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Abstract 27 

 28 

Large, well-developed and flourishing reefs dominated by the cold-water coral 29 

Desmophyllum pertusum have recently been discovered along the Angola margin in the 30 

southeastern Atlantic Ocean living under very low oxygen concentrations (0.6–1.5 mL L-1). 31 

This study assessed the respiration rates of this coral in a short-term (10 days) aquarium 32 

experiment under naturally low oxygen concentrations (1.4 ± 0.5 mL L-1) as well as under 33 

Jo
urn

al 
Pre-

pro
of



 

 

saturated oxygen concentrations (6.1 ± 0.6 mL L-1). We found no significant difference in 34 

respiration rates between the two oxygen concentrations. Furthermore, the respiration 35 

rates of D. pertusum were in the same order of magnitude as those of the same species 36 

living under normoxic conditions in other areas. This work expands the current knowledge 37 

on the metabolic activity of cold-water corals under hypoxic conditions, evidencing that low 38 

oxygen conditions are not a general limiting factor for the overall distribution of D. 39 

pertusum. 40 

 41 

1. Introduction 42 

 43 

The framework-forming cold-water coral (CWC) Desmophyllum pertusum (formerly 44 

Lophelia pertusa, Addamo et al. 2016), is a cosmopolitan species with a wide bathymetric 45 

distribution range (50–3000 m depth) (Roberts et al. 2006, 2009). Sufficiently high 46 

dissolved oxygen concentrations were suggested to be an important factor in controlling its 47 

distribution (Tittensor et al. 2009), with D. pertusum growing in food-rich, well-oxygenated 48 

waters under strong bottom currents (Davies et al. 2008). Although D. pertusum is able to 49 

regulate its oxygen consumption across a range of oxygen levels, laboratory studies 50 

showed that it is unable to maintain normal aerobic metabolic activity below approximately 51 

3 mL L-1 (Dodds et al. 2007). These results, and the known distribution of the species in 52 

the North Atlantic Ocean, suggest that D. pertusum should not be found in low-oxygen 53 

environments, with a lower limit of dissolved oxygen tolerance of 2–3.7 mL L-1 (Dullo et al. 54 

2008; Davies et al. 2008; Freiwald et al. 2009; Brooke and Ross 2014; Georgian et al. 55 

2016). Indeed, experimental exposure of D. pertusum from the Gulf of Mexico to lower 56 

dissolved oxygen concentrations (1.5 mL L-1) resulted in complete coral mortality after only 57 

a few days (Lunden et al. 2014).  58 

 59 
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However, recent studies report the occurrence of live D. pertusum under hypoxic 60 

conditions. Occurrences of D. pertusum at low dissolved oxygen concentrations (1.1–1.3 61 

mL L-1) were observed off Mauritania (Ramos et al. 2017; Wienberg et al. 2018), and well-62 

developed reefs dominated by D. pertusum have been recently reported along the 63 

Angolan margin at even lower dissolved oxygen concentrations (0.6–1.5 mL L-1) (Hanz et 64 

al. 2019; Hebbeln et al. 2020), in a low-oxygen zone resulting from the bacterial respiration 65 

of the flux of particulate organic carbon generated by the high surface primary production 66 

in this upwelling zone (Chavez and Messié 2009). Despite these low oxygen conditions, 67 

Angolan CWC reefs have a dense living coral cover with a diverse associated fauna (Hanz 68 

et al. 2019; Hebbeln et al. 2020; Orejas et al. 2021). 69 

 70 

To better understand the physiological performance of D. pertusum in the hypoxic waters 71 

off Angola, an experiment was performed to assess coral respiration rates under naturally 72 

low oxygen concentrations and after short-term (7 days) exposure to increased oxygen 73 

conditions. The aim was to explore the potentially limiting effect of low oxygen 74 

concentrations on coral metabolism, since hypoxia typically limits respiration, resulting in 75 

reduced metabolic rates, up to death (Rabalais et al. 2002; Vaquer-Sunyer and Duarte 76 

2008). Two experimental hypotheses were tested: (1) D. pertusum respiration at naturally 77 

hypoxic conditions is limited by oxygen availability and will therefore increase under 78 

increased oxygen concentration; (2) D. pertusum respiration at naturally hypoxic 79 

conditions will be lower than previous records for the species at normoxic conditions. 80 

 81 

2. Materials and methods 82 

 83 

2.1 Coral collection and experimental setup 84 
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Specimens of D. pertusum were collected at 480–500 m depth on the Valentine Mounds 85 

(09º 43.700’ S - 012º 42.876’ E) at the Angolan margin (Figure 1), using the Remotely 86 

Operated Vehicle (ROV) MARUM SQUID onboard the RV Meteor during expedition M122 87 

in January 2016 (Hebbeln et al. 2017). Corals were collected with the ROV manipulator 88 

arm, stored in bioboxes during the ascent to the surface, and immediately transferred to 89 

aquaria after the ROV was recovered on deck. Eight coral nubbins (4-7 polyps, Table 1) 90 

were maintained under naturally low oxygen concentrations (1.8 ± 0.3 mL L-1) in 91 

hermetically sealed plastic chambers (~400 mL volume, one nubbin per chamber) filled 92 

with sea water collected from 5 m above the seafloor with Niskin bottles arranged in a 93 

Rosette. Constant water movement inside the chambers was created using Teflon-coated 94 

magnetic stirrers, and temperature was maintained at 8.0 ± 0.3 ºC (mean ± SD) (natural in 95 

situ temperature, Hebbeln et al. 2020) in a water bath with a chiller (Hailea HC 150A, 96 

Raoping, China). The seawater was completely renewed in each chamber every 6–8 97 

hours with water freshly collected from the seafloor (also providing corals with natural 98 

food). After 2 days under these conditions, four of the eight chambers were opened, to 99 

allow oxygen concentration increase to saturation (Figure 2A). Corals were maintained for 100 

7 days under two contrasting treatments: (1) naturally low oxygen concentration (1.4 ± 0.5 101 

mL L-1, mean ± SD), (2) increased oxygen concentration (6.1 ± 0.6 mL L-1, mean ± SD). 102 

Again, seawater was renewed every 6–8 hours with fresh seawater from the seafloor and 103 

adjusted to the appropriate oxygen concentration. Temperature and oxygen 104 

concentrations were monitored in each chamber 3–4 times a day (before and after each 105 

water renewal). 106 

 107 

2.2. Respiration measurements 108 

Coral respiration was assessed under the natural low oxygen concentration (Tday 2), and 109 

after three (Tday 5) and seven days (Tday 9) under the two oxygen concentration treatments 110 
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(Figure 2A). Incubations (8 hours) were performed in glass beakers (328 mL), filled with 50 111 

μm pre-filtered sea water (without any air space), hermetically sealed with an air-112 

impermeable plastic membrane, and maintained at 8.2 ± 0.4 ºC (mean ± SD) in a water 113 

bath. Four beakers, without any coral and filled with pre-filtered sea water, were incubated 114 

under the same conditions and used as controls. Constant water movement inside the 115 

beakers was ensured by a Teflon-coated magnetic stirrer. Respiration rates were 116 

assessed by measuring oxygen concentrations in each beaker, at the beginning and end 117 

of the incubation, using an optode sensor (YSI ProODO Optical Dissolved Oxygen meter, 118 

accuracy 0.2 mg L-1). Mean variation in oxygen concentrations measured in the control 119 

beakers was subtracted from those measured in the coral beakers, and respiration rates 120 

were derived from the recorded changes in dissolved oxygen during the incubation. 121 

Results were normalized to the dry weight (DW) and the ash free dry weight (AFDW) of 122 

the coral nubbins. For this purpose, after the experiment coral nubbins were first heated to 123 

60 °C for 48 hours in a laboratory oven, and weighed using an analytical balance (Mettler 124 

AT 261, L’Hospitalet de Llobregat, Spain, accuracy 0.1 mg) to determine the DW. 125 

Subsequently, they were burnt at 500 ºC for 4 hours in a laboratory furnace and the ash 126 

weight (AW) measured and used to calculate the AFDW (AFDW = DW - AW). 127 

 128 

2.3 Statistical analyses 129 

Results are expressed as mean ± standard deviation. All statistical analyses were 130 

performed with the R software platform (R Core Team 2022). Normality was tested using a 131 

Kolmogorov–Smirnov test performed with the function ks.test. Homogeneity of variances 132 

was tested using a Bartlett test performed with the function bartlett.test. Differences in 133 

respiration rates among the two oxygen concentration treatments (natural 1.4 ± 0.5 mL L-1 134 

versus increased 6.1 ± 0.6 mL L-1) and the three measurement times (Tday 2 - Tday 5 - Tday 9) 135 

were tested by two-way within subject ANOVA with repeated measures on time factor. The 136 
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analysis was performed with the function anova from the car package, applied to a linear 137 

model built with the function lm, confirming the assumption of sphericity of variances 138 

(Mauchly's test statistic = 0.409, p-value = 0.107). When significant differences were 139 

observed, a posteriori multiple comparisons were performed with paired t-tests conducted 140 

with the t.test function, with Holm (1979) correction for multiple comparisons. 141 

 142 

3. Results and discussion 143 

 144 

Oxygen depletion attributable to coral respiration in the incubation beakers (0.02–0.21 mL-145 

1 h-1) was always higher than oxygen variation in control beakers (<0.01 mL-1 h-1), and 146 

there was no difference in respiration rates between corals maintained under hypoxic and 147 

normoxic conditions in our 8 hours incubations (ANOVA, F = 0.02, p-value = 0.893) 148 

(Figure 2B and Table 2), allowing us to reject our first hypothesis (D. pertusum respiration 149 

under naturally hypoxic conditions is limited by oxygen availability). Respiration rates 150 

increased significantly with time (ANOVA, F = 28.86, p-value < 0.001) under both 151 

conditions (Figure 2B and Table 2), without any significant interaction between the two 152 

factors (ANOVA, F = 0.09, p-value = 0.912). The increase was significant from Tday 2 to 153 

Tday 5 (t = -8.63, p < 0.001) as well as from Tday 5 to Tday 9 (t = -3.62, p-value = 0.008). 154 

Respiration rates of D. pertusum in the hypoxic waters of Angola at Tday 9 (2.60—6.08 mol 155 

O2 AFDW g-1 h-1, equivalent to 0.131—0.281 mol O2 DW g-1 h-1) were in the same order 156 

of magnitude as rates previously recorded for the species in the Northeast Atlantic under 157 

normoxic conditions and similar temperatures (8–9 ºC) (Larsson et al. 2013; Hennige et al. 158 

2015; Maier et al. 2019) (Table 3). Thus, our second hypothesis is also rejected (D. 159 

pertusum respiration under naturally hypoxic conditions is lower than previous records 160 

under normoxic conditions). However, how the respiration behaved during the incubations 161 

could not be addressed in our experiment. Consequently, we cannot exclude a possible 162 
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reduction of D. pertusum respiration with oxygen concentration decreasing to 0.85 ± 0.10 163 

mL L-1 at Tday 2, 0.71 ± 0.22 mL L-1 at Tday 5, and 0.42 ± 0.25 mL L-1 at Tday 9 in the beakers 164 

at the end of the 8 hours incubation in the low-oxygen treatment (SEM 1). Even so, such 165 

low values are still within or close to the oxygen concentrations observed in the D. 166 

pertusum reefs off Angola (0.6–1.5 mL L-1, Hanx et al. 2019; Hebbeln et al. 2020), thus 167 

being the measured respiration rates representative for the species in its natural 168 

environment. 169 

 170 

Respiration rates in D. pertusum have generally shown to increase with temperature and 171 

to decrease when corals are starved (Dodds et al. 2007; Larsson et al. 2013; Maier et al. 172 

2019; Dorey et al. 2020). However, under prolonged incubations, D. pertusum also 173 

showed a regulatory capacity for respiration in its natural thermal range (6–12 ºC, 174 

Naumann et al. 2014), and respiration values in the warmer Mediterranean deep sea (12–175 

13ºC, Maier et al. 2013; Gori et al. 2014) were generally in the same order of magnitude 176 

as those measured for the species in the colder Northeast Atlantic (6–9 ºC, Dodds et al. 177 

2007; Larsson et al. 2013; Khripounoff et al. 2014; Maier et al. 2019, 2020) and Gulf of 178 

Mexico (8ºC, Georgian et al. 2016) (Table 3). Compared to these values, respiration rates 179 

for D. pertusum in Angolan hypoxic waters at 8 ºC were even higher than some of the 180 

values recorded in the warmer Mediterranean deep sea (12–13ºC, Maier et al. 2013; Gori 181 

et al. 2014) (Table 3), and suggest that some cold-water coral reefs may be capable of 182 

surviving local declines in oxygen caused by global change in the deep sea (Levin and Le 183 

Bris 2015; Sweetman et al. 2017). D. pertusum respiration can be extremely variable, 184 

showing up to one order of magnitude higher respiration rates in some studies in the 185 

Northeast Atlantic and the Mediterranean Sea (Hennige et al. 2014; Naumann et al. 2014; 186 

Dorey et al. 2020) (Table 3), possibly due to the experimental design and acclimation time 187 

after sampling (Hennige et al. 2015). In our experiment, corals showed a significant 188 
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increase in respiration in the days following sampling, likely due to acclimation and 189 

recovery from the stress induced by the collection. Similarly, increased respiration over 190 

time has been observed in corals from the Mediterranean Sea exposed to different pH 191 

levels (Maier et al. 2013). Interestingly, D. pertusum from the Northeast Atlantic living 192 

under normoxic conditions, has shown to significantly reduce its respiration when 193 

experimentally exposed to low oxygen concentrations (below 3.26 mL L-1, Dodds et al. 194 

2007), and the same species from the Gulf of Mexico showed complete morality when 195 

experimentally exposed to hypoxic conditions (1.57 ± 0.28 mL L-1, Lunden et al. 2014). 196 

This contrasts with D. pertusum thriving in coral mounds in the hypoxic Angolan waters, 197 

where the observed high respiration rates thus suggest an acclimation or local adaptation 198 

to hypoxic conditions. Similar local acclimation or adaptation may explain the divergent 199 

changes in D. pertusum respiration under ocean acidification observed in the Northeast 200 

Atlantic and the Gulf of Mexico (Henninge et al. 2014, 2015; Georgian et al. 2016). 201 

 202 

Acclimation or adaptation mechanisms allow several marine species to survive when 203 

exposed to reduced oxygen levels (Gray et al. 2002; Cheung et al. 2008; Vaquer-Sunyer 204 

and Duarte 2008). Reduced activity, metabolic depression and anaerobic respiration are 205 

the main mechanisms to survive periodic short to medium-term exposures to low oxygen 206 

levels (Nilsson and Renshaw 2004; Semenza 2007; Murphy and Richmond 2016; Huo et 207 

al. 2018; Nelson and Altieri 2019, and references therein). A metabolic shift from aerobic 208 

to anaerobic glycolysis metabolism (Meng et al. 2018) has been indeed observed in the 209 

tropical coral Acropora tenuis and Montipora capitata facing short-term exposures to low 210 

oxygen conditions (Murphy and Richmond 2016; Alderdice et al. 2020) but, if hypoxia 211 

stress persists, mortality can ultimately occur due to insufficient energy production or lactic 212 

acid accumulation to lethal levels (Hughes et al. 2020). However, other two physiological 213 

mechanisms may allow maintaining activity and aerobic metabolism in species living under 214 
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lifelong hypoxia, as observed in invertebrates living at high-altitudes or in marine oxygen 215 

minimum zones (Childress 1971, 1975; Rostgaard and Jacobsen 2005; Ding et al. 2018; 216 

Storz and Scott 2019). Since, aerobic respiration in mitochondria is based on the use of 217 

oxygen as a substrate for cytochrome C oxidase in the respiratory chain (Semenza 2007), 218 

transcription of alternative isoforms of C oxidase with increased affinity for O2 has been 219 

shown to provide a mechanism for maintaining efficient cellular aerobic respiration under 220 

reduced oxygen availability (Semenza 2007). Such a functional variation in cytochrome C 221 

oxidase may be a physiological mechanism for organisms to live under lifelong hypoxia 222 

(Scott et al. 2011; Zhang et al. 2013). Additionally, microbiome associated to D. pertusum 223 

have been shown to fix inorganic carbon through nitrification (Middelburg et al. 2015), and 224 

recent research has shown that nitrifying microbes can produce oxygen under hypoxia 225 

(Kraft et al. 2022), thus possibly suppling additional oxygen to the coral (but it has to be 226 

considered that the measured rates of inorganic carbon fixed through nitrification were 227 

very low, Middelburg et al. 2015). Such physiological mechanisms, possibly together with 228 

the previously observed enhanced polyp expansion and movements of epidermal cilia to 229 

increase oxygen exchanges (Shapiro et al. 2014; Yum et al. 2017; Pacherres et al. 2020; 230 

Tambutté et al. 2021), could explain the respiration rates observed in D. pertusum under 231 

hypoxia in our study, and the species distribution even in hypoxic zones (Lunden et al. 232 

2014; Hebbeln et al. 2020). Additional focussed research is needed to explore these 233 

potential physiological mechanisms allowing coral respiration in hypoxic waters. 234 

 235 

Overall, the capability of D. pertusum to respire at its usual rate and to grow under hypoxic 236 

conditions (Georgian et al. 2014; Wienberg et al. 2018; Hanz et al. 2019; Hebbeln et al. 237 

2020) further extend the potential suitable habitat for this species. In this sense, in the 238 

frame of the increasing deoxygenation forecast because of the ongoing global change 239 

(Vaquer-Sunyer and Duarte 2008), our results suggest a geographically heterogeneous 240 
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vulnerability of D. pertusum, with possible physiological acclimation or adaptation to 241 

regional conditions appearing as important aspects to be considered in the development of 242 

models to predict species distribution in space and time (Hällfors et al. 2016; DeMarche et 243 

al. 2019). 244 
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Figure legends 540 

 541 

Figure 1 – (A) Overview map showing the location of the Angolan coral mound province in 542 

the SE Atlantic Ocean. Dissolved oxygen concentrations at 400 m water depth are 543 

displayed. (B) Bathymetric map showing the Angolan coral mound province. (C) Detailed 544 

map showing the sampling site on the Valentine mounds. (D) ROV image of the 545 

Desmophyllum pertusum reef on the Valentine mounds (480–500 m depth). Image: 546 

MARUM ROV SQUID, Bremen, Germany. 547 
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Figure 2 – (A) Oxygen concentration (mL L-1) during the experiment in the naturally low 549 

oxygen concentration (light blue) and the increased oxygen concentration (dark blue) 550 

treatments. Days of experimental incubations are highlighted in bold. Variability in the 551 

oxygen concentration was due to the water changes performed every 6–8 hours (see text 552 

for details). (B) Respiration of Desmophyllum pertusum under natural low oxygen 553 

concentration (1.2 ± 0.1 mL L-1), as well as after 3 and 7 days under contrasted natural (1.4 554 

± 0.5 mL L-1) and increased (6.1 ± 0.6 mL L-1) oxygen concentration. 555 
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Treatment Nubbin Number of polyps DW AFDW

(g) (g)

Naturally low O2 1 5 9.9 0.46

(1.4 ± 0.5 mL L-1) 2 6 21.9 0.84

3 4 15.0 0.70

4 7 17.6 0.88

Increased O2 5 5 22.1 1.16

(6.1 ± 0.6 mL L-1) 6 4 9.6 0.53

7 6 20.5 1.05

8 4 7.4 0.38

Table 1 - Number of polyps, dry weight (DW) and ash free dry weight (AFDW) of the 

Lophelia pertusa  nubbins used in the experiment. 
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Treatment Time

mean  SD mean  SD

Natural low O2 Tday 2 0.067  0.020 1.49  0.43

(1.4 ± 0.5 mL L-1) Tday 5 0.125  0.018 2.77  0.39

Tday 9 0.175  0.071 3.87  1.54

Increased O2 Tday 2 0.081  0.033 1.55  0.66

(6.1 ± 0.6 mL L-1) Tday 5 0.138  0.059 2.61  1.12

Tday 9 0.195  0.085 3.70  1.64

Table 2 - Respiration rates of Lophelia pertusa  under the two experimental treatments 

(natural low O2 and increased O2) at the three sampling times (Tday 2, Tday 5 and Tday 9), 

normalized by coral dry weight (DW) and ash free dry weight (AFDW). 

Respiration

(mmol O2 AFDW g
-1

 h
-1

)(mmol O2 DW g
-1

 h
-1

)
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Location Method Feeding Temperature O2 pCO2 Reference

(ºC) (mL L
-1

) (matm) (mmol O2 DW g
-1

 h
-1

) (mmol O2 AFDW g
-1

 h
-1

)

Northeast Atlantic ex situ  experiment fed 6.5 6.6 - 8.7 - 0.12 - 0.16 - Dodds et al. 2007 *

(Mingulay Reef) 9.0 6.2 - 8.2 - 0.18 - 0.23 -

11.0 6.0 - 7.8 - 0.29 - 0.31 -

Northeast Atlantic ex situ  experiment fed 7.0 - - 0.27  0.05 4.4  0.8 Larrson et al. 2013

(Tisler Reef) fed 8.0 - - 0.22  0.05 4.2  1.0

unfed 7.0 - - 0.165 2.7

Western Mediterranean ex situ  experiment fed 13.0 - 368 0.146  0.073 - Maier et al. 2013

(Lacaze-Duthiers Canyon) fed 13.0 - 534 0.216  0.092 -

fed 13.0 - 883 0.117  0.030 -

fed 13.0 - 1215 0.162  0.096 -

Northeast Atlantic ex situ  experiment fed 9.5 - 380 - 28.6  7.3 Henninge et al. 2014

(Mingulay Reef) fed 9.5 - 750 - 11.4  1.4

Northeast Atlantic in situ  measurement - 10.0 4.5 - 5.6 - 0.321 - Khripounoff et al. 2014

(Bay of Biscay)

Western Mediterranean ex situ  experiment fed 12.0 - - 0.118  0.052 - Gori et al. 2014 *

(Cap de Creus Canyon)

Western Mediterranean ex situ  experiment fed 12.0 - 9.0 - 6.0 - - 1,046 - Naumann et al. 2014

(Cap de Creus Canyon)

Northeast Atlantic ex situ  experiment fed 9.0 - 380 - 4.2 - 5.9 Hennige et al. 2015 *

(Mingulay Reef) 9.0 - 750 - 2.8 - 3.5

9.0 - 1000 - 3.7 - 7.2

12.0 - 380 - 1.3 - 4.8

Respiration

Table 3 - Respiration rates of Lophelia pertusa  measured in previous studies. 
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12.0 - 750 - 2.3 - 6.0

Gulf of Mexico ex situ  experiment fed 8.1 6.4 552 - 6.9  1.8 Georgian et al. 2016

(Viosca Knoll) 8.1 6.4 831 - 4.4  1.1

8.1 6.4 1164 - 2.6  0.5

Northeast Atlantic ex situ  experiment fed 7.9 5.7 579 - 5.5  1.8 Georgian et al. 2016

(Tisler Reef) 7.9 5.7 845 - 7.4  1.6

7.9 5.7 1208 - 8.9  1.7

Northeast Atlantic ex situ  experiment fed 8.1 - - 0.16  0.03 - Maier et al. 2019 *

(Nakken Reef)

Northeast Atlantic ex situ  experiment - 5.0 - - - 10  11 Dorey et al. 2020

15.0 - - - 30  11

Northeast Atlantic 7.7 - - 0.20  0.07 - Maier et al. 2020 *

(Nakken Reef) 6.8 - - 0.11  0.05 -

6.8 - - 0.27  0.04 -

7.5 - - 0.52  0.05 -

Southeast Atlantic natural food in seawater 8.2 ± 0.4 1.4 ± 0.5 - 0.175 ± 0.071  3.87 ± 1.54 this study

(Valentin Mounds) 8.2 ± 0.4 6.1 ± 0.6 - 0.195 ± 0.085  3.70 ± 1.64

* Respiration values normalized by coral DW or AFDW were supplied by the authors.

(Sula, Nord-Leska, Hola and 

Steinavaer Reefs)
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Highlights 

 

The cold-water coral Desmophyllum pertusum from reefs off Angola showed the same 

respiration rates at hypoxic and normoxic oxygen concentration. 

 

The respiration rates measured are in the same order of magnitude as those previously 

observed for the species under normoxic conditions in other areas. 
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