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Assessing the status of ocean acidification across ocean and coastal waters

requires standardized procedures at all levels of data collection, dissemination,

and analysis. Standardized procedures for assuring quality and accessibility of

ocean carbonate chemistry data are largely established, but a common set of

best practices for ocean acidification trend analysis is needed to enable global

time series comparisons, establish accurate records of change, and

communicate the current status of ocean acidification within and outside the

scientific community. Here we expand upon several published trend analysis

techniques and package them into a set of best practices for assessing trends of

ocean acidification time series. These best practices are best suited for time

series capable of characterizing seasonal variability, typically those with sub-

seasonal (ideally monthly or more frequent) data collection. Given ocean

carbonate chemistry time series tend to be sparse and discontinuous,

additional research is necessary to further advance these best practices to

better address uncharacterized variability that can result from data

discontinuities. This package of best practices and the associated open-

source software for computing and reporting trends is aimed at helping

expand the community of practice in ocean acidification trend analysis. A

broad community of practice testing these and new techniques across different

data sets will result in improvements and expansion of these best practices in

the future.
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1 Introduction

Ocean acidification is a major concern of many local and

global-scale decision makers due to potential impacts to marine

ecosystem health and food security (Gattuso et al., 2015; Doney

et al., 2020). While primarily driven by the global increase in

carbon dioxide (CO2) emissions, ocean acidification impacts

(e.g., reduced pH and lower availability of carbonate ions to

calcifying organisms like shellfish and corals) can progress

differently in different regions. These impacts can be

particularly variable in coastal waters where additional drivers,

including both human-caused and natural processes such

as changing circulation patterns, nutrient runoff, and

biological productivity, vary greatly over both time and space

(Mongin et al., 2016; Chan et al., 2017; Cai et al., 2021).

Scientific and societal demand for ocean acidification status

and trend data is increasing. For example, annual reporting on

global seawater pH observations is called for under United

Nations Sustainable Development Goal (UN SDG) 14. Ocean

acidification is also a headline climate indicator for the World

Meteorological Organization (WMO). In the United States,

multiple states have included ocean acidification monitoring as

a priority in their environmental and water quality assessment

needs (Weisberg et al., 2016). Due to strong cultural, economic,

and recreational dependencies on marine organisms vulnerable

to ocean acidification, the states of Washington, Oregon,

California, and Hawaii have developed action plans to further

assess status, understand drivers, and evaluate adaptation

strategies (Adelsman and Binder, 2012; Chan et al., 2016; State

of Hawaii, 2021). Canada’s Oceans Now review of the three

oceans surrounding Canada is regularly assessing the status of

ocean chemistry and potential biological impacts of acidified

waters (Canada’s Oceans Now 2020). Ocean acidification has

been identified as one of five top climate change risks by British

Columbia’s preliminary strategic climate risk assessment

(Ministry of Environment and Climate Change Strategy,

2019). Ocean acidity is also a marine environmental indicator

for New Zealand, with data from open ocean and coastal

monitoring sites reported and analyzed every two years.

Communicating how ocean acidification is progressing in one

region compared to another within these types of international

and national assessments requires consistent protocols for

analyzing and reporting trends.

If ocean acidification trend and status assessments are to be

comparable, observational data must also be collected using

standardized measurement protocols with common reference

materials. The global ocean acidification community has

leveraged and expanded standard operating procedures

(SOPs) for making ocean carbonate chemistry measurements

(Dickson et al., 2007; Riebesell et al., 2011). These SOPs were

most recently modified for low-cost analysis of ocean

acidification measurements and are available in several
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languages at www.goa-on.org/resources/kits.php. Uniform

observational data quality and accessibility standards have also

matured through several international community efforts,

including the Global Ocean Acidification Observing Network

(GOA-ON; GOA-ON, 2019), the Surface Ocean CO2 Atlas

(SOCAT; Bakker et al., 2016), and the Global Ocean Data

Analysis Project (GLODAP; Lauvset et al., 2021).

The data sets generated by these standardized measurement

and data quality protocols can be valuable tools for

characterizing how the ocean is changing over time. However,

there are currently no standardized approaches for assessing and

reporting trends from ocean carbon time-series data sets.

Standardization of trend analysis is necessary to enable

comparisons across ocean and coastal systems globally, create

accurate records of change that stand the test of time, and

communicate scientific results clearly and consistently to policy

makers and the public.

Here we build off initial work described in Sutton and

Newton (2020) to develop best practices for uniform analyses

and presentation of multi-decadal changes in ocean acidification

time series, including open-source software to support these

analyses. These techniques could also extend to analysis of other

ocean biogeochemical parameters, particularly when the goal is

to understand the processes driving change in interconnected

biogeochemical cycles, such as the carbon and nitrogen cycles.

These best practices are a first attempt at combining several

common approaches into a standard methodology for varied

ocean time-series data. However, these best practices must

evolve along with the evolving state of the data sets and the

techniques used in trend analysis, particularly related to different

linear regression models (e.g., Franco et al., 2021) and gap-filling

techniques (e.g., Vance et al., 2022) able to create continuous

time series that can be analyzed using statistical-based signal

processing approaches. We recommend these best practices be

revisited and updated by a formalized community of practice on

a regular basis.
2 Lessons learned from established
best practices

We draw upon decades of work by the atmospheric

community in uniform analysis and reporting of CO2 trends

(Tsutsumi et al., 2009). However, there are key distinctions

between the ocean and atmospheric carbon communities

related to the analysis and reporting of trends. First,

atmospheric measurements of CO2 are more abundant. There

are hundreds of atmospheric CO2 fixed time-series stations

compared to a couple dozen established ocean acidification

and carbonate system time-series sites, primarily in the open

ocean. The ocean carbonate chemistry time-series sites

providing 10 years or more of publicly-available data are
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shown in Figure 1. This figure is likely incomplete, given there is

currently no fully comprehensive, centralized location or portal

for accessing metadata or data related to all ocean carbon time

series. These locations were identified by assessing length of

publicly-available ocean carbon time series and data collection

frequency through GOA-ON, OceanSITES, and the EarthCube

Research Coordination Network for Marine Ecological

Time Series.

Most of the ocean acidification time-series sites located in

highly-variable coastal regions have only been established in the

last ten years and have experienced recent data gaps due to the

impact of COVID-19 on ocean observing (Boyer et al., in review).

Due to the high signal to noise ratio, such data sets require

frequent sampling and longer observational records to detect a

long-term signal over natural variability (Carter et al., 2019;

Sutton et al., 2019; Turk et al., 2019). Both the atmospheric and

ocean carbonate chemistry observing communities have

established some “baseline” observatories that have been used to

monitor trends, such as the Mauna Loa Atmospheric Baseline

Observatory, Hawaii Ocean Time-series (HOT) project, and

Bermuda Atlantic Time-series Study (BATS), in locations away

from continents and coastal areas where atmospheric CO2 and

ocean acidification variability tend to be stronger.

Additional distinctions between the ocean and atmosphere

are that the marine boundary layer of the atmosphere is much

more well-mixed than the surface ocean, and atmospheric CO2

has a smaller seasonal signal, especially compared to coastal

ocean carbonate chemistry. Where there are data gaps in the

atmospheric CO2 record, those gaps can be statistically-

interpolated based on well-defined CO2 variations over both

space and time (Masarie and Tans, 1995). However, these same

approaches can introduce large errors when applied to ocean
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carbonate chemistry time series that are discontinuous, sparse,

and have uncharacterized variability (Vance et al., 2022).

Key concepts included in best practices for atmospheric CO2

trend analysis include selecting fixed time-series data sets that

follow standardized methodologies and meet community-

defined and uniform data quality, determining and removing

the periodic signal(s) in the time series, and applying

uniform procedures for calculating and reporting trends and

associated uncertainties. Other important processes we draw

from the atmospheric community’s experience are publishing

transparent protocols, as is the goal here, and meeting regularly

to intercompare and reassess methods.
3 Best practices for assessing trends
of ocean acidification time series

Characterizing ocean acidification time-series trends

requires a sequence of approaches, broadly described as:
1. assess data gaps in the time series;

2. remove periodic signals (i.e., normally occurring

variations due to predictable cycles) from the time

series;

3. assess a linear fit to the data with the periodic signal(s)

removed;

4. estimate whether a statistically-significant trend can be

detected from the time series;

5. consider uncertainty in the measurements and reported

trends; and

6. present trend analysis results in the context of natural

variability and uncertainty.
FIGURE 1

Locations of fixed time series with active programs collecting ocean carbonate chemistry data on ships or moored buoys at sub-seasonal
timescales and providing access to ≥10 years of publicly-available data.
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Each of these steps are described in detail in the following

subsections. Many of the procedures outlined in these steps have

been utilized in past studies to assess trends and variability in

ocean carbonate chemistry observations (Bates, 2001; Takahashi

et al., 2009; Bates et al., 2014; Sutton et al., 2019). However, this is

the first time they have been packaged together and expanded

into a best practice for assessing and reporting ocean

acidification trends. This does not preclude scientists from

continuing to develop and evaluate other time-series analysis

approaches in their research, as that is an important research

need. Rather, the goal here is to establish a readily-accessible

protocol that can be implemented and applied by GOA-ON, the

Ocean Acidification Research for Sustainability (OARS)

program, UN SDG, WMO, and individual researchers when

the intention is to compare trends across different regions on a

variety of data sets generated by different research groups. In

addition to reporting on trends that result from these best

practices, researchers are encouraged to report on other gap-

filling and time-series analysis techniques that best suit their

data. This additional research and reporting will inform future

updates to the best practices presented here.

Wherever possible, the trend analysis should be done on

ocean carbonate chemistry parameters that have been measured

using established SOPs (Dickson et al., 2007), including:

dissolved inorganic carbon (DIC), total alkalinity (TA), the

partial pressure or fugacity of CO2 (pCO2 or fCO2), or pH (at

measurement temperature and in total hydrogen ion scale).

Temperature and salinity measurements also need to be

calibrated and of high quality. If measured or calculated pH is

used in the trend analysis, we recommend presenting results in

terms of both hydrogen ion concentration, [H+], and pH as

recommended by Fassbender et al. (2020) because pH is on the

logarithmic scale, and regional differences in the mean state of pH

influence the magnitude of change, hindering comparisons of pH

change across different regions. While these best practices assess

linear trends, seawater pH will have a non-linear trend over long

periods of time, and atmospheric CO2 growth since preindustrial

times has been roughly exponential. As ocean carbonate

chemistry time series increase in data density and duration, it

may be beneficial to report decadal averages of trends, which is a

best practice of the atmospheric CO2 community.

When presenting results of calculated parameters, uniform

use of constants should be applied to generate comparable results

across different time series. As of the time of publication, the

community’s current best practices (Orr et al., 2018) are to use the

carbonic acid dissociation constants of Lueker et al. (2000), sulfate

dissociation constants of Dickson (1990), and borate-to-salinity

ratio of Lee et al. (2010) to calculate the carbon system. Future

updates to these best practices should assess how these protocols

need to be revised to better accommodate low-salinity

environments, such as estuaries, at a range of temperatures
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(Schockman and Byrne, 2021). For example, the carbonic

acid dissociation constants of Waters et al. (2014) may be

more appropriate for low-salinity coastal waters (salinity< 19;

Orr et al., 2018).

Since ocean carbonate chemistry observations are often

collected along with other physical and biogeochemical

parameters, such as dissolved oxygen and inorganic nutrients,

extending the analysis to include these parameters can provide

insight into the factors contributing to inter-annual or multi-

decadal change. If seawater temperature, evaporation, or

precipitation changes over time may be driving carbonate system

change in the time series, the temperature effect can be removed

(e.g., for pCO2 or fCO2 as described by Takahashi et al., 2002) or

salinity-normalized parameters (e.g., salinity-normalized DIC as

applied to time series by Bates et al. 2014) could also be included in

the trend analysis. For example, if a region is experiencing

increased pCO2 and seawater temperature, different ocean

carbonate parameters like pCO2 (impacted by both increasing

CO2 and temperature) and DIC (impacted by increasing CO2 but

not temperature) will have different relative trends. While there is

some potential to introduce variability in salinity-normalized DIC

across different time series by using mean salinity in the

normalization rather than prescribing a salinity of 35, using the

time series mean will accommodate the calculation of salinity-

normalized DIC trends in low-salinity environments. However, in

regions of significant and variable river inputs or sea ice melt, the

simple salinity normalization (assuming DIC and TA are only

concentrated by evaporation or diluted by precipitation) will

introduce river or sea ice endmember-induced artifacts

(Jiang et al., 2008; Bates et al., 2009), and a more appropriate

normalization to count the effect of river endmembers should be

considered (Friis et al., 2003).

Finally, we make assumptions about the underlying data in

the approach described in the following sections. We assume

that data quality control is performed prior to determining the

trend. No time series should be used without assessing data

quality and, when necessary, making adjustments (e.g., in the

case of a change in methodology) to create a homogenous time

series. All the time-series data should be subject to the same

biases and have equal precision, and if gaps in the data exist, they

should not impact the calculations of climatological monthly or

annual means. We also assume that monthly means are

normally distributed and temporally autocorrelated, as is

common in environmental time series. If a seasonal signal

exists, that signal and the climatological mean should be able

to be characterized using the data set. This is most

straightforward for fixed time series where data collection

frequency is at monthly or sub-monthly time scales. However,

it may be possible to constrain climatological monthly means

with less frequent observations if the time series is long enough

and all months are represented in the data set.
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3.1 Assess data gaps

In this approach we assume all observations in a time series

are subject to the same biases and have equal precision. Any

change in the data should only reflect a change in real world

conditions, not changes in the measurement methodologies or

the location where the time-series data are collected. Although

statistical approaches exist that allow trend assessments on time

series with dissimilar observation types, more research is needed

to determine whether these approaches are applicable to ocean

biogeochemical data. For the best practices proposed here, the

user should assess and correct for changes in methodology or

site location prior to determining the time-series trend. A t-test

or standard normal homogeneity test can be used to determine

whether a change of method or location has a significant impact

on the data (WMO, 2020). Before adjusting the time series, the

user should consider whether the changes in methodology or site

location will impact the trend analysis significantly, and if so,

whether it is better to use a shorter time series with uniform

methodologies or a longer time series that has been adjusted.

The first step in these best practices is to assess whether data

gaps may introduce a bias in the climatology used to remove the

periodic signal (Section 3.2). Excessive or insufficient data density

can also be an issue for time series, particularly when combining

different observation types (e.g., five years of monthly samples that

are supplemented by five subsequent years of nearly-continuous

sensor readings). Regularizing data in time can be accomplished

by upsampling poorly-resolved periods (i.e., creating higher-

resolution data) using interpolation or downsampling portions

of the record that are measured at abnormally high frequency (i.e.,

creating lower-resolution data) using, for example, bin averaging.

Upsampling is only appropriate when you are confident that the

interpolated data series captures all meaningful variations, and in

this application, it is typically better to downsample the highly-

resolved portions of the record.

Data gaps do not always have a significant impact on trend

analysis, but this needs to be assessed for each time series. Ocean

carbonate chemistry data sets typically contain gaps, and as a

result, there is a compromise between having homogenous,

complete data sets and having enough ocean acidification

time-series data available to determine trends within an

acceptable level of uncertainty. Given one aim of these best

practices is to support trend comparisons across different

regions on data from different research groups, any gap-filling

technique must be amenable to a variety of data sets. In a recent

assessment of different statistical and empirical methods for

filling gaps in ocean carbon time series, Vance et al. (2022) found

that an empirical multivariate linear regression (MLR) model

provided the most robust approach across different open ocean

and coastal regions with several variations in the timing and

duration of data gaps. In this MLR approach, gaps in DIC
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observations were filled with DIC estimated from satellite-based

chlorophyll, sea surface temperature, and salinity with an

uncertainty of about 9 μmol kg-1 for open ocean time-series

sites and 20 μmol kg-1 at coastal sites. However, it is unlikely that

one type of MLR approach using the same satellite-based data

inputs will be able to reproduce ocean carbonate chemistry at all

ocean acidification time-series locations, complicating direct

trend comparisons between open ocean and coastal sites

(Figure 1). Further assessment of whether any empirical or

statistical techniques could be used to fill data gaps without

introducing bias to the resulting trend is an area where

additional focus is needed.

In the trend analysis methods presented here, gaps in the

original time series are not filled. Rather, the assessment of data

gaps is primarily focused on whether monthly climatologies

calculated from that time series represent actual ocean carbonate

chemistry conditions and can serve as a benchmark for

removing seasonal variability from the data set. In this

approach, gaps can introduce errors to the trend analysis if

there is insufficient data density within a certain portion of the

climatology. For example, if the only observations within a

certain month were collected during anomalous conditions,

the estimated monthly mean is not likely representative of

actual monthly mean conditions (e.g., Figure 2A). In this

scenario, users may choose to modify sampling plans to collect

more observations to better constrain the seasonal signal or to

proceed with the understanding that insufficient data density

may add additional uncertainty to the analysis. In another

scenario, if the time series is in a region where data are only

collected during certain seasons (e.g., April through October as

in Figure 2B), the results of the time-series analysis would only

apply to the trend during those seasons and should be reported

as such. These are decisions the user must make based on their

knowledge of the data set and region they are studying.
3.2 Remove periodic signal(s)

Characterizing and removing the periodic signal(s) prior to

estimating trends reduces variability (or noise) and autocorrelation

in environmental data sets, thereby reducing uncertainty in the

resulting trend. Many statistical signal processing approaches exist

that are capable of removing the periodic signal(s) from

continuous data sets with regular sampling intervals (e.g., as for

atmospheric CO2 described in Tsutsumi et al., 2009). However, we

use an alternative approach for discontinuous data sets common in

the ocean carbon community (Bates, 2001; Takahashi et al., 2009;

Bates et al., 2014). These approaches only work if the time series is

longer than several multiples of the cycle itself because they rely on

using multiple observations of the cycle to characterize its mean

impact on the signal.
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Prior to characterizing any periodic signal in a data set, the

overall linear trend should be removed by applying a linear

regression to a data set that starts and ends in the same season

and removing the slope from the original data set (Figure 3).

This linear trend is determined and removed only to identify the
Frontiers in Marine Science 06
dominant periodic signal(s) and construct an appropriate

climatological record. This step serves a different purpose than

assessing the linear fit of the de-seasoned trend in Section 3.3.

The seasonal signal, which is typically the most prevalent signal

in surface ocean carbon driven by temperature, biological
A

B

FIGURE 3

(A) Bermuda Atlantic Time-series Study (BATS) surface (< 10 m depth) aragonite saturation state (blue) calculated using measurements of
temperature, salinity, inorganic nutrients, DIC, and TA in PyCO2SYS (Humphreys et al., 2022) with the constants recommended by Orr et al.
(2018) and the associated linear trend (orange). (B) The same time series with the trend removed (shown as anomalies around zero), which is
used for calculating monthly adjustments (Figure 4) that remove the seasonal cycle from the time series of monthly means.
A B

FIGURE 2

Examples illustrating climatological monthly means (blue circles with standard deviation as error bars): (A) an example of a continuous time
series lacking a sufficient number of February observations of [H+], (adapted from Figure 2 in Takahashi et al., 2009) and (B) an example of a
seawater pCO2 (µatm) time series with repeat measurements only collected during the months of April through October. Sample sizes are listed
above each monthly mean. The red square illustrates a February mean interpolated between surrounding months with sufficient data density
compared to a mean generated from potentially insufficient data density.
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production, and/or monsoons, should be removed at minimum.

For highly temporally-resolved time series, it might be

appropriate to also construct a climatology for hour-of-day or

tidal cycle to address daily variations. However, these best

practices and the open-source code only address removing a

seasonal signal, given this is the most common signal in surface

ocean carbon and can be applied consistently across different

regions. Uniform approaches for characterizing and removing

periodic signals at frequencies other than seasonal should be

assessed as part of future updates to these best practices.

Additional work is also needed to better account for changing

variability in ocean carbon parameters over time as ocean buffer

capacity decreases (Kwiatkowski and Orr, 2018).

To characterize and remove a seasonal cycle, we generate

and apply monthly adjustments to a time series of monthly

means. First, the monthly adjustments are determined by the

difference between the climatological monthly means and the

climatological annual mean (the mean of the climatological

monthly means) of the de-trended data (Figure 3B). Examples

of these monthly adjustments are shown in Figure 4. Using the

original data set, we then develop a time series of monthly means

and apply the monthly adjustments, producing a time series of

monthly anomalies with the seasonal cycle removed (i.e., de-

seasoned monthly means). This steps produce a time series of

de-seasoned monthly values with a magnitude similar to the

climatological mean as in Takahashi et al. (2009) rather than

anomalies centered around zero as in Bates (2001). The

Takahashi et al. (2009) approach is chosen here as it produces

values that may be more intuitive in the case that trends are

presented to the public or decision makers. An example of the
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original time-series observations, monthly means, and de-

seasoned monthly means are shown in Figure 5.

Monthly binning may not always be ideal. Shorter/smaller

bins may allow for better resolution of seasonal extremes or

recurring features that appear on sub-monthly timescales, but

require more annual cycles to be resolved to ensure that non-

periodic variations are not miscategorized as part of the seasonal

cycle. Longer/larger bins may improve the statistics obtainable

with infrequent measurements, but may fail to resolve the

amplitude in the seasonal cycle. We nevertheless suggest

reporting trends following the de-seasoning performed with

monthly binning as by Bates (2001) and Takahashi et al.

(2009) for comparability with other time-series assessments.

However, other binning approaches that best suit the specific

time series being considered should also be tested and reported.

If monthly adjustments were made when no significant

seasonality exists, uncertainties in the monthly adjustments

could rival the magnitudes of the adjustments themselves. For

this reason, these best practices are best suited for time series

collected in the surface and near surface where seasonal patterns

occur. Future work should consider adjustments to these best

practices to better constrain ocean interior change when there is

a larger body of subsurface time series with sub-seasonal data

collection to learn from.
3.3 Assess linear fit

We then apply a weighted least squares (WLS) method of

linear regression to the time series of de-seasoned monthly
FIGURE 4

An example surface seawater aragonite saturation state monthly climatology from the Kuroshio Extension Observatory (KEO) mooring showing
monthly mean (gray bars) and standard deviation (error bars) of de-trended values, shown as anomalies around zero, which represents the
annual climatological mean (red solid line) as in Figure 3B. Two examples of the monthly adjustments are also shown for April (+0.18) and
November (-0.13) derived from these climatologies. The adjustments will be applied to the time series of monthly means to remove the
seasonal cycle. In practice, adjustments are calculated and applied for all twelve months.
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means. The following assumptions are made in this analysis,

including: 1) monthly means are normally distributed; 2) all

data are subject to the same biases and have equal precision;

and 3) autocorrelation is present in ocean biogeochemical time

series. To account for the third assumption, the WLS method is

used with Newey-West standard errors to provide improved

estimates of the uncertainties of the linear regression coefficients

by accounting for autocorrelation and heteroskedasticity in the

data (Newey and West, 1987).

Figure 5 shows the resulting trend in the form of a time series

based on the dates the observations were collected; however, we

use a series of dates adjusted to start at 0 when applying the

linear regression model. Using decimal year of the actual sample

collection time instead would cause all the x-values to be

distributed far from x=0, resulting in a y-intercept value that is

highly sensitive to the input data. Changes to the data, such as

adding another year of observations, could cause significant

changes in the y-intercept because the of the increased

uncertainty associated with extrapolation far beyond the range

of the data. If the user plans to apply the linear regression

equation with slope and y-intercept to predict biogeochemical

values forward or backward in time, they must account for the x-

values (in decimal years) beginning at the start of the time series

at zero. This adjustment to the x-values does not change the

slope, adjusted R2, and other key statistics useful in the

interpretation and statistical significance of the de-seasoned

trend (Table 1).

Table 1 statistics suggest a significant trend in the

de-seasoned monthly means derived from autonomous
Frontiers in Marine Science 08
surface seawater pCO2 record at the Kuroshio Extension

Observatory (KEO) mooring. The slope coefficient is

significant, the slope standard error is an order of magnitude

less than the slope (2.1 ± 0.2 μatm yr-1), and the linear

regression describes 37% of variability in the data set. Using

raw, high-frequency time series data rather than de-seasoned

monthly means does not result in a significantly different trend

in this case; however, it does reduce the adjusted R2 from 0.37

to 0.07.

As part of these best practices, we recommend applying a

linear fit to the entire de-seasoned data set for the purpose of

consistent reporting across regions and research groups. However,

there may be reasons to also consider the trends over different

time periods within the data set. For example, to interrogate how

different phases of the El Niño Southern Oscillation (ENSO)

impact long-term change in the tropical Pacific, time series are

commonly separated into El Niño, La Niña, and neutral time

periods to assess trends in the different ENSO phases separately

(Takahashi et al., 2003; Sutton et al., 2014). Trends over different

seasons can also be interrogated and compared to help assess

drivers of change (Park and Wanninkhof, 2012). For longer time

series, decadal variability often influences long-term trends and

can also be interrogated separately depending on the phases of the

dominant climatic oscillations (e.g., Pacific Decadal Oscillation,

Southern Annular Mode, North Atlantic Oscillation) in the ocean

region of interest (Feely et al., 2006; Landschützer et al., 2016;

Wanninkhof et al., 2019). It may also be important to present

trends for different subsets of a time series based on changes in the

operating parameters of the observing system, for example, to
A B

DC

FIGURE 5

Surface seawater pCO2 (µatm) from the KEO mooring (A) and ship-based underway measurements in the Strait of Juan de Fuca (C) including
the original time-series observations (blue circles), the time series of monthly means (black circles), the de-seasoned monthly means (red
squares), and the trend of the de-seasoned monthly means (red line). Monthly measurement distribution of the KEO (B) and Strait of Juan de
Fuca (D) time series are also shown.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1045667
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sutton et al. 10.3389/fmars.2022.1045667
assess whether the apparent trend changed due to a change in

observing methodology. These approaches can be done using the

supplemental open-source software by uploading a data file with

separate columns of data covering the different time periods and

comparing the resulting trends.
3.4 Estimate trend detection time

In addition to the statistics describing the linear regression

model (Table 1), trend detection time methodology is another

statistical tool to help inform whether the trend signal is

statistically detectable above the noise, which can often be

substantial due to natural variability of ocean biogeochemistry.

We use a statistical method described by Tiao et al. (1990) and

first applied to environmental data by Weatherhead et al. (1998)

to estimate the number of years of observations needed to detect

a statistically significant trend. This method provides an

assessment of the signal-to-noise ratio of the data but also

factors in autocorrelation, which is a common feature of

environmental data sets. Some applications of this

methodology include determining when recovery of the ozone

layer could be detected (Weatherhead et al., 2000) and when

trends could be detected in satellite-based ocean color records

(Henson et al., 2010; Henson et al., 2018) and ocean

biogeochemical model output (Lovenduski et al., 2015).

To estimate the number of years of observations needed to

detect a statistically significant trend, trend detection time

(TDT), presented in years of observations, is determined by:

TDT =
3:3sN

w0j j

ffiffiffiffiffiffiffiffiffiffiffiffi
1 +∅
1 −∅

r !2
3

(1)
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where sN is the standard deviation of monthly means that

are de-seasoned and de-trended, ∅ is the autocorrelation (at lag

1, or one month lag) of the noise in the time series, and w0 is the

slope determined by the WLS linear regression step. This results

in a 90% probability (dictated by the factor of 3.3 in Eq. 1) of

trend detection by the estimated TDT at the 95% confidence

interval. This follows common practice that a trend is considered

significant at the 95% confidence level if the magnitude is twice

the standard deviation.

Uncertainty in TDT, uTDT, is calculated by:

uTDT =  TDT � eB (2)

where B is the uncertainty factor calculated using the

method of Weatherhead et al. (1998). Uncertainty is based on

the number of months (m) in the time series and autocorrelation

of de-seasoned monthly means (∅):

B =
4

3
ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 +∅
1 −∅

r
(3)

This application of the method analyses the noise in the time

series and returns an estimate of the number of years of

observations needed to detect the de-seasoned trend

determined in Section 3.3. Characterizing and removing the

seasonal signal in previous steps increases the signal-to-noise

ratio (compared to the original data set), which reduces the

resulting number of years of observations necessary to detect a

trend. In an analysis of 40 autonomous seawater pCO2 time

series, Sutton et al. (2019) found TDT to be 55% shorter when

using de-seasoned and de-trended monthly means compared to

using raw, high-frequency time series data. In the example

shown in Figure 4A and Table 1, de-seasoning the surface

seawater pCO2 data set as recommended in these best
TABLE 1 A subset of statistics resulting from the WLS method of linear regression using the statsmodels Python package, including values
generated by the example shown in Figure 5A and a description of each element.

Statistic Example
value

Description

R2 0.37 The coefficient of determination. In this example, 37% of the variation in the dependent variable (de-seasoned surface seawater pCO2)
is predictable from the independent variable (i.e., time).

Adjusted
R2

0.37 The adjusted coefficient of determination based on the number of observations and the degrees-of-freedom of the residuals.

coef
(const)

343.8 Coefficient for the y-intercept of the linear regression.

coef (x1) 2.1 Coefficient for the slope of the linear regression.

standard
error (x1)

0.2 Measurement of the amount of variation in the slope and y-intercept coefficients (standard error of the slope is given here as the
example value).

P > |z| < 0.05 The p-value for how likely the coefficient is measured through the linear model by chance. If less than the confidence level, in this case
0.05, the coefficient is statistically significant. In this example, both coefficients are statistically significant.

[0.025 and
0.975]

1.7 and 2.6 Values of the coefficients within 95% of the data or within two standard deviations (upper and lower bounds of the slope are given
here as the example values).

For a description of other elements in the WLS output not discussed in this application, refer to the open-source statsmodels documentation.
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practices results in a TDT of 10.4 ± 2.5 years. The 12.7 year

observing record at KEO has just approached this length

threshold for the time series of de-seasoned monthly means.

If there are natural modes of variability that are not

characterized by the data set, the resulting TDT may be an

incorrect. This could occur when data are collected on a monthly

basis in a region that exhibits large daily variability or extreme

events or when a short time series is being analyzed from a

region that exhibits large interannual or decadal variability

(Sutton et al., 2019). This approach relies on first-order

autoregression, meaning the immediately preceding monthly

value is used to predict the present monthly value. The

resulting TDT likely provides a minimum estimate of trend

detection time given longer-term memory processes are

important drivers of ocean carbon chemistry (Séférian

et al., 2013).

In addition to removing the seasonal signal, there may be

other ways to reduce TDT by adjusting the data set or modifying

future data collection. The signal-to-noise ratio can be increased

by improving measurement precision, which is another source of

noise in all observational data sets. If the data set includes

observations collected over a broad region (rather than a

fixed-point time-series), natural spatial variability may also

introduce noise to the time series, increasing the number of

years of observations necessary to detect a trend. For example,

there is not a significant trend in the 35-year data set of

underway pCO2 observations in the Strait of Juan de Fuca

(Figure 5C). Natural spatial variability over this large region

and low number of measurements during some months

(Figure 5D) likely contribute to noise in this time series. The

analysis suggests another decade of data may be necessary to

detect a statistically-significant trend above this noise. In cases

like this, the user may experiment with the size of the region of

study while maintaining enough observations to characterize the

seasonal signal and climatological annual mean.
3.5 Consider uncertainty

The initial assessment of data gaps (Section 3.1), statistics

resulting from the WLS linear regression model (Section 3.3),

and the trend detection time (Section 3.4) all provide

information about uncertainty in the resulting trend. In the

basic approaches used in these best practices, we assume that

gaps in the data set do not impact the monthly mean climatology

or annual climatological mean used to remove the seasonal cycle.

If the data analyst believes the climatological gap-filling

approach illustrated in Figure 2A does not adequately

characterize monthly means, then additional research is

necessary to identify the appropriate gap filling methods or the

trend should only be considered over the months or seasons with

repeated measurements (Figure 2B).
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We also assume the monthly means are normally distributed

and all the measurements in the time series are subject to the

same biases and have equal precision. As discussed in Section

3.1, there may be instances where measurement bias or precision

changes during the time series when measurement methods are

modified. In cases with a known bias shift, the bias should be

corrected in the data set prior to applying these best practices.

There are also statistical techniques for propagating changes in

measurement uncertainty within the linear regression statistics,

but these are likely best considered on a case-by-case basis. In

these cases, data analysts may be able to utilize consulting

services available through statistics departments at universities

and other research institutions or consult other resources such as

Glover et al. (2011).

Given these assumptions are met, the WLS method statistics

and trend detection time results provide evidence to assess

whether the observed trend is statistically significant. At

minimum, the standard error of the slope coefficient should be

smaller than the value of the coefficient, the p-values for the

coefficients should be less than the confidence level (i.e.,< 0.05),

and the length of the time series should be longer than the

estimated trend detection time.
3.6 Presentation of results

Uniform and transparent presentation of the results is

critical. At minimum, we recommend statistically-significant

ocean acidification trends be presented as change per year ±

standard error. Trend results should be accompanied by a

characterization of the temporal variability (e.g., magnitude of

the diurnal and/or seasonal amplitude, inter-annual variability,

etc.). In regional or global assessments, this is particularly

important for providing stakeholders and other scientists

context about local processes that drive variability (and impact

trend assessments) across different ocean regions. We also

recommend consistent reporting for carbon variables,

including: DIC and TA on the gravimetric scale (μmol kg-1);

pH on the total scale; pCO2, fCO2, and pH at measurement

temperature. The [H+] trend should be reported along with the

trend in pH and the initial pH, which in the case of long-term

trends, would be an annual mean of the first year of observations

(Fassbender et al., 2020).

Results should also provide a clear explanation of what the

trend represents in space and time. Even when using these

methods, the detection of a statistically-significant trend does

not imply the trend is a long-term trend of anthropogenic origin

or that it does not represent competing and/or amplifying

processes (Salisbury and Jönsson, 2018; Turk et al., 2019;

Hauri et al., 2021). That assessment can only be made with an

understanding of all modes of natural variability in the region

and context for the changes that might be expected from
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atmospheric anthropogenic carbon accumulation. For example,

these best practices produce an inter-annual or multi-decadal

trend at a site that can then be compared to the rate of change

assuming ocean acidification is progressing in equilibrium with

the global atmospheric CO2 increase (e.g., approximately -0.008

yr-1 in surface ocean aragonite saturation state) or compared to a

regionally-specific anthropogenic trend, if known. This

emphasizes that variability and multi-decadal “trends” can

reveal the processes impacting ocean carbon chemistry at a

given location, which for coastal regions is often atmospheric

CO2 increase in addition to other natural processes and

anthropogenic stressors. Spatial variability should also be

considered, especially if the trends are computed on

observations collected over a larger spatial footprint than a

fixed-point time series. If information about spatial variability

around the time-series location is known (e.g., Henson et al.,

2016; Murphy et al., 2001; Jones et al., 2012), including an

estimation of the spatial footprint of those variations is also

useful context.

Presentation of results should also include metrics that are

most relevant to the intended audience. For example, some

stakeholders may require a trend to be presented as a change

in seawater pH (e.g., UN SDG 14.3), whereas others may be

more interested in a change in [H+]. In addition, some

stakeholders and policy makers may not necessarily be

interested in rates of change over time, but rather the point in

time when a potential biological or ecological threshold is

exceeded and/or when there is a detectable change in the

frequency of exposure events. Trends resulting from these best

practices can be applied backward and forward in time to

examine and present when a threshold is projected to be

crossed. However, projections should be presented with the

understanding that trends are expected to vary over decades to

centuries due to interannual variability, nonlinear atmospheric

CO2 changes, and the inherent nonlinearity of ocean carbonate

chemistry. More research is needed to develop tools for

characterizing exceeded thresholds or the changing frequency

of “extreme” exposure events. Common statistical approaches

for detecting frequency of signals in a time series, such as Fourier

analysis, can only be applied to continuous data sets with regular

sampling intervals.
4 Supporting code

These approaches are automated in the supplemental open-

source software package fully documented and maintained on

GitHub (https://github.com/NOAA-PMEL/TOATS). Data

analysts do not need Python programming experience to run

the code. The user needs to install Python, create and activate the

environment, and open and run the Jupyter Notebook in a

browser, all of which are described in detail on GitHub. The

user also needs to create a data file that includes a column of
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datetimes and subsequent columns of values for the

biogeochemical parameters of interest. When the program is

run, a user interface will guide the file upload and ask the user

to input the time-series name, file name, and the measurement

uncertainty, units, and desired number of decimal places for each

parameter. The program will generate a report including figures

similar to those presented here, statistics described in Table 1, the

estimate of the number of years of observations needed to detect a

statistically significant trend, and a description of the time-series

variability, trend, and associated uncertainties. The program will

also export a file for each variable with the time series of de-

seasoned monthly means generated by the code.
5 Conclusions

These best practices offer a basic but uniform analysis of

trends that can be implemented on most data sets by GOA-ON,

UN SDG, and WMO, and by individual scientists with an interest

in comparing trends across a variety of regions. Every researcher

must use their own knowledge of the system they are working in

to determine additional time-series analyses needed to understand

biogeochemical changes over time. Additional inquiries may be

necessary in the time and space domain to determine the drivers

of trends. Are trends during some seasons different from others?

Are seasonal amplitudes or short-term extreme events increasing

over time as buffer capacity decreases? What is the relative

impact of warming seawater vs. anthropogenic CO2 on ocean

acidification trends? Will ocean acidification trends become

nonlinear as atmospheric CO2 forcing changes? These and

many other questions may be worth pursuing above and

beyond the approaches presented here.

These approaches for characterizing a time series are also

useful for assessing how different observing strategies influence

the ability to detect a trend. Sampling frequency, measurement

uncertainty, and time-series length are all factors that contribute

to the ability to detect a statistically-significant trend (Carter

et al., 2019). Using this recommended sequence of approaches

on observational data or model output can inform new sampling

strategies and provide stakeholders with an estimate of when

trends may be detectable over natural variability at a given

location. Trend assessment can also highlight the value in

managing time-series records in a way that reduces data gaps,

manages changes in methodologies and data processing, and

fully documents operating procedures. Those maintaining long-

term ocean acidification time series should refer to guidance on

how to best manage climate networks (Karl et al., 1995;

Trenberth et al., 2002).

In conclusion, we acknowledge that as the community of

practice in ocean carbon time-series analysis expands and

research on ocean acidification trends progresses, it will be

essential that the community revisit and update these best

practices. Additional research is needed to determine whether
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other empirical or statistical techniques could be applied

consistently across a variety of ocean and coastal time series to

fill data gaps without introducing bias to the resulting trends.

Research is also needed to better characterize the following: 1)

periodic signals at frequencies other than seasonal, 2) changing

frequency of extreme events, 3) changing variability as ocean

buffer capacity decreases, 4) changing carbonate chemistry in

low-salinity environments, and 5) the non-linear trend of pH

over long time periods. Opportunities to explore these topics will

grow as more publicly-available data sets, including high-

frequency subsurface data sets, become available to support

this research. We recommend that the organizations

supporting coordination efforts within the ocean carbon and

biogeochemistry community, such as GOA-ON and the

International Ocean Carbon Coordination Project (IOCCP),

support regular forums for sharing results and new techniques

in trend analysis and modify these best practices accordingly.
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