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The effects of climate change (CC) on contaminants and their potential

consequences to marine ecosystem services and human wellbeing are of

paramount importance, as they pose overlapping risks. Here, we discuss how

the interaction between CC and contaminants leads to poorly constrained

impacts that affects the sensitivity of organisms to contamination leading to

impaired ecosystem function, services and risk assessment evaluations.

Climate drivers, such as ocean warming, ocean deoxygenation, changes in

circulation, ocean acidification, and extreme events interact with trace metals,

organic pollutants, excess nutrients, and radionuclides in a complex manner.

Overall, the holistic consideration of the pollutants-climate change nexus has

significant knowledge gaps, but will be important in understanding the fate,

transport, speciation, bioavailability, toxicity, and inventories of contaminants.

Greater focus on these uncertainties would facilitate improved predictions of

future changes in the global biogeochemical cycling of contaminants and both

human health and marine ecosystems.
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Introduction

The multiple environmental stressors associated with human

activities are dramatically impacting ocean systems, particularly the

functions and ecological services that they provide (Doney et al.,

2012). The magnitude of the cumulative impacts of multiple

concurrent environmental stressors has been higher in coastal

ecosystems than offshore areas, with contamination being one of

the most prominent pressures (Halpern et al., 2008). The input of

contaminants to the environment is of global concern when these

contaminants exhibit persistence, widespread distribution and

accumulation in organisms and the environment, and threatens

the resilience of the Earth System processes (Steffen et al., 2015).

While successful efforts have been made to reduce specific

pollutants (e.g., Stockhom Convention and Minamata Convention)

in the marine environment, increased contamination continues to

cause degradation with negative impacts on food security, food

safety, and marine biodiversity (UN, 2021). Moreover, high

technology industries are increasing the amount and variety of

chemicals in use. Major technologies for decarbonization are

expected to increase the inputs of new contaminants into marine

waters, including the technology-critical elements (TCEs), such as

rare earth elements (REE), platinum group elements (PGE),

substitutes for regulated organic compounds, and nanoparticles,

with undefined toxicity and fate in the environment (Lodeiro et al.,

2017; Hatje et al., 2018; Dang et al., 2021; Pell et al., 2021).

The ubiquitous presence of contaminants, such as trace

metals, persistent organic pollutants, plastics, and excess

nutrients, in the marine ecosystems raises challenges for

achieving the Sustainable Development Goal target 14.1 (to

prevent and significantly reduce marine pollution of all kinds)

by 2025. The relevance of ocean pollution, relative to

contaminant type and impacts in ecosystems, is rapidly

changing not only as a function of the magnitude, transport,

exposure pathways, and proximity to sources but also because of

parallel climate change (CC). Contaminants, in particular

plastics, and CC are connected in different ways. Plastic

production, for instance, relies on fossil fuels and contributes

to the emissions of global greenhouse gases (GHG) at each stage

of their life cycle (Zheng and Suh, 2019). It is estimated that over

56 billion Mt of CO2e in GHG will be emitted between 2015 and

2050 due to plastic production (Hamilton et al., 2019).

Rising atmospheric CO2 is one of the most critical problems

of CC (Figure 1) because its effects are globally pervasive, leading

to increasing ocean temperatures which in turn alter ocean

circulation, drive a reduction of oxygen concentrations,

retreating sea ice, rising sea-level, and altered precipitation and

runoff. The increase in atmospheric CO2, which results in a net

transfer of CO2 to the ocean, has also already caused the

seawater [H+] to increase (known as ‘ocean acidification’).

Since the beginning of the industrial era, it is estimated that

ocean acidification has caused a global mean reduction of ca. 0.1
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pH units (i.e., an [H+] increase of ~1.6 nmol kg-1) in the surface

ocean (Fassbender et al., 2021), and a further decrease in pH of

0.3 - 0.5 units by the year 2100 in the surface ocean is possible

(IPCC, 2021), posing far reaching effects on marine life (Gehlen

et al., 2014; Boyd et al., 2016).

Climate change drivers and pressures, specifically warming,

stratification, acidification, deoxygenation, sea-level rise,

extreme events (Figure 1) display interlinkages that lead to

cumulative, antagonistic and synergic interactions, which can

then alter the environmental fate, transport, chemical and

physical speciation, availability, toxicity of contaminant, and

pathways in marine food webs (Borga et al., 2012; Avendaño

et al., 2016; Kibria et al., 2021). The interaction types differ

among organisms from different climatic regions, and their

variability is also dependent on the type and concentration of

the contaminant (Jin et al., 2021). The interactions between CC

and contaminants can exacerbate global pollution and must be

considered in an integrated manner to properly assess the risk

and vulnerability of ecosystem structure and functions, and also

human well-being. Therefore, investigating the responses of

individual contaminants (e.g., change in speciation,

bioavailability, and transport) to single CC forcing factors,

although essential, provides an incomplete story and highlights

the need for comprehensive, multi-stressors analyses to predict

the impacts of these changes on coastal and ocean ecosystems,

therefore, important science, policy, and societal goals. These

current knowledge gaps hamper the reliable analysis and

modeling of risks, vulnerabilities and impacts, and the sound

management of contaminants.
Interactive effects of CC drivers
and contaminants

Ocean warming that has grown substantially since the 1970s

(IPCC, 2021) impacts the ocean circulation and water column

stratification, affecting nutrient and contaminant supply as well as

the distribution, growth, and a range of physiological rates of many

species, including phytoplankton. Net primary production by

phytoplankton primes the biological carbon pump and plays a

key role in supporting climate regulation services, besides provision

services, such as fisheries. Ocean warming is expected to decrease

the primary production and the negative impacts on animal

biomass can be amplified at higher trophic levels (Lotze et al.,

2019). One of the main reasons is the potential shift in the essential

trace metals (e.g., manganese, iron, zinc, copper, and cobalt)

distribution and bioavailability that has a significant biological

role in marine primary production. Iron, for instance, is a

micronutrient that supports many metabolic reactions necessary

for phytoplankton and bacteria. Its availability controls species

composition, trophic structure, and the sensitivity of net primary

production to CC (Morel and Price, 2003; Hutchins and Boyd,
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2016; Tagliabue et al., 2020). However, some essential trace metals

such as Cu and Zn can also act as contaminants at high

concentrations. Several studies have shown interactive effects of

temperature increase and contaminants resulting, mostly, in

enhanced bioaccumulation and toxicity of trace metals and

organic contaminants (Baines et al., 2005; Mubiana and Blust,

2007; Delorenzo, 2015; Bates et al., 2021). The speciation of trace

metals, which determines to a large extent themobility, toxicity, and

bioavailability (Tessier and Turner, 1996), is sensitive to CC drivers

and responds to the environment physicochemical conditions and

biotic interactions.

Additional CC drivers projected to worsen under ocean

warming conditions and changes in upper-ocean stratification

are associated with ocean oxygen loss and a subsequent

expansion of the oxygen minimum zones (Stramma et al.,

2008; Keeling et al., 2010). The increasing low oxygen

conditions predicted by 2100 will drive substantial changes in

water chemistry, as already can be seen in the Baltic Sea (Liblik

and Lips, 2019; Limburg and Casini, 2019), Arabian Sea (Al

Azhar et al., 2017), and other areas. In addition, changes are

expected to ocean-climate feedbacks through the production of

N2O (Schmidtko et al., 2017) and in the biological pump

strength that has a critical role in the fate and transport of

carbon and persistent organic pollutants (POPs) (Galbán-

Malagón et al., 2012).
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Changes in the carbonate chemistry and ocean acidification

(OA) resulting from the increase in CO2 uptake by the ocean has

a diverse effect on calcifying organisms, such as mollusks and

pteropods, important prey groups for ecologically and

economically important fish diets (Bednarsek et al., 2014). It

also has negative impacts on foraminifera, corals, and

phytoplankton (Doney et al., 2020), with the potential

reduction in carbon export (Martin et al., 2020). Nitrogen

fixation is expected to enhance by ~30%, whereas nitrification

processes may be reduced by about the same factor (Wannicke

et al., 2018) as a result of OA.

Thus, it affects nitrous oxide production, reducing the supply of

oxidized nitrogen to the surface waters, creating an imbalance in the

nitrogen cycle throughout the ocean (Beman et al., 2011). OA may

also affect the production of other marine trace gases and result in

further feedback to the atmosphere (Hopkins et al., 2020). Ocean

acidification can have a significant impact on biogeochemical cycles

and may alter the solubility, adsorption, bioavailability, toxicity, and

rates of redox processes of metals in seawater (Millero et al., 2009;

Gledhill et al., 2015; Stockdale et al., 2016). There is growing

evidence that the combination of CC stressors and individual

contaminants amplifies the negative effects produced in

organisms (Nardi et al., 2017; Nardi et al., 2018; Freitas et al.,

2019). On the other hand, an antagonistic effect of acidification,

temperature increase, and Hg contamination has also been reported
FIGURE 1

Conceptual model of the main climate change drivers and contaminants interacting and potentially exacerbating negative impacts on coastal
and ocean ecosystems.
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(Sampaio et al., 2018). However, well-designed studies assessing the

combined impacts of a suite of contaminants and multiple CC

drivers are rare and the effects of changing pH in the interactions of

metals complexed to organic ligands (Avendaño et al., 2016; Zhu

et al., 2021) withmarine organisms (Leal et al., 2018; Romero-Freire

et al., 2020) are still lacking, although extremely important for the

ocean productivity.

CC drivers operate alongside with contaminants

synergistically and thus contribute to environmental change at

a global scale. Moreover, some regions, such as the Arctic, are

known to be more vulnerable and are therefore changing more

rapidly due to the multiple co-occurring changes in temperature,

freshwater content, sea ice cover, nutrient concentrations, and

pH (Wassmann et al., 2011; Stjern et al., 2019; Arrigo et al., 2020;

AMAP, 2021b). In addition, to these CC drivers, the Arctic

ecosystems also present a high vulnerability to radionuclides

contamination due to nuclear testing in the 1950s with

additional inputs from accidents, weapons tests and substantial

amounts of radioactivity dumped at sea with the potential for

corrosion/leakage of the containers (UNSCEAR, 2000; AMAP,

2015). Further, permafrost, ice sheet, sediments, and soils can

potentially become new sources of plutonium and cesium-137 to

the marine environment through remobilization of radioactivity

(Macdonald et al., 2003). Persistent organic pollutants (POPs)

and metals (Hg, Pb, and Cd) and microorganisms released from

thawing permafrost are also overlapping problems in the Arctic,

whose risks are underestimated (Miner et al., 2021). There is

evidence that Hg and POPs removed from the atmosphere and

deposited on snow have been released to the environment at

snowmelt, rapidly dispersing hazardous compounds through the

atmosphere, continental and aquatic system and becoming

bioavailable to be incorporated into food webs (Ma et al.,

2016; AMAP, 2021a). As the Arctic warms, CC drivers may

exacerbate this process beyond the biological threshold, which

amplifies the significance for the understanding of the emission

rate, cycling, and trends of contaminants under global changes.

Coastal vegetated ecosystems such as seagrasses, mangroves,

and tidal marshes, are important sinks for contaminants, but are

also environments that are particularly sensitive to CC (Bindoff

et al., 2019). In particular, these environments are exposed to

extreme events, like hurricanes and heat waves, which will likely

increase thermal stress in these systems, and storm surges that

may modify the water cycle intensity and promote contaminants

remobilization from soils. It is predicted a mean global sea-level

rise by 2100 of up to 1 m under a very high, but not unrealistic

greenhouse emissions scenario (IPCC, 2021), resulting in higher

susceptibility of small island states and coastal ecosystems to

erosion and flooding. Global riverine contaminant inputs are

likely to increase due to more intense and frequent precipitation

and storm surges. For instance, Hg concentrations can increase

up to six-fold in coastal areas following scenarios projecting up

to 30 percent increased terrestrial runoff (Jonsson et al., 2017).
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The understanding of the combined contaminants’ response

to CC drivers and how to forecast them will help policy makers

to decide, for instance, whether the consumption of fish and

shellfish is safe, or if areas where restoration and protection of

coastal vegetated ecosystems must be prioritized to avoid the

exposure of coastal communities to contaminants. For now, the

scarcity of global pollution data, poor understanding of the

effects and especially cumulative pressures of CC on multiple

contaminants, as well as limited availability of global

biogeochemical models are undermining projections and

hampering sound pollution management. It will be necessary

to increase our knowledge from laboratory, ecosystem-based

field and process studies, as well as modelling, to have an

overarching international action to facilitate and foster broad

bidirectional science-policy interactions. The synergistic effects

of various CC drivers are still mostly unexplored and demand

urgent research studies (Cabral et al., 2019; Arrigo et al., 2020;

Jin et al., 2021; Kibria et al., 2021).

We call on the international community to draw their

immediate attention on these knowledge gaps and recommend

to address appropriate research questions to ensure a systematic

understanding of the effects of the complex interplay between

contaminants and CC drivers on marine ecosystems. This

knowledge will contribute to informed decision-making,

following the Sustainable Development Goals (SGD) during

the United Nations Decade of the Ocean Science.
Important knowledge gaps

There have been reviews of the impacts of CC on marine

contaminants (Cabral et al., 2019; Kibria et al., 2021).

Nevertheless, the available knowledge is limited to mostly

laboratory studies that tested the effects of a single CC driver

by one or more contaminants. The limited data on multiple

concurrent CC drivers and their interaction with contaminants

jeopardizes the construction of more generic patterns and

models for predicting changes in biogeochemical cycles and

their impacts on marine ecosystems. After reviewing the

literature, we identified that the major knowledge gaps are:
1. The patchiness of the data on the spatial distribution of

contaminants (nutrients, metals, radionuclides, and

organic compounds), temporal trends, and associated

uncertainties for the coastal and open ocean, especially

in the southern hemisphere, has prevented investigators

from reaching solid conclusions and assessments of

exposure scenarios driving impacts to ecosystem

integrity.

2. The complex mixture of contaminants in marine

environments, coupled with the fact that even at low

concentrations those contaminants can be toxic, poses
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Fron
the need to develop analytical capabilities on a global level.

This has also to consider the additional challenges

associated with the increasing number of emerging

contaminants (e.g., REE, PGE, pharmaceuticals, personal

care products) entering the environment (Pedreira et al.,

2018; Pichler and Koopmann, 2019; Pell et al., 2021; Borgå

et al., 2022).

3. The need to develop well-designed laboratory and field

experiments to test the interactions and synergies

between multiple contaminants (e.g., changes in

chemical speciation, abiotic and biotic removal

processes, pathways in food web) and combined CC

drivers on various organizational levels (individual to

ecosystem). Climate change-contaminants sensitivity

and vulnerability analyses are needed.

4. State-of-the-art models that integrate both CC and

contaminants are needed to predict changes in the

distribution, fate, and transport of contaminants in

response to the CC scenario and forecast interactions

between contaminants and humans.

5. Innovative, cross-border solutions to prevent the input of

contaminants to marine ecosystems and mitigate their

combined impacts associated with CC.
The way forward

To address the backdrop of the knowledge gaps, we call for a

coordinated effort to assess the interaction between and impacts of

CC on contaminants in marine environments. This endeavor

should have an inclusive scope and promote field studies,

including the definition of baseline levels in areas that haven’t yet

been explored, monitoring studies to evaluate long term trends

(gaps 1 and 2), and process studies in specific regions to understand

and predict the consequences of interactive effects between

contaminants and CC in the chemistry and ecology of coastal

and ocean systems (gap 3). CC-induced contaminant sensitivity/

vulnerability in terms of persistence, bioaccumulation potential, and

toxicity of organic and inorganic contaminants must be evaluated

and modeled to predict and minimize future risks for humans and

ecosystems. Such an effort will require support and building of

capacity to deliver the necessary geographic scope (gap 1). Although

our objective here is not to identify all possible research questions

that need to be addressed, some points deserve attention. Land-

based sources and hotspot reservoirs of contaminants (e.g.,

mangroves in the tropics, and Arctic ecosystems) in combination

with regionally specific hydroclimate projections will determine

plausible trajectories of marine pollution over the coming decades

and need to be investigated. Expected increases in river flows will

make rivers priority sources of contaminants (chemicals and
tiers in Marine Science 05
plastics). Enhanced river fluxes (and flash-flood events) and sea-

level rise will also promote the remobilization of litter and

contaminants accumulated over time. Subsistence communities

across low-lying coastal areas and specifically Small Island

Developing States (SIDS) are particularly vulnerable. The impact

of multiple CC stressors and contaminants will affect biodiversity,

ecosystem resilience, and shellfish/fish industries due to changes in

the speciation, toxicity, and bioavailability of contaminants. We still

don’t know which groups of contaminants are more likely to be

most affected and becomemore toxic and deleterious for themarine

food web and human health. Modeling exercises and combined

model-data syntheses (gap 4) will help to address these critical

issues providing a framework for quantifying the net CC and

pollutant impacts on marine systems and to identify priority

areas and strategies to minimize pollution impacts (gap 5) to

maintain sustainable uses of the ocean. This approach could also

help to prioritize contaminant classes that needs urgent attention,

regional patterns, or effect trends (Persson et al., 2022).

Scientists are confident predicting that climate change is going

to intensify and exacerbate extreme events (IPCC, 2021). Some of

these changes are already happening, as seen in the unprecedented

number and magnitude of extreme events of the last decade.

Extreme events, such as floods, can promote the transport and

translocation of chemical contaminants (Horowitz et al., 2014) and

plastics (Ford et al., 2022) to large areas, exposing organisms to high

concentrations of contaminants for an extended period (Barber

et al., 2017; Izaditame et al., 2022), potentially causing more

ecological adverse effects and health risks through various

exposure routes, including bioaccumulation in the food web (Och

et al., 2014; Crawford et al., 2022).

A general failure to achieve the integrated knowledge and

management of human pressures on marine systems is increasing

risks to the benefits that people draw from the ocean in terms of

food security, material resources, human health and well-being,

coastal safety, and the maintenance of key ecosystem functions. The

scarce information on species and ecosystem-level threshold,

tolerances, and tipping points for various CC drivers mean that

predictions of risk, vulnerability, and responses are difficult to make,

and confidence is low. This highlights the urgency for a better

understanding of the synergies between contaminants and CC and

the challenges to develop effective remediation and conservation of

coastal and ocean ecosystems. This will only be achieved through

fostering a different frame of interdisciplinary research including

improved socio-ecological models and integrated ecosystem

assessments, together with better integration of stakeholders

(Holsman et al., 2017). A key next step will be to compile global

databases of empirical measurements and modeling information on

the effects of CC on contaminants for better informed predictions of

future impacts, to support ecosystem-based planning decisions, to

identify where pressing mitigation efforts are most needed, to plan

proactive and more preventive management practices, and to

monitor progress towards sustainable management actions.
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Aware of this, the Join Group of Experts on the Scientific Aspects of

Marine Environmental Protection (GESAMP) Working Group 45

(http://www.gesamp.org/work/groups/wg-44-ghg-impacts-on-

contaminants-in-the-ocean) in a joint effort is systematically

reviewing existing literature on the effects of changes in ocean

physics and chemistry on the speciation, cycling, fate, transport, and

bioavailability of trace metals, organic pollutants, radionuclides, and

nutrients to identify knowledge gaps, make recommendations, and

planning for future research directions. The understanding of CC

drivers and contaminants interactions depends on the collaboration

of the scientific community and other stakeholders to produce

sound information to subsidize the protection of human health,

marine ecosystems services, and functions.
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