
1

Continuous Integration Testing of Embedded
Software with Digital Twin Prototypes

Alexander Barbie∗†‡, Wilhelm Hasselbring‡, Niklas Pech∗

∗GEOMAR Helmholtz Centre for Ocean Research Kiel (Germany)
†Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Germany)

‡Software Engineering Group, Christian-Albrechts-University, Kiel (Germany)

Abstract—Digital Twins may be employed for developing embedded software and can be classified in three subcategories by their
level of integration with the corresponding physical objects/twins. We introduce and report on experience with a new category: the
Digital Twin Prototype. Digital Twin Prototypes support engineers to test embedded software systems, without the need of a connection
to a physical object. In CI/CD pipelines they can be used for integration testing and thus, allow for an agile verification and validation
process. We developed and evaluated this approach to create an underwater network of ocean observation systems. The feasibility
was shown in a demonstration mission in the Baltic Sea in October 2020.

Index Terms—Digital Twin Prototypes, Automated Testing, Integration Testing, Continuous Integration, Continuous Delivery,
Embedded Software Systems

�

INTRODUCTION

For cyber physical systems and Industry 4.0 applications,
the embedded software is an increasingly crucial asset that
should be verified via automated tests. An example for
Hardware-in-the-Loop (HiL) testing at large scale is Air-
bus with creating skeletons of their aircrafts in a test rig,
containing the corresponding electrics, hydraulics and flight
controls [1]. However, smaller companies cannot afford such
redundant hardware just for the purpose of testing software.

A survey among 2, 000 decision makers about trends
and challenges in software engineering found that quality is
perceived in industry as the single most relevant condition
to survive [2]. Yet, organizations struggle to achieve quality
along with cost and efficiency [3]. Another study found
that test automation is among the most popular topics for
testing embedded software [4]. However, automatic quality
assurance with continuous integration testing is a challenge
in this context, since hardware is in the loop.

Digital twins may be employed on all layers in Industry
4.0 applications [5]. We leveraged the concept of digital
twins for continuous integration testing of embedded soft-
ware via the new approach of Digital Twin Prototypes (DTPs).
DTPs can automatically be tested as proxies of the phys-
ical twins; thus, enabling automatic integration testing of
embedded software. The digital thread between a physical
twin and its digital counterpart is verified via appropriate
integration tests with the DTP.

In the Helmholtz innovation project ARCHES (Au-
tonomous Robotic Networks to Help Modern Societies)
with a consortium of partners from AWI (Alfred-Wegener-
Institute Helmholtz Centre for Polar and Marine Research),
DLR (German Aerospace Center), KIT (Karlsruhe Institute
of Technology), and the GEOMAR (Helmholtz Centre for

Ocean Research Kiel), we developed several DTPs for ocean
observation systems. The major aim of this project is to
implement robotic sensing networks, which are able to
autonomously respond to changes in the environment by
adopting its measurement strategy, in both space and in
the deep sea. A field report on employing DTPs in this
context is published by Barbie et al. [6]. In the present paper,
we introduce the general DTP approach for continuous
integration testing of embedded software.

DIGITAL TWINS

A digital twin (DT) is a digital model of a real entity,
the physical twin (PT). It is both a digital shadow
reflecting the status/operation of its physical twin,
and a digital thread, recording the evolution of the
physical twin over time [7].

Kritzinger et al. [8] classify three subcategories of digital
twins by their level of integration with the physical twin, as
illustrated in Figure 1:

• Figure 1a shows the digital model. There is no auto-
mated connection between the physical object and the
digital model. All data exchange is done offline. State
changes in the physical object do not immediately affect
the digital model and vice versa.

• If there is an automated one-way data flow from the
physical object to the digital object (see Figure 1b), then
we refer to this as a digital shadow. A change in state
of the physical object leads to a change of state in the
digital shadow, but not vice versa.

• Figure 1c shows a fully integrated digital twin. The data
flows are automated between the physical twin and the



2

Physical
Object

Digital
Model

Digital Model

(a)

Physical
Object

Digital
Shadow

Digital Shadow

(b)

Physical
Twin

Digital
Twin

Digital Twin

(c)

Fig. 1: Subcategories of digital twins by their level of integration with the Physical Twins, adapted from [8].

digital twin in both directions. In such a combination,
the digital twin might also act as controlling instance of
the physical twin. A change in state of the physical twin
directly leads to a change in state of the digital twin and
vice versa.

In the following, we introduce the Digital Twin Prototype as
a fourth subcategory of a digital twin.

DIGITAL TWIN PROTOTYPES

As shown in Figure 1, in the development of digital twins
the physical object does not only play a role for the design
of a DT, it is essential as source of the digital shadow that is
synchronized to the DT. This reflects directly to a common
embedded software engineering practice, where engineers
still need to connect to a test rig and develop and test new
code on the physical object. Consequently, developers are
locally bound to that test rig and only a few developers can
work on that test rig at the same time. This process is both
laborious for teams with several (software) engineers and
expensive.

A Digital Twin Prototype (DTP) is the software
prototype of a physical twin. The configurations are
equal, yet the connected sensors/actuators are emu-
lated. To simulate the behavior of the physical twin,
the emulators use existing recordings of sensors and
actuators. For continuous integration testing, the
DTP can be connected to its corresponding digital
twin, without the availability of the physical twin.

A DT does not need to integrate all the interfaces to real
sensors and actuators, since all the data can be synchro-
nized from its PT. Thus, the implementation of the software
running the PT often differs from the software of the DT.
We advocate an approach where the software of the PT
and DTP is identical, and also part of the DT’s software.
Microservice architectures and containerization tools such
as Docker make this possible. Furthermore, Docker allows
a dependency management and a platform independent
deployment.

The relationships between a PT, DT, and DTP in our
approach are shown in Figure 2. The DTP has the same
software configuration as the corresponding PT. Instead of
real sensors/actuators the DTP uses emulated ones. The
DT also uses the core software logic of the PT, yet without
connected sensors and actuators, but with additional logic to

control the PT and the DTP. To emulate interfaces other than
Ethernet on the DTP, tools such as socat can be used to proxy
an interface, e.g. a serial port, over TCP in Docker. Another
way is to integrate simulation tools such as Gazebo, which
we used to implement and test movement with caterpillar
tracks. The important aspect is that we are able to integrate
all interfaces into the development process and the inputs
and outputs of all emulated hardware are similar to the real
hardware. The emulators react to the same commands as
their real counterpart, and they also return identically for-
matted data packages. Hence, a DTP is not only a software
mock-up, it is able to replace the PT as the source of a digital
shadow. Moreover, a well integrated DTP can be used to
simulate what-if scenarios with more accurate results than a
mere simulation.

The synchronization between the PT and DT can be
solved via a microservice. The PT sends sensing/actuation
data and state changes to the DT. The DT sends control
commands to the PT. As a result, we get a replication of
the core logic and the internal state of the PT as DT. This
also supports engineers to localize the source of error, if the
PT malfunctions. During the development process the DTP
is connected to the DT, in production the PT is connected to
the DT.

Consequently, engineers are able to develop new soft-
ware modules in their local development environment and
do not need the permanent connection to a physical test rig.
The pressure to reduce costs [3] leads to many different ap-
proaches to switch from HiL to Software-in-the-Loop (SiL)
development in the industry, mostly by using simulations
tools. Bachuwar et al. [9] present a case study using ROS
and different simulation tools to develop a realistic DT to
virtually test autonomous vehicles. However, this approach
does neither consider the connection between the PT and
DT nor automated integration testing. Our DTP approach
even considers the development of all aspects concerning
the digital thread of a PT, e.g. applications to monitor and
control PTs and cybersecurity aspects.

Note, this does not completely remove the factor hard-
ware. Finally, the entire system still has to be tested on the
PT before using it in production. Especially, performance
tests can only be executed on the hardware used in pro-
duction. Nevertheless, with DTPs we are able to test the
software logic independent of the hardware.



3

Digital
Twin

Digital Twin
Prototype

Actuator B 
Emulator

Storage C
Emulator

Sensor A 
Emulator

Physical
Twin

Actuator B

Storage C

Sensor A

{xor}

(a) General concept design

{xor}

Digital Twin

Physical Twin

Digital Twin Prototype

(b) Realization and evaluation in ARCHES [6]

Fig. 2: Relationships of Digital Twin Prototypes with physical twins and digital twins

CONTINUOUS TWINNING

By following continuous integration/continuous delivery
(CI/CD) workflows the development of embedded software
systems becomes an agile and incremental process. Starting
with a prototype of a driver for a single piece of hardware, to
entire production plants, to smart factories, the gap to agile
software development closes. This does not only improve
the software quality and shorten release cycles, it also allows
additional stakeholders to participate in a feedback loop in
the development process with the first software prototype.
Adjusting software requirements, design flaws, or breaking
up to complex processes can be fixed during development.
With this method, digital twins evolve continuously in small
incremental steps, rather than in major releases. Nakagawa
et al. [10] envision and call this approach Continuous Twin-
ning.

Developing a DTP of a physical object is a challenge,
depending on the level of detail of all the components that
are integrated into the system. However, the time that has
to be invested into the development is worth the effort. A
DTP reduces testing time in the further development pro-
cess, since engineers are able to skip time-consuming tasks,
such as preparing the test rig, connecting the development
environment, starting the software, and executing scenarios
manually. With DTPs this effort is reduced to the end of a
release cycle.

Besides reducing the time that is needed for testing, does
switching from HiL to SiL testing with DTPs reduce costs for
redundant hardware and paves the way for more efficient
development workflows that are difficult to implement for
embedded software systems. DTPs become a key enabler
for fully automated integration testing of embedded soft-
ware systems in CI/CD pipelines. While building, testing,
and releasing of software becomes possible for embedded
software like in other fields of software engineering, inte-
gration testing with hardware interaction is expensive, due
to the HiL testing, and is often done manually. Thus, the
integration tests are a bottleneck in the verification and
validation activities and hence, the release of new software.
Nevertheless, with proper integration testing, developers
increase the robustness of the embedded software systems.
This may even embrace Industrial DevOps methods in the

embedded field [11].

FIELD EXPERIENCE

We developed and demonstrated the DTP approach in
the context of the above-mentioned project ARCHES. In
that project we developed DTPs of five ocean observation
systems constructed at AWI and GEOMAR. They vary in
construction, payload, and configuration (see Barbie et al.
[6] for details). The distance between AWI and GEOMAR
are a few hundred kilometers. Hence, we required a method
to develop the software for all the systems and test the
underwater network, without a permanent connection to
the physical ocean observation systems. To develop the
software system for the PT we primarily utilized open-
source tools to build a microservice architecture [5] based on
the Robot Operating System (ROS) encapsulated in Docker
containers and use this as the basis to run a virtual instance
as DT. The underwater communication between PT and DT
was established via acoustic modems. The PTs sent sensor
data and status updates to the corresponding DTs running
on a server on the research vessel. Commands to operate the
PTs were sent from the DTs to the PTs.

A disadvantage of SiL testing is the missing ground
truth that the data during the tests can really be used to
verify and validate the behavior of an embedded software
system. In our domain, we are unable to even observe
the actions of the PT underwater. Often SiL tools provide
software interfaces that receive a data stream and execute
simulations on a (mathematical) model or on mock-ups.
Interfaces, such as serial connections, are not considered in
these tests and small deviations in the underlying model
may falsify the tests. Furthermore, the used data is often
synthetic, since it solely was created for a specific test case
to verify a specific behavior. In ARCHES, our emulators use
existing recordings/data from previous missions as ground
truth to increase the confidence in the results. However, the
recordings of sensors and actuators used by DTPs in general
may originate from observations and simulations.

We evaluated this approach during the research cruise
AL547 with RV ALKOR (October 20-31, 2020), where we es-
tablished and deployed a collaborative underwater network
of ocean observation systems in the Baltic Sea. During that



4

period, different scenarios were executed to demonstrate the
feasibility of digital twins for maritime environments [6].

With DTPs we were able to develop and test these
scenarios before the mission took place. We use GitLab as
CI/CD platform. For integration tests, we utilize the testing
tools provided by ROS. During the mission, we recorded all
exchanged message on the PT and DT and are now able to
use this data in our integration tests to increase the quality
of our CI/CD pipelines.

CONCLUSION

We presented the Digital Twin Prototype as fourth subcate-
gory of digital twins. A DTP can be employed by software
engineers for embedded software development without a
connection to a physical test rig to enable automated SiL
testing in CI/CD pipelines. In the development phase of
embedded software systems, DTPs pave the way for a
paradigm switch from traditional embedded software de-
velopment processes, e.g. the V-Model, to agile and in-
cremental workflows with CI/CD. This way, DTPs allow
a rapid prototyping of embedded software systems and
the integration of feedback by stakeholders at a very early
development stage.

We designed this method and a software framework,
based on ROS, to run digital twins in the context of the
project ARCHES and demonstrated the feasibility for ocean
observation systems in a real life mission in the Baltic Sea in
October 2020 [6].

By using DTPs for the software development, we were
not only able to bridge the geographical distance between
the AWI and GEOMAR during the COVID-19 pandemic,
we were also able to work from our home offices and hence,
reduced physical contacts in the team.

All in all our approach increases the quality of embedded
software systems and helps to reduce costs while increas-
ing development speed, which has been reported by both
Ebert [3] and Ozkaya [2] as reasons for the struggle to
achieve quality along with managing costs and efficiency.

ACKNOWLEDGMENT

The project is supported through the HGF-Alliance
ARCHES – Autonomous Robotic Networks to Help Modern
Societies and the Helmholtz Association.

REFERENCES

[1] Phillipe Goupil. AIRBUS State of the Art and Practices on FDI
and FTC. IFAC Proceedings Volumes, 42(8):564–572, 2009. 7th IFAC
Symposium on Fault Detection, Supervision and Safety of Techni-
cal Processes. doi:10.3182/20090630-4-ES-2003.00094.

[2] Christof Ebert. 50 Years of Software Engineering: Progress and
Perils. IEEE Software, 35(5):94–101, 2018. doi:10.1109/MS.
2018.3571228.

[3] Ipek Ozkaya. Can We Really Achieve Software Quality? IEEE Soft-
ware, 38(03):3–6, may 2021. doi:10.1109/MS.2021.3060552.

[4] Vahid Garousi, Michael Felderer, Çağrı Murat Karapıçak, and
Uğur Yılmaz. What we know about testing embedded soft-
ware. IEEE Software, 35(4):62–69, 2018. doi:10.1109/MS.2018.
2801541.

[5] Alexander Barbie, Wilhelm Hasselbring, Niklas Pech, Stefan Som-
mer, Sascha Flögel, and Frank Wenzhöfer. Prototyping Au-
tonomous Robotic Networks on Different Layers of RAMI 4.0 with
Digital Twins. In Proceedings of the 2020 IEEE International Con-
ference on Multisensor Fusion and Integration for Intelligent Systems
(MFI 2020), pages 1–6. IEEE, 2020. doi:10.1109/MFI49285.
2020.9235210.

[6] Alexander Barbie, Niklas Pech, Wilhelm Hasselbring, Sascha
Flögel, Frank Wenzhöfer, Michael Walter, Elena Shchekinova,
Marc Busse, Matthias Turk, Michael Hofbauer, and Stefan Som-
mer. Developing an Underwater Network of Ocean Observation
Systems with Digital Twin Prototypes – A Field Report from the
Baltic Sea. IEEE Internet Computing, 2021. doi:10.1109/MIC.
2021.3065245.

[7] Roberto Saracco. Digital Twins: Bridging Physical Space and
Cyberspace. Computer, 52(12):58–64, 2019. doi:10.1109/MC.
2019.2942803.

[8] Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and
Wilfried Sihn. Digital twin in manufacturing: A categorical liter-
ature review and classification. IFAC-PapersOnLine, 51(11):1016–
1022, 2018. doi:10.1016/j.ifacol.2018.08.474.

[9] Sanket Bachuwar, Ardashir Bulsara, Huzefa Dossaji, Aditya
Gopinath, Chris Paredis, Srikanth Pilla, and Yunyi Jia. Integra-
tion of Autonomous Vehicle Frameworks for Software-in-the-Loop
Testing. SAE International Journal of Advances and Current Practices
in Mobility, 2:2617–2622, 2020. doi:10.4271/2020-01-0709.

[10] Elisa Yumi Nakagawa, Pablo Oliveira Antonino, Frank Schnicke,
Thomas Kuhn, and Peter Liggesmeyer. Continuous Systems and
Software Engineering for Industry 4.0: A disruptive view. Infor-
mation and Software Technology, 135:106562, 2021. doi:10.1016/
j.infsof.2021.106562.

[11] Wilhelm Hasselbring, Sören Henning, Björn Latte, Armin Möbius,
Thomas Richter, Stefan Schalk, and Maik Wojcieszak. Industrial
DevOps. In 2019 IEEE International Conference on Software Archi-
tecture Companion (ICSA-C), pages 123–126, March 2019. doi:
10.1109/ICSA-C.2019.00029.

Alexander Barbie is a software engineer at
the GEOMAR Helmholtz Centre for Ocean Re-
search Kiel (Germany) and the Alfred-Wegener-
Institute Helmholtz Centre for Polar and Ma-
rine Research (Bremerhaven, Germany), and a
doctoral researcher in the software engineering
group in the Department of Computer Science,
Kiel University, Germany. Contact him at abar-
bie@geomar.de.

Wilhelm Hasselbring is a full professor of soft-
ware engineering in the Department of Com-
puter Science at Kiel University, Germany. Con-
tact him at hasselbring@email.uni-kiel.de.

Niklas Pech is a software engineer at the GEO-
MAR Helmholtz Centre for Ocean Research Kiel
(Germany). Contact him at npech@geomar.de.


