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Introduction

In this supporting information, we develop the continuous equations for strain, gravita-

tional and kinetic energy contributions (Text S1) that are stated in the main manuscript in

sect. 2 and 5. The discretization of the continuity equation of fluid flow is also developed

in Text S2. We provide for a flowchart illustrating the different steps of our numerical

approach in Fig. S1. On Fig. S2 we display the numerical instabilities that rise for low

fracture toughness (see sec. 4 and 5). We present in Tab. S1 the input parameters for the

simulations performed in the Results section (sec. 4). We also provide complementary

results on the fluid flow velocity (Fig. S3) and on the effect of input velocity on the

dissipation energy contributions (Fig. S4). We supply our discussion section (sec. 5) with

a figure of the kinetic energy contribution to the energy release (Fig. S5).

Text S1. Equations for strain, gravitational and kinetic energy contributions.

S1.1 Equations for strain energy contributions.

The strain energy W produced by the system includes the contribution from the

elastic medium and from the compressible fluid. The work Wr performed against the

elastic forces to open a fracture surface Σ by the amount equal to the Burger vector b is

given by:

Wr(Σ) = −1

2

∫
Σ

bi(σ
0
ij + σ1

ij)υidΣ (S1)

with υ the unit normal to the surface Σ and σ0, σ1 the stress tensor acting on Σ before

and after the displacement respectively. In 2D, the elastic energy due to a compressible

fluid Wf undergoing a surface area change is defined by the work performed to compress
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the fluid from the reference area A0 to the area at the considered stage of propagation A:

Wf (A) =

∫ A

A0

P (A)dA (S2)

with P (V ) the pressure change acting on the volume of fluid.

S1.2 Equations for gravitational energy contributions.

The gravity potential G of the system also varies due to the work done to intrude a

mass. The 2D gravitational contribution Gf due to the surficial mass m = ρfA of the

intrusion is given by:

Gf = −
∫
V

ρfgzAdA (S3)

Maccaferri, Bonafede, and Rivalta (2011) have shown that the contribution of the gravi-

tational energy due to the opening of the fracture is negligible.

S1.3 Equations for kinetic energy contributions.

In the crack problem, we consider kinetic energy of both the fluid and the rock. The

kinetic energy of the fluid Ecf is due to the motion of all elementary fluid masses dm

moving through the crack body B at a velocity u such as:

Ecf =
1

2

∫
B
u2dm (S4)

The displacement of all elementary masses dM of rock body C at a velocity ω during

the crack propagation also contributes to the kinetic energy of the system Ecs such as:

Ecs =
1

2

∫
C
ω2dM (S5)

The discrete equations of the strain and gravitational energy contributions are provided

by Maccaferri et al. (2011) (eq. 14 and 15 for respectively Wr and Wf ). We hereafter

describe the discretized equations for the kinetic energy contributions.
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S1.4 Discretized kinetic equations.

At a given propagation step k, the kinetic energy linked to the dislocation element i

depends on the fluid mass m and on the vertical displacement of the fluid, such as :

Ek
cf =

N∑
i=1

[
1

2
ρm · l ·

∫ hk
i

0

(
Uk
i (r)

)2
dr

]
(S6)

with
∫ hk

i

0

(
Uk
i (r)

)2
dr = 6

5
· hk

i · < uk
i >

2 for a Poiseuille flow, we have:

Ek
cf =

3

5
ρm · l ·

N∑
i=1

hk
i < uk

i >
2 (S7)

with < uk
i >= fi

hk
i
.

Similarly to the fluid contribution, we can write the kinetic energy of the rock:

λk
i =

1

2
Mk

i ω
2
i (S8)

where Mk
i = ρr|hk

i − hk−1
i | · l is the mass of rocks displaced by the opening or closing of

the dislocation element i at the propagation step k. ωi is the average velocity at which

the mass Mk
i is displaced, and can be written as the displacement variation |hk

i − hk−1
i |,

divided by the duration of the propagation step ∆tk = l/vk. Therefore:

ωi =
hk
i − hk−1

i

l
vk (S9)

The total kinetic energy of the solid is defined by:

Ek
cs =

1

2
ρr
(vk)2

l

N∑
i=1

|hk
i − hk−1

i |3 (S10)

Between two propagation steps, the variations of kinetic energies can be written as: ∆Ecf = Ek
cf − Ek−1

cf

∆Ecs = Ek
cs − Ek−1

cs

(S11)

And it follows that the total contribution of kinetic energies ∆Ec (Fig. S3) is given by:

∆Ec = ∆Ecf +∆Ecs (S12)
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Text S2. Discretizing continuity equation of incompressible fluid flow.

For an incompressible fluid flow, eq. 5 can be written as:

∂h(s, t)

∂t
= −∂f(s, t)

∂s
(S13)

Integrating eq. S13 over time from t to t + ∆t and over the curvilinear abscissa from s

to s+ ds provides the fluid flow at a dislocation element i between two propagation steps

k − 1 to k, such that:

hk
i − hk−1

i

∆t
= −

f top
i − f top

i−1

l
(S14)

where l = ds being the dislocation length. It follows that,

f top
i = −f top

i−1 − l · h
k
i − hk−1

i

∆t
(S15)

Introducing the volume variations associated with each dislocation element during ∆t (eq.

14) leads to:

f top
i = −f top

i−1 − ∆Vi

∆t
= − 1

∆t
Σi

j=1∆Vj
(S16)
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Figure S1. Flowchart of the numerical approach. Diagram representing the different

steps of the numerical approach described in this study. The numerical approach stops either

when the crack tip has reached a prescribed depth (z = zstop), or when the number of propagation

steps has reached a prescribed value (k = kiter).
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Figure S2. Numerical instabilities. Velocity of propagation as function of dimensionless

time (eq. 4 from Spence & Turcotte, 1990) for simulations with identical parameters as in Fig.

2 and for low energy threshold: Ef= 5, 4.8, 4.6 MPa·m in red, cyan and blue respectively.

Figure S3. Fluid velocity. Comparison between the average Poiseuille fluid flow velocity

estimated at the center of each dislocation element using eq. 18 (continuous lines) and the crack

propagation velocity (colored circles) at different propagation steps for our reference case (first

row of Tab. S1).
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Table S1. Parameters for all the simulations performed in sec. 4.2 and 4.3: rigidity

(µ), rock density (ρr), magma density (ρm), viscosity (η), compressibility (K), input velocity

(v0), depth (z), cross-sectional area (A0), dislocation length (l), initial dyke length (L), fracture

energy (Ef ), fracture toughness (Kc) and mean velocity (vmean). The red numbers indicate the

range of parameters that were used in the simulations for the parametric analysis (sec. 4.3)

compared with the reference case. Kc is deduced from eq. 6 and vmean is the average dyke

velocity excluding the initial phase of crack growth and the final acceleration due to the free

surface (for 0.9< z∗ <0.1).
µ ρr ρm η K vi z A0 l L Ef Kc vmean

(GPa) (kg/m3) (kg/m3) (Pa.s) (GPa) (m/s) (km) (km2) (km) (km) (MPa.m) (MPa.m1/2) (m/s)
20 3000 2700 100 20 [0.55-5.3315] 10 0.009 [0.025-0.1] [6-7.4] [4.6;24] [495;1131] [2.42;0.121]
20 3000 2700 [1;10000] 20 1.0 10 0.009 0.05 7.4 12 800 [124;0.01]
20 3000 2700 100 10 0.01 10 0.009 0.05 7.4 12 800 0.38

[5;30] 3000 2700 100 20 1.0 10 0.009 0.05 7.4 12 [400;980] [3.75;0.94]
20 3000 2700 100 20 1.0 10 [0.005;0.012] 0.05 7.4 12 800 [0.11;2.44]
20 3000 2700 100 20 [0.8;1.9] 10 0.009 0.05 7.4 12 [800] 1.24
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Figure S4. Effect of input velocity on energy contributions. Evolution of viscous

dissipation contribution with respect to the total energy produced by the system, for magmatic

intrusions ascending below the surface. z∗ is the depth of the crack tip normalized by the initial

depth for numerical simulations. Influence of the input velocity for a given set of parameters

with fixed Ef=12 MPa.m (the sixth row in Tab. S1) corresponding to a Kc=800 MPa.m1/2 as

indicated at the bottom of the graph, along with the mean velocity of propagation estimated

along the ”constant part” of the propagation (defined by the grey domain).
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Figure S5. Magma and rock kinetic energy variations. a) Evolution of kinetic energy

variations between two propagation steps due to the magma propagation ∆Ecf (colored circles)

and to the opening and closure of the medium ∆Ecs (red dots) as defined by eq. S11. b) Evolution

of the energy release ∆E (see sect. 2.4) between two propagation steps for the reference case

(see Tab. S1, colored circles), and accounting for the kinectic energy variations ∆Ecs (eq. S12,

red dots).

February 10, 2023, 12:22pm


