
Automated Identification of Performance Changes at Code Level

David Georg Reichelt1,2,∗, Stefan Kühne1, and Wilhelm Hasselbring3
1Universität Leipzig, Leipzig, Saxony, Germany, 2Lancaster University Leipzig, Leipzig, Saxony, Germany,

3Christian-Albrechts-Universität zu Kiel, Kiel, Schleswig-Holstein, Germany
d.g.reichelt@lancaster.ac.uk, stefan.kuehne@uni-leipzig.de, hasselbring@email.uni-kiel.de

*corresponding author

Abstract—To develop software with optimal performance, even
small performance changes need to be identified. Identifying
performance changes is challenging since the performance of
software is influenced by non-deterministic factors. Therefore,
not every performance change is measurable with reasonable
effort. In this work, we discuss which performance changes are
measurable at code level with reasonable measurement effort
and how to identify them. We present (1) an analysis of the
boundaries of measuring performance changes, (2) an approach
for determining a configuration for reproducible performance
change identification, and (3) an evaluation comparing of how
well our approach is able to identify performance changes in the
application server Jetty compared with the usage of Jetty’s own
performance regression benchmarks.
Thereby, we find (1) that small performance differences are only
measurable by fine-grained measurement workloads, (2) that
performance changes caused by the change of one operation can
be identified using a unit-test-sized workload definition and a
suitable configuration, and (3) that using our approach identifies
small performance regressions more efficiently than using Jetty’s
performance regression benchmarks.

Keywords—software performance engineering; performance
measurement; benchmarking

I. INTRODUCTION

During development and maintenance of software, we often
intend to assure that the application performance is optimal.
Regardless of whether we strive for optimality regarding re-
sponse time or resource usage, optimal performance behavior
requires efficient implementations at source code level. More
efficient implementations at code level differ from less efficient
implementations in terms of the selection of algorithms, defi-
nition of data structures and usage of library APIs. To assure
that the software created by a changing code base contains
efficient implementations at code level, we need to detect
performance changes caused by code changes. Since active
software projects create several commits a day and developers
do not remember the details of old commits, performance
changes should be detected by measurement at least daily. This
makes it possible to understand whether optimizations have the
positive effect the developers expected and to fix regressions
whenever possible. The detection of performance changes us-
ing code level measurement1 is challenging since performance

1The term code level measurement in this paper refers to the measurement
by execution of both, workload inducing and measurement code, inside the
program itself (as mostly done by benchmarks). Code level measurement
mostly aims at comparing implementations of code inside one module. The
opposite is architecture level measurement, which is done by load tests and
monitoring. Architecture-level measurement mostly aims for comparing the
effects of architectural or deployment decisions.

measurements are influenced by non-deterministic factors like
Just-In-Time-Compilation of virtual machines2 (VMs), mem-
ory fragmentation on program start and CPU scaling [17].
While these effects are similiar in different types of virtual
machines,3 we describe how to measure performance changes
in the Java Virtual Machine (JVM).

Due to these non-deterministic effects, performance changes
can only be identified with some uncertainty. Since we only
have limited measurement resources available, especially if
we want to identify the performance changes of a day, it is
only possible to identify performance changes of a certain
size. Therefore, we discuss how the relation between the size
of a performance change in terms of measured run time and
the standard deviation of measurements affects the required
number of measurements. We find that performance changes
are only measurable with reasonable effort if the relative size
of a change is at least half the standard deviation. Therefore,
if our test case has a run time of one second and the standard
deviation is 0.1 s (10 %), a change of 0.01 s (1 %) is not
measurable with reasonable effort.

This implies that detecting small performance changes–i.e.
performance changes that are measurable at code level–using
load tests of the whole application is not possible. While
load tests and coarse-grained monitoring are sufficient for
the detection of performance problems that are rooted at the
architecture or deployment level, the detection of performance
changes at the code level requires finer-grained measurement
workloads. Since performance changes at the code level are
hardly measurable by load tests, a performance change at
code level might not influence the perceived performance
significantly. Nevertheless, many of those changes might pile
up and change the performance behavior of the software.
Therefore, understanding them is a huge benefit when striving
for optimal application performance.

Creating and maintaining smaller benchmarks requires sig-
nificant development effort. One option to create smaller
benchmarks without significant development effort is the au-
tomated transformation of existing unit tests. This approach
is pursued by several authors [34], [15], [9]. In our previous
work [34], we developed the Peass approach, which measures

2In this paper, virtual machines refer to the runtime environment making
bytecode portable on different plattforms, e.g. the JVM or the .NET runtime.
It does not relate to the term virtual machines as used in virtualization of
operating systems.

3For example in Javascript [38], Pharo [2] and the .NET-Runtime [32],
similiar measurement processes are used. Compiled or solely interpreted
languages use different measurement processes.

ar
X

iv
:2

30
3.

14
25

6v
1

 [
cs

.S
E

]
 2

4
M

ar
 2

02
3

performance changes of unit tests and contains a regression
test selection for measurement speedup and a root cause anal-
ysis. In this work, we ground the performance measurement
of Peass, which is the most crucial part, through a statistical
analysis of measurability of performance changes.

To be able to identify performance regressions in unit-test-
sized workloads, we answer the research question (RQ I):
How can performance changes be identified at code level?
We find that, for unit-test-sized workloads running in the
JVM, small performance changes can only be identified with
a certain minimum parameters, e.g. if at least 30 VM starts
are executed. The parallelized execution of one VM start for
both versions does not hinder the identification of performance
changes. The parameters and the decision whether to start
VMs in parallel might need adaption for workloads that differ
in size or resource demand.

To evaluate the effectiveness of the measurement of per-
formance changes at code level by transformed unit tests,
we address research question (RQ II): Which share of per-
formance changes can be identified by measuring the unit
test performance and by existing performance regression
benchmarks? This is accomplished via injection of artificial
performance regressions into the Jetty application server. We
find that 58.7 % of the changes are identified by measuring
the transformed unit tests and that 3.2 % of the changes are
identified by Jetty’s performance regression benchmarks, i.e.
that unit test measurement is able to identify more performance
regressions than existing benchmarks.

The remainder of this paper is organized as follows: First,
we describe the boundaries of performance change detection
in Section II. In Section III, we discuss the configuration
of performance change detection. The described method for
automated performance change identification is evaluated in
Section IV. In Section V, we discuss related work. Finally, in
Section VI we give a summary and outlook.

II. BOUNDARIES OF DETECTING PERFORMANCE
CHANGES

In this section, we describe the general process for per-
formance measurement in managed runtimes like Java. Af-
terwards, we determine the typical relative standard deviation
of performance measurement workloads and infer statistical
boundaries of performance change detection.

A. General Process

The measurement of the performance of a software is
influenced by non-deterministic factors. At the hardware and
operating system level, these factors include (1) memory
fragmentation on program start, (2) CPU scaling and temper-
ature during execution and (3) parallel processes in operating
systems, e.g. checks for updates.

Inside VMs, the non-deterministic factors influencing per-
formance additionally include (1) garbage collections, oc-
curring in a non-foreseeable manner and slowing down the
program, (2) thread scheduling, eventually choosing different
execution orders in different VM starts and (3) just-in-time

compilations and optimization. Just-in-time compilation and
optimizations can influence long-term performance due to the
different states the compilation and optimization may end up
in [17].

To measure performance with statistical rigor, Georges et
al. [17] recommend to run several VM starts (VMs4). These
VM executions contain reruns of the workload. These reruns
are split into two parts: The initial runs to warm up a VM
(warmup5 iterations) and the reruns inside this VM for the
measurement (iterations). Afterwards, they propose to com-
pare measurement results using comparison of the confidence
intervals of the mean values of the measurement iterations.

For practical execution of performance benchmarks there
exists a variety of tools, including JMH6, JUnitPerf7 and
JUnitBench.8 These tools provide default parameters and give
the user the option to specify the VM count and the length
of warmup and measurement iterations. This length might be
specified in terms of workload executions or measurement
duration depending on the tool.

To reduce the monitoring overhead, some monitoring tools
repeat the workload inside of one iteration, e.g. JMH repeats
the workload for a given time. Therefore, we split the workload
execution inside of one VM in two steps: For iteration times,
we measure the start time, execute the workload repetitions
times and measure the iteration end time. Subsequently, we
calculate the duration per repetition by dividing the average
difference of start and end time by the count of repetitions.
This reduces measurement overhead and increases accuracy
of the measured values. Figure 1 summarizes the described
measurement process.

Execution
Workload

Measure
Start

Measure
End

RepetitionWarmup
Warmup
Iterations

Execution
Workload

Measure
Start

Measure
Ende

RepetitionMeasurement
Measurement

Iterations

VM Start

VMs

Figure 1. General Measurement Process

4In parts of the literature and tools, e.g. JMH, these VM starts are called
forks. We use the terminology of Georges et al. [17] and call the count of the
VM starts for measurement VMs.

5To avoid late optimization of the measurement code itself, measurements
are also executed during the warmup and discared afterwards.

6Source of JMH: https://github.com/openjdk/jmh
7Source of JUnitPerf: https://github.com/clarkware/junitperf
8Source of JUnitBench: https://github.com/tpounds/junitbench

https://github.com/openjdk/jmh
https://github.com/clarkware/junitperf
https://github.com/tpounds/junitbench

B. Standard Deviation of Workloads

To detect a performance change in a software, we need
to measure the performance of a defined workload in the
two examined versions and infer whether there has been a
performance change. This can be done using load tests, which
measure the performance of the whole application or the
performance of exposed technical interfaces, e.g., by sending
HTTP requests. Alternatively, performance measurement can
be done using benchmarks, which may exercise source code of
whole components or of smaller parts of the software. Due to
the aforementioned non-determinism, performance measure-
ments are subject to deviations. These deviations vary with
the size of the workload in terms of execution duration, which
implies that it is harder to detect a small performance change
by a load test, which measures the overall software, than by
a benchmark only measuring a small part of the software. In
this subsection, we determine the relative standard deviation
of such benchmarks or load tests. Since the duration cannot
be derived statically, we determine the standard deviation in
relation to the call count of equally sized method executions.

To determine the standard deviation of real workloads,
representative workloads for software are required that use
different parts of the system. Therefore, we use the following
three workload types with the size s: (1) Addition of s
random numbers, (Add-workload) (2) Reservation of s arrays
consisting of 3 int s and (3) Generating s random numbers
and printing them to System.out. These workload types have
already been used in our previous work for performance
measurement calibration [33]. They are used because they
utilize parts of the hardware which may have different charac-
teristics regarding performance, e. g. RAM-intense workloads
may have different standard deviation or warmup duration
than CPU-intense workload. Since hard disk interaction is
influenced by other factors, such as write buffers and specifics
of the particular hard disk, we omit hard disk usage workloads.

We executed all presented measurements in this paper, if not
otherwise specified, on i7-4770 CPU with 3.40 GHz, 16 GB
RAM, Ubuntu 20.04 and OpenJDK 1.8.0 275 (defaulting to
25 % heap of RAM size, i.e. 4 GB). For the chosen workloads,
the standard deviation of different workload sizes is depicted in
Figure 2.9 The RAMTest could not be executed on more than
1,000,000 executions because of an OutOfMemoryError. This
shows that the relative standard deviation σ/µ stays between
0.1 % and 1 % when the workload size is varying, except for
very small workload sizes. For these small worload sizes, the
relative standard deviation is below 4 %.

C. Statistical Boundaries of Detecting Changes

The boundaries of detection of performance changes are
determined by the population effect size γ and the count of
VM measurements: A bigger performance change is easier
to measure and if we repeat the measurement more often,
changes are identified with higher precision.

9Data are available in size−evolution . tar in https://zenodo.org/record/
6427379#.YnKUbVxBxhE

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

1 10 100 1,000 10,000 100,000 1x106 1x107

R
e
la

ti
v
e
 D

e
v
ia

ti
o
n

Workload Size

AddTest
RAMTest

SysoutTest

Figure 2. Evolution of the Relative and Absolute Standard Deviation with
Workload Size Increase

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

Ty
p

e
 I
I
e
rr

o
r

VMs

γ=0.1
γ=0.2
γ=0.5
γ=1

Figure 3. Evolution of the Type II error with Count of VM Starts (Significance
99 %)

Given measurements from two distributions representing
two versions of software X and Y and the pooled standard
deviation σS , the population effect size is γ = µX−µY

σS
, i.e.

the effect size our experiment would converge to. Since the
relative standard deviation of workloads does not decrease
with increasing workload size, the population effect size is
smaller for big workloads if the same absolute changes appear.

The relation of effect size γ, sample size (in our case:
count of VM starts VMs), Type I error α (the limiting value
the false positive rate converges against) and Type II error β
(the limiting value the false negative rate converges against)
is well-known [11]. The Type II error for two-sided tests
is determined by uz1−β = γ ∗

√
VMs/2 − z1−α/2. We

assume that the Type I error should be below 1 %, i.e. we
do not allow more than one false positive measurements in
100 measurements. Based on the population effect size, we
can therefore derive the Type II errors depicted in Figure 3.
While analyzing performance measurements with a difference
bigger than standard deviation (γ ≥ 1) results in a low Type II
error with a low count of VMs, measuring differences smaller
than the standard deviation (γ < 1) requires many VMs.

a) Example: If in a workload consisting of 1,000 equal
sized method calls ten calls are added, the performance
changes by ≈0.5 %. 30 VMs are considered as a large sample
size [17]. If we use 30 VMs, the change of 0.5 % (with 0.5 %

https://zenodo.org/record/6427379#.YnKUbVxBxhE
https://zenodo.org/record/6427379#.YnKUbVxBxhE

relative standard deviation, γ = 1) is measurable with Type II
error of 9.73 % (yellow curve, 30 VMs). Missing every 10th
performance change is not acceptable. If we use 50 VMs
instead, the Type II error is 0.76 %, which is acceptable. If only
one operation is added, the performance changes by ≈0.1 %,
the effect size is γ = 0.2, which would result in a Type II
error of 94.2 % for 50 VMs, i.e. the change not detected in 19
out of 20 measurements.

b) Implications: We intend to keep our Type II below
1 %, since we also do not accept more than one false negative
in 100 measurements. With this prerequisites, we need to
execute a sufficient count of VMs, which depends on our
population effect size γ. VM executions for a workload size
of 1,000 take at least 97 seconds in our measurements, if
we use 10,000,000 repetitions of the workload. Usually, when
comparing the performance of fine-grained tests, measurement
is not allowed to take more than half a day; otherwise,
the developers would not get fast enough feedback to fix
performance regressions for their commits on the next day.
Therefore, executing more than ≈ 891 VMs (= 12∗60∗60/97)
would not be feasible for those workloads. For bigger work-
loads, even fewer VM executions are possible.

Due to the limited number of available VM executions for
regular measurements and our requirements regarding Type I
and Type II error, only performance changes with a certain
size are measurable. Depending on the execution time, this
amount of possible VM executions might vary. Nevertheless,
an effect size of γ = 0.1, which would require 4,808 VM
executions, cannot be measured with feasible effort, while
an effect size of γ = 0.5 will be measurable under most
circumstances. Therefore, for detecting small performance
changes, fine-grained measurement data are needed. A top-
level measurement of the performance of a load test or a
benchmark covering a big workload is not sufficient. Also, the
use of monitoring frameworks like OpenTelemetry10 or Kieker
[19] will only be able to detect small performance changes if
the duration of small workloads is measured. Therefore, for
identification of performance changes outside of production
environments, small workload definitions are required.

III. DETECTION OF PERFORMANCE CHANGES

In this section, we answer RQ I by describing our method
for the detection of performance changes. In the first sub-
section, we describe our approach for configuration of the
performance measurement. For our approach, we need typical
workload sizes; the determination of these workload sizes is
described in the second subsection. In the third subsection, we
describe our obtained measurement configuration.

A. Approach

For the examination of performance changes at code level,
fine-grained measurements are needed. Following the unit
test assumption, “the performance of relevant use cases of a
program correlates with the performance of at least a part

10https://opentelemetry.io/

of its unit tests, if the performance is not driven mainly by
external factors” [33]. Therefore, the workloads of some unit
tests can be used for identification of performance changes at
code level.

This does not apply to all unit tests, e.g. some tests might
measure corner cases and therefore not be representative of
typical interactions with the defined interface. Therefore, some
filtering of the tests needs to be done. This could happen
based on monitoring data of production systems that contain
execution traces. Unit tests, that only test corner cases, would
call methods that are rare in the execution traces. This work
focuses on the measurement process, hence the filtering is out
of scope of this work. Accordingly, the measurement configu-
ration we obtain can be used for unit test sized workloads not
using external calls, like calls to temporary databases, having
the same order of magnitude of their workloads size.

To compare different configurations, we first describe the
possible configurations and afterwards the method for deter-
mination of the F1-score of each configuration. Finally, we
describe how we select the best configuration based on the
F1-scores.

a) Configurations: To measure performance changes by
workloads of unit tests, the unit tests need to be transformed
to contain measurement iterations inside of each started VM.
Afterwards, different configurations need to be set, including
measurement parametrization, the technical measurement en-
vironment and the configuration of the analysis.

Measurement Parametrization: Which iteration and VM
count should be used, how often the workload should be
repeated between measurement start and stop and whether
garbage collection should be triggered between two iterations.

Technical Measurement Environment: In which technical
environment the measurement process should be started, e.g.
whether measurement can be parallelized on the same machine
or whether standard output may be ignored.

Analysis Configuration: Which analysis configuration
should be used. This includes which statistical test should
be used, e.g. t-test, confidence interval comparison or Mann-
Whitney-test, how it should be parameterized (e.g. significance
level) and what preprocessing steps should be done (i.e.
whether to execute outlier removal).

b) F1-Score Determination: The accuracy of change
identification is measured by the F1-score, i.e. the harmonic
mean of precision (true positive / (true positive + false
positive)) and recall (true positive / (true positive + false
negative); 100 % means that all performance changes are
detected correctly and 0 % means that no performance change
was detected correctly.

For determination of the F1-score of a performance mea-
surement and analysis method, we need workloads where we
can control the effect size of the change. Since the already
described workloads of [33] allow the specification of the
workload size, we reuse them. We execute each artificial
workload with the sizes s and s+d, the configuration we intend
to examine, and the maximum of measurement iterations and
VM starts we want to examine. Afterwards, we check for given

iteration counts i and VM start counts v to how well they
identify the performance change.

For each configuration with v VMs and i iterations, we
randomly sample v VMs and select the first i iterations
(1) from both measurements of both versions and check
whether the performance change is identified correctly, and,
(2) from measurements of first version and check whether
the equal performance is correctly identified. The sampling
and analysis is repeated 10,000 times, so our F1-score can be
calculated from true and false positives. Based on the F1-
score and measurement duration, we select the appropriate
measurement method.

c) Selection of Best Configuration: When comparing
different measurement configurations and statistical tests, we
want an F1-score of at least 99 %. While increasing the VM
count always increases the F1-score, the same does not hold
for the iteration count. More iterations may result in more
or different optimizations or compilations done by the JVM
during the execution. The optimizations, the compilations, or
the optimization and compilation processes themself might
lead to a (temporarily) higher standard deviation, which de-
creases the F1-score. To obtain the warmed-up performance,
the measurement needs to be repeated until no decreased F1-
score is appearing due to higher iteration count.

Furthermore, the execution duration for the measurement is
also crucial. Given the same product iteration ∗ repetition,
i.e. same overall execution count, higher repetition counts
result in lower execution times. Therefore, we search for the
lowest VM and iteration∗repetition count combination with
the following properties: 1) We want at maximum one false
positive or one false negative for 100 measurements, so the
F1-score should be at least 99 %. 2) An increase in iteration
count should not lead to a reduction of the F1 score, so we do
not mistakenly classify optimization or compilation influences
for performance changes. 3) If two parameter combinations
meet both requirements, the combination with higher repetition
count is used.

B. Workload Size

The artifical workloads require a specification of the work-
load size, i.e. the count of operations that should be executed.
To determine the relevant workload size, we use the typical
size of unit tests in terms of lines of code (excluding non-
statement code, e.g. comments) as a proxy.

To identify the typical size of unit tests, we gather the
workload sizes of Apache Commons projects. Those projects
are created to supply reusable Java components for different
purposes. Due to their widespread use and big user community,
they are a representative example of high quality source code,
and therefore we use their typical unit test size.

Figure 4 shows the count of method calls of unit tests.11

The median of the count of method calls is 126 and the av-
erage method contains 2.29 lines excluding comments, getter
calls, setter calls, empty lines and non-statement lines like

11Dataset: https://doi.org/10.5281/zenodo.6517822

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

Fr
e
q

u
e
n
cy

Count of Calls

Count of Calls

Figure 4. Operation Call Counts of Unit Tests

return and break. The average method line count of 2.29 is
consistent with the recommendation of making methods as
small as possible for clean code [28]. We therefore make the
simplifying assumption that a workload size of 300 method
calls is a suitable proxy for measuring real world performance
changes at code level.

Performance changes at code level might cause different
performance change sizes in production, since most methods
are called more often in production than in the unit test. A
minor performance change at code level might therefore cause
a major performance change in production. Therefore, we aim
for identification of as small performance changes as possible
with feasible effort. For the typical unit test size of 300 method
calls, the smallest possible performance change is a change of
one statement, i.e. a change of 0.3̄%. This should be detected
by our measurement configuration.

C. Measurement Configuration

In the following, we exemplarily describe two parts of the
configuration: How to choose VM and execution count (part
of the measurement parametrization), whether to parallelize
the measurements (part of the technical measurement environ-
ment) and whether to remove outliers (part of the analysis
configuration). Finally, we discuss the generalizability of our
configuration. Our dataset is available.12

a) Parametrization: To identify performance changes
reliably, we need to choose the warmup iteration, measurement
iteration, repetition and VM count. Since warmup can not
be clearly distinguished from warmed up state by statistical
methods [4], we always use the same count of warmup
and measurement iterations. The same product repetitions ∗
iterations implies the same overall workload executions.
For every VM, iteration measurement values are taken.
Figure 5 shows the average F1-score of all workload types for
different iteration, repetition and VM counts using t-test like
recommended by [33]. Since we only want 1 % false positives,
we set the significance level of the t-test to 99 %.

12Dataset: https://doi.org/10.5281/zenodo.6427379

https://doi.org/10.5281/zenodo.6517822
https://doi.org/10.5281/zenodo.6427379

0

10,000

20,000

30,000

40,000

50,000

0 200 400 600 800 1.000

It
e
ra

ti
o
n
s

VMs

100 Repetitions

0

1,000

2,000

3,000

4,000

5,000

0 200 400 600 800 1.000

VMs

1,000 Repetitions

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1.000

VMs

10,000 Repetitions

 0

 10

 20

 30

 40

 50

0 200 400 600 800 1.000

VMs

100,000 Repetitions

 0

 1

 2

 3

 4

 5

0 200 400 600 800 1.000

VMs

1,000,000 Repetitions

 0

 20

 40

 60

 80

 100

F 1
-s

co
re

Figure 5. Average F1-score with T-Test

0

10,000

20,000

30,000

40,000

50,000

0 200 400 600 800 1,000

It
e
ra

ti
o
n
s

VMs

100 Repetitions

0

1,000

2,000

3,000

4,000

5,000

0 200 400 600 800 1,000

VMs

1,000 Repetitions

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1,000

VMs

10,000 Repetitions

 0

 10

 20

 30

 40

 50

0 200 400 600 800 1,000

VMs

100.000 Repetitions

 0

 1

 2

 3

 4

 5

0 200 400 600 800 1,000

VMs

1,000,000 Repetitions

 0

 20

 40

 60

 80

 100

F 1
-s

co
re

Figure 6. Average F1-score with Confidence Interval Comparison

0

10,000

20,000

30,000

40,000

50,000

0 200 400 600 800 1,000

It
e
ra

ti
o
n
s

VMs

100 Repetitions

0

1,000

2,000

3,000

4,000

5,000

0 200 400 600 800 1,000

VMs

1,000 Repetitions

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1,000

VMs

10,000 Repetitions

 0

 10

 20

 30

 40

 50

0 200 400 600 800 1,000

VMs

100.000 Repetitions

 0

 1

 2

 3

 4

 5

0 200 400 600 800 1,000

VMs

1,000,000 Repetitions

 0

 20

 40

 60

 80

 100

F 1
-s

co
re

Figure 7. Average F1-score with Mann-Whitney-Test

 0

 10

 20

 30

 40

 50

0 200 400 600 800 1,000

It
e
ra

ti
o
n
s

VMs

Sequential

 0

 20

 40

 60

 80

 100

F 1
-s

co
re

 0

 10

 20

 30

 40

 50

0 200 400 600 800 1,000

It
e
ra

ti
o
n
s

VMs

Parallel

 0

 20

 40

 60

 80

 100

F 1
-s

co
re

Figure 8. Heatmap of Sequential and Parallel Measurement

The F1-score is not only influenced by the measurement

configuration, but also by the statisti-
cal test. Additionally to t-test, we used
confidence interval comparison like rec-
ommended by literature [17], [24], and
Mann-Whitney-test like recommended
by literature [14], [16]. Figure 6 and Fig-
ure 7 show the average F1-score for con-
fidence interval comparison and Mann-
Whitney-test. Comparing the heatmaps
of the different tests shows that the
Mann-Whitney-test is most efficient in
identifying correct performance changes
in the described setup. Based on auto-
matic analysis of the F1-scores, 100,000
repetitions, 40 VMs and 70 iterations us-
ing the Mann-Whitney-test is a lower
boundary for reliable identification of
performance changes of 0.3 % for our
workload types. We therefore use this
as a base for further measurements. For
our workloads, the measurement takes
68.7 minutes on average. For bigger
workloads, the measurement time might
increase. For measuring workloads with
a size of 300, triggering garbage col-
lection increases the execution duration
by a factor of 50, but does not signif-
icantly decrease the standard deviation.
Therefore, we do not execute garbage
collection between the iterations.

b) Parallelization: Parallelizing performance measure-
ments increases measurement accuracy in cloud environments
[6]. Since unit-test-sized performance benchmarks often con-
tain sequential workloads to examine which algorithm or JVM
feature usage is faster, parallelization is likely to not reduce
accuracy for our performance measurement. We executed
the measurement of sequential and parallel execution of the
workloads for 100,000 repetitions and performed the Mann-
Whitney-test. Figure 8 shows the results. It shows that paral-
lelization further increases the F1-score for all workload types.
By automated analysis of the F1-scores, we find that 30 VMs
and 49 iterations using 100,000 repetitions and the Mann-
Whitney-test is a lower boundary for reliable identification of
performance changes of 0.3 % for our workload types. This
measurement takes on average 22.8 minutes.

c) Outlier Removal: Figure 9 shows the histogram of
VM means of Add workload measurements with 100,000
repetitions. Besides the expected measurement values, which
vary around 1,217 ms, we see some outliers. Since these may
change the mean and standard deviation heavily, and these
are the main input values for the t-test, we check whether
removal of the outliers improves the measurement results. We
choose to remove outliers by the Z-score. The Z-score of a
measurement value v in a distribution X is Z = v−µX

σX
, i.e.

the Z-score shows how many standard deviations the point is
away from the mean value. The outlier removal is done when

a measurement value v has a Z-score above 3.29, so 99.9 % of
values drawn from a Gaussian distribution are not considered
outliers. Our analysis shows that removal of the outlier does
not increase the F1-score significantly for our measurement
configuration. Therefore, we decided to not remove outliers
by default.

 1

 10

 100

 1000

 1180 1220 1260 1300

O
cc

u
re

n
ce

s

Duration / ms

Raw Data

 1216 1217 1218 1219

Duration / ms

No Outliers

Figure 9. Histogram of Add Durations

d) Generalizability: Since we chose typical workloads,
a widely used JVM and typical execution hardware, we
assume that our measurement process configuration will be
applicable in many cases. Still, for different workload types,
workload combinations, JVM implementations or measure-
ment hardware, our findings may not hold and the process
of parametrization might need to be repeated. This can be
done by adding workloads to our repository and/or repeating
our measurements on different soft- and hardware environment
and repeating the analysis process.13

IV. EVALUATION

Our approach aims for identification of performance
changes. For the evaluation of our approach, we answer RQ II:
Which share of performance changes at code level can be
identified by Peass and by existing performance regression
benchmarks? In this section, we describe our approach for
answering this question, present our results and discuss threats
to validity.

A. Approach

To compare Peass to the usage of existing benchmarks, a test
set with source code repositories of projects, a list of the com-
mits which caused performance changes and the root causes
of these changes would be ideal. Often, projects maintaining
benchmarks only execute them occasionally, e.g. per release,
and even if measurement results are present, information about
regressions are not saved systematically. Therefore, such a
test set unfortunately does not exist. Consequently, we use an
existing software and inject performance regressions randomly
into the source code.

The software we use for evaluation needs to contain unit
tests and performance benchmarks and it needs to be a soft-
ware where performance at code level is relevant. Additionally,
it needs to be technically suitable for our prototype and
therefore be written in Java, versioned by git and contain

13Repository: https://github.com/DaGeRe/precision-experiments The calls
for the scripts of this paper are described in the dataset.

JUnit tests. Since this applies to the widely used application
server Jetty,14 we use it for our evaluation. Realistic source
code changes that introduce performance regressions could
only be created manually, hence we chose to generate artificial
regressions by randomly inserting busy waiting into the source
code.15

a) Implementation: We generated 1,000 Jetty-commits
containing individual regressions.16 Each commit is inserted
into an individual branch after the latest commit. To create a
regression, we randomly selected a method which is called by
a randomly selected benchmark. In the selected node, we insert
busy waiting of 5 ns, which will under most circumstances
be only two calls to System.nanoTime. The call tree is dis-
covered by the application monitoring framework Kieker and
Javaparser. Afterwards, we execute both–the benchmarks and
our configuration of Peass–in order to identify the introduced
performance regressions.

In our analyzed commit b56edf, the benchmark
TrieBenchmark fails because parts of the trie variant
TernaryTrie are not implemented. Therefore, we skip the
fail on error (−foe) flag that is set in the default execution
definition and only run the benchmarks that finish properly.
The experiments have been done on a cluster with Intel Xeon
E5-2620 @ 2,4 GHz, CentOS 7.9.2009, 128 GB RAM and
Java 11.0.10 (defaulting to 25% heap of RAM heap size, i.e.
32 GB). Our raw results are available.17

B. Results

By the analysis of our results, we can deduce the degree by
which the existing benchmarks and our configuration of Peass
are able to identify performance regressions.

a) Using existing Benchmarks: We executed the existing
benchmarks, which are written using the benchmarking frame-
work JMH18 and configured by a Jenkinsfile, for all regres-
sions. The jetty developers themselves seem to run them only
occassionally and not on the Eclipse Jetty Jenkins instance19.
Only 3.2 % of the regressions have been detected by the
benchmarks, if we compare their measurement results using
two-sided t-test with 99 % confidence interval in the default
benchmark configuration. All benchmarks take approximately
5 hours for execution; therefore, increasing the count of VM
executions for each benchmark is costly. It is very likely
that increasing the VM count would help to identify more
performance regressions.

14https://github.com/eclipse/jetty.project
15Regression insert and analysis source code is available: https://github.

com/DaGeRe/jetty-evaluation
16Example regression: https://github.com/DaGeRe/jetty-experiments/

commit/dcc18d5d880553abe8eeb9b03bac18b72e88c8df#
diff-2c090bafe6fd7ec37872df5d0710caa55d2a6593190e6c8fc3df8eda31566d47R191
The regression is in jetty-util/src/main/java/org/eclipse/jetty/util/thread/
ReservedThreadExecutor.java in the method tryExecute

17Dataset of Jetty Performance Measurement Evaluation: https://zenodo.
org/record/6321211#.Yh-NBhu1JaY

18http://openjdk.java.net/projects/code-tools/jmh/
19https://ci.eclipse.org/jetty/

https://github.com/DaGeRe/precision-experiments
https://github.com/eclipse/jetty.project
https://github.com/DaGeRe/jetty-evaluation
https://github.com/DaGeRe/jetty-evaluation
https://github.com/DaGeRe/jetty-experiments/commit/dcc18d5d880553abe8eeb9b03bac18b72e88c8df#diff-2c090bafe6fd7ec37872df5d0710caa55d2a6593190e6c8fc3df8eda31566d47R191
https://github.com/DaGeRe/jetty-experiments/commit/dcc18d5d880553abe8eeb9b03bac18b72e88c8df#diff-2c090bafe6fd7ec37872df5d0710caa55d2a6593190e6c8fc3df8eda31566d47R191
https://github.com/DaGeRe/jetty-experiments/commit/dcc18d5d880553abe8eeb9b03bac18b72e88c8df#diff-2c090bafe6fd7ec37872df5d0710caa55d2a6593190e6c8fc3df8eda31566d47R191
https://zenodo.org/record/6321211#.Yh-NBhu1JaY
https://zenodo.org/record/6321211#.Yh-NBhu1JaY

b) Using our Configuration of Peass: To examine the
same regressions with Peass, we identified their call trees and
chose one unit test that tests the part of the source. Since each
regression is called by many unit tests, execution of all tests
would not be feasible. Therefore, we select the change where
the relation between calls to the changed method and overall
method calls is highest, i.e. where we can expect the highest
relative performance change. The measurement was executed
with the measurement configuration determined in Section III.

58.7 % of the performance changes were detected. 26.7 %
could not be identified since the unit tests’ standard deviation
was too high in comparison to the introduced regression.
14.6 % of all changes have not been covered by unit tests.
The measurement execution and preprocessing (creation and
analysis of the traces) took on average 4.2 hours, which is a
high time consumption for analysis of every commit in the CI,
but still faster than the execution of all JMH benchmarks.

c) Comparison: The difference in efficiency of Peass and
JMH can be explained by the size of the measured workloads:
While the transformed unit test workloads contained on aver-
age 14,713 method calls (14,628 calls for the correct change
detections and 14,902 calls for the incorrect change detec-
tions), the benchmarks contained on average 689,150 method
calls (15,638 for the correct change detections and 711,415
for the incorrect change detections). This does not mean that a
high share of changed method calls on the overall method call
count implies easy to measure performance changes: For the
transformed unit tests, on average the changed method invo-
cations made up 18.3 % of all method invocations (successful
change identification: 18.5 %, unsuccessful: 18.1 %). For the
reused JMH benchmarks, 17.5 % of all method invocations of
the benchmarks are calls of the changed method (successful
change identification: 11.0 %, unsuccessful: 17.7 %).

Due to the high share of performance regressions identified
by Peass, we conclude that Peass is able to identify additional
performance regressions with low manual effort. Still, perfor-
mance regressions caused by concurrent usage of software or
by different API usage from unit tests will not be detected.
Therefore, definitions of benchmarks and load tests will still
be necessary.

C. Threats to Validity

a) External Validity: We validated Peass on artificial per-
formance regressions of the Jetty server. It is unclear whether
our results are generalizable for other examined software or for
other performance regression than our artificial regressions,
e.g. regressions only occurring with parallel usage. Since
there is no defined performance regression set for a software
repository, we needed to use artificial regressions. Since we
needed to compare our findings to other regressions, we were
only able to examine the code which is tested by Jetty’s own
regression benchmarks. In the future, the generalizability of
our results might be increased by examining more software.

Furthermore, it is not possible to research how many false
alarms about performance regressions are created by Peass.
The definition of the relevance of performance regressions to

a software would require expert knowledge on this software
and therefore require a separate case study.

b) Internal Validity: It may be possible that non-
deterministic effects influence our performance measurements.
Since we applied the regression benchmarks and Peass to
1,000 regressions, this is very unlikely.

V. RELATED WORK

For the detection of performance changes, there are works
focussing on statistically reliable change detection, on prac-
tical implementations of regression benchmarking, on mining
repositories for performance changes and on root cause anal-
ysis.

A. Statistically Reliable Change Detection

Georges et al. [17] perform a survey of existing work which
measures and compares performance values. Thereby, they
derive a measurement method which includes the repetition
of VM starts and is the base of most recent measurement
methods. Since measurement is time-consuming, Kalibera et
al. [24] provide a method for speeding up the measurement
by manually deciding when the warmup is finished. Barrett et
al. [4] define when a steady state is reached by change point
analysis. In their measurements, only 43.5 % of all benchmarks
and VMs reach the steady state. Alghmadi et al. [3] propose
an approach identifying when measurements are able to stop
based on repetitiveness of results, where repetitiveness is seen
as difference in terms of the Wilcoxon ranksum statistical test.
These works focus on performance benchmarks which are
written especially for performance measurement, e.g. using
JMH. In contrary, our work focuses on using usually smaller
unit-test-sized workload definitions, which can be obtained by
transformation of existing unit tests.

Kalibera et al. [23] analyze the statistical methods of
recent publications. They propose a new method for choosing
experiment parameters given a fixed experimentation time
and summarizing performance measurements, which includes
uncertainty. In contrast to our work, they focus on the statistic
analysis, while we focus on configuration of the measurement
to reach certain error rates. Ding et al. [14] identify per-
formance changes using Mann-Whitney-test, afterwards use
Cliff’s Delta to get the effect size and then use thresholds
for filtering relevant performance changes. In contrast to our
work, they focus on selection of unit test cases which are able
to measure the performance, instead of a method for unit test
execution to identify performance regressions efficiently. Daly
et al. [12] use, in contrary to the other described works, a list
measurement data of several commits to detect performance
change points. By using change-point analysis, they find the
commits that contained performance changes which are per-
sistent over various versions. Thereby, they are able to use less
fine-grained measurement data from each individual commit.
Mühlbauer et al. [30] also use performance evolution data of
several commits, but detect performance changes by modelling
the performance evolution using Gaussian processes.

A recently arising challenge for statistically reliable change
detection is the measurement in cloud environments. Laaber
et al. [26] find that Wilcoxon ranksum test is most efficient,
and that at least 20 cloud instances are required for detection
of performance changes of 10 % mean difference. Bulej et
al. [6] find that parallel execution of the same workload in
the cloud leads to the best results. He et al. [20] state that
Kullback-Leibler divergence can be used to determine whether
additional measurements are necessary.

B. Regression Benchmarking

Research has been done to integrate regression benchmark-
ing into build processes. There have been studies on open
source projects which show that: (1) Less than 0.4 % of all
projects maintain performance benchmarks [39] (2) If they
are maintained, they often have a high variability and are
only partially able to identify performance regressions [25].
(3) Developers partially use bad practices in benchmarks,
leading to unreliable results [13]. For generic usage, Stochastic
Performance Language (SPL) [5] defines a method and a tool
capable of checking whether a performance change happened
based on formulas defining performance requirements. This
requires manual workload generation. Rodriguez-Cancio et al.
[35] define AUTOJMH, which automatically generates JMH
benchmarks for code snippets. In contrast to our work, they
focus on the benchmark generation and not measurement; our
measurement configuration could be applied to benchmarks
generated by AUTOJMH. PerfCI [22] is a tool that enables
benchmarking of one version and informs the user whether
previously specified performance requirements are met. In
contrast to our work, they do not compare different versions.

Furthermore, there exist tool-specific inclusions of regres-
sion benchmarking into the CI of tools, e.g. [41] who describe
how regression benchmarking was introduced to the Kieker
CI process. Schulz et al. [37] discuss how continuous load
test generation from production session data can be used to
continuously execute load tests of a web application.

In contrast to our work, these existing works focus on own
definitions of performance benchmarks or tests, using their
own framework or domain-specific language, while we focus
on the measurement process which is suitable for the size of
existing unit tests.

C. Mining Repositories for Performance Changes

Mining Repositories for performance changes focuses on
measurement of code history or extraction of other data to
examine performance changes.

[2] use Pharo benchmarks to discover performance changes
in the history of a repository. Triani et al. [40] examine
performance changes using existing JMH. They use the default
configuration of the benchmark, like we did in the evalua-
tion, and compare the measued values by confidence interval
comparison and computation of effect sizes like described
by Kalibera et al. [24]. They find that certain types of
refactoring can increase execution time, e.g. extract class or
extract method refactoring. [7] research changes in RxJava

and Hadoop, where they consider changes significant based
on a combination of the t-test and the effect size Cohen’s
d = µ1−µ2

s . These studies focus on the identification of
changes in the version history; therefore, they presume a
performance measurement and analysis method. In contrast,
we focus on the measurement method itself and identification
of smaller regressions than the aforementioned works.

D. Root Cause Analysis

Root cause analysis identifies the root cause, i.e. the
method(s) causing a performance change, by systematic mea-
surements or source code analysis. This might be done using
measurement [21], [29], [36], measurement in combination
with workload generation [31], [27] or source code analysis
[8], [18]. By visualization, the understanding of performance
changes can be supported [10], [1]. While measuement meth-
ods are partially similiar, these works focus on the identifi-
cation of the root cause of a performance change, while our
work focuses on the identification of the performance change.

VI. SUMMARY

We discussed the statistical boundaries of performance
change detection. These are affected by the relation of the
performance change size and the measurements standard de-
viation, i.e. the effect size, and the count of VM starts. We
showed that performance changes smaller than the relative
standard deviation are only measurable safely with many VMs.
This implies that using load tests or measuring the overall
performance of big benchmarks is not capable to pinpoint
small performance regressions at code level. Small regressions
may pile up and decrease the performance of a program.
Therefore, methods need to be developed which measure the
performance at code level.

We described the configuration of the method of Peass,
which uses unit-test-sized workloads to identify performance
changes. This configuration was obtained by exemplarily
measuring artificial workloads and checking whether concrete
measurement and analysis configurations are capable of per-
formance change identification. We found that a typical per-
formance change in a unit test, which consists of 300 method
calls, may be found using 100,000 repetitions of the workload
in 49 iterations, 30 VMs and detection of the change by Mann-
Whitney-test. Based on our results, we described how artificial
injected performance regressions in the Jetty application server
can be detected. We found that regressions are more easily
identifiable using unit tests than using the Jetty benchmark
suite. This work is a step towards reliable and efficient
automated performance unit test measurement, which will
be able to identify performance changes at code level. Thereby,
the widespread approaches of monitoring and load testing or
benchmarking can be complemented by another testing stage
which requires less additional workload definitions and can be
executed earlier in the development cycle.

In future work, there are three challenges to solve: (1) Ex-
isting unit tests have a high code coverage and therefore tend
to test not performance relevant code or test the relevant code

with the same workload over and over again. The challenge
to select the most important test cases for performance
measurement therefore needs to be solved. (2) Modern sys-
tems tend to be highly parallelized. This may render unit test
measurements less representative for the overall performance,
since parallelized workload has different performance charac-
teristics. The challenge to adapt performance measurement
at code level to highly parallelized systems therefore needs
to be solved. (3) While our current work makes it possible
to detect the version of the performance change, the con-
crete method(s) causing the performance change need to be
determined manually. The challenge to automatically derive
the root cause of a performance change hence needs to
be solved. This could be done based on existing root cause
analysis techniques [21], [29], [36].

Acknowledgments This work is funded by the German
Federal Ministry of Education and Research within the project
“Performance Überwachung Effizient Integriert” (PermanEnt,
BMBF 01IS20032D).

REFERENCES

[1] J. P. S. Alcocer, F. Beck, and A. Bergel. Performance evolution matrix:
Visualizing performance variations along software versions. In 2019
VISSOFT, pages 1–11. IEEE, 2019.

[2] J. P. S. Alcocer and A. Bergel. Tracking down performance variation
against source code evolution. In Proceedings of the 11th Symposium on
Dynamic Languages, DLS 2015, pages 129–139, New York, NY, USA,
2015. ACM.

[3] H. M. AlGhmadi, M. D. Syer, W. Shang, and A. E. Hassan. An
automated approach for recommending when to stop performance tests.
In 2016 IEEE ICSME, pages 279–289. IEEE, 2016.

[4] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt. Virtual
machine warmup blows hot and cold. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):52, 2017.

[5] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and
P. Tůma. Unit testing performance with stochastic performance logic.
Automated Software Engineering, 24(1):139–187, Mar 2017.

[6] L. Bulej, V. Horký, P. Tuma, F. Farquet, and A. Prokopec. Duet
benchmarking: Improving measurement accuracy in the cloud. In
ACM/SPEC ICPE, pages 100–107, 2020.

[7] J. Chen and W. Shang. An exploratory study of performance regression
introducing code changes. In Proceedings of the 2017 IEEE ICSME,
pages 341–352. IEEE, 2017.

[8] J. Chen, W. Shang, and E. Shihab. Perfjit: Test-level just-in-time
prediction for performance regression introducing commits. IEEE TSE,
pages 1–1, 2020.

[9] J. Chen, D. Yu, H. Hu, Z. Li, and H. Hu. Analyzing performance-aware
code changes in software development process. In Proceedings of the
27th ICPC, pages 300–310. IEEE Press, 2019.

[10] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall.
Performancehat: augmenting source code with runtime performance
traces in the ide. In ICSE, pages 41–44, 2018.

[11] J. Cohen. Approximate power and sample size determination for
common one-sample and two-sample hypothesis tests. Educational and
Psychological Measurement, 30(4):811–831, 1970.

[12] D. Daly, W. Brown, H. Ingo, J. O’Leary, and D. Bradford. The use of
change point detection to identify software performance regressions in
a continuous integration system. In ICPE, pages 67–75, 2020.

[13] D. E. Damasceno Costa, C.-P. Bezemer, P. Leitner, and A. Andrzejak.
What’s wrong with my benchmark results? studying bad practices in
jmh benchmarks. IEEE TSE, pages 1–1, 2019.

[14] Z. Ding, J. Chen, and W. Shang. Towards the use of the readily available
tests from the release pipeline as performance tests. are we there yet?
In ICSE, pages 1435–1446, 2020.

[15] S. Eid, S. Makady, and M. Ismail. Detecting software performance
problems using source code analysis techniques. Egyptian Informatics
Journal, 21(4):219–229, 2020.

[16] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, and A. van
Hoorn. Microservices: A performance tester’s dream or nightmare? In
Proceedings of the ACM/SPEC ICPE, pages 138–149, 2020.

[17] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

[18] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu. What change history tells
us about thread synchronization. In Proceedings of the Joint Meeting
on Foundations of Software Engineering, pages 426–438. ACM, 2015.

[19] W. Hasselbring and A. van Hoorn. Kieker: A monitoring framework for
software engineering research. Software Impacts, 5:100019, 2020.

[20] S. He, G. Manns, J. Saunders, W. Wang, L. Pollock, and M. L. Soffa. A
statistics-based performance testing methodology for cloud applications.
In Proceedings of the 2019 ACM ESEC/FSE, pages 188–199, 2019.

[21] C. Heger, J. Happe, and R. Farahbod. Automated root cause isolation
of performance regressions during software development. In ICPE 13,
pages 27–38, New York, USA, 2013. ACM.

[22] O. Javed, J. H. Dawes, M. Han, G. Franzoni, A. Pfeiffer, G. Reger,
and W. Binder. PerfCI: A Toolchain for Automated Performance
Testing During Continuous Integration of Python Projects. In 2020 35th
IEEE/ACM ASE, pages 1344–1348. IEEE, 2020.

[23] T. Kalibera and R. Jones. Quantifying performance changes with effect
size confidence intervals. Technical Report 4–12, University of Kent,
June 2012.

[24] T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time.
In ACM SIGPLAN Notices, volume 48, pages 63–74. ACM, 2013.

[25] C. Laaber and P. Leitner. An evaluation of open-source software
microbenchmark suites for continuous performance assessment. In MSR,
pages 119–130. IEEE, 2018.

[26] C. Laaber, J. Scheuner, and P. Leitner. Software microbenchmarking in
the cloud. how bad is it really? ESE, 24(4):2469–2508, 2019.

[27] Q. Luo, D. Poshyvanyk, and M. Grechanik. Mining performance
regression inducing code changes in evolving software. In MSR, pages
25–36. ACM, 2016.

[28] R. Marin. Clean code: A handbook of agile software craftsmanship
(robert c. martin series), 2008.

[29] N. S. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring. Automatic
failure diagnosis in distributed large-scale software systems based on
timing behavior anomaly correlation. In ECSMR, 2009.

[30] S. Mühlbauer, S. Apel, and N. Siegmund. Accurate modeling of
performance histories for evolving software systems. In 2019 34th
IEEE/ACM ASE, pages 640–652. IEEE, 2019.

[31] M. Pradel, M. Huggler, and T. R. Gross. Performance regression testing
of concurrent classes. In ISSTA, pages 13–25. ACM, 2014.

[32] J. Quiroga, F. Ortin, D. Llewellyn-Jones, and M. Garcia. Optimizing run-
time performance of hybrid dynamically and statically typed languages
for the. net platform. JSS, 113:114–129, 2016.

[33] D. G. Reichelt and S. Kühne. How to detect performance changes in
software history: Performance analysis of software system versions. In
Companion of the 2018 ACM/SPEC ICPE, pages 183–188, New York,
NY, USA, 2018. ACM.

[34] D. G. Reichelt, S. Kühne, and W. Hasselbring. PeASS: A Tool for
Identifying Performance Changes at Code Level. In Proceedings of the
33rd ACM/IEEE ASE. ACM, 2019.

[35] M. Rodriguez-Cancio, B. Combemale, and B. Baudry. Automatic mi-
crobenchmark generation to prevent dead code elimination and constant
folding. In 2016 31st IEEE/ACM ASE, pages 132–143. IEEE, 2016.

[36] J. P. Sandoval Alcocer, A. Bergel, and M. T. Valente. Learning from
source code history to identify performance failures. In ICPE, ICPE
’16, pages 37–48, New York, NY, USA, 2016. ACM.

[37] H. Schulz, D. Okanović, A. van Hoorn, and P. Tůma. Context-tailored
workload model generation for continuous representative load testing.
In Proceedings of the ACM/SPEC ICPE, pages 21–32, 2021.

[38] M. Selakovic and M. Pradel. Performance issues and optimizations in
javascript: an empirical study. In ICSE, pages 61–72. ACM, 2016.

[39] P. Stefan, V. Horky, L. Bulej, and P. Tuma. Unit Testing Performance in
Java Projects: Are We There Yet? In Proceedings of ACM/SPEC ICPE
2017, pages 401–412. ACM, 2017.

[40] L. Traini, D. Di Pompeo, M. Tucci, B. Lin, S. Scalabrino, G. Bavota,
M. Lanza, R. Oliveto, and V. Cortellessa. How software refactoring
impacts execution time. ACM TOSEM, 31(2):1–23, 2021.

[41] J. Waller, N. C. Ehmke, and W. Hasselbring. Including performance
benchmarks into continuous integration to enable DevOps. ACM
SIGSOFT Software Engineering Notes, 40(2):1–4, 2015.

	I Introduction
	II Boundaries of Detecting Performance Changes
	II-A General Process
	II-B Standard Deviation of Workloads
	II-C Statistical Boundaries of Detecting Changes

	III Detection of Performance Changes
	III-A Approach
	III-B Workload Size
	III-C Measurement Configuration

	IV Evaluation
	IV-A Approach
	IV-B Results
	IV-C Threats to Validity

	V Related Work
	V-A Statistically Reliable Change Detection
	V-B Regression Benchmarking
	V-C Mining Repositories for Performance Changes
	V-D Root Cause Analysis

	VI Summary
	References

