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Supplementary methods
Trace elements

Trace metal samples were collected using the ultra-clean CTD (ucCTD) rosette,
equipped with 24 x 12 L GoFlo bottles following GEOTRACES sampling protocols
(Cutter et al.,, 2017). Marine particle samples collected on acid pre-cleaned
polyethersulfone (PES) filters (0.2 pm pore-size; 25 mm diameter, Sartorius) were
processed sequentially to determine labile and refractory particulate trace elements (Cd,
Co, Fe, Mn, Cu, Ni, P, Al, Ti, and V) using the methods as per Al-Hashem et al. (2022).
The labile particulate fractions were determined following a chemical leach application
consisting of a weak acid (25% acetic acid, Optima grade, Fisher Scientific) with a mild
reducing agent (0.02 M hydroxylamine hydrochloride, Sigma trace metal grade), and
included a short heating step (10 min, 90 - 95<C), with a total leach time of 2 hours (Berger
et al., 2008), and was subsampled from afterwards. Residual (refractory) particles were
subsequently digested following a 15 h reflux digest at 150 <C using a mixture of
hydrofluoric and nitric acid (50% and 10% by volume, respectively, Optima grade, Fisher
Scientific) (Cullen & Sherrell, 1999), with the sample filter adhered to the inner was of the
perfluoroalkoxy (PFA) digestion vessels (Savillex).

Dissolved trace metals (dTMs, Cd, Co, Fe, Mn, Cu, and Ni) and particulate trace
elements were then measured via high-resolution inductively coupled plasma-mass
spectrometry (HR-ICP-MS; Thermo Fisher Element XR). Briefly, for dTMs, 15 mL
sample aliquots were pre-concentrated using an automated SeaFAST system (SC-4 DX
SeaFAST pico; ESI) exactly as per Rapp et al. (2017). All reagents for SeaFAST were
prepared in deionized water (>18.2 MQ cm™*; Milli-Q, Millipore). A solution of 1 M single-
distilled sub-boiled HNOs (SpA grade, Romil) was used for sample elution. Ammonium
acetate buffer (pH 8.5) was prepared from glacial acetic acid and ammonium hydroxide
(Optima, Fisher Scientific). Ten-fold pre-concentrated samples were then analyzed with
calibration via isotope dilution for Fe, Ni, Cu, and Cd, and standard addition for Mn and
Co. Labile and total particulate analyses were measured without pre-concentration and
quantified using external multi-element calibration using multi-element standards

(Inorganic Ventures) prepared in the same sample matrix (Cullen et al., 2001). The total



particulate trace element concentrations reported are the sum of labile and refractory
particulate fractions.

The precision and accuracy of dTM measurements were reported by (Krisch et al.,
2021, 2022). The validation of labile and total particulate trace metal analyses was
monitored by reference materials BCR-414 and PACS-3 (Table S1).



Table S1 Procedural blanks, limits of detection, and measured and concentrations of Al, Fe, Ti, P, Mn, Cu, Ni, Co, Cd, and V for Reference materials BCR-414
and PACS-3. Detection Limits were determined as 3 the standard deviation (SD) of procedural blanks. Certified Reference Material (CRM) recoveries were
determined using certified values and consensus values acquired from the GeoReM database at the time of publication (Jochum et al., 2005). n = number of
measurements.

n Al Fe Ti P Mn Cu Ni Co Cd \V
Average Process Blank LpTM (ng/filter =1 011+ 015+ 0.65 = 0.65 = 0.03 = 0.011 % 0.04 =
spy [ 260%190 518074 0.11 8.39+140 0.09 0.23 0.14 0.01 0.005 0.02
LpTM Detection Limit (ng/filter) 5.70 223 0.32 42.06 0.28 0.70 0.43 0.03 0.013 0.05
Average Process Blank TpTM (ng/filter £1 5 11.27 = 10.47 = 3.68 % 257 4+2.90 012+ 0.37 = 0.07 = 0.01+ 0.002 = 0.02 =
SD) 14.54 14.31 419 SlEe. 0.20 0.37 0.06 0.01 0.002 0.03
TpTM Detection Limit (ng/filter) 43.62 42.94 12.57 8.69 0.60 1.10 0.19 0.02 0.004 0.10
BCR-414 Certified/Ref. Values (ng/ mgsiD% 267396 1850190 1264 141234852 20913 20513 188208 oo 0383 % 811018
BCR-414 measured values (Total, ng/mg =1 16170 = 1.54 + 0.447 = 10.1 =
o) © 054165 206109 14287 So1s 274+13 297423 196 +25 o7 0,055 076
PACS-3 Certified/Ref. Values (ng/ mgsJ—E)l) 65182%%1 41060 +640 4%%1 937 +44  432+16  326+10 30522 121 2234016  129+8
PACS-3 measured values (Total, ng/mg =1 55832 += 4219 + 134+
o) 4 156 34724 +888 o7 1050 £70 418 £9.3 29596 61521 s 2544026 14116




Macronutrients

Seawater samples for macronutrient analyses were also obtained from large volume
CTD bottles. Unfiltered surface macronutrient samples (upper 200 m) were stored at 5C
and analyzed within 18 h at sea using a QUAATRO autoanalyzer (Grasshoff et al., 1999)
modified according to methods provided by the manufacturer (Seal, Alliance). At all other
depths, filtered samples (0.2 pm) were frozen and analyzed at Alfred Wegener Institute for
Polar and Marine Research (AWI) using the same procedure.
Stable oxygen isotopes

Samples for noble gases (He and Ne) and 6'*0 were derived from the large volume
CTD (IvCTD) rosette. Stable oxygen isotopes (530) were analyzed following Meyer et al.
(2000). In short, seawater samples were equilibrated for 6.5 h using CO2 gas of known
isotopic composition and platinum as a catalyst. Equilibrated CO> gas was transferred into
a Finnigan MAT Delta-S mass spectrometer equipped with two equilibration units, where
5180 was analyzed a total of eight times. All §'80 values are reported relative to a V-
SMOW standard.
Noble gases

Helium and Ne concentrations were determined by Huhn, Rhein, & Kanzow, et al.
(2021) following Sdtenfuf3et al. (2009). Gases trapped in copper tube samples were
transferred into a glass ampoule at liquid nitrogen temperature and were then analyzed by
a fully automated ultra-high vacuum mass spectrometric system equipped with a two-stage
cryogenic trap system. The measurement uncertainties for He and Ne were £0.4%. The
equilibria of He and Ne in seawater were calculated using the solubility function proposed
by Weiss (1971). Helium excess (AHe) and Ne excess (ANe) were then calculated using
the following equation:

AC = 100*(C/C®-1)% (1)
A(He/Ne) = 100*([He®/Ne°*])/[He®-Ne®]-1)% (2)

Where C is He or Ne, the superscripts obs and eq denotes observed and equilibrate values,
respectively.
Radium isotopes

Seawater for radium isotopic analyses were filtered by 0.8 um Supor (polyether

sulfone) filters using an in-situ pump. Then radium isotopes were adsorbed onto MnO»-



coated cartridges. For samples with depths of 10, 50, or 350 m, two cartridges were
mounted to calculate the adsorption efficiency of radium isotopes. Only one cartridge was
used for the samples at other depths. The MnO,-coated cartridges were leached by Soxhlet
extraction with 6 N HCI refluxing over 10 h. Radium in the extracts was subsequently co-
precipitated with BaSO, as per Cutter et al. (2017). Radium isotopic activities (**°Ra, ??®Ra)
were measured with gamma spectrometry using the procedures as per Rutgers van der
Loeff et al. (2018).

Physical Oceanography

Full depth profiles of physical oceanographical parameters (salinity, potential
temperature, pressure, light transmission, density, conductivity) and UV-light fluorescence
were recorded by SEA-BIRD SBE 911 ucCTD and SEA-BIRD SBE 911 plus IvCTD
rosettes at high resolution (m™).

Data acquisition and merge

The IvCTD bottle samples were simultaneously determined for %0, noble gases, and
physical oceanographical parameters (Huhn, Rhein, Bulsiewicz, et al., 2021; Kanzow et
al., 2017a; Meyer et al., 2021). Hence, the available data for these parameters were merged
for all samples according to their bottle numbers and station labels. The data for labile and
particulate trace elements, and macronutrients from the ucCTD observations were
combined in the same way. Physical oceanographical parameters (e.g., potential
temperature, transmission, and salinity) measured with ucCTD observations (Kanzow et
al., 2017b) were matched to each sample allowing a maximum depth discrepancy of < 0.5
m (real uncertainty in the properties of sampled water is likely higher than this due to the
inherent limitations of bottle flushing on the sampling rosette). If more than one physical
oceanographical observation fulfilled this criterium, average values were taken.

The datasets of IvCTD and ucCTD observations were then merged for subsequent
discussions. Because the positions and timing of the ucCTD and large CTD casts were
slightly different even when deployed in rapid succession at the same location, we allowed
a depth discrepancy of < 1 m in joining the IvCTD and ucCTD datasets (again, in reality
the uncertainty in depth discrepancies between multiple casts is likely higher than this due
to the inherent limitations associated with bottle closing and flushing). Four samples with

a depth difference of 5 m and three bottom samples with a depth discrepancy of 7 — 20 m



were also merged by carefully comparing their physical oceanographical parameters. The
almost identical physical oceanographical conditions (e.g., salinity, potential temperature,
and density) between IvCTD and ucCTD observations (Fig. S1) demonstrate our data
processing is reliable. For instance, most samples exhibit density differences of < 0.06 kg
m= between the IVCTD and ucCTD datasets. Relatively high density and salinity
discrepancies are confined to near surface samples with depths < 30 m which is expected
in a strongly stratified water column. Our following discussions are not influenced by these
samples because the merging of both datasets is used to discriminate the influence of
freshwater exiting the 79NG cavity (the submarine meltwater), which is generally
significant at depths > 50 m (Huhn, Rhein, Kanzow, et al., 2021). Any data deficiency
(6'*0, noble gas, and radium isotope data are not available for several samples) is annotated

as ‘not determined’. ‘Not determined’ data are excluded during statistical analyses.
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Fig. S1 Correlations between physical oceanographical parameters (salinity, density, potential temperature
(Tpot), and O>) in the combined large volume CTD (IvCTD) and ultraclean CTD (ucCTD) observations. The
black lines illustrate equivalent lines. The grey and red dots indicate the depth discrepancy during joining of

IvCTD and ucCTD observations.
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Fig. S3 Distribution profiles of labile particulate (Lp) Cd, Co, Cu, Fe, Mn, Ni, Al, Ti, V, and P against

potential density on the NE Greenland shelf.
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Fig. S4 Distribution profiles of total particulate (Tp) Cd, Co, Cu, Fe, Mn, Ni, Al, Ti, V, and P against
potential density on the NE Greenland shelf.
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Fig. S5 Principal component analysis on the trace elements and physico-chemical parameters of the water

columns collected during the GEOTRACES cruise GNO5. The data are merged from ultraclean CTD (ucCTD)
stations (dissolved and particulate trace elements, macronutrients, salinity, density, transmission, and

fluorescence) and large volume CTD (IvCTD) stations (5'0, noble gases, radium isotopes (?**Ra, ?*Ra, and

228Ra)) as per Supplementary Methods. Helium excess (AHe) and neon excess (ANe) were calculated as per

Supplementary Methods.
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Fig. S6 Correlations between dissolved trace metals (dTMs, all in nM) and salinity on the NE Greenland
shelf. Data with salinity < 28 (the two near surface samples from 79NG front and 79NG bay, encircled in
grey ellipses) were excluded from linear regression models (blue solid lines). The dTM concentrations of
transpolar drift (TPD) with meteoric water percentage of 20% (the highest meteoric water contribution
observed in TPD) are also shown for comparison (Charette et al., 2020). The blue dashed lines illustrate the
conservative mixing between AIW and Arctic waters (represented by TPD with 20% meteoric water). n

indicates the number of samples in the linear regression models.
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Fig. S7 Variations of 6'*0 with (a) helium excess (AHe), and changes of salinity with (b) A(He/Ne) and (c)
AHe in the water columns on the NE Greenland shelf. (d) Estimated contributions of submarine meltwater
and Arctic waters (represented by transpolar drift (TPD) with 20% meteoric water) on the NE Greenland
shelf using the following endmembers: Atlantic Intermediate Water (AIW), salinity = 35, AHe = 3.6%; TPD,
salinity = 28 (20% meteoric water), AHe = 5.0%; and meltwater, salinity = 0, AHe = 1280% (e.g., Beaird et
al., 2015; Loose & Jenkins, 2014). Blue arrows indicate the mixing between AIW and Arctic waters. Red
arrows suggest the input of basal meltwater from the 79NG cavity. Linear regression models (blue lines) only
apply to the 79NG samples with depths of > 100 m (highlighted with yellow diamonds) to illustrate the
mixing between AIW and submarine meltwater. n indicates the number of samples in the linear regression

models.
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Fig. S8 Correlations between dissolved trace metals (dTMs) and helium excess (AHe) on NE Greenland shelf.

Blue arrows indicate the mixing between AIW and Arctic waters (shown in red asterisks, represented by

transpolar drift (TPD) with 20% meteoric water) (Charette et al., 2020), while red arrows illustrate the

influence of submarine meltwater. Blue lines with grey shadows illustrate fitted linear regression models with

95% confidence levels. The red encircled sample represents the inflowing AIW. Linear regression models

only apply to the 79NG samples with depths of > 100 m (highlighted with yellow diamonds) by excluding
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the samples with significant influence of Arctic waters. n indicates the number of samples in the linear

regression models.
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Fig. S9 Correlations between dissolved trace metals (dTMs) and A(He/Ne) on NE Greenland shelf. Blue
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diamonds) by excluding the samples with significant influence of Arctic waters. n indicates the number of

samples in the linear regression models.
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Fig. S11 Variations of LpTMs (Al, Cd, Co, Ni, Cu, Fe, Mn, Ti, and V) across the salinity gradients on the
NE Greenland shelf. The sample in red circle from the Norske Trough represents the inflowing Atlantic

Intermediate Water (AIW). Linear regression models (blue lines) are applied to all samples. n indicates the

number of samples in the linear regression models.
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Fig. S12 Variations of TpTMs (Al, Cd, Co, Ni, Cu, Fe, Mn, Ti, and V) across the salinity gradients on the
NE Greenland shelf. The sample in red circle from the Norske Trough represents the inflowing Atlantic
Intermediate Water (AIW). Linear regression models (blue lines) are applied to all samples. n indicates the

number of samples in the linear regression models.

19



M 79NG bay @ Center WT

@ EGC center @ Norske Trough

B 79NG front | Dimphnasund X Inner WT 4 Shelf break
TpAl (nM) TpCd (pM) TpCo (pM)
20007 =144x107-56 x, R*=058, P=0.079,n=6 100 y=550-00704 x, R* =093, P=0009,n=5 300 y=202-778x, RE=057, P=0085n=6
1500+ 7.57 e
@ 200+
1000+ 5.0 i’at"“‘ﬂ\“
Cptwa, X = | 100
500 m | 257 ‘)” = @
Q‘-? I ii o, e X % ' O+ ey I
O- I. 00_ T T T 0- T T T
30 10 20 30 10 20 30
TpCu (pM) TpFe (nM) TpMn (nM)
5001 y=374-102x R*=050 P=0116,n=6 y=389-151x R*=058 P=0078n=6 10.07 y=66-0255x R*=062 P=0061n=6
400- 4004 751 @
300+ +
L]
200- + o 200+
ﬁx CE X o m a
1001 o s A o e L] o o o " e
: ‘er + &
O- T T T 0_ T T \- T
10 20 30 10 20 30 30
TpNi (pM) TpTi (nM) TpV (pM)
| y=533-197x, RY=057,P=0083,n=6 507 @ YeITe-144x, RY=058,P=0078,n=6 | 200 y=102x10"-384x R* =056, P=0085, n=6
6004 F 404
400+ 304
20+
200~ - 0 a g
‘# [+ o, (=] m q1_+ n+ (5] ™ m
0- T T |. 0_ T T \. |.
10 20 30 10 20 30 30
AHe (%)

Fig. S13 Variations of total particulate trace metals (TpTMs) with helium excess (AHe) on the NE Greenland

shelf. The red encircled sample represents the inflowing AIW, while the blue encircled samples indicate high

turbidity. Linear regression models (blue lines with 95% confidence levels) only apply to the 79NG samples

with depths > 100 m (highlighted with yellow diamonds) to demonstrate the influence of mAIW exiting from

the 79NG cavity. n indicates the number of samples in the linear regression models.
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Fig. S14 Correlations between TpTi, TpV and TpAl in the water columns on the NE Greenland shelf. The
blue lines illustrate the upper continental crust (UCC) values (Rudnick & Gao, 2003).
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Fig. S15 Variations of dTM/(dTM+LpTM) ratios across the salinity gradients on the NE Greenland shelf.
The turbid samples (light transmission < 4.4) and two surface samples at 79NG stations (with a salinity of <
28, encircled in grey ellipses), denoted in blue circles, are excluded from linear regression models (blue lines

with 95% confidence levels). n indicates the number of samples in the linear regression models.
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Fig. S16 Changes of trace metal labile fractions (LpTM/TpTM) with helium excess (AHe) in the water

columns on the NE Greenland shelf. Blue arrows indicate the involvement of Arctic waters, while red arrows

suggest the addition of submarine meltwater. Black arrows demonstrate the potential influence of sediment

particles. The red encircled sample represents the inflowing Atlantic Intermediate Water (AIW), while the

blue encircled samples indicate high turbidity. Linear regression models (blue lines with 95% confidence

levels) only apply to the 79NG samples with depths > 100 m (highlighted with yellow diamonds). n indicates

the number of samples in the linear regression models.
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Fig. S17 Variations of labile particulate P (LpP) and total particulate P (TpP) across the salinity gradient on

the NE Greenland shelf.
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Table S2 Comparison of dissolved trace metal (dTM) concentrations (nM) of apparent Atlantic Intermediate Water (AIW) and freshwater endmembers. The
endmember dTM contents of this study are shown in estimated values with 95% confidence levels. The endmember dTM values proposed by Charette et al. (2020)

and Krisch et al. (2022) are derived from their linear regression models. *Inclusive of NE Greenland shelf data.

Water masses References dFe dMn dCo dNi dCu dCd
AIW (salinity of 35) This study 0.85+0.12 0.51+£0.21 0.08 £0.01 3.65+0.13 1.71 £0.19 0.28 +£0.05
Krisch et al. not
AIW 0.61+0.08 0.64+0.12 0.087 = 0.008 3.79 £0.15 1.60 £0.11
(2022) calculated
Freshwater endmember
for the NE Greenland This study 7.97 £2.06 25.8+3.7 1.54+£0.16 22.6+2.0 292+2.7 <0
shelf
Freshwater endmember Krisch et al. not
) 4.3 (R>=0.21) 15.5 (R°=0.45) 0.97 (R?=0.73) 17.2 (R°=0.78) 21.2 (R°=0.88)
for the Fram Strait* (2022) calculated
Freshwater endmember van Genuchten et
not
for Southwest and west al. (2022); Krause | 26.0 (R*=0.06) 84.9 (R*=0.29) 2.66 (R°=0.10) | 10.8 (R?=0.04) | 6.61 (R*=0.01) leulated
calculate

Greenland shelf et al. (2021)

Charette et al. 1.22
19.3 (R*=0.67) 16.4 (R>=0.41) 0.85 (R>=0.54) 30.6 (R>=0.91) 30.1 (R>=0.96)

Arctic freshwater

(2020) (R?=0.66)
Submarine meltwater

This study 31.4+41.2 107 £ 63.7 5.15+2.49 6.12+21.9 75.9 £ 102 0.03+1.52
from the 79NG cavity
Ob river Dai and Martin, 429.7 - 654.2 not analyzed not analyzed 21.0-23.7 29.1-38.0 54-75
Yenisey river (1995) 251.0-317.1 not analyzed not analyzed 8.8-94 21.5-29.5 10.7-16.4

(Guieu et al., 0.054 +
Lena river 642 £ 208 not analyzed not analyzed 44+0.1 13.8+1.6

1996) 0.047
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