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Abstract. Understanding the relationship between surface
marine ecosystems and the export of carbon to depth by
sinking organic particles is key to representing the effect of
ecosystem dynamics and diversity, and their evolution un-
der multiple stressors, on the carbon cycle and climate in
models. Recent observational technologies have greatly in-
creased the amount of data available, both for the abundance
of diverse plankton groups and for the concentration and
properties of particulate organic carbon in the ocean inte-
rior. Here we use synthetic model data to test the potential
of using machine learning (ML) to reproduce concentrations
of particulate organic carbon within the ocean interior based
on surface ecosystem and environmental data. We test two
machine learning methods that differ in their approaches to
data-fitting, the random forest and XGBoost methods. The
synthetic data are sampled from the PlankTOM12 global bio-
geochemical model using the time and coordinates of exist-
ing observations. We test 27 different combinations of pos-
sible drivers to reconstruct small (POCS) and large (POCL)
particulate organic carbon concentrations. We show that ML
can successfully be used to reproduce modelled particulate
organic carbon over most of the ocean based on ecosystem
and modelled environmental drivers. XGBoost showed bet-
ter results compared to random forest thanks to its gradient
boosting trees’ architecture. The inclusion of plankton func-

tional types (PFTs) in driver sets improved the accuracy of
the model reconstruction by 58 % on average for POCS and
by 22 % for POCL. Results were less robust over the equato-
rial Pacific and some parts of the high latitudes. For POCS re-
construction, the most important drivers were the depth level,
temperature, microzooplankton and PO4, while for POCL it
was the depth level, temperature, mixed-layer depth, micro-
zooplankton, phaeocystis, PO4 and chlorophyll a averaged
over the mixed-layer depth. These results suggest that it will
be possible to identify linkages between surface environmen-
tal and ecosystem structure and particulate organic carbon
distribution within the ocean interior using real observations
and to use this knowledge to improve both our understanding
of ecosystem dynamics and of their functional representation
within models.

1 Introduction

Progress in numerical ocean modelling over multiple decades
coupled with fundamental knowledge of fluid dynamics have
led to an explicit representation of ocean dynamics in Earth
system models and of most of its key features, apart from
small-scale features which are parameterized. In contrast,
ecosystem dynamics in ocean biogeochemical models are
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much more reliant on empirical data for growth and loss pro-
cesses, with the theoretical basis limited to the dynamic rep-
resentation of interactions among lower trophic levels (zoo-
plankton and smaller organisms) and their influence on car-
bon pools and fluxes (Le Quéré et al., 2005; Hood et al.,
2006). The recent advances in observational technologies in-
cluding imaging data (Guidi et al., 2016), genomics (Kirch-
man, 2016) and field study (Mutshinda et al., 2017; Bat-
ten et al., 2019; Lombard et al., 2019) offer new opportu-
nities to improve our understanding of marine ecosystem dy-
namics and to better represent its influence on carbon pools
and fluxes in models that are used to project future climate
change and associated impacts on ecosystems.

One strategy to represent lower trophic interactions in
global biogeochemical models is to combine different
species into plankton functional types (PFTs) based on their
unique influence on global biogeochemical cycles (Le Quéré
et al., 2005; Hood et al., 2006). This approach enables the
representation of plankton types that are unique, have an in-
fluence on other PFTs within the ecosystem, and are of quan-
titative importance for carbon flux and other biogeochemi-
cal fluxes. The PlankTOM12 model is among the most de-
tailed in this category of models with its inclusion of an ex-
plicit representation of 12 PFTs: six phytoplankton, five zoo-
plankton and bacteria. PlankTOM12 builds on the published
version PlankTOM10 (Le Quéré et al., 2016) that has been
extended to include gelatinous zooplankton (Wright et al.,
2021) and pteropods (Buitenhuis et al., 2019). Much effort
has been put into the development of PFTs and associated
representation of surface ecosystem dynamics, which has led
to the demonstration that (1) the representation of trophic lev-
els was a key determinant of the low chlorophyll a concen-
tration observed in the Southern Ocean summer (Le Quéré
et al., 2016); (2) CaCO3 dissolution above the lysocline is
needed to reproduce observations of both biomass and ex-
port of PFT calcifiers and (3) gelatinous zooplankton plays
an important role in determining surface biomass of other
PFTs (Wright et al., 2021).

In contrast, the transfer of organic matter resulting from
surface ecosystem dynamics into carbon exported to the deep
ocean via the sinking of particulate organic matter has re-
ceived much less attention, so improvements in the represen-
tation of the PFTs do not necessarily translate into improve-
ments in sinking of particulate matter (Wright et al., 2021).
The export flux of particulate organic carbon from the sur-
face ocean to depth is around 10 PgC yr−1 (Schlitzer, 2002),
which is as large as the CO2 emitted to the atmosphere by
human activities and nearly 4 times larger than the mean
oceanic CO2 sink in recent decades (Friedlingstein et al.,
2022). Changes in carbon exported to depth can have a large
impact on air–sea CO2 fluxes and on the amount of CO2
emissions that remain in the atmosphere where they cause
climate change.

The growing amount of observations provides the oppor-
tunity to develop a new approach to explore the linkages be-

tween surface ecosystem dynamics and the distribution of
particulate organic carbon in the ocean and to improve the
representation of particle sinking fluxes in models. However,
there is a risk of over-interpreting the data by applying ma-
chine learning (ML) methods directly to link the observed
surface environment and ecosystem structure with the ob-
served particulate organic carbon distribution. The use of
synthetic observations based on model data therefore pro-
vides a minimum test to assess the likely success and use-
fulness of such an approach.

ML has been widely used in biogeochemical and geo-
physical applications and provided efficient results in recon-
structions of ocean surface pCO2 (Friedrich and Oschlies,
2009; Telszewski et al., 2009; Landschützer et al., 2013;
Denvil-Sommer et al., 2019) and of particulate organic car-
bon (Sauzède et al., 2016, 2017) as well as in the analysis of
driver importance (Sauzède et al., 2020).

Here we use model data to verify the hypothesis that the
composition of surface ecosystems and the environmental
conditions are indeed reflected in the abundance and size
of the organic particles in the ocean interior. We recon-
struct the concentration of organic particles as represented by
small (POCS, particles < 256 µm) and large (POCL, particles
> 256 µm) particulate carbon in the PlankTOM12 model. Us-
ing this information alongside modelled environmental and
ecosystem conditions, we develop a ML method to reproduce
POCS and POCL over the global ocean and verify the hypoth-
esis. This constitutes a necessary although not sufficient test
that the approach can subsequently be used to reveal linkages
using real observations and to inform model developments.

2 Data and methods

In this section we describe a set of variables that will be
used to test the ML method’s ability to reconstruct partic-
ulate organic carbon concentrations based on ocean model
data. We create a set of synthetic data by sampling a model
at the time and location of real-world observations. We dis-
cuss the availability and distribution of real-world observa-
tions and their limitations. In this section we also describe
the PlankTOM12 global ocean biogeochemical model and
how we use it to develop a ML method and test its ability to
reconstruct small and large particulate organic carbon with a
limited number of observations. To provide resemblance to
the real data availability, we focus on the period 2009–2013,
which guarantees additional sampling of co-located biologi-
cal, chemical and environmental variables from the Tara ex-
peditions (Sunagawa et al., 2020).

Two sets of data are needed to test the machine learning
method: a set of targets and a set of drivers. The drivers rep-
resent the input variables to the ML method (here the bio-
logical, chemical and environmental variables). The targets
represent the variables we are trying to reconstruct (here the
particulate organic matter POCS and POCL). The ML will
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then determine the relationship between the drivers and tar-
gets, which can then be applied in regions where drivers are
available to infer targets where the later data do not exist.

2.1 Measurements of particle size distributions and
concentrations (the targets)

We use observations of particle distribution in two ways: first
to determine the time and location of the observations and
second to verify that the ocean model is of sufficient quality
to be used in this analysis. The sampling of the particulate
organic carbon concentration is based on the data from an
Underwater Vision Profiler 5 (UVP5) (Gorsky et al., 2000,
1992; Picheral et al., 2010; Kiko et al., 2022). UVP5 mea-
sures particles of size from 50 µm to a few millimetres. For
the purpose of comparing the UVP5 data with the Plank-
TOM12 model data, we converted measured biovolume con-
centration (mm3 L−1) of particles to carbon biomass concen-
trations (µmol L−1) using the empirical equation from All-
dredge (1998) for particulate organic carbon:

BM(µg)= 0.99 ·BV(mm3)0.52. (1)

We summed size classes from 50.8 to 256 µm for the small
particulate organic carbon (POCS) and from 256 µm to
5.16 mm for large particulate organic carbon (POCL). POC
below 100 µm is not well captured by the UVP sensor,
which therefore underestimates this size class of aggregated
particles. We extrapolated the total size of particles up to
0.001 mm by using the size spectra theory to provide a bet-
ter estimate of POC biomass concentration in line with the
model. Following Guidi et al. (2008), we used the abundance
of particles sized from 0.250 to 1.5 mm excluding rare par-
ticles to estimate the coefficients of logarithmic relationship
between the size and abundance of particles:

log(abundance)= a · log(size)+ b. (2)

Using this equation, we estimated the abundance of particles
of size less than 100 µm.

There are 2603 vertical profiles of UVP5 measurements
during 2009–2013, including 752 profiles which are co-
located with the stations from the Tara expeditions that pro-
vide the environmental and ecosystem variables (Fig. 1;
Sect. 2.1.2). The measurements are sparse in time and space.
There are no measurements in the Southern Ocean, western
Pacific Ocean and eastern Indian Ocean.

2.1.1 Measurements of environmental and ecosystem
variables (the drivers)

We use observations of environmental and ecosystem vari-
ables to determine the time and location of the observations
that are co-located with the target variables. To represent the
main physical and chemical drivers responsible for the con-
centration and variability of POCS and POCL we use mea-
surements of ocean temperature, chlorophyll a, phosphate

(PO4), nitrates (NO3) and mixed-layer depth (MLD). These
variables were measured during Tara expeditions along with
the particle size distributions and concentrations using UVP
instruments on board these cruises. However, chlorophyll a,
PO4 and NO3 were not measured systematically at each
depth level. Thus, their averages over MLD are tested as pos-
sible drivers as well. To represent the biological drivers, we
use information on PFTs.

2.1.2 The NEMO-PlankTOM12 global biogeochemical
model

We used the output from the NEMO-PlankTOM12 coupled
physical–biogeochemical model of the global ocean at daily
and monthly time resolution. NEMO represents physical
transport processes and is used in its v3.6-ORCA2 version,
with a horizontal resolution of 2◦ longitude and 0.3 to 1.5◦

latitude and 31 vertical levels. It is forced by daily meteoro-
logical data from NCEP reanalysis (Kalnay et al., 1996) over
the period 1948–2020, with output for 2009–2013 used here.
This model version is identical to that used to estimate the
ocean CO2 sink in the Global Carbon Budget 2021 annual
update (Friedlingstein et al., 2022).

PlankTOM12 represents ecosystem dynamics based on
the representation of 12 PFTs: diatoms (DIA), mixed phy-
toplankton (MIX), coccolithophore (COC), picophytoplank-
ton (PIC), phaeocystis (PHA), N2 fixers (FIX), micro- or
protozooplankton (PRO), pteropod (PTE), mesozooplankton
(MES), gelatinous zooplankton (GEL) and bacteria (BAC).
PlankTOM12 keeps track of the carbon biomass (µmol L−1)
of these PFTs over model depth levels resulting from envi-
ronmental and ecosystem processes and their interactions (Le
Quéré et al., 2016).

PlankTOM12 represents sinking processes through the ex-
plicit representation of two organic particle of different size,
with small particles sinking at a constant speed of 3 m d−1

and larger particles sinking at a variable speed between 3
and 150 m d−1 depending on the ballast effect of their min-
eral content (Buitenhuis et al., 2013). In addition, a dissolved
organic carbon component is transported via ocean currents.
Particles are generated through mass flux from the PFTs re-
sulting from mortality and egestion and from aggregation
through differential sinking or turbulent coagulation and de-
stroyed through grazing by zooplankton and remineralization
by bacteria and through disaggregation from shear currents.
Large PFTs contribute mostly to POCL, while small PFTs
contribute mostly to POCS (Le Quéré et al., 2016; Fig. 2).

The NEMO-PlankTOM12 model output was sampled at
the time and location identified from the observations men-
tioned above to create a synthetic data set. The model grid-
coordinate closest to the real geographical position was cho-
sen. If several measurements were co-localized at the same
grid coordinate and same time step (day for daily Plank-
TOM12 and month for monthly PlankTOM12 outputs), it is
counted as one measurement. This model sampling produced
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Figure 1. Location of the observations from the UVP5 database over the period 2009–2013. Green dots correspond to Tara expeditions and
were included in the global UVP5 database.

Figure 2. Schematic representation of the flow of matter in and
out of the two particulate organic carbon (OC) components of the
PlankTOM12 marine ecosystem model. The various boxes repre-
sent the following: Phyto – phytoplankton that includes diatoms
(DIA), mixed phytoplankton (MIX), coccolithophore (COC), pi-
cophytoplankton (PIC), phaeocystis (PHA) and N2 fixers (FIX);
PRO – protozooplankton; PTE – pteropod; MES – mesozooplank-
ton; MAC – macrozooplankton; GEL – gelatinous zooplankton; and
BAC – bacteria.

400 positions when using the daily or monthly PlankTOM12
outputs. All drivers and targets were taken from the model
output at the corresponding coordinates up to 1400 m depth.
These outputs served as the reference for validation and eval-
uation of the ML methods and for establishing the sets of the
most important drivers.

2.2 Method

We tested two ML methods that are widely used in tar-
gets’ reconstruction based on tabular data sets: the ran-

dom forest regressor and the XGBoost (Extreme Gradient
Boosting) regressor. The random forest (RF) regressor is
an ensemble algorithm that contains a number of decision
trees on various subsets of the given data set and takes
as output the average of prediction from each tree estima-
tor. RF can run several trees at the same time, allowing
the use of a large number of input variables, and it is ro-
bust to overfitting (Biau, 2012). The XGBoost (XGB) re-
gressor is an effective tree-based ensemble learning algo-
rithm (Chen and Guestrin, 2016). It builds several models
sequentially, where each new model attempts to correct er-
rors from the previous one. XGBoost uses the gradient de-
scent algorithm to minimize the loss function of the model.
Using RF and XGBoost, we can estimate the driver impor-
tance to identify which driver has the greatest impact on
the predictions. To check the driver importance, we use the
drop_col_feat_imp Python function (https://gist.github.com/
erykml/6854134220276b1a50862aa486a44192, last access:
18 May 2023). This method estimates how the accuracy of
the ML output changes if one of the drivers is dropped off
from a driver set (DS) based on the training data set.

An effective ML algorithm requires sets of training, vali-
dation and test data. The training data build up the ML model.
The model evaluates training data repeatedly to learn about
the relationship between inputs (driver set) and known out-
puts (target set) and adjusts itself to better represent the tar-
get. The purpose of validation data is to evaluate the model
during its training by introducing new unseen data. It allows
us to evaluate how a developed model works on a new data
set and to optimize hyperparameters. The test data evalu-
ate the final accuracy of the ML model and confirm that the
model works correctly on any unseen data. It is new data that
did not participate in the training algorithm. The accuracy is
worse for validation and test data compared to training data
set. The difference in model performance on training and val-
idation data can signal an overfitting, while this difference
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Figure 3. The spatial distribution of (a) training (blue) and validation (green) data sets and (b) the test data set, based on PlankTOM12
monthly outputs.

between validation and test data can demonstrate an effect of
data mismatch. It is worth noting that RF does not necessar-
ily need a validation data set as they perform internal valida-
tion. During the training algorithm, each tree is constructed
from a random subset of original data. Usually it represents
two-thirds of data, and one-third of data is used to estimate
out-of-bag error to assess model performance. XGB uses a
validation data set to evaluate the model during training and
to prevent overfitting by applying an early stopping. In the
present study, the available data were split into training and
validation data sets (Fig. 3a). Validation data are not included
in RF training; however we use them to test the performance
of trained RF and tune hyperparameters afterwards. The test
data are taken from the regions where there are no observa-
tions (Fig. 3b), i.e. 3 months for each year from the period
2009–2013, and six positions for each month were chosen
randomly. This will allow us to identify the possible accuracy
of reconstruction that can be reached in these regions when
we apply a developed method to real observations. However,
when POCS and POCL are reconstructed using only real-
world observations, we will need to split all available data
into training, validation and test data sets.

We use the RandomForestRegressor function from scikit-
learn (https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html, last ac-
cess: 18 May 2023) with its default parameters and
min_sample_leaf equal to 20. To apply the XGBoost
regressor, we use XGBRegressor from xgboost (https://
xgboost.readthedocs.io/en/stable/python/python_intro.html,
last access: 18 May 2023). Parameters were set as follows:
n_estimators= 2000, max_depth= 7, eta= 0.01, subsam-
ple= 0.7, colsample_bytree= 0.8, gamma= 0.01 for POCL
and gamma= 0.3 for POCS, and early_stopping_rounds
= 10.

We tested 27 driver sets (DSs) that are summarized in Ta-
ble 1. For each DS, we identify the most important drivers
that influenced the reconstruction of small (POCS) and
large (POCL) particulate organic carbon concentration. The
drivers include geographic variables (depth, sin(latitude),

cos(longitude)), physical variables (incident light, MLD, co-
located temperature), chemical variables (PO4 and NO3, in-
cluding co-located values and averages over the MLD) and
biological variables (chlorophyll a, 12 PFTs listed above:
DIA, MIX, COC, PIC, PHA, FIX, PRO, PTE, MES, GEL
and BAC, including co-located values and averages over the
MLD).

The driver sets can be split into nine thematic groups
which together test the role of PFTs and sub-classes within,
the role of surface versus depth profiles for some variables
and the role of information from the previous month:

i. No PFTs (short name (sh.n.) “No PFT”). Driver sets 1
and 2 do not include any PFTs and focus on the influ-
ence of temperature, MLD, chlorophyll a, NO3 and PO4
on POCS and POCL reconstruction.

ii. Introduction of PFTs (sh.n. “PFT introduction”). DSs 3,
4 and 5 are dedicated to the investigation of the intro-
duction of PFTs in the reconstruction. In DS 3 we intro-
duced 12 PFTs vertical profiles, even though this infor-
mation will be challenging to reproduce with observa-
tions due to a lack of data. Nevertheless, it is important
to test the capacity of ML if all 12 PFTs were avail-
able over the depth. DS 4 includes the vertical profiles
of six heterotrophs (zooplankton and bacteria) because
they contribute to influencing the vertical distribution of
POCS and POCL and six phytoplankton averaged over
MLD because they are responsible for primary produc-
tion. In DS 5 we added averages over MLD of the six
heterotrophs that were not included in DS 4.

iii. Big zooplankton (sh.n. “Zooplankton combined”). In
DSs 6 and 7 we tested the influence of big zooplankton
summed into one variable to account for their combined
effect rather than the distinctions among PFTs. The big
zooplankton is represented by the sum of mesozoo-
plankton, gelatinous zooplankton and macrozooplank-
ton in DS 6, with the addition of pteropod in DS 7.
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Table 1. Compounds of driver’s sets: dark grey cells correspond to the drivers present in the driver set. “vp” – vertical profile, “mean” –
average over MLD, “back” – values from previous month.

iv. Exclusion of bacteria (sh.n. “No vertical BAC”). DS 8
does not have a bacteria (BAC) vertical profile com-
pared to set 5.

v. Individual zooplankton types (sh.n. “Individual PFT”).
DSs 9, 10, 11, 12, 13 and 14 test the influence of in-
dividual types of heterotrophs, bacteria (BAC), micro-
zooplankton (PRO), pteropod (PTE), mesozooplankton
(MES), gelatinous zooplankton (GEL) and microzoo-
plankton (MAC), respectively.

vi. Geographical position and seasons (sh.n. “Lat-Long”
and “Incident light”). DS 15 is based on DS 5 (which
showed the most promising results) and includes geo-
graphical coordinates as additional drivers in the form
of sin(lat), sin(long) and cos(long). DS 16 includes in
addition to the DS 5 the role of incident light.

vii. Use of only PFTs and chlorophyll a (sh.n. “PFT only +
CHL”). DS 17 is only based on the 12 PFTs, while DS
18 is formed from DS 17 and information on chloro-
phyll a averaged over the MLD. DSs 19 and 20 are
based on DS 6. To form the DS 19, we exclude tem-
perature, NO3 and PO4 from the list of drivers in DS 6.

DS 20 is an extended version of DS 19 with all 12 PFTs’
concentration averaged over the MLD.

viii. Chlorophyll a and chemical variables (sh.n. “Biochem-
ical variables”). DSs 21, 22, 23 and 24 are based on DS
5 and test the individual influence of chlorophyll a (DS
21), NO3 (DS 22), and PO4 (DS 23) vertical profiles and
their ensemble (DS 24).

ix. Previous time step (sh.n. “Month − 1”). DSs, 25, 26
and 27 investigate the role of chlorophyll a (DS 27) and
some zooplankton from the previous time step: gelati-
nous zooplankton and microzooplankton (DS26) as
well as gelatinous zooplankton and micro- and macro-
zooplankton, averaged over MLD chlorophyll a and
coccolithophore (DS25).

The evaluation of the method is based on the mean correla-
tion coefficient, total root mean square errors (RMSEs) and
total absolute bias between the ML outputs and PlankTOM12
POCS and POCL components. Moreover, we provide the
global maps of correlation coefficient and RMSE to vertical
profiles of POCS and POCL at each grid point. Global maps
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help to identify zones where the large errors can be hidden in
the mean diagnostics due to the error compensation.

3 Results

3.1 Data analysis

In this study we test the capacity to reconstruct particulate
organic carbon from sparse observations by using ML and a
synthetic data set based on the PlankTOM12 model output.
We compare observations and the output of the ocean model
to provide a minimum of validation for the model data and to
help explain differences in ML results when applied to real
observations in the future.

Figure 4 shows the vertical profile of small (POCS)
(Fig. 4a) and large (POCL) particulate organic carbon
(Fig. 4b) based on the median from observations (green) and
from daily PlankTOM12 model output (blue). Shading cor-
responds to values between 0.25 and 0.75 percentiles.

PlankTOM12 overestimates POCS up to 3 µmol L−1 in the
first 200 m (Fig. 4a, green and blue curves). UVP5 does
not capture all small particles, which is why we extrap-
olated the size range of UVP measurements (red curve;
see details in Sect. 2.1.1). The extrapolated measurements
show an increase in POCS in the first 100 m; however
this increase still results in the lower concentration com-
pared with PlankTOM12. These results indicate that Plank-
TOM12 overestimates the concentration of small particulate
organic carbon. PlankTOM12 also overestimates POCL by
up to 0.08 µmol L−1 in the first 200 m and does not catch
the increase in POCL between 300 and 500 m. Observa-
tions show an increase in POCL concentration in the first
50 m, while PlankTOM12 reproduces it at a lower level, at
100 m. The RMSE between modelled and observed POCS is
0.33 µmol L−1, with a correlation coefficient equal to 0.083.
The RMSE is 0.23 µmol L−1, with a correlation coefficient
of 0.061 for POCL. The exclusion of isolated large values of
POCL (> 2 µmol L−1) from the observation data set reduces
the RMSE of POCL to 0.062 µmol L−1, with a correlation
of 0.18. We believe that these differences result from differ-
ences in space and time resolution of observations and ocean
model outputs. In situ measurements are obtained at a partic-
ular time of the day and a particular latitude–longitude posi-
tion, while the model provides estimations over the day (or
month) and on the model grid (2◦ longitude and mean 1.1◦

latitude resolution).
We concluded that observed and modelled POCS and

POCL have a common tendency in their vertical distribu-
tions. However, among other things, differences in ampli-
tudes may affect our findings in this work when we develop
a ML method based on observations only.

Due to the constraints in data availability, we further use
monthly PlankTOM12.

Before developing a ML method, we investigate the in-
teractions between targets and drivers in the model. Table 2
shows the correlation coefficients between the POCS and
POCL and corresponding drivers that can influence POCS
and POCL variability. Correlation between drivers could also
provide valuable information to minimize the number of
drivers, but they are not shown here where the focus is on
discovering the effect of a large set of drivers on POC distri-
bution and because driver correlations could also result from
the physics as well as from the model construction. POCS
correlates with gelatinous zooplankton (GEL, r = 0.66), mi-
crozooplankton (PRO, r = 0.63) and coccolithophore (COC,
r = 0.56), as well as with their values from the previous
time step (GEL, r = 0.67; PRO, r = 0.51; COC, r = 0.59).
Coccolithophore is one of the most abundant phytoplank-
ton types in this version of the PlankTOM model (similar
to Wright et al., 2021). The growth of phytoplankton trans-
fers dissolved inorganic carbon into dissolved organic car-
bon, which further aggregates into POCS and POCL. Also,
POCS is generated from microzooplankton egestion and ex-
cretion (Fig. 2). In addition to the above-mentioned PFTs,
POCS shows a correlation 0.44 with the temperature verti-
cal profile at both the considered time step and at the pre-
vious time step. POCS has negative correlations with NO3
(r =−0.46) and PO4 (r =−0.41).

POCL does not show a high correlation with any of the
proposed drivers individually and is therefore most likely
the result of multiple processes and/or multiple drivers, in-
cluding for its production and destruction. The ML approach
should be able to identify combinations of drivers beyond
straight correlations that are investigated directly here. POCL
has the highest correlation with chlorophyll a (r = 0.42) and
gelatinous zooplankton at the considered time step (r = 0.37)
and at the previous time step (r = 0.36). Gelatinous zoo-
plankton contributes to POCL formation through egestion
and excretion mainly from mucus (Fig. 2). As explained in
Wright et al. (2021), mucus forms a large low-density mass
through aggregation with other particles. It can explain a
correlation of gelatinous zooplankton with POCL in Plank-
TOM12.

3.2 Development of the machine learning method

We tested 27 sets of drivers (Table 1) and two ML methods,
random forest (RF) and XGBoost regression (XGB).

Figure 5 shows the statistics of POCS reconstruction us-
ing RF and XGB. XGB (orange) generally outperforms
RF (blue). The statistics are slightly worse for the valida-
tion and test data sets, as expected. For reconstructions us-
ing XGB, the RMSE and absolute bias are about 0.05 and
0.03 µmol L−1 on the training data set and vary around 0.1
and 0.05 µmol L−1, on the validation and test data, respec-
tively. Correlation coefficients (Fig. 5g, h, i) have high values
for all data sets, showing that the vertical profiles of POCS
have the correct shape. These results show that the available
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Figure 4. Comparison of the vertical distribution of particulate organic carbon concentrations (µmol L−1) from UVP5 measurements (green),
PlankTOM12 daily model (blue) and extrapolated UVP5 measurements (red): (a) small particulate organic carbon concentrations and
(b) large particulate organic carbon concentrations. The median is shown in dark, and the shading corresponds to values between the 0.25
and 0.75 percentiles. The size of the particles does not correspond completely between the observations and the model; for POCL the UVP
particle range is chosen as 0.256–5.16 mm, which corresponds approximately to the POCL in the model.

Table 2. Correlation coefficient between small (POCS) and large (POCL) particulate organic carbon concentration and possible drivers.
Estimation is based on monthly PlankTOM12 output at the position of real-world observations from Fig. 1. “vp” – vertical profile, “mean” –
average over MLD and “back” – values from previous month.

Driver POCS POCL Driver POCS POCL Driver POCS POCL

POC 1.00 0.33 BAC vp −0.14 0.15 BAC back vp −0.10 0.09
GOC 0.33 1.00 MES vp −0.09 0.07 MES back vp −0.09 −0.07
Depth −0.32 −0.24 PTE vp −0.07 0.17 PTE back vp −0.08 0.08
Temperature vp 0.44 0.17 DIA vp −0.04 0.15 DIA back vp −0.03 0.09
Temp back vp 0.44 0.17 COC vp 0.56 0.31 COC back vp 0.60 0.31
MLD −0.01 −0.07 PIC vp 0.00 0.07 PIC back vp 0.06 0.06
NO3 vp −0.46 0.01 PHA vp 0.27 0.15 PHA back vp 0.30 0.17
PO4 vp −0.41 0.04 GEL vp 0.66 0.37 GEL back vp 0.68 0.36
NO3 back vp −0.46 0.03 PRO vp 0.63 0.16 PRO back vp 0.51 0.14
PO4 back vp −0.41 0.05 MAC vp 0.07 0.14 MAC back vp 0.08 0.13
CHL vp 0.18 0.42 MIX vp 0.07 0.17 MIX back vp 0.03 0.05
CHL back vp 0.11 0.22 FIX vp −0.00 0.23 FIX back vp −0.00 0.23

spatial and temporal coverage of in situ observations can be
sufficient to reconstruct POCS with an appropriate accuracy
over the global ocean. The analysis of global maps (shown
below) will help to identify areas with low accuracy and their
differences with training regions.

The worst results (highest RMSE, highest absolute bias
and lowest correlation) are produced when there are no PFTs
in the driver set (DS1 and DS2; Fig. 5): for XGBoost, RM-
SEs are 0.24 µmol L−1, and absolute biases are equal to
0.12 µmol L−1 with a correlation coefficient of 0.67 on the
test data sets. Poor results are also obtained for DSs 9, 11,
12, 13 and 14: these five driver sets do not have any infor-
mation on microzooplankton (PRO) and show high RMSEs
and absolute biases, around 0.16 and 0.074 µmol L−1, with

low correlation, 0.83, compared with other driver sets which
include PRO. These results indicate that microzooplankton
plays an important role in POCS variability in the Plank-
TOM12 model.

Figure 6 shows the statistics of POCL reconstruction
using RF and XGB. XGBoost again slightly outperforms
RF for most driver sets. Results for driver sets with PFTs
show lower RMSEs and absolute biases and higher cor-
relation coefficients. Except for the effect of PFTs on the
POCL reconstruction, we did not observe a clear influ-
ence of one driver or group of drivers. Using XGBoost,
the reconstruction of POCL shows the RMSE in DS1 is
high at 0.03 µmol L−1, while it is in the range of 0.021–
0.026 µmol L−1 in DS3–DS27, with absolute bias in DS1 of
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Figure 5. Comparison of the performance of the random forest (RF) and XGBoost methods and their fit to data for small (POCS) particulate
organic carbon concentration: (a, b, c) RMSE (in µmol L−1), (d, e, f) absolute bias (in µmol L−1) and (g, h, i) correlation coefficient. (a,
d, g) The training data set, (b, e, h) the validation data set and (e, f, i) the test data set. Results compare data from the original (sampled)
PlankTOM12 model output and POCS reconstructed using RF (blue) and XGB (orange). The low RMSE and absolute biases indicate better
performance of the ML method.

0.02 and 0.015–0.018 µmol L−1 for DS3–DS27 based on test
data (Fig. 6c, f). Likewise, there is a correlation coefficient of
0.56 for DS1 and between 0.7 and 0.77 for DS3-DS27 based
on the training data set (Fig. 6g).

We estimated the ranking of importance for each driver av-
eraged over 27 driver sets (Table 1) for RF and XGB (Fig. 7).
Both RF and XGB show that microzooplankton (PRO), depth
level, temperature, NO3 and PO4 play a dominant role in re-
construction of POCS. The absence of gelatinous zooplank-
ton (GEL) can slightly improve the reconstruction. Also, lat-
itude and longitude do not affect POCS reconstruction. The
depth level, temperature, MLD, microzooplankton (PRO)
and phaeocystis (PHA), PO4, and chlorophyll a averaged
over MLD play a dominant role in POCL reconstruction.

The sinus of latitude is in the top 10 drivers that most affect
POCL using the XGBoost method: the POCL distribution has
a lot of meridional variability that results in the sinus of lat-
itude being in the top 10 drivers. As for POCS, gelatinous
zooplankton (GEL) shows a negative rank of driver impor-
tance, and its removal from the list of drivers can improve
the statistics of reconstruction. Also, chlorophyll a concen-
tration from the previous month shows a similar effect on
POCL (Fig. 7c, d).

It is worth noting that any driver that shows negative im-
portance in the reconstruction only has a small influence on
the accuracy (Figs. 5 and 6). Thus, its removal does not im-
prove the reconstruction significantly.

Based on Figs. 5, 6 and 7 we have chosen 10 driver sets
with low RMSEs and absolute biases and high correlation
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Figure 6. Comparison of the performance of the random forest (RF) and XGBoost methods and their fit to data for large (POCL) particulate
organic carbon concentration; (a, b, c) RMSE (in µmol L−1), (d, e, f) absolute bias (in µmol L−1) and (g, h, i) correlation coefficient. (a,
d, g) The training data set, (b, e, h) the validation data set and (e, f, i) the test data set. Results compare data from the original (sampled)
PlankTOM12 model output and POCL reconstructed using RF (blue) and XGB (orange). The low RMSE and absolute biases indicate better
performance of the ML method.

coefficients (based on test data set) for POCS and POCL to
provide global maps of these statistics and to see their re-
gional distributions. DSs 5, 15, 16, 21, 22, 23, 24, 25, 26
and 27 were chosen for further investigation of POCS recon-
struction and DSs 5, 8, 15, 16, 17, 21, 23, 25, 26 and 27 for
POCL reconstruction. Common for POCS and POCL driver
sets 5, 15, 16, 21, 23, 25, 26 and 27 is that they include all
PFTs and their average over MLD, geographical positions
and incident light, as well as chlorophyll a, PO4 and gelati-
nous zooplankton and microzooplankton from the previous
time step (Table 1). Also, we found that POCS reconstruc-
tions rest on biochemical conditions (DSs 21 and 24), while
POCL reconstruction mostly depends on the composition of
the PFTs in the driver set (DSs 8 and 17). Additionally, we

keep DS1 to demonstrate a global effect of PFTs on recon-
struction.

3.3 POCS and POCL vertical profile reconstruction
over the global ocean

In the previous section we showed that XGBoost provides
the best results for the reconstructions of POCS and POCL.
Further we use this ML method. Here we will discuss the
regional results of DS1 without PFTs and the 10 best driver
sets chosen for each target separately.

Figure 8 shows POCS and POCL concentration aver-
aged over the depth and period 2009–2013 for PlankTOM12
(Fig. 8a, b), XGBoost reconstruction based on DS1 (Fig. 8c,
d) and XGBoost reconstruction based on DS25 (Fig. 8e, f).
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Figure 7. Ranking of importance for each driver averaged over 27 driver sets: (a) random forest (RF) for reconstruction of small (POCS)
particulate organic carbon concentration, (b) XGBoost (XGB) for reconstruction of POCS, (c) RF for reconstruction of large (POCL) par-
ticulate organic carbon concentration and (d) XGB for reconstruction of POCL. “vp” – vertical profile, “mean” – average over MLD and
“back” – values from previous month.

XGBoost captures the spatial patterns well: the high concen-
tration of POCS in the equatorial eastern Pacific and its low
concentration at high latitudes, as well as the high concentra-
tion of POCL in the equatorial eastern Pacific and in the north
of the Indian Ocean and its low concentration in the subtrop-
ical North and South Atlantic and in the subtropical North
Pacific. The presence of PFTs in driver sets (Fig. 8e, f) im-
proves the reconstruction: the spatial patterns and POC am-
plitude are visually close to ones from PlankTOM12 (Fig. 8a,
b). The high concentration of POCS in the equatorial east-
ern Pacific is represented better using DS25 compared with
DS1, where the concentration in the latitude band 0–20◦ S
along the Peru is overestimated. Also, small decreases of
POCS in the subtropical North and South Atlantic are cap-
tured better when we use DS25. Similar for POCS, the high
concentration in the equatorial eastern Pacific is represented
better using DS25 compared with DS1, where the concentra-
tion misses the small decrease between 20 and 0◦ N. Also,

small decreases of POCL in the subtropical North and South
Atlantic as well as in the subtropical North Pacific are pro-
nounced better with DS25.

Figure 9 shows regional correlation coefficients and RM-
SEs between PlankTOM12 and XGBoost reconstruction
over the global ocean for 2009–2013. We averaged cor-
relation coefficient and RMSEs over seven latitude zones:
90–60◦ N, 60–40◦ N, 40–20◦ N, 20◦ N–20◦ S, 20–40◦ S, 40–
60◦ S and 60–90◦ S. In POCS reconstruction, the DS1 shows
the lowest correlation across latitude bands (between 0.22
and 0.9) and highest RMSEs (0.05–0.34 µmol L−1; Fig. 9a,
b). DSs 25 and 26 show the highest correlations in the range
of 0.68 (in region 60–90◦ S) and 0.97 (in region 20◦ N–
20◦ S) and the lowest RMSEs in the range of 0.021 (in region
60–90◦ S) and 0.14 µmol L−1 (in region 90–60◦ N). DS25
contains information on the previous month’s distribution
for micro- and macrozooplankton and gelatinous zooplank-
ton vertical profiles as well as coccolithophores and chloro-
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Figure 8. Total small (POCS) and large (POCL) particulate organic carbon concentration averaged over the depth and period 2009–2013:
(a) PlankTOM12 POCS, (b) PlankTOM12 POCL, (c) reconstruction of POCS based on DS1 (NoPFT) using XGBoost, (d) reconstruction of
POCL based on DS1 using XGBoost, (e) reconstruction of POCS based on DS25 (vertical profiles of zooplankton as well as zooplankton
and phytoplankton averaged over MLD) using XGBoost, (f) reconstruction of POCL based on DS25 using XGBoost.

phyll a averaged over the MLD. DS26 is like DS25, but the
drivers which bring information from the previous month are
microzooplankton and gelatinous zooplankton vertical pro-
files.

A total of 10 driver sets (excluding DS1) show their high-
est RMSEs in POCS reconstruction in the region 90–60◦ N,
with values up to 0.14 µmol L−1 in DS27 (Fig. 9b). Figure 10
shows maps of RMSEs (a, b) and correlation coefficients (c,
d) between PlankTOM12 and reconstructed small particu-
late organic carbon (POCS) by XGBoost using driver sets
1 (a, c) and 25 (b, d). The region 90–60◦ N shows improve-
ment in RMSEs and absolute biases in DS25 compared with
DS1, with RMSEs decreasing from 0.2 to 0.03 µmol L−1 in
the Norwegian Sea, Baffin Bay and the Arctic Ocean. How-
ever, errors stay high in the coastal regions, Northwest Pas-
sage and Hudson Bay, which contribute to the high total RM-
SEs in this region. Results are similar for the region 60–

40◦ N, where correlation coefficients increased from 0.3 to
0.87 on average over these zones (Fig. 10c, d). The tropi-
cal region 20◦ N–20◦ S shows correlation coefficients up to
0.97 for all driver sets except DS1. However, RMSEs are
high in the tropical region, about 0.11 µmol L−1 on average
(Fig. 9b), with RMSEs values of 0.2 µmol L−1 in the trop-
ical eastern Pacific and Bay of Bengal in DS25 (Fig. 10b).
The high RMSEs in the tropical eastern Pacific can indicate
insufficient data in a region of high interannual variability
to correctly reconstruct POCS distribution. The region of the
Southern Ocean (> 60◦ S) shows the lowest correlation coef-
ficients (in the range of 0.64–0.69) and RMSEs (in the range
0.023–0.044 µmol L−1) for POCS (Fig. 9a, b). The inclusion
of PFTs in the driver set significantly improves the RMSE in
the region around 40◦ S for small (POCS) particulate organic
carbon. The statistics are improved by about 75 % in the re-
gion 40–60◦ S with RMSE decreasing from 0.18 (DS1) to
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Figure 9. Correlations and RMSE averaged over latitude zones between PlankTOM12 and XGBoost reconstruction over the global ocean
for 2009–2013: (a, c) correlation coefficient and (b, d) RMSE (in µmol L−1). (a, b) Small particulate organic carbon (POCS) and (c, d) large
particulate organic carbon (POCL).

0.03 (DS25) and the correlation coefficient increasing from
0.22 (DS1) to 0.84 (DS25), on average (Fig. 9a, b; Fig. 10).
The improvements in the Southern region are related to the
role of zooplankton in the carbon flux in this area (Le Quéré
et al., 2016; Wright et al., 2021).

In POCL reconstruction, DS1 also shows the lowest cor-
relation coefficients (0.35–0.75) and the highest RMSEs
(0.027–0.47 µmol L−1) (Fig. 9c, d). DS25 shows the best re-
sults on average, with the correlation coefficient varying be-
tween 0.43 (in the region 60–90◦ S) and 0.84 (in the region
20◦ N–20◦ S) and RMSE varying between 0.021 (in the re-
gion 20–40◦ S) and 0.046 (in the region 90–60◦ N) µmol L−1.
POCL are reconstructed better in subtropical and tropical re-
gions compared to high-latitude zones (Fig. 9c, d).

As for POCS, 10 driver sets (excluding DS1) show their
highest RMSEs in POCL reconstruction in the region 90–
60◦ N, with values up to 0.05 µmol L−1 in DS27 (Fig. 9d).
Figure 11 shows maps of RMSEs (a, b) and correlation coef-
ficients (c, d) between PlankTOM12 and reconstructed large

particulate organic carbon (POCL) by XGBoost using driver
sets 1 (a, c) and 25 (b, d). In contrast to POCS reconstruction,
the region 90–60◦ N does not show improvement in RMSEs
for POCL reconstruction (Fig. 11b) in DS25 compared with
DS1, with still high RMSEs in the Norwegian Sea, Baffin
Bay and the Arctic Ocean and additionally for POCL in the
Greenland Sea, where the algorithm did not have data for
training. Similar to POCS, errors stay high in the coastal re-
gions, the Northwest Passage and Hudson Bay, which con-
tribute to the high total RMSEs in this region.

Global maps of statistics suggest that the most sensible re-
gion to driver sets’ composition for POCL is the Southern
Ocean, as for POCS (Fig. 11). In the 40–60◦ S region, RMSE
is reduced from 0.037 µmol L−1 in DS1 to 0.024 µmol L−1

in DS25 (Fig. 9d), and the correlation coefficient is in-
creased from 0.42 to 0.66 (Fig. 9c) on average, respectively.
In the southern region, 60–90◦ S, RMSE is reduced from
0.047 µmol L−1 in DS1 to 0.033 µmol L−1 in DS25, and the
correlation coefficient is increased from 0.33 to 0.42 (Fig. 9c)
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Figure 10. RMSE and correlation between monthly PlankTOM12 and results of POCS reconstruction using XGBoost over the period 2009–
2013 for POCS. (a, b) RMSEs and (c, d) correlation coefficients. (a, c) Reconstruction based on DS1 (NoPFT) and (b, d) reconstruction
based on DS25 (vertical profiles of zooplankton as well as zooplankton and phytoplankton averaged over MLD).

on average, respectively. The average correlation coefficients
in this zone were found to be less than 0.5 in all tests,
with the highest value 0.5 in DS21. DS21 contains all PFTs
and chlorophyll a vertical profile as drivers. The RMSE for
DS21 in this region is close to the one of DS25, 0.34 and
0.33 µmol L−1, respectively. It identifies the importance of
chlorophyll a in the Southern Ocean as a driver of POCL
variability.

The statistics of POCS and POCL reconstruction do not
vary significantly between driver sets in all regions except
in the Southern Ocean. This region is most sensitive to the
composition of driver sets for both POCS and POCL.

4 Conclusions

The aim of this work was to test the potential of using ma-
chine learning to reproduce modelled concentrations of par-
ticulate organic carbon within the ocean using the distribu-
tion of available observations. We co-localized outputs of the
PlankTOM12 global biogeochemical ocean model with the
positions of observations of small (POCS) and large (POCL)

particulate organic carbon concentrations. Using PlankTOM
outputs as references we could identify the best ML method
for POC reconstruction and estimate the method’s accuracy
in regions with poor observational cover.

We tested two ML methods to reconstruct POCS and
POCL: the XGBoost regressor and random forest. Both
methods are algorithms based on decision trees. XGBoost
outperformed random forest by about 9 % on average for
POCS reconstruction and by about 3 % on average for POCL
reconstruction. XGBoost regressor builds the model sequen-
tially, improving it at each iterative step. At each iteration,
XGBoost regressor analyses the prediction and gives more
weight to the data where the fit is still wrong. It is a good
tool for an unbalanced data set, like in our case where the
data of particulate organic carbon concentration are sparse in
time and space.

We tested the influence of a wide range of environmen-
tal and ecosystem drivers on POCS and POCL reconstruc-
tion. The introduction of plankton functional types (PFTs) in
the driver set greatly improves the fit and shows a linkage
between surface ecosystem structure and particulate organic
carbon distribution within the ocean interior. We improved
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Figure 11. RMSE and correlation between monthly PlankTOM12 and results of POCL reconstruction using XGBoost over the period 2009–
2013 for POCL. (a, b) RMSEs and (c, d) correlation coefficients. (a, c) Reconstruction based on DS1 (NoPFT) and (b, d) reconstruction
based on DS25 (vertical profiles of zooplankton as well as zooplankton and phytoplankton averaged over MLD).

the accuracy of POCS reconstruction by 59 % on RMSE and
63 % on absolute bias and by 52 % on correlation by in-
troducing PFTs in the driver sets (from the comparison of
DS1 and DS25). The presence of PFTs in the driver sets also
improved the accuracy of POCL reconstruction by 22 % on
RMSE, absolute bias and correlation (from the comparison
of DS1 and DS25). POCS variability mostly depends on the
depth level and vertical profiles of microzooplankton, tem-
perature and PO4. POCL variability depends on the depth
level; MLD; chlorophyll a averaged over MLD; and verti-
cal profiles of temperature, microzooplankton, phaeocystis
and PO4. Additionally, we identified that chlorophyll a in
driver sets improves the POCL reconstruction in the South-
ern Ocean.

Despite the good accuracy over the global ocean on av-
erage, the statistics are worse in the coastal regions and in
the tropical eastern Pacific. The coastal regions suffer from a
lack of data to represent the coastal dynamics. Therefore the
ML reconstructions assign open-ocean processes to coastal
regions, leading to significant biases. The tropical eastern
Pacific is a region of strong interannual variability, and the
sparse measurements in time make it harder to capture this

variability correctly. Other regions with poor coverage by
observations – the eastern Indian Ocean, the western Pacific
Ocean and the Southern Ocean – show the statistics of recon-
struction comparable to one from regions with a good cover
– regions in the Atlantic Ocean. However, we found that the
Southern Ocean is a more sensible region to the driver set’s
composition. The observational data are particularly sparse
in this region, and our analysis suggests that identifying the
drivers of importance based on real data set will be difficult.

Here we showed that the XGBoost regressor and random
forest are suitable for this problem and can reconstruct mod-
elled POCS and POCL with appropriate accuracy. This is evi-
denced from the globally averaged correlation coefficient up
to 0.88 for POCS and 0.68 for POCL and the globally av-
eraged RMSE up to 20 % (0.08 µmol L−1) of standard devi-
ation of PlankTOM12 POCS and 65 % (0.028 µmol L−1) of
standard deviation of PlankTOM12 POCL. ML outputs rep-
resent the spatial patterns of POCS and POCL distribution
well. However, the validity of the approach on observations
is dependent on the availability of co-located information on
the drivers of importance. For some drivers this should be
possible (e.g. environmental conditions and chlorophyll a),

https://doi.org/10.5194/gmd-16-2995-2023 Geosci. Model Dev., 16, 2995–3012, 2023



3010 A. Denvil-Sommer et al.: Testing the reconstruction of modelled particulate organic carbon

while for other drivers information is more sparse (e.g. the
PFTs). Our analysis suggests that additional PFT observa-
tions would help provide broader insights into the distribu-
tion of POC in the ocean. The next step of this work is to
apply ML to real data using methods from the present study.
Testing the present ML approach on observations will also
help provide suggestions for an optimal set of drivers that
can be measured specifically for POC reconstruction. For
example, based on model results only, our results suggest
that microzooplankton concentration is particularly impor-
tant and should be measured more systematically, especially
in the regions of high interannual variability. Likewise, this
work provides information on the variables that are less im-
portant in POC variability, like vertical profiles of gelatinous
zooplankton or mixed phytoplankton for POCS and coccol-
ithophore for POCL, and, thus, less important to be mea-
sured in this context. These results will need to be tested
with observations before firmly confirming the validity of
the drivers. The validated driver sets can help guide observa-
tional programmes. In addition, recent advances in plankton
imaging (Irisson et al., 2022; Lombard et al., 2019; Oren-
stein et al., 2022) and omics (Faure et al., 2021) will soon
provide a new global set of data to estimate PFT concentra-
tions across ocean basins, allowing us to better identify po-
tential biological drivers of POC variability. The new avail-
able data of PFTs will significantly facilitate the application
of ML methods, such as the one developed here, to observa-
tional data.

The relationships between key variables and surrounding
conditions based on machine learning can provide a new
way for establishing parameters in ocean model parameter-
ization. The parameters can be time- and space-dependent
and, thus, vary from one region to another, better represent-
ing the physics. The relationship between POC concentration
and environmental and ecosystem conditions can help to re-
place parameters in parameterized sinking velocity in Plank-
TOM. The reconstructed POC concentration over the global
ocean will contribute to the reconstruction of porosity and
opacity of particles that are key variables in the sinking mat-
ter velocity.

This study provides insights on the drivers that may be re-
sponsible for POCS and POCL variability and regional de-
pendencies. However, the dependencies are simply return-
ing the outcome of complex ecosystem processes among the
drivers as represented in the PlankTOM12 model. Although
these processes are based on current understanding and a
broad range of observations (Le Quéré et al., 2016; Wright et
al., 2021; Buitenhuis et al., 2019), they remain results from a
model output. Observations could reveal different drivers that
are important for POCS and POCL. Depending on data avail-
ability and their time and space resolution, the final product
based on observations should provide new insights on the
drivers that govern particulate organic carbon concentration
in the real ocean.

Code and data availability. PlankTOM12 data used within this
study are available at https://doi.org/10.5281/zenodo.7324781
(Denvil-Sommer, 2022a). UVP5 data can be found at
https://doi.org/10.1594/PANGAEA.924375 (Kiko et al., 2021).
Codes for data preparation, development of machine learning
methods and tests of different driver sets, as well as codes
that provide figures shown in the article, can be found at
https://doi.org/10.5281/zenodo.7326992 (Denvil-Sommer, 2022b).
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