urgent need for developing
more novel screening methods for targeting specific enzymatic
activities of unknown organisms. This methodology allows
a window into the metabolic network of the uncultured
microbes and their catalytic ability in biogeochemical cycling
of key elements.

CURRENT CHALLENGES AND FUTURE
PERSPECTIVES FOR in situ
TECHNOLOGIES AT THE SEAFLOOR

Marine microbial communities hold a central role as drivers
of major biogeochemical processes, impacting ecosystem
functioning far beyond the oceans (Falkowski et al., 2008).
Research into these microbial consortia and the processes they
mediate is, however, often constrained by technical capabilities,
as is particularly evident in deep-sea research (Fortunato et al.,
2021). Thus, sampling hard accessible deep-sea environments
is already a technical and logistical challenge, requiring the
development of specialized underwater devices (Liang et al.,
2021; Paulus, 2021). Over the past decades a variety of ocean
deployable sampling instrumentation have been developed
(McQuillan and Robidart, 2017). Yet, only a few of them are
suited to retrieve samples from extreme deep-sea habitats and
are able to withstand the high pressures and corrosive hot fluids
(Reysenbach and Götz, 2001; Liang et al., 2021). Transporting
the samples from the deep-sea through the water column to
the research vessel laboratory poses further inherent limitations
as the samples are exposed to physico-chemical changes (e.g.,
changes in pressure, temperature, light, pH, redox state etc.)
altering the compositions and thus biasing subsequent analysis
(Edgcomb et al., 2016). Chemical composition of sampled
hydrothermal fluids can change dramatically if in situ pressure
is not maintained, resulting in degassing and the loss of volatile
species and distorting microbial activities and metabolic rates
(McNichol et al., 2016). Gas-tight sampling devices are used to
mitigate this effect and prevent outgassing (Seewald et al., 2002;
Butterfield et al., 2004; Miyazaki et al., 2017; Wu et al., 2018;
Garel et al., 2019; Wang et al., 2020). A long and often variable
lag time during ascent may change redox reactions, introducing
artifacts in subsequent analyses despite the usage of pressure
maintaining sampling devices (Fortunato et al., 2021). Once on
board, the samples are subjected to atmospheric pressure for ex
situ filtration, likely causing cell lyses and release of RNA and
DNA molecules (Edgcomb et al., 2016). Extracellular DNA and
RNA from lysed cells can only partially be bound and recovered
by filtration (Liang and Keeley, 2013), thereby losing parts of
the unknown microbial community. Unpreserved biological
material is also very labile and starts to degrade within minutes
(RNA and proteins) or hours to days (cells and DNA), further
biasing samples (Ottesen, 2016). Indeed, a comparative study of
in situ and shipboard RNA stable isotope probing (RNA-SIP)
experiments showed that microbial communities are significantly
affected by the effects of depressurization and sample processing
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delays, resulting in a shift of the community structure and
metabolic function (Fortunato et al., 2021). In situ preservation
is one approach that has successfully been used to overcome
limitations associated with sample transit (Edgcomb et al., 2016;
Fortunato et al., 2021). But devices designed for filtration and
integrated subsequent preservation are still rare (reviewed in
Ottesen, 2016). They include the Suspended Particulate Rosette
V2 (SUPR-V2) System (Breier et al., 2014), the Biological Osmo
Sampling System (BOSS) (Robidart et al., 2013), and the Fixation
Filter Unit (FF3) (Taylor et al., 2015).

The more information on habitat specific physicochemical
characteristics available, the more value can be deduced from
generated meta’omic datasets. This is essential if aiming
to understand the role of microbes for ocean ecosystem
functioning. Deep-sea sensors are efficient tools for observing
local geochemistry, allowing real-time monitoring of certain key
chemical variables such as pH, dissolved H2, H2S, CH4, CO2, and
dissolved inorganic nutrients (Luther et al., 2001; Moore et al.,
2009; Petersen et al., 2011; Wankel et al., 2011; Perner et al.,
2013; Daniel et al., 2020; Gros et al., 2021; Liang et al., 2021;
Mowlem et al., 2021). However, technical limitations require
that various chemical parameters still have to be determined ex
situ (Mowlem et al., 2021). Although in situ filtration allows

reduction of chemical alteration caused by precipitation and/or
adsorption of some dissolved elements during transit from the
seafloor to the ship’s research laboratory, it is evident that the
most representative data on deep-sea fluid chemistry would be
provided by direct in situ measurements (Sievert and Vetriani,
2012; Cotte et al., 2015). Thus, future efforts must be directed
toward further advancing existing sensors (more precision,
robustness, serialization and standardization) and establishing
novel sensor technologies.

Technological advances in the past decade have enabled the
development of a limited set of samplers capable of performing
in situ experiments directly in the deep-sea, pioneering future
biogeochemical studies in deep-sea habitats. Respective devices
have successfully been used to perform in situ tracer incubations
(Edgcomb et al., 2016), RNA-SIP experiments (Fortunato et al.,
2021), molecular analytical techniques (Scholin et al., 2017),
and extraction of organic compounds (Grandy et al., 2020).
This has impressively demonstrated that in situ experiments can
provide a window into the seafloor microbial consortia, metabolic
mechanisms and transformations. To obtain a more complete
understanding of microbial community dynamics, functions and
influences on ocean processes, microbiology and geochemistry
must be sampled simultaneously. Automated mini chamber

FIGURE 2 | A holistic approach to study the structure and function of microbial consortia in hydrothermal vents. The overview shows the approaches that should be
considered and combined, if aiming at an omni-directional insight into hydrothermal vent ecosystem functioning, without neglecting the yet uncultivable majority of
microorganisms.
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lander systems have a great potential as they allow time series
sampling in response to changes of environmental conditions,
e.g., O2, H2S etc. (Figure 1). Furthermore, the possibility of
injecting selected chemical compounds into the in situ incubation
chamber could be used to simulate different what-if-scenarios.
Thereby they can contribute to forecasting potential climate
change impacts on the deep-sea microbes and the biogeochemical
processes they mediate. Embedded in a holistic approach
(Figure 2), in situ microbiological and biogeochemical analyses
conducted in spatial and temporal proximity to each other can
provide a more comprehensive picture of what features influence
overall biogeochemical fluxes. This in turn improves the basis for
building predictive models of how deep-sea microbial consortia
contribute to global biogeochemical cycles.

Biogeochemical modeling is successfully used to determine
(i) element flux rates of trace metals like, e.g., Fe, Mn,
Ni, Cu, Co, Cd and Zn (reviewed in Homoky et al., 2016;
cf. Somes et al., 2021), (ii) particulate organic material
(POM) reactivity (reviewed in Lessin et al., 2018), (iii)
thermodynamics (cf. Perner et al., 2011a) and (iv) energetics
(cf. Böhnke et al., 2019), there by enhancing our theoretical
and quantitative understanding of microbial and geochemical
interactions (Dick, 2019). Only a few biogeochemical models
have been established in recent years that allow the linkage
between microbial biogeochemical rate measurements and
meta’omic data, making key unknown physiological parameters,
such as kinetic properties, transcription and translation rates, and
mRNA and protein degradation rates recognizable (Reed et al.,
2014; Louca et al., 2016). Such models have great potential and
hold promise to unprecedented predictions about the role of
ubiquitous microorganisms in mediating global element cycling.

CONCLUSION

The current understanding of the contribution of seafloor
microbes to global biogeochemical cycles, metabolic fluxes and

ecosystem functions is primarily aligned with what we known
from culturable microbes. The cultured microbes, however,
only represent a minor fraction of the total microbial vent
community. This shows that our current understanding is vastly
incomplete. Cultivation-independent approaches including
in situ technologies, biogeochemical rate measurements,
functional metagenomics, meta’omics, and biogeochemical
modeling are promising tools that have already been used
to effectively complement cultivation-dependent methods.
Clearly, no single technology will provide full access to the
vast potential of novel metabolic pathways hidden among the
majority of uncultured microorganisms. The great challenge,
but also the most promising approach for the future, can
only lie in harnessing the strengths of available cultivation-
dependent and cultivation-independent tools and smartly
combining them in a holistic multidisciplinary approach. Here,
continuing the development of existing in situ technologies
and experimentation, but also the establishment of completely
new ones, is of major importance and will significantly drive
progress toward opening the window into previously inaccessible
microbial physiologies of the microbial dark matter.
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