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Climate change increases the frequency and intensifies the magnitude and
duration of extreme events in the sea, particularly so in coastal habitats.
However, the interplay of multiple extremes and the consequences for
species and ecosystems remain unknown. We experimentally tested the
impacts of summer heatwaves of differing intensities and durations, and a
subsequent upwelling event on a temperate keystone predator, the starfish
Asterias rubens. We recorded mussel consumption throughout the exper-
iment and assessed activity and growth at strategically chosen time points.
The upwelling event overall impaired starfish feeding and activity, likely
driven by the acidification and low oxygen concentrations in the upwelled
seawater. Prior exposure to a present-day heatwave (+5°C above climatol-
ogy) alleviated upwelling-induced stress, indicating cross-stress tolerance.
Heatwaves of present-day intensity decreased starfish feeding and growth.
While the imposed heatwaves of limited duration (9 days) caused slight
impacts but allowed for recovery, the prolonged (13 days) heatwave impaired
overall growth. Projected future heatwaves (+8°C above climatology) caused
100% mortality of starfish. Our findings indicate a positive ecological memory
imposed by successive stress events. Yet, starfish populations may still suffer
extensive mortality during intensified end-of-century heatwave conditions.
1. Introduction
Climate change does not only lead to an overall increase in temperature [1] but
also increases the frequency, duration and intensity of marine heatwaves [1,2].
Simultaneously, ocean warming intensifies the stratification of the water
column. Together with eutrophication, this causes worldwide expansions of
hypoxic zones [3] and facilitates the occurrences of sporadic and stressful
coastal upwelling [4–6]. Heatwaves and upwelling events can commonly
occur consecutively in some coastal habitats, such as the Baltic Sea [7–9].
Upwelling itself may impose multiple simultaneous changes. Such events
may shoal nutrients in spring [9] and can, thus, facilitate primary production
(as reviewed in Kämpf & Chapman [10]). Upwelling in late summer may pro-
vide release from heat stress, but brings water of higher salinity and will
typically also be acidified (reduction in pH, increase in pCO2) and hypoxic
[9]. The overall impacts of such extreme events range from single-species
mortalities [11] to restructuring and losses of entire ecosystems [12,13].

Whether the succession or co-occurrence of extreme events results in addi-
tive, synergistic or antagonistic responses depend on the nature, intensity and
duration, and timing of these events [14]. Recent publications have called for
empirical evidence on the consequences of environmental fluctuations and
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the impacts of successive extreme events on marine ecosys-
tems [13–15]. Acclimation to an extreme event may modify
an individual’s stress response to another succeeding pulse
stress, referred to as ecological memory [15] (more precisely,
‘stress memory’ if succeeding events of similar nature are
described or ‘cross-stress tolerance’ in case of succeeding
events of different nature [16,17]). Thus, in contrast with a
common perception of mostly negative synergistic effects
imposed by multiple drivers and successive stress events
[14,18], an ecological memory may mitigate the negative effects
on the species to the ecosystem level.

How consecutive stressful events impact marine ecosys-
tems remains mostly unknown (but see [14,15]). As the
intensity and frequency of extremes are projected to increase
[8], it is of great interest to study the main and interactive
effects of such events on resident keystone and habitat-forming
species. As an important and widespread benthic predator, the
starfish Asterias rubens controls bivalve abundances in mussel
beds [19] that provide habitats for numerous-associated
species [20]. Disturbances of this predator–prey interaction
caused by climate change and extreme events [21] can affect
mussel bed formation and the functioning of associated eco-
systems [22]. A. rubens inhabits the inter- and subtidal zones
of the North Atlantic region [23–25]. Across its distribution
range, A. rubens experiences marine heatwaves and upwelling
conditions, e.g. in Chesapeake Bay, St Lawrence Bay, Long
Island Sound [26,27] or in the North and Baltic Seas [28,29].
Electronic supplementary material S1 contains further details
on the distribution and on temperature, salinity, acidification
and oxygen tolerance of A. rubens.

We present an experimental study examining the conse-
quences of the interplay between naturally occurring
heatwaves and upwelling events for A. rubens performance,
measured as feeding on mussel prey as well as their
activity and body mass changes. We simulated four types
of marine heatwaves, characterized by differences in duration
and intensity (maximum intensity was at least 1°C above
the threshold atwhich feeding ceases, see electronic supplemen-
tary material, S1), imposed on top of a climatological trajectory.
After recovery from heatwaves, starfish were exposed to an
upwelling event. We hypothesized that (i) the applied heat-
waves would reduce the performance of A. rubens, with
(ii) stronger impacts induced by extended or intensified heat-
waves. We further (iii) hypothesized a negative impact
induced by the imposed upwelling event (due to acidified
and hypoxic conditions prevailing during the event) and
(iv) an additive effect of both successive stress events
(heatwave and upwelling).
2. Methods
(a) Experimental set-up and treatments
We conducted our experiment using the Kiel Indoor Bentho-
cosms [30] from 10 July until 10 September, 2018. Sixty 2 l
experimental units (transparent Kautex® bottles with black lids)
were evenly distributed across ten 600 l tanks, which served as
water baths. In each tank, a temperature control system [30]
automatically implemented five different temperature regimes
(treatments were always applied in two randomly chosen meso-
cosms), including heatwaves and upwelling events (see further
information below and in figure 1, electronic supplementary
material S3: figures S1 and S5). Each of the 60 experimental
units was separately supplied with fresh seawater from Kiel
Fjord and received pressurized air for ventilation. Therefore, the
experimental units were considered true replicates (n = 12).

Heatwave treatments (i.e. No, Present-day, Extended, Amplified
and Future heatwaves; figure 1) were based on a heatwave charac-
terization by Pansch et al. [31] and on the projected future
scenarios [2]. The subsequent upwelling event, whichwas applied
to all experimental units, mimicked an event that naturally
occurred in September 2017 in Kiel Fjord (figure 1; electronic
supplementary material S3: figure S5). This upwelling followed
an 18 or 14 day-long recovery period from the Present-day or
Extended heatwaves, respectively, and was applied for 10 days.
For more details, see electronic supplementary material, S2.

Seawater temperature was measured over the entire exper-
imental period in at least three experimental units of each tank
(TTX 110 type T, Ebro, Germany). Salinity, pH and oxygen con-
centrations were measured along with the simulated upwelling
event in all units (Multi 3630 IDS, WTW, Germany). Tempera-
tures in the experimental units matched the targeted treatments
with deviations < 0.95°C from set values and < 0.17°C among
replicates (see electronic supplementary material S3: figure S1
for the entire monitoring period).

During the upwelling treatment, the temperature in the 18 l
experimental units decreased from 17.8 ± 0.05°C (mean and
s.d.) to 13.8 ± 0.07°C, salinity increased from 17.4 ± 0.04 to 19.6
± 0.09, pH decreased from 7.9 ± 0.06 to 7.4 ± 0.06 (pHNBS units)
and oxygen dropped from 9.4 ± 0.16 mg l−1 to 3.1 ± 0.68 mg l−1

(electronic supplementary material S3: figure S5). Vaquer-
Sunyer & Duarte [32] argue that 2 mg l−1 oxygen concentration,
the threshold commonly used for defining hypoxia, is unsuitable
as thresholds are highly species-specific. Indeed, the 90th percen-
tile threshold for the median lethal oxygen concentration of
marine species lies at 4.6 mg l−1, and for sublethal effects, even
at 5.0 mg l−1 ([32]; see also Seibel [33]). Thus, sublethal (below
5.0 mg l−1) oxygen levels were experienced for 8 consecutive
days in the experiment. During this time, mean temperature con-
ditions were 14.4 ± 0.9°C (mean over all treatments and s.d.),
with a mean salinity of 19.4 ± 0.3, a mean pH of 7.5 ± 0.1 and a
mean oxygen concentration of 4.1 ± 1.0 mg l−1.
(b) Starfish collection and measured response variables
Starfish individuals (Asterias rubens) were collected near Mölte-
nort, Kiel (N54° 22057.5400, E10°1208.8100) on 2 July 2018. Animals
were kept in a transitional tank at water temperatures measured
at the collection habitat (17.6°C). After 8 days of acclimation to lab-
oratory conditions, 12 similarly sized starfish per treatment (wet
weight: 6.4 ± 1.1 g, size as arm-tip to arm-tip length: 5.5 ± 0.3 cm,
mean and s.d.) were transferred to individual experimental units.

Starfish were fed ad libitum every third day with blue mussels
(Mytilus spp.: 1.5–2.0 cm shell length) freshly collected from Kiel
Fjord the day before feeding. After each feeding event, the shell
lengths of consumed mussels (no dead mussels were observed)
were measured (Dial Caliper, Wiha Division KWB Switzerland).
Based on a previously described relationship between shell size
and tissue dry weight for mussels in the study area [34], the
dry weight of consumed mussels was estimated.

We weighed each starfish individual at the start of the exper-
iment (day 1), during the heatwaves (day 21 for Present-day and
days 21 and 25 for Extended heatwaves), in between heatwaves
and the upwelling event (day 36), directly after the upwelling
event (day 52) and at the end of the experiment (day 63; see
also figure 1).

We measured the activity of starfish (i.e. righting response) as
the time required by the individuals to turn back onto their oral
side after being placed on their aboral side. Righting is essential
as it maintains the individual’s ability to detect and consume
prey [35]. Righting measurements were performed before the
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Figure 1. Schematic representation of the treatments experienced by individuals of Asterias rubens throughout the duration of the experiment. No heatwave:
followed a smoothed natural mean seasonal temperature profile (blue line in (a); see methods for further information). Present-day: experienced a short heatwave
with the intensity and duration of present-day events (9 days above the seasonal profile depicted in (a) with a maximum +5°C, green polygon in (b)). Extended:
a heatwave of extended duration in comparison to Present-day (13 days above seasonal profile with a maximum +5°C, yellow polygon in (c)). Amplified: a heatwave
of increased intensity in comparison to Present-day (9 days above seasonal profile with a maximum +8°C, pink polygon in (d )). Future: a heatwave with the
combined characteristics of those described in (c) and (d ) (13 days above seasonal profile with a maximum +8°C, red polygon in (e)). All treatments received
an upwelling event (blue polygon) towards the end of the experiment, which was characterized by a drop in temperature (−4.4°C), oxygen concentration
(−6.3 mg l−1) and pHNBS (−0.5 units) as well as an increase in salinity (+2.2 units; details in electronic supplementary material, figure S1). Black dots represent
measuring events of wet weight, while grey triangles represent assessments of righting responses of A. rubens.
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beginning of the heatwave treatments (day 13), at the end of the
heatwaves (day 20 and 24 for the Present-day and Extended heat-
wave treatment, respectively), before (day 41), during (day 48)
and at the end (day 52) of the upwelling event, and at the end
of the experiment (day 63; see also figure 1).

While feeding the starfish, we also checked for mortality (i.e.
every third day). Starfish were considered dead if the bodies had
disintegrated (electronic supplementary material S3: figure S6c),
or if they could not move their tube feet in response to physical
stimuli. One starfish in the Amplified heatwave treatment lost two
arms (electronic supplementary material S3: figure S6d ) and was
thereafter excluded from the analysis.
(c) Data analysis
All analyses were performed using R [36]. The impacts of the
applied treatments on the performance of A. rubens over time
and their interplay were analysed using regression approaches.
Changes in the feeding rate and wet weight of A. rubens
throughout the experiment and in response to the simulated
heatwaves and upwelling events were described through gen-
eralized additive mixed models (GAMMs) fitted with the
function bam from the R package ‘mgcv’ [37]. In addition,
linear mixed models (LMM) were fitted using the function
lmer from the ‘lme4’ package [38] to evaluate the impact of
heatwave treatments over time on righting time. For feeding



royalsociet

4
rate and wet weight, an additional LMM was applied using
REML to test for the overall effect of the applied treatments at
the end of the experiment. Electronic supplementary material
S2 contains additional details regarding the statistical analyses
and graphs.
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3. Results
(a) Survival
In our study, the survival of the starfish Asterias rubens
differed strongly between treatments (electronic supplemen-
tary material S3: figure S7). Both Amplified treatments that
simulated end-of-century heatwaves [39] (amplitude +8°C,
maximum 26.0°C; electronic supplementary material S3:
figure S1d,e) were lethal to all A. rubens individuals (elec-
tronic supplementary material S3: figure S7). By day 21 (i.e.
8 days of heatwave exposure), 83% and 75% of the starfish
had died when the temperature exceeded 25.8°C for 3 days
in the Amplified and the Future heatwave treatments, respect-
ively (electronic supplementary material S3: figure S7). After
3 more days, all remaining individuals in both Amplified
treatments had died (electronic supplementary material S3:
figure S7). On the contrary, all A. rubens individuals survived
exposures to Present-day and Extended heatwaves (intensity +
5°C, maximum 23°C, and a duration of 9 and 13 days,
respectively; electronic supplementary material S3: figures
S1b,c and S7). The upwelling event, an abrupt change in mul-
tiple drivers (electronic supplementary material S3: figure S5),
was not lethal to starfish.
(b) Feeding rate
Feeding rates of starfish subjected to No and both heatwave
treatments of present-day amplitude (Present-day and
Extended) closely followed the trajectories modelled by the
fitted GAMM (figure 2a; explained deviance of 37.6%). Feed-
ing rates in all treatments generally increased over the course
of the experiment until the application of the upwelling event
when feeding dropped steeply (figure 2a). Nevertheless, the
heatwave events of the Present-day and Extended treatments
significantly reduced mussel consumption by A. rubens
(figure 2a) when compared to the feeding of starfish in the
No heatwave treatment during the same period. Impacts of
the Present-day heatwaves on A. rubens, however, were only
transient, and the starfish could resume feeding after the
heatwaves ended. Those individuals that experienced heat-
waves of present-day intensity and duration consumed
overall as many mussels after the event as starfish that
never experienced a heatwave (figure 3a). By contrast, a pro-
nounced heat-induced reduction of starfish feeding activity
during the Extended heatwave events (figure 3a) caused an
overall reduction of mussel consumption by 53% compared
to starfish in the No heatwave treatment (figure 3a).

Simulated upwelling led to a dramatic decline in feeding
rates of A. rubens in all treatments (figure 2a). Yet, starfish that
had experienced heatwaves before the upwelling event on
average consumed slightly (not significantly, p = 0.065) more
soft mussel tissue, than starfish in the No heatwave treatment
(electronic supplementary material S3: figure S12e). Despite
the decreased feeding rate during the upwelling, this was
transient, and A. rubens could recover from this event, and
their feeding rate (enormously) increased (figure 2a).
(c) Wet weight change
Wet weight of A. rubens linearly increased over the two-
month experimental period in all three treatments as can be
seen by the trajectory predicted by the GAMM, which fits
the data well (figure 2b; explained deviance of 40.5%). No
significant differences between wet weights of A. rubens
experiencing a Present-day heatwave and No heatwave could
be detected (figure 2b). Growth rates of starfish experiencing
a Present-day heatwave were significantly higher than of those
experiencing an Extended heatwave (figure 2b). Accordingly,
the starfish’s body mass in the Present-day heatwave treat-
ment at the end of the summertime was not significantly
impacted by the heatwave (figure 3b). By contrast, this trait
was significantly reduced in the Extended heatwave treatment
(figure 3b). Here, over the two-month experiment, wet weight
of A. rubens was reduced by 30% (figure 3b) compared to the
No heatwave treatment.

(d) Righting time
Righting times of A. rubens were similar during all three
treatments until the application of the upwelling event. The
Present-day and the Extended heatwave had no effect on the
activity (righting time) of the starfish (figure 2c). The upwel-
ling, however, strongly reduced the activity (increased
righting time) ofA. rubens in all treatments. During the upwel-
ling, however, starfish individuals that had previously
experienced a heatwave were significantly more active
(reduced righting time) than individuals of the No heatwave
treatment (figure 2c). After the completion of the upwelling
event, righting time decreased to values as low as those
registered at the beginning of the experiment.
4. Discussion
We demonstrate that heatwaves can cause (i) either severe
mortality when applying future projected intensities or (ii)
temporally decrease feeding and growth of Asterias rubens
when exposed to today’s intensities, and that (iii) longer heat-
waves can lead to stronger overall impacts. Furthermore,
starfish (iv) strongly reduce their activity during a seemingly
very stressful upwelling event. However, (v) the negative
impact imposed by the upwelling event was alleviated in
individuals previously exposed to heatwaves of today’s
intensity.

(a) Intensity- and duration-specific effects of marine
heatwaves on starfish

This experimental study showed that the performance of
A. rubens was negatively affected by simulated marine heat-
waves, and the effect strongly depended on their intensity
and duration. The temperatures applied in our Amplified heat-
wave treatments (26°C) apparently exceeded the upper
thermal tolerance limit of A. rubens. At such critical tempera-
tures, the starfish likely suffered from a combination of
extremely high cellular demands for oxygen and ATP as
well as the constraints to supply those [40], potentially lead-
ing to diminished oxygen concentrations in the coelomic fluid
and tissues, acute stress, tissue damage and mortality [41–44].
Extreme temperatures with peaks of 25°C were recorded in
the Kiel Fjord’s shallow waters in the summer of 2018 [45],
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just when the present experiment was being conducted. Such
extreme temperatures were not only measured in the Baltic
Sea, but also along the East coast of North America [46].
Thus, experimental temperatures only 1°C above this histori-
cal record in the Baltic Sea appear to be 100% lethal to
A. rubens, presenting an emerging risk for this currently
common and in places dominant, marine predator.

Peak temperatures of 23°C led to decreased starfish per-
formance, which corroborates other recent findings: feeding
rates of A. rubens peak at temperatures around 14°C and
cease at < 2°C and > 22°C conditions (F. Melzner 2022, per-
sonal communication; [47]). In addition, the highest
probability of this species’ occurrence in the Black Sea is mod-
elled to be expected at maximum temperatures of 15°C [48].
Interestingly, recovery from these heatwaves was possible
and compensatory feeding could alleviate the overall negative
impact on growth. Recovery of marine species following heat-
waves was also shown in previous studies [29,49] and
therefore might represent a crucial aspect in species (and eco-
system) responses to climate change [49]. Although starfish
tended to increase their feeding rate after an extended heat-
wave of the same peak temperature, they could not recover
fully. Leung et al. [50] demonstrated that species might be
resistant (i.e. no impact), resilient (i.e. recovery is possible) or
sensitive (i.e. no recovery is possible) when exposed to stressful
conditions. Overall, peaks of 23°C (Present-day and Extended
heatwave treatments) represented conditions recorded on 18
different days in surface waters of Kiel Fjord between 1997
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and 2018 [51]. This indicates that starfish are resilient to heat-
waves of today’s intensity but become sensitive if the stress
persists longer or is of increased intensity.

Our results show that growth rates and the final size
of starfish experiencing a Present-day heatwave were
significantly increased compared to starfish experiencing an
Extended heatwave. Therefore, a projected elongation of
heatwaves by 0.5 days per decade until 2100 [2] (i.e. from
9 to 13 days) will likely negatively affect the growth of
A. rubens, at least in the absence of thermal adaptation (see
e.g. intertidal snails [50]) or the presence of temporal–spatial
refugia (see e.g. Pisaster ochraceus [52]).
(b) Late summer upwelling events transiently decrease
starfish performance

The experimental imposition of upwelling conditions
(i.e. lower temperature, higher salinity, acidification and
low oxygen concentrations) reduced the performance of
A. rubens. Ectotherms generally show a reduced metabolism
at lower temperatures [53]. Still, if temperature was the domi-
nant driver of the observed drop in feeding rate, this would
correspond to a Q10 of 563. However, the Q10 of feeding is
physically constrained and lies typically between 1 and 2
[54]. A previous study showed that reduced feeding rates of
the starfish P. ochraceus during upwelling events were related
to decreased temperatures with a Q10 of 1.8 under laboratory
conditions up to 4.8 in the natural habitat [55]. As A. rubens
optimizes its feeding at around 14°C (F. Melzner 2022, per-
sonal communication) and has the highest probability of
occurrence at a maximum temperature of 15°C in the Black
Sea [48], the decrease of temperature during the upwelling
could not explain the considerably lowered feeding rates
and would instead represent a release (temporal thermal refu-
gia [52,56]) from the generally warm summer conditions.
While the distribution of A. rubens is generally limited by
very low salinities [57], experimental feeding rates at a salinity
of 20 (i.e. during the applied upwelling) are shown to be simi-
lar to those at a salinity of 16 (i.e. conditions throughout the
rest of the experiment; electronic supplementary material S3:
figure S3). We, therefore, conclude that the reduced perform-
ance in the applied upwelling event should have been
mainly caused by other factors than cooling or increased
salinity, such as the low oxygen concentrations (3.1 mg l−1)
and acidification (pH 7.4) in the upwelled seawater.

Experiments on the green sea urchin Strongylocentrotus
droebachiensis have shown sublethal impacts of low oxygen
at concentrations between 4.0 and 6.0 mg l−1 [58]. The effect
of acidification on the feeding of A. rubens strongly depends
on the acidification level applied. While feeding is not
affected at an intermediate acidification level (pH = 7.8) and
even shows a positive trend, feeding is negatively affected
at a high acidification level (pH = 7.4; [59]), i.e. pH conditions
registered during the upwelling applied in our study. Apart
from single stress responses, Fontanini et al. [60] demon-
strated that the combination of acidification (pH 7.6) and
hypoxia (2.0–3.5 mg l−1) led to a decrease in metabolic rates
of A. rubens. Similar negative synergistic effects of acidifica-
tion and hypoxia were shown for other echinoderms [61].
Thus, activity and feeding of A. rubens seem to be transiently
impacted during late summer upwelling events [9], most prob-
ably triggered by the acidified and hypoxic conditions in the
seawater, while immediate recovery from such short-term
events seems possible.

As neither acidification nor hypoxia led to mortalities
during the applied upwelling, we conclude that the tested
A. rubens population may generally tolerate moderate and
transient acidification and hypoxia [59,62]. Other starfish
species have also been shown to survive acidified conditions
for up to four months [63] as well as short-term (3 days)
hypoxia [64]. Hu et al. [65] discuss that under acidification,
A. rubens allocates energy to synthesizing proteins to protect
critical physiological processes. Feeding suppression under
acidification (and associated changes in the carbonate system,
e.g. pH, pCO2 and carbonate/aragonite saturation states)
and hypoxia [58,66] (or high critical temperatures) potentially
allows ectotherms such as A. rubens to allocate metabolic sub-
strates (especially oxygen) to essential cellular processes [44].
Furthermore, potentially the lower temperature during the
upwelling caused a lower metabolic rate of A. rubens (see
e.g. Sanford [55]), which could have overall benefitted the
availability of oxygen during the hypoxic conditions of the
upwelling. Yet, while A. rubens appears temporally tolerant
towards acidified and hypoxic conditions, reduced mussel
consumption by the starfish, caused by upwelling (and also
by preceding heatwaves) during summer months, may lead
to severe reduction of starfish energy reserves, possibly
decreasing the probability of long-term (across years) survival
and reproduction [67].

(c) Upwelling or spatial avoidance may provide refuge
from heat stress

As was shown for other species like corals [68] and macro-
phytes [56], low-temperature upwelling might act as a
refuge from heat stress for A. rubens. Therefore, despite the
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transient adverse effects of upwelling, these events may
relieve starfish from intense heat stress (electronic
supplementary material S3: figure S13c). During stressful
upwelling events that follow (or interrupt) marine heatwaves,
the habitable areas for A. rubens, currently in depths of 6.2–
9.4 m (orange area in electronic supplementary material S3:
figure S4b), would shift towards even shallower zones (elec-
tronic supplementary material S3: figure S4c). However, in
the present study, heatwaves reaching the highest tempera-
tures (up to 26°C) were lethal for A. rubens, whereas no
mortality was observed during the applied upwelling event
that entailed realistic multiple changes in abiotic drivers. As
upwelling with acidified and hypoxic conditions leads to
reduced activity, and as these events occur unpredictably
and fast, A. rubens might not be able to move fast enough
to escape such sublethal stress.

Maximum temperatures in surface waters (electronic sup-
plementary material S3: figure S13a) tend to occur at the same
time as minimum pH and oxygen concentrations in bottom
waters (electronic supplementary material S3: figure S13b;
see also [9] for details on the Kiel Fjord). During late
summer, oxygen minimum zones regularly form in deeper
layers of marginal seas like the Gulf of Mexico [69] or the
Baltic Sea [70]. Migrating to these (cooler) waters would,
thus, expose organisms to acidification and hypoxia (electronic
supplementary material S3: figure S4b), which may reduce
organismal functioning (i.e. secondary production and com-
munity maturity: [69]). In the future, more stable seawater
stratification caused by extended warm periods (and heat-
waves) as well as a progressing eutrophication [3,71,72] will
further foster the formation of a distinct acidified and hypoxic
bottom layer. Hence, the size of refuge habitats for mobile
species, like A. rubens, will be reduced in many coastal regions
(electronic supplementary material S3: figure S4b).

(d) Sublethal heatwaves may induce resistance to
upcoming upwelling

Contrary to expectations, starfish during the upwelling event
benefited from the stress experienced previously in the form
of a sublethal marine heatwave. More precisely, the activity
of A. rubens that experienced a previous heatwave was 2.4
(Present-day) or 2.5 (Extended) times higher during the upwel-
ling than that of naive A. rubens not experiencing a heatwave
prior to the upwelling event. This pattern was also visible (as
a strong but insignificant trend, p = 0.065) in recorded feeding
rates of A. rubens (on average 2.5—Present-day—or 2.4—
Extended—times higher, electronic supplementary material
S3: figure S12e). Reductions in feeding rates during the
upwelling event were dramatic and occurred across treat-
ments, potentially masking parts of the differences between
heatwave treatments. In addition, as the period during
which starfish experienced acidified and hypoxic conditions
was short, higher mean feeding rates did not reverse the over-
all pattern of smaller individuals found in the Extended
heatwave treatment. Typically, smaller sized benthic invert-
ebrate taxa are found in areas with regularly occurring
hypoxia [73]. A higher surface-to-volume ratio results in a
larger diffusive boundary layer through which more
oxygen can be acquired in skin-breathing animals like
A. rubens. Therefore, the smaller sized starfish that resulted
from the Extended heatwave could have had an advantage
during the subsequent upwelling. Furthermore, we
qualitatively observed that the starfish’s arms became
longer and thinner during the upwelling event (electronic
supplementary material S3: figure S6a compared to figure
S6b). This morphological change might have affected gas
exchange, a finding that requires further investigation.

Theory suggests that the impacts of upwelling as a sub-
sequent natural stressor could be mitigated to some extent by
a preceding stress event [15,17]. As starfish were of similar
size in the No heatwave and the Present-day heatwave treat-
ments, morphological (size) variation cannot explain the
higher activity (and partly feeding rate) of starfish in heatwave
versus no heatwave treatments (see discussion above). Starfish
previously exposed to heatwaves might have required energy
and therefore fed even during the upwelling event. More
plausibly, acclimation to heatwaves could have caused
physiological and behavioural adjustments that functionally
prepared starfish for the upwelling (i.e. ecological memory or
cross-stress tolerance [15,17]). In particular, cross-stress toler-
ance enables species, after exposure to an initial stressor, to
better tolerate a subsequent stressor of a different nature [16,17].

Several studies have highlighted the role of heat shock pro-
teins (HSPs) in cross-stress tolerance in terrestrial plants and
fish species [74–76]. However, the underlying mechanisms
are not yet fully understood. Potentially, genetic and molecular
modifications are involved. Activation and upregulation of
heat shock factors (e.g. HFS1) and hypoxia-inducible factor
HIF1a lead to an increased expression of HSPs [77–79].
These interactions between HIF1a and HSPs could explain
the cross-stress tolerance between heat and hypoxia [77–79].
HSPs have also been shown to play an essential role in the
response of marine species to acidification (as reviewed by
Yusof et al. [80]). Therefore, the expression of transcription
factors activating HSP genes and, thus, upregulation of
HSPs during heatwaves could have also been beneficial for
the performance of A. rubens in response to the applied
upwelling event.
5. Conclusion
Our work demonstrates that short-term—but extreme—pulse
events can significantly impact marine species. Noteworthy,
the strength of the impact from heatwaves strongly depends
on the amplitude and duration (i.e. overall strength) of the
heatwave event. While upwelling entails multiple changes,
acidification and oxygen deficiency likely represent the primary
drivers reducing A. rubens activity. Consequently, heatwaves
and upwelling will temporally reduce the in situ feeding
pressure of this key predator, A. rubens, on mussel beds [22],
possibly having cascading ecosystem-wide consequences in
the Western Baltic Sea and potentially other temperate regions
of theNorthernAtlantic region [22,81,82]. The successive occur-
rence of stress events of different natures and the concepts of
ecological memory and cross-stress tolerance are theories
already intensively studied in plant ecology (e.g. [16,17]). How-
ever, we are only starting to understand such phenomena in the
marine realm. The present studyhighlights such cross-stress tol-
erance enabling starfish to endure and withstand consecutive
stressors of differing quality (heatwaves versus upwelling)
and to potentially acclimate to changing and fluctuating
environments in the future. Overall, this study demonstrates
the general importance of considering environmental fluctu-
ations in experimental ecology and stresses the necessity for
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evaluating the concomitant effect of extreme events to generate
realistic projections of how marine ecosystems may be
transformed during climate change.
 lsocietypublishing.org/journal/rspb
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