
1. Introduction
Trace metals (TMs) are important to the functioning of marine ecosystems, with a range of TMs required as 
micronutrients by phytoplankton and serving as essential cofactors in metalloenzymes (Sunda,  1989,  2012). 
Iron (Fe), cobalt (Co), and manganese (Mn) are potentially (co-)limiting oceanic primary production (Browning 
et al., 2017, 2021; Martin et al., 1989; Moore et al., 2013) and, therefore their supply, removal and retention 

Abstract We present labile (L-pTM) and refractory (R-pTM) particulate trace metal distributions 
of Fe, Mn, Al, Ti, Co, Zn, Cd, Ni, Pb, Cu, and P for a transect along the southwest African shelf and an 
off-shore section at 3°S of the GEOTRACES GA08 section cruise. Particle sources and biogeochemical 
cycling processes are inferred using particle-type proxies and elemental ratios. Enhanced concentrations of 
bio-essential L-pTMs (Zn, Cu, Ni, Cd, Co, and P) were observed in the Benguela upwelling region, attributed 
to enhanced primary production. Bio-essential pTM stoichiometric ratios (normalized to pP) were consistent 
with phytoplankton biomass across the transect, except for Fe and Mn, which included adsorbed and labile 
oxide phases. Low pP lability (∼41%) suggests a potential refractory biogenic source on the Benguela shelf. 
Variable labilities observed between stations along the transect indicated potentially different biogenic pP 
labilities among different plankton groups. Benthic resuspension was prevalent in (near-)bottom waters along 
the transect and formed an important source of Fe and Mn oxides. Lithogenic particles along the entire shelf 
were Mn deficient and particles on the Benguela shelf were enriched in Fe, consistent with regional sediment 
compositions. Enhanced available-Fe (dissolved + labile particulate Fe) concentrations (up to 39.6 nM) were 
observed in oxygen-deficient (near-)bottom waters of the Benguela shelf coinciding with low L-pMn. This was 
attributed to the faster oxidation kinetics of Fe, allowing Fe-oxide precipitation and retention on the shelf, while 
Mn oxidation was slower. Enhanced L-pFe in the Congo River plume, which comprised as much as 93% of the 
available-Fe pool, was attributed to increased scavenging and formation of Fe oxides. Increased scavenging 
of other particle-reactive trace metals (TMs) (Mn, Al, and Pb) was also apparent in Congo-influenced waters. 
However, particles did not play a significant role in transporting TMs off-shelf within Congo plume waters.

Plain Language Summary Trace metals (TMs) are important to the functioning of marine 
ecosystems, with a range of TMs required as micronutrients by phytoplankton, while some are contaminants, 
and others may serve as tracers of water masses. Marine particles are key to the biogeochemical cycling of most 
TMs as sources, sinks, and essential transport vectors in the ocean. The transport and fate of TMs are often 
multi-faceted and upon a multitude of inter-related factors including particle sources/types, and environmental 
conditions, many of which are directly evident on continental shelves. Continental shelves thus are important 
conduits through which TMs are transferred from land to the ocean. Despite their importance, shelves are 
still understudied with respect to trace metal cycling. Here we present data from the longest continental shelf 
transect for TMs to date, which traversed through several key biogeochemical regimes, including an oxygen 
depleted zone, upwelling region, and a river plume, providing unique gradients under which particles from 
various sources and internal cycling processes were studied. A chemical leach was applied to marine particles 
to differentiate between particle types and phases. Utilizing the contrasting marine environments and particle 
types encountered along the transect, we highlight the major biogeochemical cycling dynamics controlling trace 
metal distributions, which provide valuable regional insights which may be extended to other regions of the 
global ocean.
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processes in the water column are important controls on phytoplankton growth. Marine particles play a vital 
role in the marine biogeochemical cycling of TMs as essential transport vectors (Jeandel et al., 2015), acting as 
sources and sinks of dissolved TMs (dTMs) through adsorption (e.g., Fe, Mn, Co, lead (Pb), copper (Cu), and 
aluminum (Al)), precipitation/dissolution (e.g., Fe and Mn), and/or bio-assimilation and remineralization (e.g., 
Fe, Mn, Zn, Cu, nickel (Ni), Co, cadmium (Cd)) (Boyd et al., 2017; Bruland & Lohan, 2003; Bruland et al., 2014; 
Goldberg,  1954; Morel & Price,  2003; Turekian,  1977). The interactions and exchanges between solid and 
dissolved TM phases are multi-faceted, relying upon interrelated biogeochemical mechanisms controlled by parti-
cle sources (types), characteristics, and environmental conditions (Anderson, 2020; Boyd et al., 2017; Bruland 
& Lohan, 2003; Bruland et al., 2014; Jeandel et al., 2015) many of which are evident on continental shelves 
(Elrod et al., 2004). Continental shelves form an important conduit for transfer between land and ocean of marine 
particles, yet remain understudied across large ocean basins (Charette et al., 2016; Henderson & Marchal, 2015).

The TM composition of marine particles reflects both particle source and biogeochemical cycling processes in the 
water column. Additional information about readily exchangeable or potentially soluble particulate TM (pTM) 
fractions can be gained by separating labile (L-pTM) from refractory particulate (R-pTM) phases. Elemental 
proxies are often employed as effective particle type indicators, namely particulate phosphorus (P) as a biogenic 
particle indicator, and an abundant lithogenic element (typically Al or Ti) for lithogenic particles (e.g., Lam, 
Ohnemus, et al., 2015; Lam, Twining, et al., 2015; Lam et al., 2018; Lee et al., 2018; Liao & Ho, 2018; Martin 
et al., 1989; Ohnemus & Lam, 2015; Xiang & Lam, 2020). A chemical leaching application developed by Berger 
et al. (2008) (see Section 2.2) to access the labile phase is now widely adopted for the study of marine particles 
(Cutter et al., 2017). The labile particulate phase reflects the potentially bio-accessible, “exchangeable” pTM 
pool, which includes readily reduceable, surface-bound (adsorbed/scavenged), and intra-cellular TMs associated 
with biogenic particles, and authigenic particulate phases (i.e., Fe and Mn oxy-hydroxides) while leaving lith-
ogenic and other refractory particle phases largely intact (Berger et al., 2008; Rauschenberg & Twining, 2015). 
Dissolved TM phases are often considered as the most reactive and bio-available to phytoplankton (Wells 
et al., 1995), but the L-pTM pool, particularly of Fe, comprises a significant fraction of the potentially available 
TM pool, and may buffer dissolved concentrations (e.g., Achterberg et al., 2018; Berger et al., 2008; Hurst & 
Bruland, 2008; Lippiatt, Brown, et al., 2010; Milne et al., 2017). Hence, the “available” TM pool inferred in this 
study is the sum of the dTM and L-pTM pools, consistent with the definition adopted elsewhere (namely, Berger 
et al., 2008; Birchill et al., 2017; Hurst et al., 2010; Lippiatt, Lohan, & Bruland, 2010; Milne et al., 2017; Twining 
et al., 2015).

The GEOTRACES GA08 section cruise, conducted in the southeast Atlantic Ocean, included the longest conti-
nental shelf transect sampled for TMs to date. The shelf transect traversed several major oceanographic features 
along the southwest African shelf, including the Benguela Upwelling System (BUS), an oxygen minimum zone 
(OMZ), and the Congo River plume. Regional particle sources included atmospheric deposition derived from 
surrounding deserts (Jickells, 2005; Prospero, 1996), riverine discharge (Vangriesheim et al., 2009), resuspended 
benthic sediment (Inthorn et al., 2006), and enhanced bio-assimilation of TMs into organic (biogenic) particles 
within the BUS (Carr, 2001; Shannon & Nelson, 1996). The combination of contrasting particle sources and 
oceanographic regimes that were sampled during the GA08 cruise offered unique gradients in pTM distributions 
under which TM biogeochemical cycling could be studied.

The primary goal of this study is to present, describe and interpret the pTM distributions and biogeochemi-
cal processes affecting pTMs along the southwest African shelf, and characterize dominant particle phases and 
sources of Fe, Zn, Cd, Mn, Co, Ni, Cu, Al, Ti, Pb, and P. The study was carried out utilizing chemically labile and 
refractory pTM phases, and elemental abundance ratios. We utilize dTM data and ancillary measurements from 
paired samples. Insights from our data set offered valuable insights to regional TM cycling processes, which may 
be extended to other shelf regions of the global ocean.

2. Materials and Methods
2.1. Study Region

This study focuses on samples collected along a southwest African coastal transect of the GA08 GEOTRACES 
section cruise, between 28.8°S and 3°S (Figure 1), conducted during the austral summer of 2015 (22 November–27 
December) on RV Meteor. Regional water circulation includes the southward flowing Angola Current in the north 
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bounded by the Tropical/Equatorial Eastern Atlantic Current, and the northward-flowing Benguela Current in 
the south bounded by the Agulhas current from the Indian Ocean (Peterson & Stramma, 1991; Shannon, 2001; 
Shannon & Nelson, 1996; Shannon et al., 1987). The two currents converge at the Angola-Benguela Front (ABF), 
north of Walvis Ridge, and are carried westward into the Angola Basin. The main water masses intersected along 
the transect are described below (see Section 3.1).

The transect extended from southern Namibia at the southernmost point (28.7°S) and across to the shelf waters 
at Gabon at the northernmost station (3°S), where a longitudinal transect away from the shelf to 0° Meridian was 
sampled. The seafloor depths of the stations along the transect varied between 53 and 4,501 m, including on-shelf 
and off-shelf stations. The cruise track traversed several oceanographic features along the shelf, including the 
Congo River outflow (stations [ST] 13–15; at 6.2°S), BUS (ST 43–51, 1–4; between 18.6°S and 28.8°S), and an 
OMZ that extended throughout the transect (at a depth of ∼50–600 m), with more pronounced oxygen-depletion 
on the Benguela shelf (see Section 3.1). The Congo River provides a significant number of particles and organic 
matter to coastal waters (Vangriesheim et al., 2009), influencing TM cycling. Sampling nearest the Congo River 
outflow included a short (∼100 km) transect of three stations (ST 13–15) at 6°S–6.2°S, approximately 40–140 km 
away from the Congo River mouth. Anoxic and sulfidic shelf sediments are documented within 50 km of some 
stations on the Benguela shelf (e.g., ST 51) (Borchers et al., 2005; Inthorn et al., 2006). Phosphorite deposits are 
also widely documented on the Namibian shelf extending to Walvis Ridge (Compton & Bergh, 2016). The Namib 
Desert is an important source of desert dust to the adjacent stations on the Benguela shelf compared to northern 
stations. The stations on the Benguela shelf are shallower and were sampled closer to the coast compared to the 
stations North of Walvis Ridge. The transect along the African shelf is hence sub-divided and described between 

Figure 1. Map showing the large-scale circulation and oceanographic features that influence the Benguela ecosystem and Angola Basin, and part of the GA08 (M121) 
cruise track. Stations labeled in blue indicate the shallower stations above the Benguela shelf (BENG), and stations labeled in yellow indicate the Northern region 
stations (NORTH). ABF = Angola-Benguela Front; AF = Angola Front; SECC = South Equatorial Counter Current. Figure illustrations adapted from Shannon (2001).
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the northern non-upwelling (NORTH; ST 6–20) and shallower Benguela upwelling regions (BENG; ST 43–51 
and 1–5), separated by Walvis Ridge and ABF (Figure 1).

2.2. Sample Collection

Sampling was carried out following GEOTRACES protocols (Cutter et al., 2010) using a dedicated GEOTRACES 
trace metal clean CTD rosette (Seabird), equipped with 24 Go-Flo bottles (12  L; Ocean Test Equipment) to 
collect full water-column depth profiles. After each cast, the Go-Flo bottles were transferred to a containerized 
clean-room for subsampling seawater for dTM, pTM, and other parameters. A few failed bottle closures from 
CTD casts resulted in no samples being collected from the respective bottles, particularly in surface waters 
between stations 6–8, North of Walvis Ridge. Marine particle samples were collected by filtering typically 4 L 
(range 0.38–6.8 L) of seawater through 0.2 μm pore-size acid cleaned polyethersulfone (PES) membrane filters 
(25 mm diameter, Sartorius). After filtration, samples were lightly misted with ultra-pure water (Milli-Q, Mill-
ipore) to remove salts, then transferred to acid-cleaned Petri-dishes, sealed with Parafilm, and stored frozen at 
−20°C until analysis in land-based facilities. The dTM samples were filtered through cartridge filters (0.2/0.8 μm 
Acropak-500, Pall) into acid-cleaned low-density polyethylene (LDPE) bottles, acidified to pH <2 using hydro-
chloric acid (UpA grade, Romil), and stored for later analysis.

In addition, surface seawater samples (∼3–4  m) were collected for dTM analysis using a trace-metal clean 
tow-fish and a Teflon-diaphragm pump with acid-washed braided PVC tube while the ship was steaming; the 
waters were directly transferred into the containerized clean-room (Achterberg et al., 2001). Seawater was in-line 
filtered through a 0.8/0.2 μm cartridge filter (AcroPak1000, Pall) and collected into acid-cleaned 125 ml LDPE 
bottles, and subsequently processed identically as the samples from the trace metal clean CTD. No particulate 
trace metal samples were collected from the tow-fish.

2.3. Analytical Methods

Particulate samples were processed sequentially by leaching the filters following the protocol of Berger 
et al.  (2008), followed by a strong acid digestion of the residual refractory material to determine L-pTM and 
R-pTM fractions using a method adapted from Cullen and Sherrell (1999). Briefly, the samples were processed 
in perfluoroalkoxy (PFA) digestion vessels (Savillex), and first leached in 2.5–3 ml of leaching reagent consisting 
of a weak acid (25% acetic acid, Optima grade, Fisher Scientific) and a mild reducing agent (0.02 M hydroxy-
lamine hydrochloride, Sigma TM grade) for a total leach time of 2 hr, including a short heating step (90°C–95°C) 
of 10 min. Subsequently, the leachate was centrifuged, sub-sampled, and processed separately from the residual 
(refractory) particles. The residual leachate remaining following sub-sampling from the centrifuged samples 
(0.1–0.2 ml) was transferred and processed with the refractory particles, with any contributions of TMs in the 
transferred leachate removed from the refractory particle fraction.

The filters with residual particles were adhered to the inner wall of the digestion vessel and reflux-digested at 
150°C for 15 hr in 2.5 ml of a strong acid digestion solution (50% HNO3/10% HF v/v %; Optima grade, Fisher 
Scientific). The digestion solution was prepared with a 10 ng rhenium (Re) standard spike (Inorganic Ventures) 
to monitor sample loss.

Following each leach-digestion step, the respective fractions were heated to near dryness, and 0.5–1 ml of 50% 
HNO3/15% H2O2 (v/v%) solution was added before being heated to near dryness a second time. The final residual 
drops (<50 μL) were re-diluted using 4.5 ml of 1 M nitric acid solution with an internal indium standard spike 
(1 μg/L), used as an analytical drift monitor, and stored in acid-cleaned 15 ml polypropylene tubes (MetalFree™, 
Labcon). The digested samples were analyzed using a high resolution inductively coupled mass spectrometer 
(HR-ICP-MS; Element XR, ThermoFisher) and quantified using external multi-element calibration with stand-
ards (Inorganic Ventures) prepared in a sample-matched matrix (Cullen et al., 2001).

The total particulate concentrations (T-pTM) reported are the sum of sample L-pTM and R-pTM concentra-
tions. Blank PES filters were dipped in ultra-pure water and treated identically to sample filters, with at least 
two processed in each digestion batch as procedural blanks (total n = 30). The mean procedural blank values 
for each respective digestion batch was used to correct and determine sample concentrations. At least two repli-
cates of certified reference material (BCR-414 freshwater plankton; 16.2–24.5 mg) were processed alongside the 
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particulate samples in each digestion batch to monitor leach consistencies and total recoveries across all digestion 
batches. The efficacy of the digestion procedure on the lithogenic matrix was tested by employing the refractory 
digestion steps, without the chemical leach, using sediment reference material (PACS-3; 17.5–34.8 mg). The 
procedural blank values, limits of detection, and reference material recoveries for the particulate analysis are 
summarized in Table S1 in Supporting Information S1.

Dissolved TM samples were measured following the procedure of Rapp et al. (2017) using HR-ICP-MS (Element 
XR, ThermoFisher) after offline pre-concentration of dTMs using an automated pre-concentration system 
(SeaFAST—Elemental Scientific) and quantified using isotope dilution (Fe, Cu, Zn, and Ni) or standard addi-
tion (Mn, Co and Pb). Dissolved TM measurements were validated using GEOTRACES GSC reference seawa-
ter (measured values 1.60 ± 0.16 nM dFe; 1.85 ± 0.34 nM dMn; 1.29 ± 0.12 nM dCu; 1.31 ± 0.15 nM dZn; 
4.27 ± 0.30 nM dNi; 0.038 ± 0.04 nM dPb; n = 8), which were within ranges reported by Wuttig et al. (2019) 
(Except dCo which was slightly higher 0.117 ± 0.007 nM dCo). Dissolved aluminum was measured following the 
batch lumogallium method (Hydes & Liss, 1976) and validated measuring GS reference seawater (27.8 ± 0.2 nM; 
n = 4; Consensus value 27.5 ± 0.2 nM, Menzel Barraqueta et al., 2019).

Macronutrient samples (NO2 −, NO3 −, PO4 3−, and Si(OH)4) were collected from each Go-Flo bottle and measured 
on-board using segmented flow injection analysis (QuAAtro—Seal Analytical). The hydrographic parameters, 
including dissolved oxygen (Seabird), fluorescence (Turner Designs), turbidity (Seapoint), and beam attenuation 
(BAT) (WETLabs) were measured using sensors mounted on the CTD frame (Seabird SBE 9plus—Seabird). The 
dissolved oxygen sensor data was calibrated using discrete samples measured using the Winkler titration method 
(Hansen, 2007; Winkler, 1888).

Statistical analysis to determine the bivariate Pearson's correlations and principal component analysis (PCA) 
was carried out using OriginPro (2021) (Version 9.80) and a Microsoft Excel statistical analysis add-in software 
(Analyse-it® for Microsoft Excel, Version 5.66) on log-transformed data sets, which showed normal data distri-
butions (Figure S1 in Supporting Information S1). Water column sections, station profiles, and scatterplots were 
prepared using Ocean Data View (Schlitzer, 2018).

2.4. Particle Type Indicator Elements

We used refractory particulate Al (R-pAl) as a lithogenic proxy since adsorbed Al is presumed to be removed 
by the labile leach, whereas lithogenic particles remain largely intact (Berger et  al.,  2008; Rauschenberg & 
Twining,  2015). Moreover, Al is more abundant and shows relatively lower variation among reported conti-
nental crust reference types than Ti (Rudnick & Gao, 2013; Taylor & McLennan, 1995). Sample R-pAl, R-pTi, 
and R-pFe elemental ratios were used to distinguish among lithogenic sources by comparing them to available 
regional lithogenic references (Table S2 in Supporting Information S1).

The labile particulate pool includes amorphous and readily reducible Mn bio-oxyhydroxides (hereafter Mn 
oxides) and Fe oxy-hydroxides (hereafter Fe oxides), adsorbed TMs, and intracellular biogenic pTMs, which are 
dissolved by the chemical leach (Berger et al., 2008; Rauschenberg & Twining, 2015; Twining et al., 2015). These 
particulate phases are referred to within the L-pTM fraction.

Phosphorus is primarily associated with organic (biogenic) particles, and hence total particulate phosphorus (pP) 
was selected as an indicator of biogenic particles. Biominerals, such as biogenic silica and calcium carbonate, and 
particulate organic carbon (POC) were not analyzed.

3. Results and Discussions
3.1. Hydrographic Features

The main water masses along the transect were defined using isopycnal densities calculated using salinity and 
potential temperature measurements (Rahlf,  2020). The section of the water column north of Walvis Ridge 
comprised of Tropical Surface Water (TSW) in the top 20 m and Subtropical Underwater (STUW) in the subsur-
face mixed layer (20–50 m), which was underlain by South Atlantic Central Water (SACW) between 50 and 
500 m. The deeper water masses in the Angola Basin included Antarctic Intermediate Water (AAIW) between 
∼500 and 1,200 m, Upper Circumpolar Deep Water (UCDW) between ∼1,200 and 2,000 m, and North Atlantic 
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Deep Water (NADW) between 2000 and 4,500 m (Figure 2a). Upwelling of colder (15°C–18°C) and less saline 
(∼35) SACW was observed between 15.8°S and 28.7°S at the southern Benguela shelf stations (ST 45–51 and 
1–5), including the Lüderitz cell (ST 49–51; 23°S–25.5°S) (Rahlf, 2020; Rahlf et al., 2020, 2021), which is the 
most intense wind-driven upwelling cell in the world's ocean (Lutjeharms & Meeuwis, 1987). Enhanced primary 
production supported by upwelled nutrient-rich waters was evident by increased fluorescence (Figure 2d). The 
Congo River plume signal was confined primarily within the TSW layer (<20 m), which persisted as far south as 
station 8 and northwest as far as station 22 (up to 1,000 km from the Congo River mouth), evident in the salinity, 
radium and dAl distributions (Menzel Barraqueta et al., 2019; Vieira et al., 2020).

An OMZ (<50 μM oxygen) persisted along the transect extending from the Benguela shelf into the northern open 
ocean transect (Figure 2b). Oxygen concentrations decreased with depth (∼25–200 m) on the Benguela shelf 
(BENG) extending to (near-)bottom waters (≤50 m from bottom), and the lowest oxygen concentrations (<4 μM) 
were recorded within the Lüderitz cell (ST 49–51; 23–25.5°S). The sediments underlying the BENG upwelling 
stations are reported to be anoxic, with several stations near locations where sulfidic sediments were also reported 
(e.g., ST 49–51 < 50 km away) (Böning et al., 2020; Borchers et al., 2005; Govin et al., 2012). A less intense 
oxygen minimum layer (<100 μM oxygen) persisted at the NORTH latitudinal coastal transect stations (ST 6–16) 
primarily within SACW between ∼50 and 600 m with concentrations down to 20 μM. The oxygen minimum 
layer extended off the shelf and into the open ocean (3°S; ST 17–24) between ∼200 and 500 m, with dissolved 
oxygen as low as 40.5 μM.

3.2. Particulate Trace Metal Distribution Patterns

The T-pTM concentrations varied over orders of magnitude between 10 −2 to 10 7 pM, with mean concentrations 
decreasing in the order Al-P > Fe > Ti-Mn > Zn > Cu-Ni > Co > Cd-Pb (Figures S3 and S4 in Supporting Infor-
mation S1). Most of the maximum concentrations of pTMs occurred in the bottom waters of the shallow coastal 
station 45 with concentrations reaching up to 5.11 μM pAl, 1.70 μM pFe, 138 nM pTi, 10.0 nM pMn, 3.19 nM 
pZn, 1.58 nM pNi, 438 pM pCo, 204 pM pPb, and 129 pM pCd (Figure S4 in Supporting Information S1). The 
highest concentration of pP was 253 nM at station 6 (11 m), and pCu was 1.33 nM at station 3 (69 m) (Figure 
S4 in Supporting Information S1). The T-pTM (pP, pCo, pFe, and pMn) concentrations at stations 6 and 7 were 
similar to values from a nearby station reported by Noble et al. (2012) collected in 2007 during the same season 
(Gac01-ST 19—Figure S5 in Supporting Information S1). The pTM ranges were also comparable to other shelf 
and slope regions in the Pacific, Arctic, North and South Atlantic Oceans (Table S3 in Supporting Informa-
tion S1). Sections of L-pTMs and R-pTMs are shown in Figures 3 and 4, respectively.

The mean labile fractions of T-pTMs were greater than 80% for Mn, Cd, Zn, and Pb, between 53% and 59% for 
Co, Ni, and Cu, around 41% for P, 25% for Fe, 19% for Al, and 1% for Ti (Figure 5). These observations are 
consistent with ranges reported elsewhere using the same chemical leach (e.g., Milne et al., 2017; Rauschenberg 
& Twining, 2015; Twining et al., 2019) (Table S4 in Supporting Information S1). An exception was pP, which 
was comparatively less labile in the current study compared with previous work, and R-pP was attributed primar-
ily to residual (refractory) biogenic particles (see Section 3.3). The labile pTM fractions generally decreased 
where the lithogenic particle abundance (R-pAl concentrations) increased, and refractory pTMs (primarily litho-
genic particles) dominated the pTM pool (van der Merwe et al., 2019), particularly for pAl, pPb, pCo, pCu, and 
pNi across the transect, and for pMn only below the photic zone on the Benguela shelf (Figure 5).

In the deeper NORTH stations (ST 6–11) and along the open ocean transect (ST 21–24), enhanced L-pAl/T-pAl 
fractions (up to 79.8%) were apparent only in (sub-)surface waters (≤350 m), with no enhanced L-pAl/T-pAl 
fractions below 2,000 m (Figure 5). The vertical concentration profiles of pCu, however, exhibited increasing 
labile fractions (52%–78% L-pCu) and concentrations (13–47 pM L-pCu) at depths >2,000 m (Figures 3 and 5), 
where lithogenic particle concentrations were also relatively low (9.87 ± 12.8 nM R-pAl; n = 23). The enhanced 
L-pCu fractions coincided with increases in dCu concentrations (up to 2.95 nM), indicating scavenging onto 
particulate phases (Bruland, 1980; Little et al., 2013, 2018), specifically within NADW (>27.8 kg m −3 σϴ).

A PCA was conducted on log-transformed data for each particulate fraction for which full elemental and ancillary 
data were available (Figure S6 in Supporting Information S1). PC1 explained 50.1%, 36.8%, and 40.4% of the 
total variance of T-pTM, L-pTM, and R-pTM, respectively, and is associated with lithogenic particles, capturing 
71%–86% of the individual variance of R-pAl. PC2 explained 16.7%, 22%, 18.2% of total variance of T-pTM, 
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Figure 2. Main hydrographic features along the GA08 transect. Sections of (a) potential density of seawater with main water masses in the study region; 
TSW = Tropical Surface Water; STUW = Subtropical Underwater; SACW = South Atlantic Central Water; AAIW = Antarctic Intermediate Waters; UCDW = Upper 
Circumpolar Deep Water; NADW = North Atlantic Deep Water. (b) Dissolved oxygen concentrations. (c) Nitrate + nitrite concentrations. (d) Fluorescence in Relative 
Fluorescence Units (RFU). (e) Beam Attenuation (BAT) in fractional attenuance per meter. Contour lines represent measurement intervals of each respective analyte, 
except (e), which are of refractory particulate Al (R-pAl) concentrations (nM). Note the logarithmic depth scales. Vertical labels used for stations 11–20 are to help 
distinguish between the stations that were close together and do not signify a categorical difference between stations.
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L-pTM and R-pTM, respectively, and is associated with biogenic particles, capturing 70%–77% and 63%–74% 
individual variance of fluorescence and T-pP, respectively. Despite their association to biogenic particles, only 
minor variances of several bio-essential L-pTMs (Zn, Cu, Ni, Cd, and Co; which are largely solubilized by the 
leach) were captured by PC2, with almost none for L-pCu and L-pZn (see Section 3.3 below). This may be due 
to the variances of these L-pTMs being more closely associated with other abiogenic, non-lithogenic particulate 
phases, such as a scavenged phase, and by spatial (regional) contrasts in their concentrations (see Section 3.2.1). 
PC4, PC5, and PC6 only captured relatively large variances for individual elements, specifically L-pZn, L-pCu, 
and L-pCd (81.4%, 69.4%, and 26.5% combined individual variances, respectively), likely reflecting variances 
arising from regional differences, with significant individual variance also captured for R-pTMs Ni (PC4: 60.7%), 
Cu (PC5: 54.5%), and Mn (PC6: 31.8%). PC variances that were largely exclusive to pCu are also reported for 
pTM data sets from the North Atlantic (Ohnemus & Lam, 2015). PC3 (8.6%–10.2% total variance) captured the 
greatest individual variance for oxygen (48%–71%), with only significant associations with L-pCo (35%), R-pCd 
(30%), T-pMn (15%), and R-pZn (15%). No variance of the Mn oxide proxy, L-pMn, was captured within the 
third principal component of the L-pTM data set analysis. However, relatively high variances for dFe (29%–35%) 
were captured by PC3 in all pTM data sets.

The distributions of labile and refractory pTMs showed distinct regional and biogeochemical variations along 
the transect, including: (a) A contrasting biogenic particle abundance between BENG (upwelling) and NORTH 
(non-upwelling) stations; (b) Contrasting refractory (lithogenic) particle compositions on the Benguela Shelf 
and stations north of Walvis Ridge; (c) Distinct Fe and Mn cycling within the oxygen-depleted waters on the 
Benguela Shelf (d) Increased adsorption of TMs onto particles in the Congo River plume. The regional and 
biogeochemical variations will be discussed in the following sections.

Figure 3. Distribution of labile particulate trace metals (L-pTMs) across the GA08 transect. Note the logarithmic depth scales. One anomalously high measurement 
was excluded a priori (>7.1 nM L-pCu; ST 2; 25 m). Concentrations have been annotated where values exceeded the color-bar scale (z-axis).
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3.2.1. Bio-Essential Particulate Trace Metals

Concentrations of bio-essential TMs (Zn, Cu, Ni, Cd, Co, and also P) in the L-pTM and R-pTM fractions were 
higher in the BENG region compared to the NORTH (t-test; p < 0.01 and <0.05, respectively; except R-pCo) 
(Table S5 in Supporting Information S1). This was attributed to the enhanced primary production (i.e., increased 
(bio-) assimilation of essential TMs) within BUS where concentrations of the biogenic particle indicator pP 
were up to 5-fold higher in the BENG region (ST 43–51 and 1–5) compared to NORTH (ST 6–20), reaching 
253 nM T-pP (147 nM L-pP). Maximum bio-essential L-pTM concentrations in the BENG and (NORTH, in 
brackets) regions were 2.61 nM (0.81 nM) L-pZn, 228 pM (87.4 pM) L-pNi, 193 pM (155 pM) L-pCu, 74.3 pM 
(26.4 pM) L-pCd, and 35.3 pM (16.7 pM) L-pCo (Figure 3), excluding station 45. The vertical distributions of 
bio-essential L-pTMs (Zn, Cu, Ni, Cd, Co, and also P) and R-pP showed highest concentrations in surface waters 
and decreased with depth along the transect (Figure  3), coinciding with enhanced fluorescence (Figure  2d), 
implying phytoplankton sources.

Bio-essential R-pTMs (and also Pb; discussed in Section 3.3) were co-distributed with R-pAl with good correla-
tions (r = 0.56–0.97; p < 0.01; Table S6 in Supporting Information S1), implying a lithogenic source. Moreover, 
bio-essential R-pTMs in the top 100  m showed higher correlations with R-pAl (r  =  0.925–0.996) than with 
R-pP (r = 0.172–0.395) (Figure S7 in Supporting Information S1). The exceptions were R-pP and R-pCd, which 
showed lower correlations with R-pAl (r = 0.18 and 0.42, respectively; Table S6 in Supporting Information S1) 
but correlated well with each other (r = 0.73; p < 0.001; Table S6 in Supporting Information S1) and were asso-
ciated with refractory (residual) biogenic particles (see Section 3.3).

Figure 4. Distribution of refractory particulate trace metals (R-pTMs) across the GA08 transect. Note the logarithmic depth scales. One anomalously high 
measurement was excluded a priori (>1 nM R-pPb; ST 6; 196 m). Concentrations have been annotated where values exceeded the color-bar scale (z-axis).
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3.2.2. Lithogenic Particulate Trace Metals

Concentrations of particulate lithogenic elements (Al, Ti, and Fe) showed no statistical difference among regions 
(Table S5 in Supporting Information  S1). Lithogenic pTMs concentrations were generally lower in surface 
waters (<20 nM R-pAl; ≤50 m), except in the Congo plume (ST 16–20; 12.2–443 nM R-pAl), at some BENG 
stations (ST 47, 1, and 2; 30.9–85.3 nM R-pAl), and at shallow stations 13 (59 m) and 45 (68 m) (295 nM 
and 3.19 μM R-pAl, respectively) (Figure 4). Concentrations of lithogenic particles (i.e., R-pAl) were primarily 
enhanced in (near-)bottom waters, consistent with benthic resuspension and nepheloid layer distribution patterns. 
Elevated lithogenic particle concentrations were observed within 100 m from the seafloor at stations 9 and 11 (up 
to 97 and 227 nM R-pAl, respectively), and at shallower shelf stations 12 (289 m) and 17 (53 m) (up to 469 and 
628 nM R-pAl, respectively). The highest lithogenic pTM concentrations were at the shallow coastal station 45, 
with 4.96 μM R-pAl (145 nM L-pAl), 1.38 μM R-pFe (314 nM L-pFe), and 138 nM R-pTi (138 pM L-pTi), and 
the lowest concentrations were in deep waters between Walvis Ridge and the Congo River shelf (ST 6–11), and 
in the open ocean (ST 22–24; <5 nM R-pAl) (Figures 3 and 4). Labile particulate Pb, Al, Ti, Mn, and Fe concen-
trations were also enhanced where R-pAl concentrations were high, as reflected by their close correlations with 
R-pAl (r = 0.61–0.91; p < 0.001) (Table S6 in Supporting Information S1), implying common (benthic) sources.

3.3. Biogenic Particles

BAT and turbidity, used as a proxy for particulate matter, were enhanced primarily in surface waters and highest 
in the Benguela upwelling region (Figure 2e and Figure S8 in Supporting Information S1), and strongly correlated 
with the biogenic particle indicator, T-pP (r = 0.868 and 0.774, respectively; Figures S9a and S9c in Support-
ing Information S1) and with fluorescence in the surface waters (r = 0.770, <100 m). T-pP in surface samples 
showed slightly higher correlations with BAT (r = 0.868; <100 m; Figure S9a in Supporting Information S1), 

Figure 5. Distribution of labile particulate fraction (%) of total particulate trace metals across the GA08 transect. Contour lines indicate where refractory particulate Al 
(R-pAl) is ≥25 nM (thin) or ≥100 nM (thick). Note the logarithmic depth and different color scales for each element.

 19449224, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

B
007453 by H

G
F G

E
O

M
A

R
 H

elm
holtz C

entre of O
cean, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Global Biogeochemical Cycles

AL-HASHEM ET AL.

10.1029/2022GB007453

11 of 25

compared to turbidity (r = 0.774; <100 m), and enhanced BAT measurements were more pronounced in surface 
samples compared to turbidity (Figure S9e in Supporting Information S1). This observation is consistent with 
other studies that reported enhanced BAT largely resulting from enhanced particulate organic matter concentra-
tions (e.g., Bishop et al., 2004; Lam & Bishop, 2008; Noble et al., 2012; Ohnemus et al., 2018).

Particulate P concentrations, in all fractions, were highest in the euphotic zone (<50 m) and sharply decreased 
with depth along the transect, generally following the same vertical profiles as fluorescence (Figures S2 and S4 in 
Supporting Information S1). Higher L-pP and R-pP concentrations persisted deeper into the BENG water column 
compared to the NORTH (Figures 3 and 4), reflecting longer remineralization length scales due to increased 
biogenic particle production, oxygen deficiency with lower remineralization rates (Weber & Bianchi,  2020), 
increased particle ballasting with enhanced sinking rates (Armstrong et  al., 2001; Klaas & Archer, 2002), or 
a combination thereof. Significant contributors of ballast to particle aggregates within the BENG upwelling 
stations likely include dust from the nearby Namib Desert and settling biominerals associated with the increase 
in primary production.

The mean L-pP/T-pP fractions in (sub-)surface waters (<200 m) were 39.7% ± 20.7% (n = 206) along the entire 
transect, which were notably lower than labile fractions from other regions reporting average L-pP/T-pP fractions 
of ∼70–80% (e.g., Rauschenberg & Twining, 2015; Twining et al., 2015). L-pP/T-pP fractions varied (spatially) 
between stations, with some stations exhibiting higher L-pP/T-pP fractions (up to 84.8%) that were more consist-
ent with labile fractions reported from other areas, such as between stations 1–9 (67 ± 14%; ≤100 m; n = 25).

Increasing biogenic or lithogenic particle loads did not affect the percentage leached from biogenic particles, as 
indicated by the weak correlations of L-pP fractions (%) with T-pP and R-pAl concentrations over several orders 
of magnitude (r = 0.04 and 0.06, respectively; top 300 m) (Figure S10 in Supporting Information S1). While it 
may be argued that the lower L-pP/T-pP fractions may reflect the inclusion of refractory inorganic pP phases, 
areas where inorganic pP would possibly be higher such as in (near-)bottom samples of the Benguela shelf where 
phosphorite deposits are documented (Compton & Bergh, 2016), did not show a significant contribution to the 
pP pool. This was indicated by the low co-occurring levels of lithogenic elements (R-pAl and R-pTi), which 
were also low where R-pP was highest (i.e., in surface waters; Figure 4). Furthermore, phosphorites included 
in particulate samples are potentially chemically labile (Jian-rui & Jie, 2016; Porto et al., 2018). Therefore, the 
R-pP pool through the transect was ascribed primarily to residual (more refractory) biogenic particle phases. 
Notable exceptions were at station 45 (1.17–4.96  μM  R-pAl), and in the bottom waters of stations 4 and 5 
(58.5–516 nM R-pAl), where lithogenic element concentrations were particularly high.

Bio-essential pTMs (Cd, Ni, Co, Cu, and Zn) correlated well with pP in both labile (r = 0.63–0.79) and total 
particulate (r = 0.52–0.79; except T-pZn) fractions in the top 100 m (Figure S11 in Supporting Information S1). 
Additionally, sample T-pTM:T-pP ratios (upper and lower quartile value ranges) and linear regression slopes 
of surface samples (<100  m) were consistent with ranges of reported plankton stoichiometries (Table  1 and 
Figure S11 in Supporting Information S1). This supports the assumption that T-pP was primarily associated 
with biogenic sources, and therefore a suitable biogenic particle indicator along this transect, also implying that 
these bio-essential pTMs were primarily associated with biogenic materials. Interestingly, however, the sample 
L-pTM:L-pP ratios (upper and lower quartile values, and linear regression slope values) of the bio-essential 
elements were comparatively higher than their respective T-pTM:T-pP ratios, which were at the upper limit of or 
slightly exceeded reported plankton values from other regions (Table 1). This suggested that the pTMs associated 
with biogenic particles were either comparatively more labile than biogenic pP, or that biogenic pP was (variably) 
more resistant to the applied leach, with the latter case providing an explanation for the persistence of R-pP in 
surface waters and biogenic particle-like vertical profiles through the water column.

The spatial fluctuations in L-pP/T-pP fractions are suspected to have varied as dominant taxa in bulk phyto-
plankton communities shifted between stations, reflecting differential lability of pP among different (dominant) 
phytoplankton groups. This was inferred using phytoplankton taxa assemblage data from this cruise which were 
reported by Browning et al.  (2017) (n = 5 stations along the transect of this study). In regions influenced by 
upwelling, diatoms dominated the bulk plankton assemblages (fraction of total chlorophyll-a) and generally coin-
cided with elevated L-pP fractions, particularly in surface waters between stations 2–5 (58%–84% L-pP fraction 
of total pP). Increased L-pP fractions continued to persist where diatoms comprised an important fraction of 
the bulk plankton assemblages (about one-third) in between stations 8–9 (up to 84.5% L-pP/T-pP) and stations 
16–20 (up to 69% L-pP/T-pP). In contrast, where haptophytes dominated the plankton assemblage, away from 
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upwelling regions, lower L-pP fractions were generally observed, such as in the southernmost coastal region on 
the Benguela shelf (11.9%–56.5% L-pP of total pP; ST 45–50 < 100 m). The lowest L-pP fractions that were 
generally observed in surface waters between stations 21–24 (14.8%–28.4% L-pP of total pP; <100 m), where 
haptophytes and Prochlorococcus equally comprised about one-third, each, of the community assemblage, with 
almost no diatoms present.

Differential remineralization length scales of bio-essential elements through the water column, attributed to 
variable lability of respectively associated (intra-)cellular components, have been described using synchrotron 
X-ray fluorescence mapping by Twining et al. (2014), focused on diatoms. Given the similarity of bio-essential 
T-pTM:T-pP ratios to plankton reference sources in surface waters along the transect (Table 1), but variable 
L-pP/T-pP fractions (Figure 5), we postulate that it is plausible that the lability of biogenic pP is also variable 
between different phytoplankton taxa. This assumption is based on indirect evidence, further exploration of pP 
(and pTM) lability of different phytoplankton taxa is warranted in future studies to confirm and expand on this 
hypothesis.

Nonetheless, refractory particulate phases represent the particulate fraction that will persist in the water column 
on longer timescales, compared to the L-pTM fractions, as they settle or are laterally transported away from 

Reference Source

TM:P ratio (mmol:mol)

Fe Mn Zn Ni Cu Cd Co

North Atlantic Ocean (Trichodesmium)
(Nuester et al., 2012; Tovar-Sanchez et al., 2006)

5–31 1–5 0.2–13 1–8 0.4–2.1 0.02–0.31 0.01–0.15

Equatorial Pacific Ocean (Phytoplankton)
(Twining et al., 2011)

1.9–8.4 0.49–0.58 – 1.0–1.2 – – 0.06–0.07

Culture (Average Eukaryotic Phytoplankton-15 species)
(Ho et al., 2003)

7.5 3.8 0.8 – 0.38 0.21 0.19

Southern Ocean (Large Diatoms)
(Cullen et al., 2003)

– 1.7 11.1 – 1.44 1.29 0.15

North Atlantic Ocean (mostly Flagellated cells)
(Kuss & Kremling, 1999)

4.6 1.6 1.9 1.4 0.37 0.51 0.19

Equatorial Pacific Ocean (mostly Zooplankton)
(Collier & Edmond, 1984)

4.9 0.35 3.2 0.97 0.48 0.56 –

Southern Ocean (Large Diatoms)
(Collier & Edmond, 1984)

– – 13.3 0.68 2 0.07 –

Northeast Atlantic Spring Bloom (picoplankton and 
coccolithophores)

(Klein et al., 2013)

9.1–9.8 – – – 0.27–0.52 0.06–0.07 0.04–0.06

Eastern Tropical South Pacific (near Peruvian Coast)
(Ohnemus et al., 2017)

39.7 1.0 1.0 ± 0.88 0.54 ± 0.39 0.40 ± 0.37 0.54 ± 0.24 0.08 ± 0.05

GA08 (All ≤100 m) (n = 131) (this study)

T-pTM:T-pP
L-pTM:L-pP

(–)
(–)

(–)
(–)

(–)
(8.7)

(0.46)
(1.6)

(0.50)
(0.96)

(0.27)
(0.57)

(0.10)
(0.21)

GA08 (BENG—ST 43–51 and 1–5 ≤ 100 m) (n = 46) (this study)

T-pTM:T-pP
L-pTM:L-pP

36.5–214
14.5–146

1.8–8.1
4.5–14.6

1.6–8.7
4.9–11

0.66–1.7
1.9–3.8

0.69–2.11
0.86–2.6

0.24–0.51
0.59–2.1

0.09–0.23
0.13–0.47

GA08 (NORTH—ST 6–24 ≤ 100 m) (n = 85) (this study)

T-pTM:T-pP
L-pTM:L-pP

42.2–953
33.0–916

7.1–49.6
21.6–134

4.3–9.2
9.1–27.7

0.96–2.8
2.2–4.5

0.97–2.1
1.3–3.7

0.10–0.31
0.26–0.96

0.15–0.32
0.25–0.62

Note. Concentration ranges referenced from this study are the upper and lower quartile values of individual sample labile particulate trace metal (L-pTM): labile 
particulate phosphorus (L-pP) ratios (mmol:mol) and total particulate TM (T-pTM): T-pP ratios. GA08 values reported in brackets are linear regression slope values, 
shown for elements where r is ≥0.5, and bold values represent the T-pTM:T-pP fractions, while unformatted values represent L-pTM:L-pP fractions. Table adapted 
from Twining and Baines (2013).

Table 1 
Compiled Plankton Reference Trace Metal Stoichiometries Compared to Samples From the Top 100 m of the GA08 Transect
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their sources. This also implicates pP cycling, particularly over the Benguela shelf, as it would directly imply 
that (biogenic) R-pP from settling particles are a potentially significant source of refractory pP to the underlying 
seafloor, contributing to the enriched pP documented on the Benguela shelf (Compton & Bergh, 2016).

Samples from the NORTH stations (ST 6–20) exhibited higher labile and total bio-essential pTMs:pP ratios in the 
top 100 m compared to the BENG stations, except for pCd, which was higher in the BENG region (Table 1 and 
Figure S13 in Supporting Information S1). This is possibly due to the partial inclusion of other abiotic L-pTM 
phases (i.e., adsorbed, and precipitated phases) into the L-pTM pool and/or higher intracellular TM:P quotas 
associated with the above described, differing bulk plankton community structures along the transect. Some TMs 
released in solution following the remineralization of biogenic particles are susceptible to (re-)adsorption onto 
particle surfaces, such as Cu (Boyle et al., 1977; Bruland, 1980; Bruland et al., 2014; Little et al., 2013, 2018; 
Richon & Tagliabue, 2019), and Ni, Co, and Zn (Archer et al., 2020; Weber et al., 2018; Zheng et al., 2021). 
Therefore, increased adsorption of these TMs onto particles is more likely to occur where dTM concentrations 
were high, as in the river-influenced stations in the NORTH region (see Section 3.6), and where higher concen-
trations of labile authigenic phases were present (i.e., Fe and Mn oxides), where enhanced biogenic L-pTM:L-pP 
ratios were observed (Figure S13 in Supporting Information S1).

The pCo:pP ratios in waters <50  m were very similar in the BENG (0.09–0.24 and 0.14–0.55  mmol:mol 
T-pCo:T-pP and L-pCo:L-pP, respectively; lower and upper quartile values; n = 25) and NORTH (0.13–0.24 and 
0.20–0.53 mmol:mol T-pCo:T-pP and L-pCo:L-pP, respectively; lower and upper quartile values; n = 40) regions 
(Figures S13b and S13g in Supporting Information S1), where biogenic particle abundance was highest. Also, 
the pCo:pP ratios were within the same order of magnitude of reported plankton ranges (Table 1). This suggests 
that the pCo pool was most likely associated with biogenic particles, and that abiotic phases (i.e., Co adsorbed 
onto particles) were not a major fraction of the L-pCo pool in surface waters (≤50 m). However, waters at depths 
between 50 and 100 m exhibited higher pCo:pP ratios (0.19–0.38 and 0.29–0.79 mmol:mol T-pCo:T-pP  and 
L-pCo:L-pP, respectively; lower and upper quartile values; n  =  41), and showed close correlations between 
L-pCo and L-pMn (r = 0.827; ST 6–24; n = 41), implying that L-pCo and L-pMn were largely associated with 
the same labile particulate phases (i.e., Mn oxides), which is consistent with co-precipitation of Co and Mn, 
during Mn (bio-)oxidation (Cowen & Bruland, 1985; Moffett & Ho, 1996; Tebo et al., 2004, 2005).

Particulate Fe and Mn, in labile and total particulate fractions, showed weak correlations with pP (r  <  0.1; 
≤100 m; Figure S12 in Supporting Information S1), with much higher individual sample labile and total pTM:pP 
ratios compared to reported plankton stoichiometry ranges (Table 1). This is likely due to an increased fraction of 
co-occurring labile abiogenic pTM phases (such as adsorbed Fe and Mn, and labile Fe and Mn oxides) as part of 
the labile particulate fraction, masking the biogenic L-pTM pool, which were enhanced with lithogenic (benthic) 
sources, as implied through their closer correlations with R-pAl (r = 0.64–0.82; Figure S12 in Supporting Infor-
mation S1) (see Sections 3.4–3.6).

The enhanced labile fractions of pAl observed in the top 350 m of the water column at the NORTH and open 
ocean stations (up to 74%; ST 6–24; Figure  5) were associated with increased adsorption of Al, possibly 
onto biogenic silica (i.e., opal) or other particles, and/or the inclusion of other labile L-pAl phases, such as 
aluminum oxyhydroxides (Berger et al., 2008). Samples that were deeper showed much lower L-pAl fractions 
(14.8% ± 7.4%; Max 33.1%; ≥350 m; n = 92), as biogenic particle (opal) fractions tend to decrease with depth 
due to dissolution (Lam, Ohnemus, & Auro, 2015; Lam et al., 2018; Xiang & Lam, 2020). While biogenic silica 
was not measured in samples of this study, other studies across the Atlantic, Indian, and Southern oceans, as well 
as in mesocosm experiments have shown preferential Al adsorption onto biogenic silica (Barrett et al., 2018; 
Menzel Barraqueta et al., 2018; Middag et al., 2015; Moran & Moore, 1988; Orians & Bruland, 1986). Diatom 
abundances were apparently low in open ocean stations (ST 21–24), as inferred above, we can only speculate 
that enhanced L-pAl/T-pAl fractions in these samples (Figure 5) may reflect the inclusion of a relatively higher 
fraction of labile aluminum oxyhydroxides, adsorption onto other particles, or inclusion of other L-pAl phases.

At first glance, the significant L-pPb variance (57%; Figure S6 in Supporting Information S1) captured by PC2 
of the L-pTM data set (associated with biogenic particles) suggests enhanced Pb adsorption onto biogenic parti-
cles. However, correlations between L-pPb and R-pAl (lithogenic proxy) (r = 0.95; n = 132) were stronger in 
the top 100 m, where biogenic particle abundances were highest, compared to L-pP (r = 0.44; n = 132) (Figure 
S14 in Supporting Information S1). L-pPb also exhibited better correlations with L-pFe and L-pMn (r = 0.81 
and r = 0.66, respectively, Table S6 in Supporting Information S1). The closer correlations of L-pPb with the 
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other particle proxies suggested that the affinity for Pb adsorption was higher onto other co-occurring (abiogenic) 
particles, such as lithogenic particles (Chen, Boyle, et al., 2016; Rutgers Van Der Loeff & Boudreau, 1997), and/
or Fe and Mn oxides (Allen et al., 1990; Boyle et al., 2005; Fernex et al., 1992; Ohnemus & Lam, 2015; Rapp 
et  al.,  2019; Rusiecka et  al.,  2018; Sherrell & Boyle, 1992). However, Pb adsorption onto biogenic particles 
cannot be discounted and has been implicated in observations in the North Atlantic and Southern Ocean (Cochran 
et al., 1990; Schlosser & Garbe-Schönberg, 2019), North Pacific (Cochran et al., 1990; Nozaki et al., 1976), and 
in laboratory studies (Chuang et al., 2014; Yang et al., 2015).

3.4. Lithogenic Particles

Turbidity and BAT were enhanced in (near-)bottom waters (Figure 2e and Figure S8 in Supporting Informa-
tion S1) where very high concentrations of the lithogenic proxy, R-pAl, were observed. Increased lithogenic parti-
cle (R-pAl) concentrations exhibited higher correlations with turbidity measurements (r = 0.703; >100 m; Figure 
S9d in Supporting Information S1) than BAT (r = 0.677; >100 m; Figure S9b in Supporting Information S1), and 
enhancements in the turbidity signals were more pronounced in samples below the surface (>100 m), compared 
to BAT (Figure S9e in Supporting Information S1). This suggests that lithogenic particles exhibited a higher 
influence on turbidity signals compared to BAT.

Refractory particles from the BENG region were distinctly enriched in R-pFe (Figure 6b and Table S2 in Support-
ing Information S1), showing higher R-pFe:R-pAl and R-pFe:R-pTi ratios (0.276 and 9.90 mol:mol, respectively; 
linear regression slope values), compared to samples from the NORTH region (0.186 and 7.66 mol:mol, respec-
tively; linear regression slope values) (t-test p < 0.05; Table S7 in Supporting Information S1) and upper conti-
nental crust (UCC) reference sources (0.232 and 8.77 mol:mol, respectively; Rudnick & Gao, 2013). The higher 
R-pFe abundances in BENG region samples are partially attributed to local sources of sediment resuspension 
(Böning et al., 2020; Borchers et al., 2005; Govin et al., 2012) and the Namib dust (Annegarn et al., 1983; Eltayeb 
et al., 1993), which are enriched in Fe (Table S2 in Supporting Information S1). The presence of Fe sulfides and 
biotite in resuspended sediment particles, as reported for the Benguela shelf (Böning et al., 2020; Bremner & 
Willis, 1993), can contribute to R-pFe enrichment relative to R-pAl and R-pTi. Additionally, Fe-sulfide precip-
itation within microenvironments of organic-rich particle aggregates within the oxygen-deficient waters of the 
BENG region (Bianchi et al., 2018) may possibly contribute to the increased R-pFe (Bianchi et al., 2018). Indeed, 
elevated R-pFe:R-pAl ratios (0.43–0.72, mol:mol) in (near-)bottom water samples of the most oxygen-depleted 
waters on the Benguela shelf (<10 μM oxygen; ST 49–51) were consistent with the inclusion of benthic particles 
(0.90 Fe:Al was reported in sediment at a nearby location at 14.4°E, 25.0°S; Böning et al., 2020).

Another regional contrast showing higher R-pMn:R-pAl and R-pMn:R-pTi abundance in particles from the 
BENG region (1.88 and 62.1  mmol:mol, respectively; linear regression slope values), compared to NORTH 
(0.530 and 21.2 mmol:mol; linear regression slope values) was also apparent (Figure 6c), although the R-pMn 
abundances were deficient compared to average canonical UCC reference sources (4.67 and 176  mmol:mol, 
respectively; Rudnick & Gao, 2013) (Table S2 in Supporting Information S1). This feature was consistent with 
Mn deficiencies in Benguela sediment sources as reported by Böning et al. (2020).

In (near-)bottom waters of NORTH stations, the distributions of elevated lithogenic R-pTMs (Al, Ti, and Fe) 
were also largely consistent with benthic resuspension (Figure 4), with some evidence for lateral transport of 
benthic (nepheloid) particles off-shelf (Figure 6). Samples at intermediate depths with elevated R-pAl concen-
trations, observed at station 9 (400–800  m; 70–204  nM  R-pAl), and between stations 17–19 (100–300  m; 
20.5–25.2 nM R-pAl) (Figure 4), exhibited relatively consistent R-pFe:R-pAl and R-pAl:R-pTi ratios (Figure 6), 
reflecting nepheloid particles from the same respective (lithogenic) sources. The latter nepheloid layer source 
(100–300 m; ST 17–19) appeared to persist laterally off-shelf into the open ocean through stations 20 and 21 
within isopycnal densities of the SACW (∼26.3–26.9 kg m −3 σϴ), over 300 km away from the African shelf, as 
suggested by the relatively consistent sample R-pFe:R-pAl ratios (Figure 6). This illustrated the role of shelf 
particles as potential vectors onto which TMs may be carried off-shelf and into the Angola Dome, facilitated via 
adsorption directly onto lithogenic particles, or concomitantly with other co-occurring particle phases, such as 
(re-)precipitated Fe and Mn oxides (Burdige, 1993). Additionally, high particle concentrations, such as those in 
nepheloid layers, but also in river plume particles (ST 16–20), may facilitate enhanced scavenging (Honeyman 
et al., 1988; Rutgers Van Der Loeff & Boudreau, 1997), increasing the L-pTM pools of essential elements, such 
as Fe, subsequently buffering dTM pools (Achterberg et  al.,  2018; Milne et  al.,  2017). The role of advected 
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particles in supplementing available Fe pools was described in the North Atlantic (Achterberg et al., 2018; Milne 
et al., 2017), Southern (van der Merwe et al., 2015) and Pacific (Lam & Bishop, 2008; Lam et al., 2006) Oceans 
and, hence, may also be an important source to the Angola Dome. L-pFe and R-pAl were closely correlated 
(r = 0.91; p < 0.001; Table S6 in Supporting Information S1), indicating that benthic particles could play an 
important role in sustaining the available Fe pool required by phytoplankton through L-pFe phases. This is 
relevant for Fe (Beghoura et al., 2019; Burdige & Komada, 2020), which is often limiting to primary production 
(Boyd & Ellwood, 2010; Moore et al., 2013), but was not in waters on and immediately off the shelf of the Angola 
Dome (as determined through field incubations conducted between approximately at ST 10 and 21) (Browning 
et al., 2017).

Particles collected nearest the Congo River outflow (ST 13–15), exhibited R-pTM:R-pAl linear regression 
slope values of 0.202 Fe:Al, 8.08 Fe:Ti, and 39.1 Al:Ti (Figures S15a–S15c in Supporting Information  S1), 
which are comparable to UCC reference ranges (0.232, 8.77, and 37.7 (mol:mol), respectively) (Rudnick & 
Gao,  2013). However, particles were also deficient in R-pMn (0.641 R-pMn:R-pAl and 24.0 R-pMn:R-pTi 
[mmol:mol]; Figures S15d and S15e in Supporting Information S1) by about an order of magnitude compared 

Figure 6. Spatial distribution of sample elemental ratios of refractory particulate iron (R-pFe) and aluminum (R-pAl) (a); and scatter plots illustrating regional contrasts 
in refractory particle compositions showing (b) enriched R-pFe abundance in BENG region (ST 43–51; and 1–5) compared to the NORTH (ST 6–24); and (c) refractory 
particulate Mn (R-pMn) abundance between BENG and NORTH regions. Note the logarithmic depth scale on (a). Reference elemental ratio ranges for Namibian desert 
dust (NAM) (Annegarn et al., 1983; Eltayeb et al., 1993) and Upper Continental Crust (UCC) (Rudnick & Gao, 2013) are shown above the section plot and annotated 
on z-axis color bar scale (a), and within each respective scatter plot (b) and (c). Annotated contour lines indicate R-pAl concentrations >25 nM and >100 nM. The blue 
and red sample points and regression lines represent samples from the BENG and NORTH regions, respectively. Three samples were not shown on scatter plots (ST 45; 
1.2–4.9 μM R-pAl) that stretched the scales and decreased resolution.
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to UCC reference values (4.67 R-pMn:R-pAl and 176 R-pMn:R-pTi, mmol:mol). No literature values reporting 
TM concentrations were available for Congo River particles to compare with our results at the time of this study. 
Particles in (sub-)surface waters with high lithogenic R-pTM in the river plume also exhibited increases in scav-
enging, particularly between stations 16–20, associated with high dTMs delivered by the river (Section 3.6).

Elevated L-pPb concentrations in benthic resuspended particles (R-pAl) were likely associated with anthropo-
genic Pb accumulated in sediments, which was released and subsequently (re-)adsorbed onto benthic particles 
following resuspension (Rusiecka et al., 2018). Re-adsorption of dissolved Pb may have occurred onto Fe and/or 
Mn oxides, or lithogenic particles (Chen, Goodkin, et al., 2016; Rusiecka et al., 2018; Rutgers Van Der Loeff & 
Boudreau, 1997), which is difficult to discern, as discussed in Section 3.3. However, the mechanism of Pb trans-
port via resuspended benthic particles may be important for overall transfer of anthropogenic Pb from coastal to 
deeper ocean sediment inventories.

3.5. Iron and Manganese Cycling on the Benguela Shelf

The upwelling stations on the Benguela shelf were characterized by a more intense OMZ (<4  μM oxygen), 
compared to the Northern non-upwelling stations (>20 μM), and were underlain by anoxic and sulfidic sedi-
ments (Böning et  al.,  2020; Borchers et  al.,  2005; Inthorn et  al.,  2006). Stations 49–51 featured the most 
oxygen-deficient subsurface waters along the transect (<10 μM; 96–150 m; Figures 2b and 7e) and were located 
within the Lüderitz Cell.

In (near-)bottom waters at the NORTH stations with oxygen levels >20 μM (ST 6–20), L-pFe and L-pMn concen-
trations were enhanced, reaching up to 35.3 and 5.57 nM, respectively (Figure 3), coinciding with high lith-
ogenic particle abundance (up to 469 nM R-pAl; Figure 4). The oxygen-depleted waters (<4 μM oxygen) on 
the Benguela shelf exhibited high L-pFe concentrations (up to 22.5 nM; ST 47–51 and 1–5), while L-pMn was 
comparatively low (18–357 pM; >75  m) (Figure  3). Vertical profiles for stations 49–51 featured increasing 

Figure 7. Water column profiles within the oxygen-depleted waters of the Lüderitz cell between stations 49–51 of (a) Refractory particulate aluminum (R-pAl); (b) 
Nitrate + Nitrite; (c) Dissolved Iron (dFe); (d) Dissolved Mn (dMn); (e) Dissolved Oxygen; (f) Labile particulate Fe (L-pFe); (g) Labile particulate Fe fraction (%); (h) 
Labile particulate Mn (L-pMn); (i) Labile particulate Mn fraction (%). Note the stretched scale for oxygen concentration.
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concentrations of L-pFe (6.9–20.8 nM; Figure 7f) and dFe (11.8–27 nM; Figure 7c) below the oxycline toward 
the seafloor, where L-pFe comprised 39%–65% of the T-pFe pool (Figure 7g). In contrast, vertical L-pMn profiles 
showed decreasing concentrations (18.2–44.9 pM; Figure 7h) and L-pMn/T-pMn fractions with depth below the 
oxycline (34%–82% L-pMn/T-pMn; Figure 7i). Dissolved Fe and Mn concentrations (not shown) were enhanced 
in (near-)bottom waters where their labile particulate fractions were high, whilst dFe was particularly high on the 
Benguela Shelf (up to 27.4 nM; excluding ST 45, which was up to 46.3 nM) and dMn only slightly increasing 
with depth (1.27–2.25 nM Figure 7d). These differences in behavior of Fe and Mn were attributed to rapid oxida-
tion kinetics of sediment derived Fe(II) and removal by precipitation (Elrod et al., 2004; Millero et al., 1987) 
and comparatively slower oxidation and further transport of Mn (Heggie & Lewis, 1984; Jensen et al., 2020; 
Klinkhammer, 1980; Luther et al., 2018; Tebo et al., 2004; 2005; von Langen et al., 1997).

The enhanced available Fe pools were associated with benthic supplies of reduced dFe(II) that rapidly precipi-
tated as authigenic Fe oxides following oxidation by oxygen or nitrate, as observed in the oxycline of the Peruvian 
OMZ (Heller et al., 2017; Schlosser et al., 2018; Scholz et al., 2016) with subsequent accumulation in bottom 
waters and surface sediments. Nanoparticulate (colloidal [0.02–0.2 μm]) Fe oxides that may have precipitated 
(Raiswell & Canfield, 2012) are included in the operationally defined dFe pool (<0.2 μm), thus contributed to the 
enhanced dFe concentrations. Organically complexed Fe (Gledhill & Buck, 2012; Hopwood et al., 2020; Hunter 
& Boyd, 2007; Rue & Bruland, 1995; van den Berg, 1995), and non-reductive dissolution of lithogenic particles, 
as colloids (Homoky et al., 2013, 2021), may also supplement the dFe pool. The subsequent exchange of the 
colloidal Fe pool between the dissolved and particulate pools (i.e., through (dis-)aggregation) may explain the 
concomitant increase in both dFe and L-pFe fractions observed on the Benguela shelf (Boyd & Ellwood, 2010; 
Bruland & Lohan, 2003; Bruland et al., 2014) (Figures 7c and 7f).

The slight increase in dMn below the oxycline indicates a benthic source of reduced dMn (Burdige, 1993). The 
primarily microbially-mediated (bio-)oxidation of Mn (Moffett & Ho, 1996; Tebo et al., 2004, 2005; von Langen 
et al., 1997), was retarded in the oxygen-deficient environment, resulting in low L-pMn concentrations. Subse-
quent off-shelf transport of dMn in bottom seawater away from the shelf led to the relative depletion of Mn oxides 
within underlying sediment, consistent with regional sediment compositions reporting Mn depletion (Böning 
et al., 2020; Borchers et al., 2005).

However, poor correlations between L-pMn and L-pCo were observed in samples deeper than 50  m on the 
Benguela shelf (r = 0.041; ST 47–51 and 1–5; >50 m; Figure S16 in Supporting Information S1), with increases 
in L-pCo concentrations, relative to L-pMn, below the oxycline, indicating an additional source for L-pCo. This 
was ascribed to biogenic particles, driven by the increased production and longer remineralization length scales 
within the upwelling stations (Section 3.3). Also, pCo: pP ratios were relatively consistent (0.214 ± 0.186 and 
0.243 ± 0.187 mmol:mol T-pCo:T-pP and L-pCo:L-pP, respectively; ST47-51 and 1–5) and generally in agree-
ment with reported plankton stoichiometry ranges (Table 1).

Overall, the relative deficiency in Mn oxide production on the shelf, an important dCo sink (Hawco et al., 2018), 
may have been an important factor allowing enhanced dCo signals to be carried further off-shore within the OMZ 
and into the South Atlantic Ocean. This would provide an explanation for the dCo plume that was detected within 
the OMZ of the South Atlantic on the CoFeMUG (GAc01) transect (Noble et al., 2012, 2017), as the existence 
of an off-shore plume of dCo downstream within the open-ocean OMZ of the eastern tropical Pacific also relied 
on low concentrations of Mn oxides (Lam et al., 2018; Landing & Bruland, 1987; Lee et al., 2018; and Vedamati 
et al., 2015).

3.6. Congo River Plume

Samples collected in the Congo River plume (ST 13–20) exhibited patterns of enhanced TM adsorption that were 
associated with a high supply of dTMs by the river, combined with high particle abundance providing sites for 
adsorption. This was evident through increased L-pTM concentrations (Figure 3) and L-pTM/T-pTM fractions 
(Figure 5) coinciding with relatively high concentrations of R-pAl (57.6 ± 95.8 nM; ST 13–20) and T-pP at the 
surface (up to 47.0 nM; <100 m; ST 13–20). Enhanced dTM concentrations were measured in surface waters 
of the plume (∼5 m, towed-fish samples), reaching up to 1.24 μM dFe, 784 nM dAl, 125 nM dMn, 1.04 nM 
dCo, 84 nM dPb, 8.13 nM dCu, 2.72 nM dZn, and 7.08 nM dNi (Figure S17 in Supporting Information S1; only 
dFe shown; other TMs will be presented elsewhere). The enhanced supply of TMs by the Congo River is likely 
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related to the presence of ore bodies and copper-cobalt mining in the Congo catchment (Prasad, 1989). Enhanced 
particle-reactive L-pTM (notably Fe, Mn, Al, and Pb) concentrations and L-pTM/T-pTM ratios were observed at 
the coastal plume stations (ST 12–20), reaching up to 22.6 nM (64.8%) L-pFe, 2.3 nM (99.4%) L-pMn, 21.6 nM 
(77.5%) L-pAl, and 14.3 pM (93.2%) L-pPb (Figures 3 and 5). Dissolved Fe was particularly enhanced within 
TSW (up to 8.75 nM; <20 m) and persisted north of the river mouth and westward into the open ocean through 
to station 22 (3.69 nM at ST 22) (not shown). However, enhanced L-pFe concentrations (up to 34.9 nM) were 
mostly confined to the coastal plume stations (ST 13–20) and were relatively low within TSW off-shelf (mean 
0.136  ±  0.125  nM  L-pFe at ST 21–22; ≤100  m; n  =  12). Similarly, L-pAl and L-pPb concentrations were 
enhanced in surface waters of the coastal plume stations (up to 21.6 nM and 11.3 pM, respectively; ST 12–20; 
<50 m; Figure 3) and did not persist off-shelf. In contrast, enhanced L-pMn concentrations (up to 3.51 nM; ST 
12–20) were relatively persistent off-shelf within TSW (617 pM L-pMn at ST 22) and coincided with elevated 
dMn (up to 6.47 nM at ST 13; and 4.87 nM dMn at ST 22) in river plume stations. Elevated dMn concentrations 
also persisted within STUW south of the Congo River mouth (3.21 ± 0.93 nM dMn; ST 8–11; <50 m; n = 7; 
not shown) and coincided with low L-pMn concentrations (177 ± 118 pM; ST 8–11; <50 m; n = 7) (Figure 3).

In agreement with the dissolved and labile pTM observations, available Fe, Mn, and Al at the coastal plume 
stations (ST 13–20) were enhanced with concentrations up to 41.3, 7.23, and 104  nM, respectively (Figures 
S18e–S18g in Supporting Information S1). The available Pb concentrations were not enhanced and were higher 
on the Benguela shelf. Enhanced available Mn and Al concentrations that were associated with the river plume 
persisted off-shelf within TSW as far west as ST 22, and possibly southward as well for Mn (ST 8–11) (Figures 
S18f and S18g in Supporting Information S1). Available Fe and Pb, did not persist off-shelf (Figures S18e and 
S18h in Supporting Information S1). The enhanced available Al pool in plume samples was dominated by dAl, 
which were high (up to 85 nM dAl, and 98% of available Al), while L-pAl was relatively low off-shelf (Figure 
S18g in Supporting Information S1). In contrast, L-pFe comprised most of the available Fe pool in coastal plume 
stations (up to 93%) but was also low off-shelf. The low L-pFe and L-pAl concentrations off-shelf implied that 
particles played a decreasing role in sustaining elevated dFe and dAl concentrations off-shelf, which were instead 
sustained through other mechanisms. Dissolved Fe is likely kept in solution by complexation with organic ligands 
(Buck et al., 2015; Gledhill & Buck, 2012; Hopwood et al., 2020; Hunter & Boyd, 2007; van den Berg, 1995) and 
also photo- and/or non-reductive dissolution processes from lithogenic particles (Homoky et al., 2013, 2021). The 
latter case may also support the explanation of the persistently elevated dAl signal within the plume.

Increased L-pTM/dTM fractions of Fe, Mn, and Pb were evident in the coastal plume (sub-)surface waters, 
consistent with increased adsorption and/or precipitation of labile Fe and Mn oxides (Figures S18a, S18b, and 
S18d in Supporting Information S1), compared to non-plume stations. Lithogenic particle concentrations were 
also enhanced, particularly between stations 16–20 (up to 628 nM R-pAl). Increases in L-pTM/dTM partitioning 
of Pb, Fe and Mn were co-distributed with R-pAl, suggesting that lithogenic particles were important sites for 
adsorption, including Fe and Mn oxides. Closer correlations of L-pPb and L-pAl with L-pFe (r = 0.919 and 
0.691, respectively; Figures S19a and 19b in Supporting Information S1) over L-pMn (r = 0.787 and 0.529, 
respectively; Figures S19c and 19d in Supporting Information S1) may suggest a slight preferential affinity for 
Al and Pb with Fe oxides, or that they shared preferential affinities to same particle surfaces as Fe. Although, the 
closer correlations to L-pFe may be due to a comparatively higher abundance of labile Fe oxides, compared to 
Mn oxides, and corresponding binding sites for adsorption.

Elevated L-pMn, persisted in photic surface waters, within the TSW (<25 m), away from the shelf (to ST 22), in 
contrast to L-pFe and L-pPb. This suggested that either Mn had an increased affinity for particles at the surface (i.e., 
biogenic particles) or that Fe and Pb had a steeper removal gradient than Mn toward off-shelf waters. T-pMn:T-pP 
(17 and 26 mmol:mol; ST 21 and 22, respectively; n = 2) and L-pMn:L-pP (116 and 97 mmol:mol; ST 21 and 22, 
respectively; n = 2) ratios were higher than reported biogenic particle stoichiometries (Table 1), and Mn oxides 
abundance in surface waters are decreased due to photo-reductive dissolution (Sunda & Huntsman, 1988, 1994). 
This left biogenic particles as the dominant particulate phases in offshore surface waters (ST21-22; <25 m) onto 
which dissolved Mn may adsorb onto, although this assumption is based on only a few datapoints.

The adsorptive processes occurring within the plume indicated that adsorbed pFe (i.e., L-pFe) likely played an 
important role in maintaining elevated dFe concentrations in coastal plume stations (ST 13–20) through revers-
ible adsorption (Achterberg et al., 2018, 2021; Milne et al., 2017), with a lower influence in off-shelf plume 
waters (within TSW in ST 21 and 22). However, it was also apparent that reversible-scavenging was either not in 
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equilibrium and/or that variable supplies of dFe may have occurred in the shelf waters, as L-pFe and dFe showed 
a weak correlation (r = 0.2718; ST 13–20; n = 70).

4. Conclusions
Overall, this work provides important insights to the biogeochemical cycling processes and the influences of 
different environments controlling pTM distributions in the southwest African shelf and the Angola basin region. 
Our results complement regional studies of shelf sediments by providing a snapshot of processes occurring in 
the overlying water column and illustrate a decoupled redox cycling of Fe and Mn on the Benguela shelf, with Fe 
retention and Mn transport off-shelf. Additionally, we illustrate several advantages of how separating the labile 
from refractory particulate fractions may be utilized to enhance the interpretations of pTM cycling, though also 
highlight some cautions and potential considerations for future work as well.

The decoupled distributions of Fe oxide enrichment and Mn oxide deficiency in the oxygen-depleted waters 
on the Benguela shelf could have broader implications on TM cycling and export in other upwelling regions 
of the ocean. Iron oxides precipitated and accumulated in bottom waters are a potential source of Fe following 
subsequent transport. In cases where seasonal oxygen depletion occurs, subsequent advection of bottom waters 
may supply a source of available Fe (and associated scavenged TMs) downstream that may potentially support or 
enhance primary production. Manganese oxide deficiency under sub-oxic conditions could enhance the shuttling 
of typically associated TMs, such as Co, away from the shelf. Indeed, the transport of Co to the South Atlantic 
Ocean appears to be facilitated by enhanced supply from benthic sources on the oxygen-depleted Benguela shelf.

The Congo River plume formed a significant source of available TMs to the shelf, mainly through enhanced 
scavenging, reflected in labile pTM fractions, with subsequent buffering of dTM concentrations in shelf and 
off-shelf waters. However, the role of plume particles in sustaining dTM concentrations off-shelf did not appear 
to be dominant. Transport of available Fe within the river plume was instead sustained within the dissolved 
fraction, likely following the photo-reductive release of Fe(II) from lithogenic particles and/or ligand-bound dFe. 
However, dissolved Mn removal from the water column through scavenging appeared less efficient than dFe, 
allowing it to persist off-shelf.

Bio-essential pTM:pP ratios (Zn, Ni, Cd, Co, and Cu) of labile and total particulate fractions in surface waters 
were comparable to reported plankton stoichiometries, implying the predominant association of their pTM pools 
with biogenic particles. However, labile particulate Fe and Mn pools in surface waters included a significant frac-
tion of L-pTM phases attributed to adsorption onto cell surfaces and also the possible inclusion of labile Fe and 
Mn oxides. Additionally, the variability in labile biogenic particle fractions, in particular for pP, highlighted the 
need to exercise caution when interpreting labile fractions, importantly when comparing pTM data sets between 
ocean basins and across seasons.

The relatively high refractory biogenic pP fractions observed across several stations raises some uncertainties that 
require further investigation in future work, specifically into the chemical lability of major phytoplankton taxa 
groups when applying chemical leaches. With the increased adoption of the Berger et al. (2008) leach, as its use 
is recommended in GEOTRACES standard protocols (i.e., the GEOTRACES “Cookbook”; Cutter et al., 2017), 
further improvement of biogenic particle characterization will improve inter-comparison of pTM cycling in other 
regions, enhancing pTM cycling components in biogeochemical modeling, and providing relevant insights for 
paleoceanographic and benthic interpretations as well.

The observations and conclusions in this work contribute to a growing body of literature (e.g., Lee et al., 2018; 
Lippiatt, Brown, et al., 2010; Milne et al., 2017; Twining et al., 2019; Xiang & Lam, 2020) demonstrating the 
importance of particles for TM cycling and transport within the ocean and emphasize the importance of selective 
leach procedures for understanding TM cycling by particles.
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Data Availability Statement
The full data sets for labile (L-pTM), refractory (R-pTM), and total (T-pTM) particulate trace metal concen-
trations of Iron (Fe), Aluminum (Al), Titanium (Ti), Manganese (Mn), Cobalt (Co), Zinc (Zn), Nickel (Ni), 
Copper (Cu), Cadmium (Cd), and Lead (Pb), and particulate Phosphorus (P) for the presented sections of the 
GA08 (M121) cruise transect are available at https://doi.pangaea.de/10.1594/PANGAEA.945498 (Al-Hashem 
et al., 2022). The full data set for dissolved TM (dTM) concentrations of Fe, Co, Mn, Ni, Cd, Cu, Pb and Zn, 
Fe(II), and macronutrients (phosphate, nitrate + nitrite, and silicic acid) concentrations are available at https://doi.
org/10.1594/PANGAEA.947275 (Liu et al., 2022). The data set for the presented sections of the GA08 (M121) 
cruise transect are also provided as a Source Data file.
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