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analysis-ready optical underwater 
images of Manganese-nodule 
covered seafloor of the Clarion-
Clipperton Zone
Benson Mbani  1 ✉ & Jens Greinert  1,2

We provide a sequence of analysis-ready optical underwater images from the Clarion-Clipperton Zone 
(CCZ) of the Pacific Ocean. The images were originally recorded using a towed camera sledge that 
photographed a seabed covered with polymetallic manganese-nodules, at an average water depth of 
4,250 meters. The original degradation in visual quality and inconsistent scale among individual raw 
images due to different altitude implies that they are not scientifically comparable in their original 
form. Here, we present analysis-ready images that have already been pre-processed to account for this 
degradation. We also provide accompanying metadata for each image, which includes their geographic 
coordinates, depth of the seafloor, absolute scale (cm/pixel), and seafloor habitat class obtained from a 
previous study. The provided images are thus directly usable by the marine scientific community e.g., to 
train machine learning models for seafloor substrate classification and megafauna detection.

Background & Summary
The recent advances in underwater optical imaging technologies have allowed for rapid acquisition of 
high-resolution images of the seabed across both temporal and spatial scales1. These images are valuable to 
marine scientists, as they provide for non-invasive monitoring and characterization of seafloor habitats, as well 
as quantification of the abundance and diversity of megafauna2. Images can be used for these purposes alone, or 
as a complementary dataset to verify and ground-truth acoustics-based marine habitat mapping3. Despite their 
usefulness, underwater optical images usually suffer from degraded visual quality due to the effects of light scat-
tering, absorption and attenuation of (artificial) light as it propagates through the water column1. Collectively, 
these effects degrade the overall visual appearance of the images e.g., through poor contrast, greenish or blue-
ish haze, and also gradual reduction in image brightness towards the edges of the image4. In addition to these 
degradations, the inability of in particular towed camera platform to maintain a consistent altitude above the 
seafloor further results in images that suffer from uneven scene brightness. This variation in altitude also causes 
the scale of each image (in pixels/centimeter) to vary, which implies that individual images do not represent 
the same spatial footprint on the seafloor5, and therefore cannot be semantically compared. Raw images thus 
need to be transformed prior to being used for scientific analysis. Performing these transformations can be both 
time-consuming and compute-intensive because of the huge volumes of high-resolution images that are nowa-
days acquired during scientific expeditions6.

In contrast to that, the analysis-ready images that we provide have undergone the necessary transformations 
as well as technical validations. The applied transformations include: correction for illumination drop-off from 
the center of the image towards the edges; local contrast enhancement that is necessary to equalize the distribu-
tion of pixel values of the image, so as to occupy the entire range of possible intensity levels; color normalization 
that corrects for uneven scene brightness among individual images by matching their intensity histograms; and 
finally, standardization of both the scale and visual footprints. Therefore, the images can be directly used in sci-
entific research workflows e.g. to monitor seafloor geology, marine ecosystems, and megafaunal communities2.

1DeepSea Monitoring Group, GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstraße 1-3, 24148, 
Kiel, Germany. 2Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10-12, 24118, Kiel, Germany. ✉e-mail: 
bmbani@geomar.de

DaTa DesCriPTOr

OPeN

https://doi.org/10.1038/s41597-023-02245-5
http://orcid.org/0000-0002-2348-6782
http://orcid.org/0000-0001-6186-8573
mailto:bmbani@geomar.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02245-5&domain=pdf


2Scientific Data |          (2023) 10:316  | https://doi.org/10.1038/s41597-023-02245-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

The provided images were acquired during an expedition to the German and Belgian contract areas for 
Manganese-nodule exploration in the Clarion-Clipperton Zone (CCZ) of the Pacific Ocean, in the year 2019. 
The expedition was executed on board the German research vessel SONNE during cruise SO268, which was 
part of the MiningImpact project whose overarching scope was to quantify the impacts of potential polymetallic 
Manganese-nodule mining on the marine ecosystem7. Twelve video transects were undertaken within the two 
contract areas (Fig. 1), from which both video and still image frames were acquired. These raw images have been 
archived and published in PANGAEA8. We used these raw images in a previous study that aimed to develop an 
automated image-based workflow for semantic seafloor substrate classification; the findings of the study have 
been published in Mbani et al.9. As part of the data pre-processing workflow of the above-mentioned study, 
intermediate images were generated to be used in the main seafloor substrate classification task. These are the 
analysis-ready images (and associated metadata) that we contribute here to the scientific community.

Methods
raw images. Below, we briefly present the methods that were applied during the acquisition, curation and 
archival of the raw image dataset8. These methods have been adopted from the SONNE SO268 cruise report7, as 
well as from the GEOMAR data management guidelines, whose technical details are documented by Schoening 
et al.10.

Fig. 1 Map showing the camera deployment tracks during SONNE cruise SO268 to both the German and 
Belgian contract areas within the Clarion-Clipperton Zone of the Pacific Ocean.
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Acquisition. The raw images8 were acquired using a towed Ocean Floor Observation System (OFOS), which is 
an imaging platform comprising a steel frame that houses the camera and other sensors. The OFOS was towed 
at a speed of approximately 0.5 knots, while maintaining a data link to the ship through a fibre optical cable. A 
Canon EOS 5D Mark IV camera equipped with a 24 mm lens was used to record still images with a resolution of 
30 megapixels, at a frequency of 0.1 Hz. The camera field of view was artificially illuminated by a set of strobe and 
LED lights. The position of the OFOS was tracked using a USBL underwater navigation system. To determine 
the scale of each photo (in pixels/centimeter), three laser pointers positioned around the camera projected red 
laser beams vertically downwards towards the center of each photo. This allowed estimating the ratio between 
the photographed laser separation distance (in pixels) to the actual distance (in centimeters).

Curation. After acquisition, the images were downloaded from the hard disk that was located in the pressure 
housing of the OFOS, and copied onto local hard drives. The curation process then involved renaming the 
images in a way that basic metadata information about each image could be accessed from the assigned file 
name. The navigation information from the USBL was quality controlled by first removing outliers, and then 
imputing missing entries using spline interpolation. Thereafter, each image was georeferenced by first parsing 
its file name to retrieve the acquisition time, and then using this time to index into the navigation file so as to 
retrieve the position information. Finally, the curated images were organized into folders that grouped images 
by deployment station, and backed up into separate Network Access Storage (NAS) drives, ready to be delivered 
back to the office after the expedition.

Data management. The post-cruise data management involved copying the curated images from the NAS 
drives to the GEOMAR’s in-house repository called ProxSys, which is a centralized media server that facilitates 
controlled data access, versioning and overall management. In addition, the curated images were also copied 
to the BIIGLE portal, which is a web-based platform that allows for collaborative image annotation among 
domain scientists11, and which is open to the public upon registration. Finally, the curated images were pushed 
to PANGAEA8, which is a world data center that allows for long term data archiving, publishing and reuse12.

analysis-ready images. Below, we describe the series of transformations we applied to the raw images, 
before they were ready to be used for characterizing the seafloor habitat. The transformations described are part 
of the automated image-based seabed classification workflow that is presented comprehensively in Mbani et al.9.

Light cone correction. This transformation was applied to account for the reduction in image brightness from 
the center of the image radially towards the edges. This illumination drop-off is usually caused by the perspective 
geometry of the artificial light source, in which the circular plane of the camera’s conic view volume that inter-
sects the seafloor is illuminated strongly, whereas the intensity of illumination reduces towards the edges. As a 
result, the image edges appear dark, which limits the quality and quantity of information that can be inferred 
from these regions. To address this, we used the z-score normalization transformation, where the images were 
first sorted sequentially based on their acquisition time, and split into batches containing 50 images each (due to 
memory constraints). Considering images within each batch, the transformation involved pixel wise subtraction 
of the mean, followed by pixel wise scaling to unit variance. This transformation reduced the effect of the light 
cone by ensuring that all the pixels had a common origin in feature space, and that the range over all the dimen-
sions of this feature space had a standard deviation of one.

Contrast enhancement. We applied adaptive histogram equalization transformation to maximize the contrast 
of the light-cone corrected images. This improved the image contrast by ensuring that the distribution of pixel 
intensities within local image regions is as uniform as possible. This in turn improves the global image contrast, 
since the pixel values now occupy the entire range of available intensity values, instead of peaking over a narrow 
range.

Color normalization. The variation in the altitude of the OFOS above the seafloor caused uneven scene bright-
ness and color among the acquired images. We addressed this problem by choosing a reference image with good 
overall scene brightness and color values, and then equalized the intensity distribution of all the other images 
(channel wise) relative to this reference image, resulting in color normalized images. We chose the reference 
image to be the one with the maximum resolution closest to the seafloor.

Standardization of spatial footprint size. The varying altitude of the camera platform also caused individual 
images to have inconsistent scale and spatial footprint. We addressed this problem by first calculating the scale 
of each image (in pixels/centimeter), and then rescaling all the images relative to the median scale. Finally, we 
center cropped the rescaled images to a standard footprint size of 1.6 square meters, which was the minimum 
over all the rescaled images. The resulting images are then ready for direct use e.g., for machine learning models 
aimed at seafloor habitat classification (see usage notes section of this paper).

We point out here that the center cropping reduced the size of the images by 50% in both height and width. 
Therefore, standardization of spatial footprint might not be necessary (so important) for images that were 
recorded from a camera platform at a constant altitude e.g., some AUVs.

Figure 2 shows an example image that is being processed through each of the above-described transforma-
tions to generate the final analysis-ready image that we provide in this paper.
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Data records
images. 40,476 analysis-ready optical underwater images from the Clarion-Clipperton Zone have been 
archived and published in PANGAEA13. These images are available for immediate download as color normal-
ized JPG files of size 1.5 MBytes. Each image has 2,240 rows and 3,360 columns of pixels, which corresponds to 
a standardized spatial footprint of approximately 1.6 square meters on the seabed. The scale of each image has 
also been standardized to 21.5 pixels/centimeter, which allows for a consistent conversion of measurements from 
pixels to real world units (e.g., meters). The file naming convention and other metadata allows users to select 
subset(s) of the images they need (see the adopted naming convention in the metadata section below); they could 
either download the entire dataset, specific dives, or images from a particular contract area.

Metadata. To complement the images, we also provide their corresponding metadata as a separate csv file. 
These metadata include:

The image name which follows the file naming convention: <cruise_station_platform_date_time.JPG>.
The contract/license area from which the image was acquired, which could either be Belgian or German.
The water depth (meters) at which each image was acquired; images acquired during camera deployment at 

a specific station have the depth value of that station.
Geographic coordinates in latitude and longitude with coverage defined (in decimal degrees) as follows: 

median latitude 12.608845, median longitude −119.975256, south-bound latitude 11.842236, west-bound lon-
gitude −125.926561, north-bound latitude 14.136652, and east-bound longitude −116.984906.

Date and time of acquisition (up to seconds in resolution) with coverage starting from 2019-03-04T09:35:10 
all the way until 2019-05-10T09:53:13. The acquisition time of the provided images is referenced to the 
Coordinated Universal Time (UTC), and exactly matches the acquisition time of the corresponding original 
images8. Therefore, users who would like to relate our analysis-ready images with the corresponding original 
versions should use the date/time attribute instead of the respective file names. This is because the file naming 
convention may vary depending on the user (or organization), but the acquisition time is a property of the image 
that does not change, and is therefore a persistent unique identifier.

Original scale of each image in units of centimeters/pixel as obtained from the automatic laser point detec-
tion workflow9. This workflow was applied to the original images in order to automatically detect red laser points 
that were projected vertically on the seafloor during image acquisition; these laser points were visible in both 
nodules and mud/sediment. The scale was then determined as the ratio between the distance separating the 
detected laser points (in pixel units) and their known calibrated distance (in centimeters). Whereas the scale of 
the original images varied depending on the altitude of the imaging platform, the analysis-ready images that we 
provide here have already been standardized to have a mean scale of 21.5 pixels/centimeter.

The assigned seafloor substrate class of each image. This is based on the previously published automated sea-
floor classification workflow9, which trained a convolution neural network to classify each image into one of the 
following seafloor classes: Seafloor A that represents a seabed that is predominantly covered with turned-over 
sediment blanket or plough marks, such that none or few Mn-nodules are visible in the image; Seafloor B com-
prises a seabed covered by patchy Mn-nodules that only partly cover the seabed; Seafloor C is characterized by 

Fig. 2 Visualization of the transformations applied to an example original image to obtain the final analysis-
ready image. The transformed images are positioned counter-clockwise: (a) Original image (b) Light cone 
corrected image (c) Contrast enhanced image (d) Color normalized image with standardized footprint size of 
1.6 square meters.

https://doi.org/10.1038/s41597-023-02245-5


5Scientific Data |          (2023) 10:316  | https://doi.org/10.1038/s41597-023-02245-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Mn-nodules whose spatial distribution can be described as densely distributed per unit area; Finally, Seafloor D 
comprises a seabed covered with Mn-nodules that are qualitatively larger in size relative to those in all the other 
classes. In addition to these classes, the classification score for each image that represents the confidence of the 
classifier is also provided in the metadata file. The histogram showing the distribution of the seafloor substrate 
classes is shown in Fig. 3. We encourage interested readers to refer to the results section of Mbani et al.9 for 
qualitative examples of the above-described seafloor substrate classes, as well as the quantitative performance 
evaluation of the convolutional neural network classifier.

Technical Validation
We performed technical validation on the provided analysis-ready images to quantify to which extent the 
applied transformations achieved the desired outcomes. Light cone correction transformation was only vali-
dated visually, since the analysis ready images were center cropped to standardize the spatial footprint size, and 
therefore their edges could not be quantitatively compared anymore with the raw images.

Contrast maximization was validated by comparing the contrast of the raw images against that of the 
analysis-ready images. The image contrast was quantified using the root mean square metric14, which is cal-
culated as the standard deviation of the pixel intensities for each (R, G, B) channel; higher values of the metric 
indicate higher contrast. Our validation results in Fig. 4 show that compared to the raw images, the contrast of 
the analysis-ready images improved by a factor of 2 (averaged over all channels). This improved contrast was 
consistent among individual analysis-ready images, as indicated by the low variance of 0.1 in each color channel. 
Differently, the low contrast of the raw images still showed high variance among individual images (R = 14.7, 
G = 7.1, B = 5.0), which implies that extracting visual features is more difficult.

Color normalization was validated by comparing the brightness of the raw images against the analysis-ready 
images. The median intensity for each image was used as the metric for quantifying the scene brightness chan-
nel wise15. The validation results in Fig. 5 indicates that the median intensity of the raw images showed a high 
variance in each channel (R = 577.4, G = 470.8, B = 330.3), which was the reason for the perceived uneven 
scene brightness. The analysis-ready images showed very low variance in median intensities across all channels 
(R = 0.07, G = 0.04, B = 0.04), which implies that the overall scene brightness among the individual images is 
more consistent.

Standardization of spatial footprint among analysis-ready images was validated by comparing their footprint 
size on the seafloor (in square meters) relative to the raw images. The footprints sizes were determined based 
on automatically detected laser points9, and further verified through manual inspection. Figure 6 shows that 
the variance in spatial footprint sizes among raw images was high (0.5) compared to the variance among the 
analysis-ready images (0.0005).

Usage Notes
The results from the technical validation show that the analysis-ready images that we provide are directly usable 
for scientific analysis. Below, we describe a few examples of potential use cases.

seafloor substrate classification. This involves partitioning the seabed into a finite number of semantic 
seafloor habitat categories classes based on the interpretation of visual features extracted from the images. The 
classification can be achieved either by inviting domain experts to manually inspect and annotate each image with 
a habitat class, or by deploying a trained machine learning model.

The analysis-ready images are suitable for both of these approaches. On the one hand, the images can be 
uploaded to an annotation platform such as BIIGLE11, which has an intuitive web-based user interface that 

Fig. 3 Histogram showing the distribution of seafloor classes. Seafloor B comprising patchy nodules had the 
highest frequency distribution, whereas few images were classified as Seafloor A because it was artificially 
created by plough marks and subsequent settling plume from the dredging experiment.
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allows a team of annotators to seamlessly collaborate in assigning habitat labels to the images based on standard-
ized annotation protocols16. Alternatively, a few example images can be annotated and used to train a machine 
learning model e.g., a random forest classifier. This trained classifier can then be used to automatically label the 
rest of the images, which is much more convenient and scalable compared to the purely manual approach. The 
results obtained from either of the approaches can then be used for domain-specific use cases e.g. to determine 
the type and density of Manganese-nodule coverage on the seafloor9,17, or validate acoustic-based seafloor sub-
strate classification and mapping18.

Fig. 4 Evaluation of the improvement in image contrast among the analysis-ready images compared to the 
original images. Over each (R, G, B) color channel, original images had low contrast with a high variance, 
whereas analysis-ready images had consistently high contrast with low variance.

Fig. 5 Evaluation of the normalization of image brightness among the analysis-ready images relative to the 
original images. The low variance in median intensity over each (R, G, B) color channel of the analysis-ready 
images indicates that their brightness is normalized. This is in comparison to the high variance in the intensity 
of the original images.
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Megabenthic fauna detection. Understanding abundance and spatial distribution of megabenthic fauna 
is key towards conservation and management of marine ecosystems. Optical images allow for non-invasive mon-
itoring of megabenthic fauna which can potentially span wide geographic extents. The provided analysis-ready 
images are directly usable as comparable sampling units for megafaunal community assessment studies. This 
assessment can be done either through the conventional manual identification and counting approaches, or 
through automation approaches that use state-of-the art object detection models2,19.

effect of sediment plume redeposition. Deep sea mining of marine resources e.g., polymetallic 
Manganese nodules has both economic and environmental implications. On the one hand, Mn-nodules contain 
significant concentrations of nickel, cobalt and copper, whose availability is needed for the energy transition from 
fossil fuels to low carbon emitting technologies20. On the other hand, the exploitation of these minerals involves 
large-scale dredging operations on the seabed, which re-suspends sediment into the near-bottom water. The sub-
sequent redeposition of this sediment plume negatively affects the sensitive and slow growing fauna. The provided 
analysis-ready images contain survey tracks that were photographed before and after a sediment dredge experi-
ment, and these could be used together with other sensor datasets to assess the spatial extent of this redeposition 
e.g. as was done by Peukert et al.21.

Code availability
The open-sourced code used for performing the light cone correction, contrast enhancement, color normalization 
transformations, as well technical validation can be accessed publicly through this online Gitlab repository22: 
(https://git.geomar.de/open-source/AI-SCW).
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