[bookmark: _GoBack]Supplementary Information
Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production 
Authors: Matthias Grote1*, Jean-Luc Boudenne2, Jean-Philippe Croué3, Beate I. Escher4,5, Urs von Gunten6,7, Josefine Hahn8, Thomas Höfer9, Henk Jenner10, Jingyi Jiang11, Tanju Karanfil12, Michel Khalanski13, Daekyun Kim12, Jan Linders14, Tarek Manasfi6, Harry Polman15, Birgit Quack16, Susann Tegtmeier17, Barbara Werschkun18, Xiangru Zhang11, Greg Ziegler19
1 German Federal Institute for Risk Assessment, Unit Transport of Dangerous Goods and Chemical Exposure, Berlin, Germany
2 Aix Marseille Univ, CNRS, LCE, Marseille, France
3 Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, Poitiers 86000, France
4 Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
5 Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
6 Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
7 School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
8 Helmholtz-Zentrum Hereon, Institute for Coastal Environmental Chemistry, Geesthacht, Germany
9 Member of GESAMP, Berlin, Germany (retired)
10 Aquator, Utrecht, The Netherlands
11 Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
12 Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
13 Houilles, France
14 Member of GESAMP, GESAMP-BWWG, retired, formerly RIVM, De Waag 24, 3823 GE Amersfoort., The Netherlands
15 H20 Biofouling Solutions, Bemmel, The Netherlands
16 GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
17 Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
18 Wissenschaftsbüro Dr. Barbara Werschkun, Monumentenstraße31a, D-10829 Berlin, Germany.
19 University of Maryland, Queenstown, MD, USA
*  corresponding author: matthias.grote@bfr.bund.de


[bookmark: _Ref487809509][bookmark: _Ref12605862]Table S1: Overview of selected DBPs detected in power station effluents (extracted and amended from Jenner et al. (1997)
	Power station
	Chlorine dose [mg Cl2/L ]
	Bromoform [µg/L]
	DBAA 
[µg/L]
	DBAN [µg/L]
	Tribromo-
phenol [µg/L]
	Reference

	Heysham 2 (UK)
	0.5 – 1.0
	26.1
	
	2.6
	
	a

	Dungeness (UK)
	0.75 – 1.0
	5.8
	
	0.2
	
	a

	Wylfa (UK)
	0.3 – 0.4
	27.3
	
	0.83
	
	a

	Bradwell (UK)
	0.6 – 1.0
	25
	
	0.87
	
	a

	Hartlepool (UK)
	0.5 – 1.0
	3.5
	
	<0.1
	
	a

	Sizewell A (UK)
	0.6 – 1.0
	14.5
	
	<0.1
	
	a

	Paluel (FR)
	0.37
	3.1
	
	0.1
	
	a

	
	0.82
	9.6
	
	1.05
	
	a

	
	0.2
	26.8
	10.3
	2.8
	0.14
	b

	Penly (FR)
	0.62±0.1
	13.4
	
	NA
	
	a

	
	0.5±0.08
	15.0
	
	NA
	
	a

	
	0.57
	7.4
	7.4
	0.94
	0.10
	b

	Gravelines (FR)
	0.64
	6.4
	
	NA
	
	a

	
	0.8
	18.6
	
	NA
	
	a

	
	0.77
	26.8
	9.5
	3.6
	0.37
	b

	Maasvlakte (NL)
	0.8 – 1.5
	11.5
	
	0.83
	
	a

	
	0.8-1.5
	8.4
	
	0.94
	
	a

	Madras (IND)
	1.0
	28.3
	
	
	
	c

	Youngkwang (ROK)
	1
	124
	
	
	
	d

	Ringhals (SWE)
	1.5
	100
	
	
	
	e

	Kori (ROK)
	
	
	
	
	0.02
	f

	All Data mean (range)
	
	25.0 
(3.1 – 100)
	9.0 
(7.4 – 10.3)
	1.1 
(<0.1 – 3.6)
	0.16
(0.02 -0.37)
	


NA: not available; to increase readability, in some cases values were averaged and/or standard deviations omitted
UK: United Kindom, FR: France, NL: Netherlands, IND: India, ROK: Republic of Korea, SWE: Sweden
Data extracted from: a Jenner et al. (1997), b Allonier et al. (1999), c Padhi et al. (2012), d Yang (2001), e Fogelqvist et al. (1982), f Sim et al. (2009)
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[bookmark: _Ref12549442]Table S2: Overview on DBP occurrences in thermal brines and reverse osmosis concentrates of desalination plants (extracted and amended from Kim et al. 2015).
	Source and location
	
	TBM
[μg/L]
	TBM
[μg/L]
	DBCM
[μg/L]
	DCBM
[μg/L]
	TCM
[μg/L]
	HAAs [μg/L]
	MBAA
[μg/L]
	DBAA
[μg/L]
	TBAA
[μg/L]
	HANs 
[μg/L]
	DBAN
[μg/L]
	BCAN
[μg/L]
	Other DBPs [μg/L]
	

	Thermal Brine
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Red Sea coast, Saudi Arabia
	Brine recycle
	9.5
	9.0 
	0.36
	0.13
	ND
	5.5
	0.2
	4.4
	0.88
	1.46
	1.03
	0.43
	
	a

	
	brine blowout
	0.18
	0.53
	0.14
	0.21
	ND
	4.5
	ND
	4.4
	ND
	0.50
	0.50
	ND
	
	a

	Ruwais, UAE
	brine blowout
	<1.0 
	<0.2 – 0.8
	<0.2
	<0.2
	<0.2 – 0.23
	<15.2 
	<1.0
	<1.0 – 11.6
	ND
	
	
	
	
	b

	Doha West and 
Al-Zor, Kuwait
	
	1.0 – 2.0
	1.8
0.7
	
	
	
	
	
	
	
	
	
	
	
	c

	Jeddah, Saudi Arabia
	
	12.7 – 17.8
	12.4 – 17.4
	0.3 – 0.4
	
	
	
	
	
	
	
	
	
	
	d

	RO concentrate
	
	 
	
	
	
	
	 
	
	
	
	 
	
	
	 
	

	Red Sea coast, Saudi Arabia
	1st pass conc. in plant 1
	6.2
	4.96
	0.23
	0.06
	ND
	0.78
	0.17
	0.61
	ND
	ND
	ND
	ND
	
	a

	
	1st pass conc. in plant 2
	22.6 – 52.9 
	51.3
	1.48
	0.06
	ND
	5.7 – 7.2
	ND
	2.52
	3.67
	0.6 – 1.2
	1.17
	0.04
	1.6 – 2.0 
(I-THMs)
	a

	Carlsbad, USA
	fall
	5.0 – 14
	5 – 14
	
	
	0.2 – 0.7
	17 – 27
	
	
	
	0.78 – 3.1
	
	
	0.53 – 0.96 (Br-phenol)
	e

	
	winter
	29 – 61
	10 – 20
	
	
	20 – 41
	
	
	
	
	
	
	
	
	e

	Ebara Corp, Japan
	
	24 – 39
	
	
	
	
	 
	
	
	
	 
	
	
	 
	f

	Nuweibaa, Egypt
	
	159
	104
	2.9
	0.3
	52
	
	
	
	
	
	
	
	
	g

	Mean*
	
	29.5
	19.3
	0.8
	0.2
	10.4
	9.1
	0.3
	3.6
	0.9
	1.3
	0.7
	0.1
	0.75 (Br-phenols)
	

	Range
	
	0.2 – 159
	0.2 – 104
	0.23 – 2.9
	0.06 – 0.3
	ND – 52
	0.78 – 27
	ND – 0.17
	0.6 – 11.6
	ND – 3.67
	0.5 – 3.1
	ND – 1.2
	ND – 0.4
	0.53 – 0.96
	


Data extracted from: (a) Le Roux et al. (2015), (b) Elshorbagy and Abdulkarim (2006), (c) Saeed et al. (1999), (d) Mayankutty et al. (1991), (e) Agus and Sedlak (2010), (f) Kojima et al. (1995), (g) calculated mean THM concentration from three outlets from Hamed et al. (2017), ND: not detected.
* calculated from all values provided. If rages are given, the mean value was used for the calculation. ND was set to 0 for purpose of calculation.



[bookmark: _Ref12638843]Table S3: Most frequently identified disinfection by-products in ballast water management systems (extracted from David et al. (2018)*
	DBP
	Frequency of detection§
		Discharge concentration in [µg/L]	

	
	
	Min
	Max
	Median
	Mean
	SD

	Bromate 
	20
	6.85
	920
	33.5
	119.7
	245.8

	Bromochloroacetic acid
	27
	0.10
	246.7
	5.6
	15.1
	46.6

	Bromoform
	36
	0.08
	890
	229
	247.1
	213.7

	Dibromoacetic acid
	34
	0.14
	230
	32.8
	48.7
	50.9

	Dibromoacetonitrile
	17
	0.28
	133
	12.9
	23.3
	32.5

	Dibromochloroacetic acid
	18
	1.50
	32.7
	8.7
	10.8
	8.2

	Dibromochloromethane
	33
	0.03
	120
	16
	22.1
	28.2

	Dibromomethane
	10
	0.06
	9.6
	1.6
	2.8
	3.4

	Dichloroacetic acid
	21
	0.10
	77.5
	2.96
	11
	18

	Dichloroacetonitrile
	11
	0.01
	9.2
	0.19
	1.9
	3.1

	Dichlorobromoacetic acid
	19
	0.10
	27.7
	3.4
	5.9
	7.8

	Dichlorobromomethane
	27
	0.04
	70.5
	4.4
	9.5
	14.5

	Monobromoacetic acid
	30
	0.20
	191
	3.1
	15.5
	37.8

	Monochloroacetic acid
	21
	0.08
	495
	2.9
	36.3
	110.2

	Tribromoacetic acid
	26
	0.10
	970
	19.3
	103.4
	197.8

	Trichloroacetic acid
	18
	0.50
	150
	9.7
	26.3
	41.0

	Trichloromethane
	21
	0.10
	257
	3.9
	29.8
	61.1

	2,4,6-Tribromophenol
	5
	0.10
	0.45
	0.21
	0.27
	0.14


* The selection of DBPs is limited to findings in 36 Final Approval dossiers as the test conditions are relatively close to a realistic operational ballast water treatment. § Number of dossiers listing the respective disinfection by-product. Means refer to samples where compounds were detected.



[bookmark: _Ref12605904]Table S4: Concentrations of DBPs reported in wastewater effluents (extracted from Krasner et al. (2009))
	Disinfectant
	DBP
	Level in wastewater effluent

	Chloramine (chlorine added to poorly nitrified wastewater)
	THMs
	Median = 2 μg/L

	
	HAAs
	Median = 8.9 μg/L 

	
	HANs
	ND to 12 μg/L (median and 75th percentile levels of 0.3 and 0.8 μg/L, respectively)

	Chlorine (chlorine added to well nitrified wastewater)
	THMs
	11 to 92 μg/L (median = 57 μg/L)

	
	HAAs
	13 to 136 μg/L (median = 70 μg/L

	
	HANs
	0.9 to 30 μg/L (median = 16 μg/L)


ND: not detected

[bookmark: _Ref56086683][bookmark: _Ref55829044]Table S5: Concentrations of DBPs in chlorinated saline sewage effluents in Hong Kong.
	
	Primary effluent
	Secondary effluent
	Reference*

	
	Chlorine dose and contact time
	Levels
[μg/L]
	Chlorine dose and contact time
	Levels
[μg/L]
	

	Bromochloroacetic acid
	15 mg/L NaOCl as Cl2 for 2 h
	4.2
	6 mg/L NaOCl as Cl2 for 2 h
	1.4
	a

	Bromodichloroacetic acid
	
	2.2
	
	0.0
	a

	Bromoform
	
	26.5
	
	31.8
	a

	Chloroform
	
	8.0
	
	5..0
	a

	Dibromoacetic acid
	
	6.0
	
	8.6
	a

	Dibromochloroacetic acid
	
	0.0
	
	0.0
	a

	Dibromochloromethane
	
	15.6
	
	2.5
	a

	Dichloroacetic acid
	
	6.8
	
	3.3
	a

	Dichlorobromomethane
	
	11.6
	
	4.9
	a

	Tribromoacetic acid
	
	8.0
	
	2.8
	a

	Trichloroacetic acid
	
	5.0
	
	5.7
	a

	2,4,6-Tribromophenol
	
	
	6 mg/L NaOCl as Cl2 for 30 min
	0.97
	b


*Chlorination of the primary and secondary effluents was conducted in batch tests in the laboratory. Data extracted from (a) Yang et al. (2005); (b) Ding et al. (2013); 



Estimate on annual discharge of cooling water from coastal thermal power stations
In 2016, approximately 25,000 TWh of electricity were produced worldwide (IEA 2018) with the annual global thermal electricity production relying on cooling systems for heat dissipation amounts to 18,900 TWh (16,300 TWh by fossil fuel, 2 600 TWh by nuclear power). Maas et al. (2020) identified that one fourth of the power plant capacities are located at the coast. Assuming an equal distribution between fossil fuel and nuclear power production between coastal and inland production and an average heating of water (T) by 12.5°C, an annual discharge of 4.7 x 1011 m3 is estimated (Table S6).
[bookmark: _Ref43463367]Table S6: Overview on global cooling water use in electricity production
	
	Production
[TWh]
	Estimated discharge of cooling
water in the sea at different water heating temperatures (m3)

	
	Global
	Coastal power plants
	T = 10 °C
	T = 12.5 °C
	T = 15 °C

	Fossil Fuel
	16,300
	4 080
	4.51 x 1011 
	3..76 x 1011 
	3.01 x 1011 

	Nuclear
	2 600
	650
	1.18 x 1011 
	9.47 x 1010 
	7.82 x 1010 

	Total
	18,900
	4 730
	5.69 x 1011 
	4.70 x 1011 
	3.79 x 1011 
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