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Abstract: Deep learning has been successfully applied to many classification problems including
underwater challenges. However, a long-standing issue with deep learning is the need for large
and consistently labeled datasets. Although current approaches in semi-supervised learning can
decrease the required amount of annotated data by a factor of 10 or even more, this line of research
still uses distinct classes. For underwater classification, and uncurated real-world datasets in general,
clean class boundaries can often not be given due to a limited information content in the images and
transitional stages of the depicted objects. This leads to different experts having different opinions
and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose
a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on
the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to
improve the overclustering capability of our framework and show the benefit of overclustering for
fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised
methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10%
more consistent predictions of substructures.

Keywords: semi-supervised; fuzzy; deep learning; noisy; real-world; plankton; marine

1. Introduction

Over the past years, we have seen the successful application of deep learning to many
underwater computer vision problems [1–4]. Automatic analysis of underwater data allows
us to monitor ecological changes by evaluating large amounts of for example plankton
data [5,6]. While it is relatively easy to create a lot of underwater image data, its analysis is
time-consuming and thus expensive because the annotation requires trained taxonomists.
The possible reasons for this issue include the huge amounts of data, the high imbalance
between classes and the variability of annotations [7].

In underwater classification, domain experts often differ in their annotations [7–9].
This issue arises due to the following reasons: Firstly, automatically captured underwater
images often have a lower quality than images taken manually by humans. This difference
in quality arises for example due to the underwater lighting conditions and no manual
corrections to e.g. insufficient sharpness or not centering the target inside the focus. For
example the analyis of benthic images can suffer from these issues [8,9]. Even in the best
scenario, a single image generally does not contain most of the information needed for a
clear identification (e.g., three-dimensional configuration, minute morphological details,
fluorescence). Secondly, intermediate stages actually exist between classes [10]. For exam-
ple, in Figure 1 we show two different physical appearances (puff & tuft) of trichodesmium,
while the dataset also contains intermediate stages between these two classes.
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Figure 1. Illustration of fuzzy data and overclustering—The grey dots represent unlabeled data and
the colored dots labeled data from different classes. The dashed lines represent decision boundaries.
For certain data, a clear separation of the different classes with one decision boundary is possible and
both classes contain the same amount of data (top). For fuzzy data determining a decision boundary
is difficult because of intermediate datapoints between the classes (middle). These fuzzy datapoints
can often not be easily sorted into one consistent class between annotators. If you overcluster the
data, you get smaller but more consistent substructures in the fuzzy data (bottom). The images
illustrate possible examples for certain data (cat & dog) and fuzzy plankton data (trichodesmium
puff and tuft). The center plankton image was considered to be trichodesmium puff or tuft by around
half of the annotators each. The left and right plankton image were consistently annotated.

This issue of different annotations is also known as intra- and inter-observer variabil-
ity [11] and is common in many biological and medical application fields [8,9,12–17]. Even
in a curated dataset [1], we quote Tarling et al. who state ”there will very likely be in-
accuracies, bias, and even inconsistencies in the labeling which will have affected the
training capacity of the model and lead to discrepancies between predictions and ground
truths” [18]. When aggregating multiple annotations per image, we call the resulting label
fuzzy if we have different annotations between experts (non-zero variance), and certain
if all annotations agree with each other. The mathematical formulation of a fuzzy label
would be a unknown soft probability distribution l for k classes. The distribution l ∈ (0, 1)k

can only be approximated with a high cost e.g., by averaging over multiple annotations.
Semi- and Self-Supervised Learning are promising approaches to decrease the needed

amount of annotated data by a factor of 10 or even more [19–21]. These approaches leverage
unlabeled data in addition to the normal labeled data to improve the training. A common
strategy is to define a pretext task like image rotation prediction [22] or mutual information
maximization [23] for pretraining. A broad overview of current trends, ideas and methods
in semi-, self- and unsupervised learning is available in [24]. However, this research mainly
focuses on established curated classification datasets such as STL-10 [25]. In these datasets,
a clear distinction between classes such as cats and dogs are given. The hard partitioning
of intermediate morphologies is not appropriate and does not allow the identification of
substructures. We show that state-of-the-art semi-supervised algorithms are not well suited
to handle fuzzy labels. These algorithms expect only certain labels as shown in the upper
part of Figure 1. If we apply previous semi-supervised algorithms to fuzzy data which
include fuzzy images, these algorithms arbitrarily assign undecidable images to one class
(middle part of Figure 1).



Sensors 2021, 21, 6661 3 of 15

Noisy labels are a common data quality issue and are discussed in the literature [11,26,27].
The fuzziness of labels is known as a special case of label noise that exist “due to sub-
jectiveness of the task for human experts or the lack of experience in annotator[s]” [26].
In contrast to us, most methods [28–30] and literature surveys [11,26,27] interpret fuzzy
labels as corrupted labels. We argue that fuzzy labels are valid signals derived from am-
biguous images and that it is important to discover the substructures for real-world data
handling [12–17].

Geng proposed to learn the label distribution to handle fuzzy data [31] and the idea
was extended to the application of real-world images [32]. However, these methods are
not semi-supervised and therefore depend on large labeled datasets. A variety of methods
was proposed to handle fuzzy data in a semi-supervised learning approach [33–35]. These
methods use lower-dimensional features spaces in contrast to images as input. Liu et al.
proposed to use independent predictions of multiple networks as pseudo-labels for the
estimation of the label distribution for photo shot-type classification [36]. We argue that
the true label distribution is difficult to approximate and thus difficult to evaluate. We do
not learn the label distribution but use clustering to identify substructures.

We propose Fuzzy Overclustering (FOC) which separates the fuzzy data into a larger
number of visual homogeneous clusters (lower part, Figure 1) which can then be an-
notated very efficiently [10]. We will show on a Plankton dataset that state-of-the-art
semi-supervised algorithms perform worse on fuzzy data in comparison to our method
FOC which explicitly considers fuzzy images. Moreover, we will show that this leads to 5
to 10% more self-consistent predictions of plankton data.

One main idea is to rephrase the handling of fuzzy labels as a semi-supervised
learning problem by using a small set of certain images and a large number of fuzzy
images that are treated as unlabeled data. This approach allows us to use the idea of
overclustering from semi-supervised literature [23,37] and apply it to fuzzy data. The
difference to previous work is that we use overclustering not only to improve classification
accuracy on the labeled data but improve the clustering and therefore the identification of
substructures of fuzzy data. We show that overclustering allows us to cluster the fuzzy
images in a more meaningful way by finding substructures and therefore allowing experts
to analyze fuzzy images more consistently in the future.

We show the benefits of our method mainly on a plankton dataset which highlights
the benefit for underwater classification. However, the issue of fuzzy labels is neither
limited to plankton data nor to underwater classification. On a synthetic dataset, we show
a proof-of-concept for the generalizability of our model to other datasets.

Our key contributions are:

• We identify an issue of semi-supervised algorithms that they do not work well with
fuzzy labels. However, such fuzzy labels occur regularly in underwater image clas-
sification e.g due to high natural variation of depicted objects which leads to a high
inter- and intraobserver variability.

• We propose a novel framework for handling fuzzy labels with a semi-supervised
approach. This framework uses overclustering to find substructures in fuzzy data and
outperforms common state-of-the-art semi-supervised methods like FixMatch [38] on
fuzzy plankton data.

• We propose a novel loss, Inverse Cross-entropy (CE−1), which improves the overcluster-
ing quality in semi-supervised learning.

• We achieve 5 to 10% more self-consistent predictions on fuzzy plankton data.

2. Method

Our framework Fuzzy Overclustering (FOC) aims at creating an overclustering for
fuzzy labels by using an auxiliary classification and not the other way round like previous
literature [23,37]. In this section, we describe our framework in general and explain
important parts in detail in the following subsections. We use the following notation for
the given semi-supervised classification task. Our training data consists of the two subsets
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Xl and Xu. Xl is a labeled image dataset with images x ∈ Xl and corresponding labels y.
Xu is an unlabeled image dataset, i.e., there is/exists no label for images x ∈ Xu.

We generate three inputs x1, x2, x3 based on one image x ∈ Xl ∪ Xu depending on
the availability of the corresponding label y. If y is not available, the images x1 and x2 are
augmented views of x and x3 is an augmented version of a random image x′ ∈ Xl ∪ Xu.
If y is available, x1 is an augmented view of x, x2 is a supervised augmentation (see
Section 2.3) and x3 an inverse example. For the inverse example, we choose an image
x′ ∈ Xl with a different label y′ (y! = y′). We use an augmented version of this image
as third input x3 = g3(x′) with augmentation g3. We constraint the ratio from unlabeled
to labeled data to a fixed ratio r to improve the run time of the model (see Section 2.4).
The inputs are processed by a neural network Φ which is composed of a backbone like
ResNet50 [39] and linear output prediction layers. Following [23], we call this linear
predictors heads and use them either as normal or overclustering heads. As output we use
the soft-max classifications of these normal and overclustering heads. If kGT is the number
of ground-truth classes a normal head outputs a probability for each of the kGT classes.
The overclustering head has k output nodes with k > kGT and give probabilities for more
clusters than ground-truth classes (overclustering). Both type of heads are therefore fully
connected layers with softmax activation but of different output size. We can average the
training over multiple independent heads per type as shown in [23]. We use the notation
Φni or Φoi for the i-th normal or overclustering head respectively. An overview about the
general pseudo code of FOC including the loss calculation is given in Algorithm 1.

For both heads the loss is different but can be written as the weighted sum of an
unsupervised and a supervised loss as follows:

L = λsLs + λuLu (1)

Ls is cross-entropy (LCE) for the normal head and our novel CE−1 loss (LCE−1) for the
overclustering head (see Section 2.1). For both heads Lu is the mutual information loss LMI
(see Section 2.2). An illustration of the complete pipeline is given in Figure 2. We initialize
our backbones with pretrained weights and can therefore directly use RGB images as input.
For further implementation details see Section 3.2.

𝑦

normal
head

overcluster
head

cross-
entropy

mutual 
information

inverse
cross-entropy

augmentation backbone
mutual 

information

𝑥

Figure 2. Overview of our framework FOC for semi-supervised classification—The input image
is x and the corresponding label is y. The arrows indicate the usage of image or label information.
Parallel arrows represent the independent copy of the information. The usage of the label for the
augmentations is described in Section 2.3. The red arrow stands for an inverse example image x′

with a different label than y. The output of the normal and the overclustering head have different
dimensionalities. The normal head has as many outputs as ground-truth classes exist (kGT) while the
overclustering head has k outputs with k > kGT . The dashed boxes on the right side show the used
loss functions. More information about the losses inverse cross-entropy and mutual information can
be found in Sections 2.1 and 2.2 respectively.

If we use FOC with λs = 0 and without supervised augmentations our model is
comparable to the pretext task of Invariant Information Clustering (IIC) [23]. We can
use this configuration as a warm-up to pretrain the weights. During the evaluation, we
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will refer to using the pretext task for IIC and the warm-up of FOC synonymously. Our
framework FOC can also be used to perform standard unsupervised clustering. The details
about unsupervised clustering and a comparison to previous literature is given in the
supplementary.

Algorithm 1: Pseudocode for our method Fuzzy Overclustering
Data: Batch of images of size b from labeled image data Xl and unlabeled image

data Xu
Result: calculate loss value for one given batch for a network Φ with n normal

and overclustering heads
L: matrix of size b × 2n;
/* iterate over batch */
for i← 0 to b do

x ← i-th image in batch;
if label y for image xi available then

x1 ← g1(x) with random augmentation g1;
/* Supervised augmentation defined in Section 2.3 */
x2 ← g2(x) with supervised augmentation g2;
/* Inverse example defined in Section 2 */
x3 ← g3(x′) with random augmentation g3 and inverse example x′;

else
x1 ← g1(x) with random augmentation g1;
x2 ← g2(x) with random augmentation g2;
x3 ← g3(x′) with random augmentation g3 and random image x’;

end
/* iterate over heads */
for j← 0 to n do

calculate forward pass for outputs Φnj and Φoj ;
/* CE loss for normal head */
L[i,j]← LCE(Φnj(xi), li) with li;
/* CE−1 loss for overclustering head */
L[i,j+n]← LCE−1(x1, x2, x3) with Equation (2) ;

end
end
/* calculate loss */
Ls ← average supervised loss across heads and batch from L;
Lu ← unsupervised MI loss across batch with Equations (3) and (4);
L ← λsLs + λuLu;

2.1. Inverse Cross-Entropy (CE−1)

Inverse Cross-Entropy is a novel supervised loss for an overclustering head and one
of the key contributions of this work. The loss is needed to use the label information for
an overclustering head. For normal heads, we can use cross-entropy (CE) to penalize
the divergence between our prediction and the label. We can not use CE directly for the
overclustering heads since we have more clusters than labels and no predefined mapping
between the two. However, we know that the inputs x1/x2 and x3 should not belong to
the same cluster. Therefore, our goal with CE−1 is to define a loss that pushes their output
distributions (e.g., Φ(x1) and Φ(x3)) apart from each other.

Let us assume we could define a distribution that Φ(x3) should not be. In short, an
inverse distribution Φ(x3)

−1. If we had such a distribution we could use CE to penalize
the divergence for example between Φ(x1) and Φ(x3)

−1.
One possible and easy solution for an inverse distribution is Φ(x3)

−1 = 1−Φ(x3).
For a binary classification problem, Φ(x3)

−1 can even be interpreted as a probability
distribution again. This is not the case for a multi-class classification problem. We could use
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a function like softmax to cast Φ(x3)
−1 into a probability distribution but decided against it

for three reasons. Firstly, we would penalize correct behavior. For example in a three class
problem with Φ1(x1) = 0.5 = Φ2(x1) and Φ3(x3) = 1 we only get CE(Φ(x1), Φ(x3)

−1) = 0
if Φ(x3)

−1 is not a probability distribution. Otherwise either Φ1(x3)
−1 or Φ2(x3)

−1 have to
be real smaller than 1. Secondly, we are still minimizing the entropy of Φ(x1) which leads
to more confident predictions in semi-supervised learning [19,20,40–43]. The proof is given
in the supplementary. Thirdly, it is easier and in practice, it is not needed. For the input
i = (x1, x2, x3), we define the cross-entropy inverse loss LCE−1 as shown in Equation (2).

LCE−1(i) = 0.5 · CE−1(Φ(x1), Φ(x3))

+ 0.5 · CE−1(Φ(x2), Φ(x3)) , with

CE−1(p, q) = −
k

∑
c=1

p(c) · ln(1− q(c)) .

(2)

2.2. Mutual Information (MI)

For the unlabeled data, we use the loss proposed by Ji et al. because it is calculated
directly on the output clusters [23]. Therefore similar images are pulled to the same clusters
while CE−1 pushes different images apart. For this purpose, we want to maximize the
mutual information between two output predictions Φ(x1), Φ(x2) with x1, x2 images which
should belong to the same cluster and Φ : X → [0, 1]k a neural network with k output
dimensions. We can interpret Φ(x) as the distribution of a discrete random variable z
given by P(z = c|x) = Φc(x) for c ∈ {1, . . . , k} with Φc(x) the c-th output of the neural
network. With z, z′ such random variables we need the joint probability distribution
for Pcc′ = P(z = c, z′ = c′) for the calculation of the mutual information I(z, z′). Ji et al.
propose to approximate the matrix P with the entry Pcc′ at row c and column c′ by averaging
over the multiplied output distributions in a batch of size n [23]. Symmetry of P is enforced
as shown in Equation (3).

P =
Q + QT

2
with Q =

1
n

n

∑
i=1

Φ(xi) ·Φ(x′i)
T (3)

We can maximize our objective I(z, z′) with the marginals Pc = Pc′ = P(z = c) given
as sums over the rows or columns as shown in Equation (4).

I(z, z′) =
k

∑
c=1

k

∑
c′=1

Pcc′ · ln
Pcc′

Pc · Pc′
(4)

2.3. Supervised Augmentations

In the unsupervised pretraining, we use the same image x to create the two inputs
x1 = g1(x) and x2 = g2(x) based on the augmentations g1 and g2. Otherwise, without
supervision, it is difficult to determine similar images. However, if we have the label y
for x we can use a secondary image x′ ∈ Xl with the same label to mock an ideal image
transformation to which the network should be invariant. In this case we can create
x2 = g2(x′) based on the different image. We call this supervised augmentation.

2.4. Restricted Unsupervised Data

Unlabeled data has a small impact on the results but drastically increases the runtime
in most cases. The increased runtime is caused by the facts that we often have much more
unlabeled data than labeled data and that a neural network runtime is normally linear in
the number of samples it needs to process. However, unlabeled data is essential for our
proposed framework and we can not just leave it out. We propose to restrict the unlabeled
data to a fixed upper-bound ratio r in every batch and therefore the unlabeled data per
epoch. Detailed examples and experiments are given in the supplementary. It is important
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to notice that we restrict only the unlabeled data per batch/epoch. While for one epoch the
network will not process all unlabeled data, over time all unlabeled data will be seen by
the network. We argue that the impact on training time negatively outweighs the small
benefit gained from all unlabeled data per epoch.

3. Experiments

We conducted our experiments mainly on a real-world plankton dataset. We used
the common image classification dataset STL-10 as a comparison with only certain labels
and a synthetic dataset for a proof-of-concept for the generalizability to other datasets.
We compare ourselves to previous work and make several ablations. Additional results
like unsupervised clustering, more detailed ablations and further details are given in the
supplementary material.

3.1. Datasets

While the issue of fuzzy labels is present in multiple datasets [12–17], they are not
well suited for evaluations. If we want to quantify the performance on fuzzy labels, we
need a dataset with very good fuzzy ground-truth. This can only be achieved with a high
cost e.g. by multiple annotations and thus is often not feasible. For all used datasets, we
ensure that the labeled training data only consists of certain images and that the fuzzy
images are used as unlabeled data. If we include fuzzy labels in the labeled data which is
used as guidance during training, this will lead to worse performance as illustrated in the
ablations (Table 3).

3.1.1. Plankton

The plankton dataset contains diverse grey-level images of marine planktonic organ-
isms. The images were captured with an Underwater Vision Profiler 5 [44] and are hosted on
EcoTaxa [45]. In the citizen science project PlanktonID (https://planktonid.geomar.de/en
(accessed on 6 October 2021)), each sample was classified multiple times by citizen scien-
tists. The data for the PlanktonID project is a subset of the data available on EcoTaxa [45].
It was presorted to contain a more balanced representation of the available classes. The
dataset consists of 12,280 images in originally 26 classes. We merged minor and similar
classes so that we ended up with 10 classes. The class no-fit represents a mixture of left-over
classes. The merging was necessary because some classes had too few images for current
state-of-the-art semi-supervised approaches. After this process, a class imbalance is still
present with the smallest class containing about 4.16% and the largest class 30.37% of all
samples. We use the mean over all annotations as the fuzzy label. The citizen scientists
agree on most images completely. We call these images and their label certain. However,
about 30% of the data has as least one disagreeing annotation. We call these images and
their label fuzzy and use the most likely class as ground-truth if we need a hard label for
evaluation. The fuzzy labeled images are used only as unlabeled data. More details about
the mapping process, the number of used samples and graphical illustrations are given in
the supplementary.

3.1.2. STL-10

STL-10 is a common semi-supervised image classification dataset [25] and a subset of
ImageNet [46]. It consists of 5000 training samples and 8000 validation samples depicting
everyday objects. Additionally, 100,000 unlabeled images are provided that may belong
to the same or different classes than the training images. In contrast to the plankton and
synthetic dataset, no labels are provided for the unlabeled data and no fuzzy datapoints
exist. We use this dataset only to illustrate the difference in the performance of FOC to
previous semi-supervised methods.

https://planktonid.geomar.de/en
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3.1.3. Synthetic Circles and Ellipses (SYN-CE)

This dataset is a mixture of circles and ellipses (bubbles) on a black background with
different colors. The 6 ground-truth classes are blue, red and green circles or ellipses. An
image is defined as certain if the hue of the color is 0 (red), 120 (green) or 240 (blue) and the
main axis ratio of the bubble is 1 (circle) or 2 (ellipse). Every other datapoint is considered
fuzzy and the ground-truth label l is calculated as the product of the interpolation of the
color pc and the geometry pg distribution. More details are in the supplementary. The
dataset consists of 1800 certain and 1000 fuzzy labeled images for train, validation and
unlabeled data split. We look at three subsets: Ideal, Real and Fuzzy. The Ideal subset uses
the maximal class of the fuzzy label l as a ground-truth class and represents the ideal case
that we certainly know the most likely label to each image. For the Real subset, the ground-
truth classes in randomly picked with the distribution of the fuzzy label l and represent the
real or common case. For example due to only one annotation, the percentage that the label
corresponds to the actual most likely class is linear to the fuzzy label. The Fuzzy subset
only uses certain labeled images as training data and represent a cleaned training dataset.
We will show that this handling of fuzzy labels leads to a higher classification performance
in comparison to the Real dataset in Section 3.5.1. The Ideal and the Real subset can be
evaluated on the unlabeled data of the Fuzzy subset with some overlap in the images.

3.2. Implementation Details

As a backbone for our framework, we used either a ResNet34 variant [23] or a standard
ResNet50v2 [39]. The heads are single fully connected layers with a softmax activation
function. Following [23], we use five randomly initialized copies for each type of head and
repeat images per batch three times for more stable training. We alternated between training
the different types of heads. The inputs are either sobel-filtered images or color images
for pretrained networks. For the ResNet34 backbone, we use CIFAR20 (20 superclasses
in CIFAR-100 [47]) weights and for the ResNet50v2 backbone ImageNet [46] weights. We
use in general λs = 1 = λu and an unlabeled data restriction of r = 0.5. We call our
Framework FOC-Light if we use λu = 0 and no warm-up. This means we do not use the
loss introduced by [23] and therefore also do not have to use their stabilization methods
like repetitions. During the pretext task or warm-up and the main training, we train the
framework with Adam and an initial learning rate of 1 × 10−4 for 500 epochs. When
switching from the pretext task to fine-tuning, we train only the heads for 100 epochs
with a learning rate of 1 × 10−3 before switching to the lower learning rate of 1 × 10−4.
The number of outputs for the overclustering head should be about 5 to 10 times the
number of classes. The exact number is not crucial because it is only an upper bound for
the framework. We use 70 for STL-10 and 60 for the plankton dataset. We selected all
hyperparameters heuristically based on the STL-10 dataset and did not change them for
the plankton dataset. We used the recommended hyperparameters by the original authors
for the previous methods. We compared with the following methods Semantic Clustering
by Adopting Nearest neighbors (SCAN) [48], Information Invariant Clustering (IIC) [23],
Mean-Teacher [49], Pi(-Model) [29], Pseudo-label [50] and FixMatch [38]. More detailed
descriptions are given in the supplementary.

3.3. Metrics

The evaluation protocols vary slightly depending on the used output and dataset. The
used data splits training, validation and unlabeled are defined above in Section 3.1.

On STL-10, we calculate accuracy of the validation data. Accuracy is the portion of
true positive and true negatives from the complete dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

TP, TN, FP and FN are the true positive, true negative, false positive and false negative
respectively. We calculate these values per class and then sum the up before calculating
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the accuracy (micro averaging). For the overclustering head, we need to find a mapping
between the output clusters and the given classes. We calculate this mapping based on the
majority class in each cluster on the training data as in [23].

On the fuzzy plankton and synthetic datasets, we evaluate the macro-f1 score on the
unlabeled data. We calculate the macro F1-Score i.e., the average of the F1-scores per class
due to the skewed class distribution.

F1-Score =
2TP

2TP + FP + FN
(6)

Mind that a micro averaged F1-Score would be in our case the same as the above
defined accuracy. We use the unlabeled data as evaluation dataset because the fuzzy im-
ages, in which we are interested, are only included in the unlabeled data split by definition.
The mapping for the overclustering head is calculated based on the unlabeled data split
because we expect human experts to be involved in this process for the identification of
substructures. The best unlabeled results of the fuzzy Plankton and Synthetic dataset are
reported based on the validation metrics.

If not stated otherwise, we report the maximum score for the overclustering and the
normal head and the average and standard deviation over 3 independent repetitions.

3.4. Results
3.4.1. State-of-the-Art Comparison

We compare the state-of-the-art methods on certain and fuzzy data in Table 1.

Table 1. Comparison of state-of-the-art on certain and fuzzy data—We use STL-10 as a certain
dataset and the Plankton data as a fuzzy dataset. We report the Accuracy for STL-10 and the F1-Score
for the Plankton data due to class imbalance. It is important to notice that STL-10 is a curated dataset
while the Plankton dataset still contains the fuzzy images. For more details about the metrics see
Section 3.3. The results of previous methods are reported in the original paper or the original authors
code was used to replicate the results. The best results are marked bold. Legend: † A MLP used for
fine-tuning. ‡ Used only 1000 labels instead of 5000. ? Unsupervised method.

Type of Data

Method Network Certain Fuzzy

SCAN ? [48] ResNet18 76.80 ± 1.10 37.64 ± 3.56
IIC [23] ResNet34 85.76 ± 1.36 65.47 ± 1.86
IIC † [23] ResNet34 88.8 66.81 ± 1.85
Mean-Teacher [49] Wide ResNet28 78.577 ± 2.39 ‡ 72.85 ± 0.46
Pi [29] Wide ResNet28 73.77 ± 0.82 ‡ 74.34 ± 0.58
Pseudo-label [50] Wide ResNet28 72.01 ± 0.83 ‡ 75.04 ± 0.52
FixMatch [38] Wide ResNet28 94.83 ± 0.63 ‡ 76.28 ± 0.27
FOC-Light (Ours) ResNet50 – 72.79 ± 2.99
FOC (Ours) ResNet50 86.12 ± 1.22 76.79 ± 1.18

We see that FOC reaches a performance of about 86% on certain data but is not able
to reach the performance of FixMatch. FixMatch outperforms FOC by a clear margin of
nearly 8% while using a fifth of the labels. This performance is expected as FOC does
not focus like the others on classifying certain but fuzzy data. If we look at the less
curated fuzzy Plankton dataset, we see that FOC outperforms all all methods by a small
margin. All previous methods focus on certain and curated data and we see this leads
to a huge performance degeneration if they are applied to fuzzy data. FixMatch reaches
in both datasets the best performance except for our method FOC. We conclude that
the overclustering from FOC is the key for handling fuzzy data because it allows more
flexibility during training. Previous semi-supervised methods did not consider the issue of
inter- and intraobserver variability and thus are worse than FOC in classifying fuzzy data.
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If we use FOC-Light without the loss and stabilization of [23] the F1-Score drops
slightly to 75% but the used GPU hours can be decreased from 58 to 4 h. We conclude that
the overclustering head is more suitable for handling fuzzy real-world data as we assumed
at the beginning. Moreover, we see that the combination of cross-entropy and our novel
loss CE−1 can also successfully train an overclustering head.

3.4.2. Consistency

Up to this point, we analyzed classification metrics based on the 10 ground-truth
classes but the quality of substructures was not evaluated. We can judge the consistency
of each image within its cluster with the help of experts as a quality measure. An image
is consistent if an expert views it as visually similar to the majority of the cluster. The
consistency is calculated by dividing the number of consistent images by all images. The
consistency over all classes or per class for FOC and FixMatch is given in Table 2 and raw
numbers are provided in the supplementary. We provide a comparison based on all data
and without the no-fit class because this class contains a mixture of different plankton
entities. Visual similarity is therefore difficult to judge because it can only be defined
by not being similar the other nine classes. Based on the F1-Score, FixMatch and FOC
perform similarly but if we look at the consistency we see that FOC is more than 5% more
consistent than FixMatch. If we exclude the class no-fit from the analysis, FOC reaches a
consistency of around 86% in comparison to 77% from FixMatch. For both sets, our method
FOC reaches a higher average consistency per cluster and lower standard deviation. This
means the clusters produced by FOC are more relevant in practice because there are fewer
low-quality clusters which can not be used. Overall, this higher consistency can lead to
faster and more reliable annotations.

Table 2. Consistency comparison on plankton dataset—The consistency is rated by experts over the
complete data and a subset without the class no-fit. The score is given overall as as average per
cluster with standard deviation and is described in Section 3.4.2. The best results are marked bold.

All Data Ignore Class No-Fit

Method Overall Per Cluster Overall Per Cluster

FixMatch [38] 82.56 78.78 ± 28.22 77.11 69.61 ± 29.41
FOC (Ours) 87.80 79.66 ± 18.88 86.31 86.41 ± 13.68

3.4.3. Qualitative Results

We illustrate some qualitative results of FOC in Figure 3. All images in a cluster are
visually similar, even the probably wrongly assigned images (red box). For the images in
the first row, the annotators are certain that the images belong to the same class. In the
second row, annotators show a high uncertainty of assignment between the two variants of
the same biological object. This illustrates the benefit of overclustering since visual similar
items are in the same cluster even for uncertain annotations. In a consensus process for the
second row, experts could decide if the cluster should be the puff, tuft or a new borderline
class. Moreover, this clustering could be beneficial for monitoring the current imaging
process. We provide more randomly selected results in the supplementary.
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Figure 3. Qualitative results for unlabeled data—The results in each row are from the same predicted cluster. The three
most important fuzzy labels based on the citizen scientists’ annotations are given below the image. The last two items with
the red box in each row show examples not matching the majority of the cluster.

3.5. Ablation Studies
3.5.1. SYN-CE

We compare our framework with some previous methods on the three subsets of
SYN-CE in Table 3. All semi-supervised method reach almost a F1-Score of 100% on the
unlabeled fuzzy data for the subset Ideal. In real-world data, it is unlikely that we have
the real fuzzy ground-truth labels. It is more likely that we have uncertain/wrong labels
for training and validation or no labels at all for fuzzy data like in the subsets Real or
Fuzzy. In both cases, we see that our method reaches a superior performance with up to
10% higher F1-Score. While FOC-Light is only slightly better in comparison to the other
semi-supervised methods on the Real subset it is comparable to the complete framework
on the Fuzzy dataset. This is one indication that CE−1 is one of the key components for
successfully training the overclustering heads. We see the F1-Score on the Fuzzy subset is
around 10% higher than on the Real subset. We conclude that FOC can also generalize to
other datasets. We conclude that these results supports our idea of separating certain and
fuzzy data during training because we do not need to potentially falsely approximate the
real fuzzy ground-truth label like in the Real subset.

Table 3. Comparison to state-of-the-art on SYN-CE datasets—Each column represent a subset of
the dataset SYN-CE. The results are F1-Scores which were calculated on the unlabeled data which
include the fuzzy labels. All results within a one percent margin of the best result are marked bold.

Method Ideal Real Fuzzy

Mean-Teacher [49] 97.11 ± 0.78 73.23 ± 2.49 66.57 ± 16.27
Pi [29] 98.44 ± 0.28 72.74 ± 2.43 77.69 ± 5.02
Pseudo-label [50] 98.17 ± 0.30 75.70 ± 1.98 89.48 ± 1.94
FixMatch [38] 98.32 ± 0.01 71.81 ± 1.06 93.82 ± 1.83
FOC-Light (Ours) 97.46 ± 4.39 78.77 ± 7.83 94.29 ± 0.87
FOC (Ours) 97.72 ± 4.52 83.86 ± 4.21 94.15 ± 0.29

3.5.2. Loss & Network

In Table 4 multiple ablations for STL-10 and the plankton dataset are given. The scores
are averaged across the different output heads of our framework. Based on these tables,
we illustrate the impact of the warm-up, the initialization and the usage of the MI and
CE−1 loss for our framework. The normal accuracy can be improved by about 10% when
using the unsupervised warm-up on the STL-10 dataset. On the plankton dataset, the
impact is less but tends to give better results of some percent. Warm-up in combination
with the MI loss leads to a performance which is not more than 10% worse than the full
setup for all ablations except for one. For this exception, CE−1 is needed to stabilize
the overclustering performance due to the poor initialization with CIFAR-20 weights. We
attribute this worse performance to the initialization and not the different backbone because
on STL-10 the CIFAR-20 initializations of the ResNet34 backbone outperform the ImageNet
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weights of the ResNet50v2 backbone. We believe the positive effects of ImageNet weights
for its subset STL-10 and the better network are negated by the different loss.

IIC is similar to FOC with warm-up and no additional losses but we train also train
an overclustering head for handling fuzzy data. Taking this into consideration, we achieve
an 8 to 11% better F1-Score than IIC. A special case is FOC-light which does only use the
CE−1 loss and therefore no stabilization method proposed in [23]. This decreases gpu
memory usage and runtime and results in a total decrease of the GPU hours from 58 to
4 h. Overall, our novel loss CE−1 improves the overclustering performance regardless of
the dataset and the weight initialization by 10% on STL-10 and up to 7% on the plankton
dataset. We see that CE−1 is a key component for training an overclustering head and can
even be trained without the stabilization of the warm-up and the MI loss.

Table 4. Ablation study—The second to fourth column indicates if a warm-up, the MI loss or our
CE−1loss were used respectively. The fifth column indicates if CIFAR-20 (C), ImageNet (I) or no (–)
weights were used. Sobel filtered images are used as input for no weights. The Top1 and Top3 results
are marked bold respectively. * Original authors code. † A MLP used for fine-tuning.

Accuracy

Method Warm MI CE−1 Weight Overcluster Normal

FOC X – 70.92 ± 2.42 76.39 ± 0.05
IIC * [23] X – 85.76
FOC X X – 73.88 ± 0.21 82.01 ± 5.31
FOC X X X – 82.59 ± 0.06 86.49 ± 0.01
FOC X X X C 84.36 ± 0.64 78.59 ± 7.40
FOC X X X I 83.57 ± 0.10 85.21 ± 0.03

(a) STL-10

F1-Score

Method Warm MI CE−1 Weight Overcluster Normal

IIC [23] X – – 66.63
IIC † [23] X – – 69.92

FOC C 31.45 ± 6.02 39.35 ± 1.30
FOC X C 29.82 ± 2.98 60.65 ± 0.02
FOC X X C 70.11 ± 1.99 64.10 ± 0.13

FOC X C 23.95 ± 2.63 58.71 ± 2.07
FOC X X C 69.36 ± 0.05 56.59 ± 0.04
FOC X X X C 70.68 ± 0.10 58.09 ± 0.03

FOC I 29.88 ± 2.75 54.92 ± 0.03
FOC-Light X I 74.93 ± 0.22 73.64 ± 0.06
FOC X I 72.70 ± 0.36 64.78 ± 0.04
FOC X X I 73.93 ± 0.29 64.84 ± 0.03

FOC X I 73.93 ± 0.29 64.84 ± 0.03
FOC X X I 69.64 ± 1.04 66.56 ± 0.08
FOC X X X I 74.01 ± 3.17 65.17 ± 0.18

(b) plankton dataset

4. Conclusions

In this paper, we take the first steps to address real-world underwater issues with
semi-supervised learning. Our presented novel framework FOC can handle fuzzy labels
via overclustering. We showed that overclustering can achieve better results than previous
state-of-the-art semi-supervised methods on fuzzy plankton data. The additional overclus-
tering output is a key difference to previous work to achieve this superior performance.
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While on certain data FOC is not state-of-the-art by a clear margin of over 10%, it slighlty
outperforms all other methods on the fuzzy plankton data. These beneficial effects have
to be verified on other fuzzy datasets and with more semi-supervised algorithms in the
future. Due to better performance of FOC on fuzzy data, we expect a similar outcome. We
illustrated the visual similarity on qualitative results from these predictions and results
in 5 to 10% more consistent predictions. We showed that CE−1 is the key component for
training the overclustering head.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
s21196661/s1, The details about unsupervised clustering and a comparison to previous literature.
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