Supplementary Information
Ancient marine sediment DNA reveals diatom transition in Antarctica

Authors: Linda Armbrecht”, Michael E. Weber, Maureen E. Raymo, Victoria L. Peck, Trevor Williams, Jonathan
Warnock, Yuji Kato, lvan Hernandez-Almeida, Frida Hoem, Brendan Reilly, Sidney Hemming, lan Bailey, Yasmina
M. Martos, Marcus Gutjahr, Vincent Percuoco, Claire Allen, Stefanie Brachfeld, Fabricio G. Cardillo, Zhiheng Du,
Gerson Fauth, Chris Fogwill, Marga Garcia, Anna Gliider, Michelle Guitard, Ji-Hwan Hwang, Mutsumi lizuka,
Bridget Kenlee, Suzanne O’Connell, Lara F. Pérez, Thomas A. Ronge, Osamu Seki, Lisa Tauxe, Shubham Tripathi,
Xufeng Zheng; “Corresponding author email: linda.armbrecht@utas.edu.au

Table of contents

Content Page
Supplementary Notes 1: Comparison of alignments with SILVA SSU, LSU and combined | 1
SSU+LSU reference databases

Supplementary Fig. 1: Linear regression (SSU, LSU, SSU+LSU)

Supplementary Table 1: Correlation analysis statistics (SSU, LSU, SSU+LSU)

Supplementary Notes 2: psbO analysis

Supplementary Fig. 2: Abundance of photosynthetic organisms at IODP Exp. 382 Sites U1534,
U1536, U1538 (non-standardised).

Supplementary Notes 3: Correlation analyses of sedaDNA damage, taxonomic composition, | 4
and geochemical parameters
Supplementary Fig. 3: Correlation analysis plot 5
Supplementary References 6

WIWININ

Supplementary Notes 1: Comparison of alignments with SILVA SSU, LSU and combined SSU+LSU reference
databases

It has been shown previously that using a combination of both the small (165/18S, SSU) and large subunit
(235/28S, LSU) ribosomal RNA taxonomic marker genes to identify marine eukaryotes from metagenomic
sedaDNA provides a better taxonomic resolution relative to when only one database is used. Specifically, the
SSU is better suited for detecting major marine groups such as tintinnids (a group of ciliates), cnidarians,
molluscs, and fish, the LSU provided better resolution for crustaceans (e.g., copepods) and haptophytes (e.g.,
Phaeophyceae), and using a combination of SSU and LSU databases provides a better species resolution for
eukaryotes (i.e., an increase in the number of eukaryotic taxa detected) relative to single markers (nearly double
the number of taxa compared to using SSU and LSU alone?).

Post filtering (removal of short (<25bp), complexity-filtering and deduplication), we retrieved a total of 167.8
Mio reads with an average length of 64 bp for samples and 38 bp for controls (MultiQC?). These were aligned
with each database (SILVA SSU, LSU and combined SSU+LSU, https://www.arb-silva.de/), which provided a total
of 142,299, 189,724, and 297,002 reads assigned to the three domains Bacteria, Archaea, and Eukaryota (for
SSU, LSU and SSU+LSU respectively, see Main Text). Next, we exported the read counts data from MEGAN CE3
(v.6.21.12) for each dataset (SSU, LSU, SSU+LSU; eukaryotes on phylum level), converted to relative abundances
and determined the average across all samples (Main Text Fig. 2). We worked with relative abundances in order
to retain the maximum number of reads for downstream analyses, providing the total number of reads for
completeness (see Main Text Figs. 3 — 5 and associated Source Data). While relative abundances of taxa were
very similar between the datasets, slightly more taxa were detected using the combined SSU+LSU database (a
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total of 97 taxa compared to 81 and 84 when using the SSU and LSU reference databases alone, respectively
(phylum level). In cases where a taxon was detected by either the SSU or the LSU database when using these
databases separately, it was always detected via the combined database (Supplementary Data 2). Five taxa
were missing in the LSU database and thus could only be detected via the SSU or SSU+LSU database
(Supplementary Data 2). Performing a linear Regression Analysis (Excel), and Pearson Correlation Analysis (PAST
software v.4.03%) on the relative abundances per taxon determined by SSU, LSU and combined SSU+LSU showed
strong positive relationships between the datasets (Supplementary Fig. 1, Supplementary Data 2). As such and
due to the slightly better taxonomic resolution, we report the taxonomic profiles generated by comparing our
shotgun data to the combined SSU+LSU database in the Main Text.
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Supplementary Fig. 1: Linear regression of relative abundance per taxon (phylum-level) determined via SSU,
LSU and combined SSU+LSU. X- and y-axes show relative abundance (%) determined for individual taxa on
phylum level using A) SSU and LSU, B) SSU and SSU+LSU, and C) LSU and SSU+LSU as the reference database.
Regression analysis showed strong positive relationships (R?) between each dataset.

Supplementary Table 1: Correlation analysis statistics (SSU, LSU, SSU+LSU). Pearson correlation analysis was
performed on relative abundance data (phylum-level) determined via SSU, LSU and SSU+LSU. Correlation
coefficients are given in the lower triangle of the matrix, and the two-tailed probabilities that the columns are
uncorrelated are given in the upper (PAST v.4.03, Hammer et al., 2001).

Pearson correlation SSuU LSU SSU+LSU
SSuU 0 2.53E-28 3.49E-27
LSU 0.85105 0 3.28E-49
SSULSU 0.84183  0.94847 0




Supplementary Notes 2: psbO analysis

For an estimate of total abundance of phytoplankton, we ran our data against a recently developed database
for the single-copy photosynthetic gene psbO, which is present in both prokaryotes and eukaryotes, mainly in
one copy per genome>. The latter was initially performed with non-subsampled data to be able to determine
an adequate subsampling depth® (representative of the diversity in our data) for subsequent quantitative
analyses (excluding potential artifacts due to differences in library sizes). This non-subsampled data provided a
total of 131 psbO reads (Supplementary Fig. 2), with no reads identified in libraries that had less than 1.1Mio.
raw filtered (post-complexity filtering and deduplication) reads (sample no. 23011, 23019, 23024, 23026, 23075,
23080, 23081, 23143, 23147, 23159, 23162, 23169, Main Text Table 1, Supplementary Fig. 2). Thus, we
determined 1.1Mio. reads as an adequate subsampling depth, subsampled all samples to this depth for
quantitative psbO analyses (main text). The resulting .blastn files of both non-subsampled and subsampled data
were converted to .rmaé files using the Blast2RMA tool in MEGAN (version 6_18 9).
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Supplementary Fig. 2: Abundance of photosynthetic organisms at IODP Exp. 382 Sites U1534, U1536, U1538.
Abundance of the psbO gene (read counts) determined at Exp. 382 Sites U1534 (Hole C) (A), U1536 (Hole B) (B),
U1538 (Holes C and D) (C) (phylum-level). Left axis shows the sample identifier, core section and depth, right
axis shows the age estimate. Total psbO read count: 131 reads (non-standardised raw-data).

We also performed sedaDNA damage analysis on both the subsampled and non-subsampled psbO data,
however, received no output for the subsampled data due to too few input reads (<507 ). Thus, we only show
the sedaDNA damage results for the non-subsampled data in Supplementary Data 4.



Supplementary Notes 3: Correlation analyses of sedaDNA damage, taxonomic composition, and geochemical
parameters

We used the eukaryote sedaDNA damage (%) determined by HOPS post SSU-LSU alignment (Supplementary
Data 3), relative abundances of eukaryotes post SSU+LSU alignment (phylum-level), age (ka), the geochemical
measurements pH, salinity (%o), alkalinity, phosphate (mM), ammonia (mM), sulfate (SO4) (mM), and silicon
(uM), which were measured as part of the shipboard porewater geochemistry measurements, and downhole
formation temperatures that were calculated based on the temperature gradient obtained at each Site with the
Advanced Piston Corer Temperature Tool (APCT)2. To investigate relationships between taxonomic composition
and cold and warm climate phases, we also added benthic §'80 data from® corresponding to the ages assigned
to our samples. Mudline samples, as well as the two samples 23162 (U1438C_7H_6_115_120cm) and 23165
(U1538C_8H_3 145 150cm), were removed from the following analyses as no eukaryotes were determined in
these samples. Pearson correlation analysis was performed in PAST v.4.03%.

Correlation analyses revealed positive relationships between sedaDNA damage and ammonia (r = 0.56),
alkalinity (r = 0.52), phosphate (r = 0.44), 680 (r = 0.32), temperature (r = 0.31), and silicone (r = 0.26), very
weak positive correlations between sedaDNA with pH (r = 0.09), age of sediments (r = 0.02), and negative
relationships between sedaDNA damage with sulfate (r = -0.42) and salinity (r = -0.15) (Supplementary Fig. 2,
Supplementary Data 5). This means that eukaryote sedaDNA damage at our sampling locations is primarily
associated with indicators for organic matter decomposition, while it is less closely associated with downcore
temperature and silicone. Total silicone derived from porewater measurements is expected to be primarily
dissolved silica, and hence the weak correlation with eukaryote sedaDNA damage might be an indication that
diatom DNA in the upper layers might be relatively protected from remineralization until the frustules start to
dissolve into silica/silicic acid as they are buried. However, further research is needed into the exact
relationships between diatom-specific sedaDNA damage, diatom fossil dissolution, dissolved silicon
concentrations with depth and associated preservation biases, which are beyond the scope of this study.
Correlation analyses between each of the geochemical parameters, as well as benthic 620 (from?) and the
relative abundance of individual eukaryote taxa revealed negative relationships between 8§80 and diatoms (r =
-0.41) and positive relationships between &0 and Polycystinea (r = 0.42), Dinophycease (r = 0.39)
Choanoflagellata (r = 0.38), Mollusca (r = 0.37) and Annelida (r = 0.35), meaning that diatoms were associated
with warm phases and dinoflagellates, radiolarian, choanoflagellates and Annelida (includes Crustacea) with
cold phases (Supplementary Fig. 2). Relationships between the remaining geochemical parameters and
taxonomic composition was random, and data is provided with Supplementary Fig. 3 and Supplementary Data
5.



Supplementary Fig. 3: Correlation analysis plot. Positive correlations are depicted in blue, negative correlations in red, with the size of the circle indicating weak
(small) or strong (large) correlation. Significance is depicted by boxes around the circles (i.e., p<0.05 is boxed). For details on correlation coefficients between
sedaDNA damage (SSU+LSU), downhole formation temperature, 6'80 (°), geochemical parameters, temperatures, geochemical parameters see Supplementary
Data 5.
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