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Supplementary Information 

Detailed description of illumination and color normalization 

This section provides detailed mathematical formalisms for the illumination and color 

normalization section of the paper, which were used to improve the visual quality of the 

underwater image datasets described in the paper. 

First, the illumination drop-off towards the corners of each image is removed independently. The 

image dataset is sorted by acquisition time and split into batches comprising 50 images. For each 

batch, a mean image I(µ) and a standard deviation image I(𝝈) are computed. These are used to 

generate the corrected image I(IL) using the z-score normalization:  

𝐼(𝐼𝐿) =  
𝐼 −  𝐼(µ)

𝐼(𝜎)
 

Second, adaptive histogram equalization is applied to maximize contrast in each image. 

Therefore, the normalized histogram H of I(IL) is computed (|H| = 256, ∑ 𝐻𝑖 = 1).  255
𝑖=0 Each pixel 

of color pc in I(IL) is then mapped to a color qc to create an image I(HE), where qc is determined by: 

𝑞𝑐 = 255 ∗ ∑ 𝐻𝑖

𝑝𝑐

𝑖=0

 

Finally, color normalization is applied to each I(HE) to equalize all N=40,678 images together to a 

reference illumination. The one image 𝐼(̅𝐻𝐸) with the largest scale and maximum resolution (in 

px/cm)  is chosen as a reference image (see supplementary Fig. S1): 



𝐼(̅𝐻𝐸) =  𝐼argmax𝑖{𝑠𝑖|𝑖=0,..𝑁−1}
(𝐻𝐸)

 

The reference cumulative distribution function G is computed from the histogram 𝐻 of the 

reference image 𝐼(̅𝐻𝐸): 

𝐺(𝑘) =  ∑ 𝐻𝑖

𝑘

𝑖=0

 , 𝑘 = 0, 1, 2, 3, … , 255  

Also, the source cumulative distribution function S is computed from the histogram 𝐻 of each 

contrast-enhanced image I(HE): 

𝑆(𝑘) =  ∑ 𝐻𝑖

𝑘

𝑖=0

 , 𝑘 = 0, 1, 2, 3, … , 255  

The color normalized image I(IN) is then formed from I(HE). This is done by mapping each value r 

from the source distribution S, to the corresponding value z that has the same probability in the 

reference distribution G: 

𝑧 = 𝐺−1 (𝑆(𝑟)) 

 

 

Supplementary Figure S1: Distribution of image scales as a function of acquisition time during the OFOS 

dive at station 126. The reference image to be used for color normalization is chosen to have the maximum 

resolution. 

 

 



Relationship between image-based seafloor classification and acoustic-derived properties 

This section provides a very brief summary of the analysis of hydroacoustic data recorded during 

the multibeam mapping performed during cruise SO268 1. We follow this with a brief discussion, 

in which we compare instances of our Seafloor B, C and D against seafloor morphology and 

multibeam backscatter values obtained from the hydroacoustic analysis. Seafloor A was omitted 

from this comparison since it was artificial seafloor, which was formed as a result of the settling 

sediment plume following the dredging experiment done in the German contract area. The aim of 

this comparison was to further investigate the spatial distribution of our seafloor classes, and also 

to check if these classes are meaningful e.g., for potentially large-scale habitat classification 

purposes.  

We clarify that this section does not provide an in-depth description of the acoustic data 

processing methods e.g., for interpreting geological and geomorphological characteristics for 

purposes of quantifying and assessing the concentration of Mn-nodules on large areas of the 

seabed.  For a comprehensive description and in-depth discussion of these aspects, we point 

interested readers to recent studies such as 2, 3, 4, 5, 6 and 7. In addition, we note that compared to 

the optical images recorded by the OFOS, the resolution of our 12kHz ship-based hydroacoustic 

dataset that was recorded from an average of 4,280 m water depth may not be sufficient for 

showing fine scale variation in seafloor classes in certain applications. 

Both the raw and processed bathymetry and multibeam backscatter datasets were acquired during 

the same cruise SO268 that also acquired the underwater optical images used in this study, and 

these acoustic datasets published in PANGAEA 8, 9. These datasets were analyzed to generate 

seafloor morphological properties, which were compared against the seafloor classification 

results obtained from our image-based workflow. This was aimed at checking whether our 

proposed image-based workflow produces semantically meaningful seafloor substrate classes 

that can be potentially used for habitat classification, and also to further investigate the 

distribution of Mn-nodule on the seafloor.  

The generated seafloor morphological properties included absolute depth, backscatter, slope, 

bathymetric positioning index (BPI), and ruggedness - expressed as Vector Ruggedness Measure 
10. Slope, ruggedness, and BPI raster grids were calculated using the Benthic Terrain Modeler 11 

in ArcMap 10.6, with a spatial resolution of 50 x 50m 9. A 3 x 3 neighbor was used for the slope 

and ruggedness calculation, whereas the BPI was calculated with an inner radius of 50m and an 

outer radius of 300 meters scale. The BPIs were standardized to enable comparison between the 

different scales and areas. In both contract areas, the same multibeam (EM122) and acquisition 

settings were  used 1. Post-processing of the backscatter data utilized the Fledermaus Geocoder 

Toolbox (FMGT) by QPS, applying the same settings for both areas. Thus, a comparison 

between the two contract areas is feasible. For a more in depth description of the methods, as 

well as comprehensive discussion of geological reasons for the Mn-nodule distributions please 

see 2, 3, 4. 

The five investigated seafloor morphological properties for both the German and Belgian 

contract areas are shown in supplementary Fig. S2. The German contract area is shallower than 

the Belgian area; differences in backscatter intensity are also visible in the two contract areas. In 

the German area, a difference in backscatter intensity can be seen between the Seafloor classes 



B, C and D. Compared to seafloor regions with sparsely distributed Mn-nodules in Seafloor B, 

the backscatter strength is higher in regions with dense and large Mn-nodules (Seafloor C and 

D). This is because the acoustic signal penetrates into the sediment, and is less scattered from the 

rough microrelief of the Mn-nodule seafloor in patchy Mn-nodule areas (Seafloor B) compared 

to Seafloor C and D. This is consistent with previous findings which found an association 

between low backscatter strength for a seabed that is dominated by sediment, whereas higher 

backscatter strength was associated with medium-to-large sized Mn-nodules including 

outcropping rocks 12, 4, 5. Overall, the large Mn-nodule areas (Seafloor D) returned the highest 

backscatter, even though in the Belgian contract area the relative difference in the backscatter 

strength between densely distributed and large Mn-nodules was only marginal. This could be 

because the two contract areas contributed disproportionately to each seafloor class. The Belgian 

contract area contributed significantly to both Seafloor C (96%) and Seafloor D (64%), while the 

German area contributed significantly to Seafloor D (35%) but insignificantly to Seafloor C 

(3%). This could explain why the relative difference in backscatter strength between Seafloor C 

and D in the German area was more pronounced compared to those in the Belgian area. The 

disproportionality of the Mn-nodules distribution was also observed in previous studies by  13 

and 14.   

Comparing the two contract areas, the median backscatter strength in the Belgian area was 

consistently lower than in the German area, although large and dense nodules should give a 

higher backscatter response than the smaller and patchy distribute occurrences. We note that for 

12kHz MBES systems, the recorded backscatter signal reflects both the top of the seafloor (the 

top 20cm; the seafloor backscatter) but also reaches several meters into the sediment column 

(volume backscatter; Mitchell, 1993) 16, 17. Especially in the German contract area, a high 

percentage of larger Mn-nodules (30%) is buried in the first 20 cm of the sediment column. This 

percentage can vary significantly (20-70%) thereby contributing to the observed backscatter 

intensity 18. Opposite, the Belgian contract area has a smaller percentage of buried Mn-nodules 
19. In addition, the Belgian area lies 400m deeper than the German area, a fact that could have 

influenced the backscatter correction of the received signal intensity from different water depths 

during the acquisition or/and backscatter processing in FMGT 20 21. Moreover, the relative 

inconsistency in backscatter intensity between the two areas could be caused by the difference in 

spatial footprint of the images used in the classification (1.6 m2), and the spatial footprint of the 

backscatter dataset (the beam footprint increases with depth). In a previous study, 12 point out 

that some level of inconsistency between in-situ observations by the OFOS and backscatter 

should be expected if the spatial footprints are so much different between visual and 

hydroacoustic observations.   

Analysis of the fine BPI revealed that the large Mn- nodules were located in relatively flat 

regions characterized with a median BPI value of zero, while the densely distributed Mn-nodules 

occupied local elevations (e.g., ridges) with positive median BPI value (+1). The few sparsely 

distributed Mn-nodules were located in valleys with a negative median BPI value (-2). In the 

Belgian area, positive BPI values clearly distinguishes Seafloor C from the other classes B and 

D, which shows that Seafloor C occurs mainly in the local elevations of the seafloor. 

Correlations between the BPI and Mn-nodule distribution have also been detected in previous 

studies by 7, 4 and 3. However, we emphasize that these studies were based on AUV-derived 

bathymetry data, which has at higher resolution than our ship-based bathymetric data.  



 

Supplementary Figure S2: Box plots of bathymetric derivatives and MBES backscatter (BS) grouped by 

the respective seafloor classes. Also shown are distributions of the derivatives as sampled along the 

deployment tracks, compared to those within a raster grid covering the spatial extent of each visually 

inspected area. Overall, the distributions show that the sampling was representative. The classification 

confidence score threshold was set to 0.6 which represented 80% of the images. At this threshold, the 

proportion of images in the seafloor classes B, C and D was 13913, 132, 4059 in the German area and 260, 

3599, 8015 in the Belgian area, respectively. Class A was omitted since it predominantly occurred in the 

German area after the dredge experiment (artificial seafloor). 



SUPPLEMENTARY TABLES 

Table S1 Python libraries used in implementing AI-SCW components 

Python library Usage 

pandas Processing navigation text files and managing csv files 

geopandas Geotagging images by matching acquisition time vs USBL navigation 

data 

contextily Providing basemaps for cartographic visualization on jupyter 

notebooks 

tensorflow-gpu Fine-tuning and inferencing Inception V3 convolutional neural 

network 

cartopy Cartographic visualization on jupyter notebooks 

scikit-learn Machine learning and dimensionality reduction 

ipython Rendering rich text on jupyter notebooks 

shapely Computational geometry during laser point detection 

matplotlib Visualization and plotting 

imageio Reading image datasets into memory 

seaborn Visualization and plotting on top of matplotlib 

tensorflow-hub Loading pre-trained Inception V3 model weights 

pillow Image processing 

rasterio Reading geospatial raster files such as bathymetry, backscatter e.t.c 

scikit-image Image processing 

 

 

 

 

 

 



Table S2 Specific python scripts for running each component of AI-SCW. Both the scripts 

and detailed usage guides are located in the project’s GitLab repository 

(https://git.geomar.de/open-source/AI-SCW) 

AI-SCW Task Python script 

Georeferencing images python create_table_of_geotagged_coordinates.py 

 

Laser point detection python detect_lasers.py 

 

python interpolate_non_detected_lasers.py 

Illumination normalization python pixelwise_normalize.py 

 

python adaptive_histogram_normalize.py 

Standardizing spatial 

footprint  

python rescale_and_crop_all_images.py 

 

Color balancing by 

reference image-based 

histogram matching 

python color_balance_center_cropped_images.py 

 

Extracting texture features python extract_texture_features.py 

Semi-automated image 

annotation 

python semi_automatically_generate_labels.py 

Fine-tuning inception V3 

convolutional neural 

network 

python fine_tune_CNN_to_create_seafloor_classifier.py 

Classify each image using 

the fine-tuned Inception V3 

python classify_each_photo_using_fine_tuned_classifier.py 

Generating performance 

metrics of the fine-tuned 

inception v3 

python evaluate_performance_of_fine_tuned_cnn.py 

Evaluating sampling 

strategies for unsupervised 

classification 

python evaluate_unsupervised_seafloor_classifiers.py 

 

 

 

https://git.geomar.de/open-source/AI-SCW
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