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Abstract. Land degradation is a cause of many social, economic, and environmental problems. Therefore iden-
tification and monitoring of high-risk areas for land degradation are necessary. Despite the importance of land
degradation due to wind and water erosion in some areas of the world, the combined study of both types of
erosion in the same area receives relatively little attention. The present study aims to create a land degradation
map in terms of soil erosion caused by wind and water erosion of semi-dry land. We focus on the Lut watershed
in Iran, encompassing the Lut Desert that is influenced by both monsoon rainfalls and dust storms. Dust sources
are identified using MODIS satellite images with the help of four different indices to quantify uncertainty. The
dust source maps are assessed with three machine learning algorithms encompassing the artificial neural net-
work (ANN), random forest (RF), and flexible discriminant analysis (FDA) to map dust sources paired with soil
erosion susceptibility due to water. We assess the accuracy of the maps from the machine learning results with
the area under the curve (AUC) of the receiver operating characteristic (ROC) metric. The water and aeolian soil
erosion maps are used to identify different classes of land degradation risks. The results show that 43 % of the
watershed is prone to land degradation in terms of both aeolian and water erosion. Most regions (45 %) have a
risk of water erosion and some regions (7 %) a risk of aeolian erosion. Only a small fraction (4 %) of the total
area of the region had a low to very low susceptibility for land degradation. The results of this study underline
the risk of land degradation for in an inhabited region in Iran. Future work should focus on land degradation
associated with soil erosion from water and storms in larger regions to evaluate the risks also elsewhere.

1 Introduction

Land degradation is one of the most pressing environmental
issues around the globe. Several aspects of this issue have
been recognized by the United Nations Convention to Com-
bat Desertification (Gholami et al., 2019a). Land degradation
can be driven by both water and wind, of which the former
can have a stronger impact on soil erosion in a short time
(Gia et al., 2018). A total of 30 % of global land area and 3
billion people are affected by land degradation (Wieland et
al., 2019). In Iran, it is estimated that land and water degra-
dation cost about USD 12.8 billion per year, which is 4 %

of the total gross domestic product (GDP) (Emadodin et al.,
2012). Therefore, spatial mapping of risks of land degrada-
tion is necessary which can provide a basis to support man-
agers and policymakers in risk mitigation and adaptation to
aeolian and water erosion.

Land degradation driven by aeolian erosion is a known
problem (Shi et al., 2004). Dust storms, which are a natural
hazard, are associated with soil erosion. This phenomenon
has detrimental impacts on the Earth system, e.g., for food
security (Boroughani et al., 2022), water supply (Duniway et
al., 2019), human health (Moridnejad et al., 2015), geochem-

Published by Copernicus Publications on behalf of the European Geosciences Union.



412 M. Boroughani et al.: Mapping land degradation risk

ical conditions (Gholami et al., 2020b), and the Earth’s car-
bon cycle (Gherboudj et al., 2017). Identifying dust sources
as potential areas of dust emission is therefore necessary for
developing a better understanding of land degradation. Spa-
tial mapping of dust source susceptibility areas (DSSAs) is
a crucial step for erosion mitigation and watershed manage-
ment.

In addition to soil erosion by wind, water-driven soil ero-
sion is a known mechanism for soil degradation. This kind
of soil erosion is a known environmental threat and can in-
fluence both terrestrial and aquatic systems (Halecki et al.,
2018; Sun et al., 2014). Therefore, knowing the spatial dis-
tribution of water-induced soil erosion susceptibility areas
(SESA) is also necessary.

Different approaches for identifying DSSAs exist, e.g.,
using meteorological data (Yang et al., 2019), numerical
modeling (Péré et al., 2018), and remote sensing (Jafari et
al., 2021). Remote sensing can provide worldwide informa-
tion on aerosol properties (Park et al., 2014). The present
study uses Moderate Resolution Imaging Spectroradiome-
ter (MODIS) satellite images in combination with machine
learning to detect dust aerosols and map its susceptibility
over the Lut Desert. Moreover, several numerical models ex-
ist for predictions and risk evaluations of water-induced soil
erosion (Chicas et al., 2016; Gao et al., 2017; Anache et al.,
2018; Gia et al., 2018; Halecki et al., 2018), but none used
machine learning to combine different observational datasets
for assessing soil erosion. Machine learning has emerged as
a subfield of data science and helps to better understand en-
vironmental problems (Gholami et al., 2019b). It can inte-
grate data from different sources to create forecasts and dis-
cover patterns (Gholami et al., 2020a). In environmental sci-
ences, algorithms such as the support vector machine, ran-
dom forest (RF), artificial neural network (ANN), and mul-
tivariate adaptive regression spline have been applied, e.g.,
for groundwater (Lee et al., 2017), gully erosion (Zabihi et
al., 2018), sediment contamination (Mirchooli et al., 2019),
dust sources (Boroughani et al., 2020), landslides (Youssef
and Pourghasemi, 2021), floods (Tehrany et al., 2014), and
trace elements (Derakhshan-Babaei et al., 2022).

Though land susceptibility to soil erosion and dust emis-
sion has been assessed in different and separate studies, it
has attracted less attention to investigate both of them in the
same study. So, the novelty of this study lies in constructing
an integrated framework based on field survey, different envi-
ronmental factors, and machine learning algorithms to assess
both water erosion and dust emission.

This research is conducted to test some hypotheses includ-
ing the following: (1) the central and western parts of the wa-
tershed are the most highly susceptible areas to water erosion
and aerosol emission, respectively; (2) NADI and land use
are the most important factors for water erosion and aolian
emission; and (3) central areas are the parts of the watershed
that are most prone to these phenomena. Correspondingly,
the aims of the current study are (1) to assess the spatially

resolved contribution of soil erosion by water and wind us-
ing three machine learning algorithms, (2) to determine the
most important factor influencing water and dust emission
susceptibility, and (3) to combine the findings into spatially
resolved information on risks for land degradation and rec-
ognize hotspot areas in terms of water erosion and dust emis-
sion.

2 Data and methods

The focus of this study is on the Lut watershed situated in the
east and southeast of Iran covering an area of 206 242 km2

(28◦10′ to 32◦30′ N latitude and 55◦45′ to 61◦15′ E longi-
tude) and is marked in Fig. 1. This watershed include a
great diversity of topographic characteristics, with an ele-
vation ranging from 124 to 4269 m and slope ranging from
0 to 28.04◦. In this region, southwest and northeast aspects
are most frequent (34 % of the area). This watershed cov-
ers some parts of the South Khorasan, Yazd, Kerman, and
Sistan–Baluchestan provinces of Iran. In addition, several
important cities and towns such as Birjand, Tabas, and Bam
are located in the watershed. Aridisols are the dominant soil
order of the watershed; they constitute 40.1 % of this region.
The study watershed includes the largest desert of the coun-
try, the Lut Desert. The region contributes to the increasing
dust concentration in southwest Asia (Ebrahimi-khusfi et al.,
2021). This area is chosen to develop and test the methods
based on regional data on erosion observations, with exam-
ples shown in Fig. 1a–d. It underlines the impacts of land
degradation that go well beyond impacts on the natural envi-
ronment.

2.1 Land degradation mapping

Our land degradation zonation consists of three main pro-
cessing steps, graphically depicted in Fig. 2. At first, spatial
mapping of water erosion is conducted (Sect. 2.1.1). In the
second step, spatial mapping of dust source susceptibility is
carried out with machine learning methods (Sect. 2.1.2). In
the last step, the patterns of water erosion and dust source
susceptibility are combined to identify risk areas of land
degradation (Sect. 2.2.3).

2.1.1 Water erosion map

Quantifying the erosion susceptibility of an area requires de-
termining a spatial distribution of observed water-induced
soil erosion that can have different characteristics, e.g., gully
erosion, rill erosion, and surface erosion. That information
is extracted from data collected during a field survey paired
with previous research (Shit et al., 2020). In the previous re-
search, a combination of consulting with provincial experts,
satellite images, recent aerial photos, and field survey was
applied to identify soil erosion. The aim of the field survey
for the present study was to identify regions where sheet, rill,

SOIL, 9, 411–423, 2023 https://doi.org/10.5194/soil-9-411-2023



M. Boroughani et al.: Mapping land degradation risk 413

Figure 1. Geographical location of the study watershed. Green shading marks the Lut watershed. The Lut Desert is located in the center of
the watershed. Settlements are primarily situated in the northern and southwestern parts. Examples of soil erosion in the watershed are sheet
erosion (a), rill erosion (b), gully erosion (c), and wind erosion (d).

Figure 2. Flowchart of inputs (red boxes), data processing (green boxes), and outputs (blue boxes) in the present study.

and gully erosion took place. This field survey was carried
out in accessible parts of the watershed in April 2020. These
accessible parts are mostly distributed around the cities (such
as Bam, Ravar, Shahdad, Baravar, Birjand, and Tabas) with
proper road access located in the watershed. The dataset con-
tains the type of water-induced soil erosion, along with the
geographical location using the Global Positioning System
(GPS). A selection of the identified water soil erosion in the
study region is shown in Fig. 1.

We translated the observations of the field survey into
maps of non-degraded and degraded areas. These areas were
plotted in an inventory map and prepared for further analysis,
although not all desert areas are fully covered by the survey.

2.1.2 Dust aerosol map

The large desert area to be covered is a motivation for the
use of satellite data for estimating dust sources. We used
MODIS images from the Terra (morning) and Aqua (after-
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noon) satellites (Vickery and Eckardt, 2013) to identify dust
aerosols. We define dusty days as when the horizontal visi-
bility is less than 2000 m for at least 1 h during the day based
on available weather stations in Iran (Vickery and Eckardt,
2013; Boroughani et al., 2021). According to the mentioned
condition, more than 500 dusty days were identified during
2010–2021 distributed over the stations in Birjand, Zahedan,
Kerman, Bam, Doostabad, Bisheh, Rafsanjan, and Mighan.
We pair the station observations with satellite data to esti-
mate the spatial extent of the dust aerosol plumes. Due to
the overpass of the Terra and Aqua satellites once per day,
we acquired 28 satellite images from the MODIS sensor dur-
ing times when the weather stations had documented dusty
conditions in the 10-year period. For identifying pixels with
dust aerosols in these images, we calculate four different dust
indices (brightness temperature difference for band 29, 31,
and 32, i.e., BTD2931 and BTD3132; normalized difference
dust index, NDDI; and parameter D) for dust aerosol iden-
tification (Boroughani et al., 2020, 2021; Hahnenberger and
Nicoll, 2014).

B (T ,λ)=
2hc2

λ5 hc
(eλkt−1)

, (1)

where B(T , λ) represents the Planck equation at
λ (µm), T is the BT (K), h is Planck’s constant
(6.626× 10−34 m2 kg s−1), k is Boltzmann’s constant
(1.38× 10−23)5, c is the speed of light (2.99× 108 m s−1),
and T is the temperature (Hao et al., 2007).

T =
hc

λk ln
(

1+ 2hc2

Lλ5

) (2)

Using Planck’s equation, the value of the temperature can be
derived, where L is the amount of radiance in the images (in
W m−2 sr−1 µm−1).

NDDI= (p2.13−p0.469)/ (p2.13+p0.469) , (3)

where p2.13 and p0.469 depict the reflectance value at the top
of the atmosphere at 2.13 and 0.469 µm, respectively (Qu et
al., 2006).

D = exp− [rr × a+ (BTD− b)]}, (4)

where rr shows the reflectance proportion among wave-
lengths of 0.54 µm and 0.86 µm, BTD is the difference among
bands 11 and 12 µm, and a and b are constants taken during
the initial calibration (Eq. 1) (Qu et al., 2006; Miller, 2003;
Hao et al., 2007; Boroughani et al., 2020, 2021).

We compute false color maps using four combinations of
channels (1 – NDDI, B4, and B3; 2 – D, BTD2931, and
NDDI; 3 – D, BTD3132, and NDDI; and 4 – BTD2931, B4,
and B3) in ENVI software. We choose these four different in-
dices for cross-validating the presence of dust aerosols. With
each of these methods we see dust aerosol in different color

and qualities in the MODIS images over 28 d. After com-
bining the four methods in ENVI software, we choose the
method that shows the dust plume in the MODIS image more
clearly as the best method (Boroughani et al., 2020, 2022).
This method is based on a cone of dust diffusion seen in the
processed MODIS images, where the apex denotes the dust’s
source (Lee et al., 2009; Walker et al., 2009). Ultimately, the
inventory map of the dust aerosols in the Lut watershed was
created.

2.2 Identification of key factors controlling aeolian and
water erosion

To develop DSSA and SESA, the identification and selec-
tion of appropriate dust sources and soil erosion effective
factors are necessary. The main factors affecting DSSA and
SESA were selected and constructed based on literature,
available data, and geographical maps (Torabi et al., 2021;
Zabihi et al., 2018; Boroughani et al., 2020; Gholami et al.,
2020a). The considered factors in this study included eleva-
tion, land use, slope of terrain, lithology, annual rainfall, dis-
tance from rivers, distance from roads, the topographic wet-
ness index (TWI), and the normalized difference vegetation
index (NDVI). Various sources were used to gather data for
these factors, introduced in the following in more detail. All
collected data were mapped to a horizontal grid of 1 km res-
olution.

Shuttle Radar Topography Mission (SRTM) images were
used to create the digital elevation model (DEM; Fig. 3c)
(Ghorbanzadeh et al., 2018). The lowest and highest eleva-
tion of the study area is 124 m in the center of the desert and
3966 m at the western and eastern margins of the study wa-
tershed, respectively (Fig. 3c). Vegetation cover considerably
supports soil conservation. Areas with low vegetation cover
would be more sensitive to erosion both by water and wind
(Arabameri et al., 2019a; Gholami et al., 2019b). Therefore,
we use the normalized difference vegetation index (NDVI)
to assess the vegetation cover in the study area from MODIS
images following (Arabameri et al., 2019a; Boroughani et al.,
2020)

NDVI=
NIR+R
NIR−R

, (5)

where R is the red band (0.620–0.670 µm) and NIR is the
near-infrared band (0.841–0.876 µm) (Fig. 3d).

Annual rainfall (Fig. 3e) was obtained from the Iran Mete-
orological Organization for the period of 2000–2021. Mean
annual rainfall was calculated using 40 different meteoro-
logical stations located within or close to the watershed
(Fig. 3e). The inverse distance weighting (IDW) interpola-
tion method was applied to integrate rainfall over the study
area in the ArcGIS environment (Gholami et al., 2020a). The
topographic wetness index (TWI), which indicates the spa-
tial distribution of areas of potential soil saturation, is an ef-
fective factor to indicate water erosion including landslides
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and also flooding (Arabameri et al., 2019b). The TWI, which
determines the dry and wet zones, is calculated as follows
(Beven and Kirkby, 1979):

TWI= ln
(

α

tanβ

)
, (6)

where α is the cumulative upslope area from a point (per
unit contour length), and β is the slope angle at that point.
This index was calculated in the SAGA-GIS environment
and classified into four groups, viz. 14–17, 17–19, 17–21,
and 21–24 (Fig. 3f). The aspect map was also generated us-
ing a DEM and grouped into 10 classes (Fig. 3g). Distance
from the road is an indicator of infrastructure development
which influences soil erosion and land degradation (Torabi
et al., 2021). This factor is shown in five classes in Fig. 3h.
Distance from the river is one of the most effective factors in
water-caused erosion (Amiri et al., 2019), and this is classi-
fied into six groups (Fig. 3i).

The slope map (%) was created using a digital elevation
map (DEM; Fig. 3j) and classified into five groups including
0 %–3 %, 3 %–6 %, 6 %–12 %, 12 %–21 %, and 21 %–54 %.
The lithology map indicates 11 different soil classes in the
study area (Fig. 3k).

Land-use and soil maps were obtained from base maps
developed by the Iranian Forest, Rangeland, and Water-
shed Management Organization (https://frw.ir/, last access:
14 February 2021). In the study region, there are 14 land-
use classes including wetlands, rangelands of three states
(poor, medium, and rich), dry farming, agricultural lands,
urban area, fallow land, rock-covered land, wetland, salt-
land, woodland, bare surfaces, and sand dunes (Fig. 3l). A
large percentage (83 %) of the watershed area is covered by
bare land, poor rangeland, and sand dunes. All three land-use
classes are prone to wind erosion due to sparse or no vegeta-
tion.

2.3 Spatial mapping of DSSA and SESA using machine
learning algorithms

We combine the two susceptibility maps for DSSA and
SESA to create the land degradation hazard map with re-
gards to water- and wind-induced soil erosion. For both types
of soil erosion, three machine learning models were con-
structed and applied using the Biomod2 package (Thuiller et
al. 2016). The land degradation susceptibility map was then
created by synthesizing the results for both soil erosion types
in an ArcGIS 10.5 environment, and the land degradation
susceptibility was ultimately evaluated with four classes.

A wide range of machine learning algorithms has been ap-
plied for spatial mapping of environmental phenomena in the
past. The effective factors described in Sect. 2.2 and the in-
ventory maps of water and wind erosion were used as the in-
put of the machine learning algorithms. In the present study,
the random forest (RF), artificial neural network (ANN), and
flexible discriminant analysis (FDA) algorithms were used

to produce DSSA and SESA maps. We choose three differ-
ent algorithms to test the dependency of the results on the
method as a measure of uncertainty. The three algorithms are
described in more detail in the following.

2.3.1 Random forest (RF)

Random forest developed by Breiman (2001) is a machine
learning algorithm for non-parametric multivariate classifi-
cation. RF builds multiple trees using a random selection of
the training dataset. The data not included, called out-of-bag
(OOB) data, determine the model accuracy using generaliza-
tion error estimation (Breiman, 2001). Diversity among the
classification trees increases through resampling of the data
with replacement and also a random change of predictors
that are set during tree induction processes (Youssef et al.,
2016). Information from numerous decision trees has been
combined in the RF algorithm.

Generally, it is essential to define two parameters to run the
RF model including the number of trees (ntree) and the num-
ber of factors prepared from the data shown in Fig. 3 (mtry).
The former is built while the RF model is running, while the
latter is used in the tree-building process. Both the number
of trees and the number of factors need to be optimized to
minimize the generalization error (Rahmati et al., 2016). The
optimization was done through sensitivity tests.

2.3.2 Artificial neural network (ANN)

The artificial neural network (ANN) is a machine learning
tool developed by imitating human brain performances and
making connections between inputs and outputs (Sakizadeh
et al., 2017). The human brain is mimicked in two ways:
firstly, obtaining information and knowledge using a learn-
ing process, and secondly, storing knowledge using synap-
tic weights. Therefore, the ANN has been identified as the
model that finds the optimal solution for non-linear prob-
lems, such as dust source and soil erosion susceptibility,
by identifying patterns with conditioning factors (Ghorban-
zadeh et al., 2019). In an ANN, a neuron is the smallest
data processing unit which could make many neural network
structures and be used in research for different purposes.
The standard structure of an ANN consists of three layers,
namely, the input layer, the hidden layers, and the output
layer. The input layer consists of training data and condition-
ing factors of dust source, the neurons in the hidden layer
analyze the complex information contained in the data, and
the output layer consists of the maps of dust source suscepti-
bility. In this structure, the neurons across the same layer are
not connected, but they are linked with neurons in the previ-
ous and subsequent layers. The ANN algorithm determines a
weight for each input factor and a transfer function to build
results (Kalantar et al., 2017).
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Figure 3. Location of dust observation points for training and validation (a), water-induced soil erosion points for training and valida-
tion (b), and the conditional factors (elevation c, NDVI d, rainfall e, TWI f, aspect g, distance from road h, distance from river i, slope j,
lithology k, and land use l) in the watershed.

2.3.3 Flexible discriminant analysis (FDA)

The modification of the linear regression model for the appli-
cation to non-linear problems is the purpose of FDA (Avand
et al., 2021). Non-parametric regression models, non-linear
discriminant analysis, and classification methods are com-
bined into one framework. This algorithm is flexible for
non-linear classifications because non-linear transformation
is used and clusters are soft (Kalantar et al., 2020); here clus-
ters for the relationship between soil erosion and the predic-
tor factors are shown in Fig. 3. In this way, variables in FDA
are firstly aligned with the multivariate adaptive regression
splines (MARS), and then dimension reduction is performed
(Kim and Kim, 2021). FDA can overcome the problem of lin-
ear discriminant analysis (LDA), and it minimizes the square
average of the residuals (Mosavi et al., 2020), while linear
regression is replaced by non-parametric regression in FDA.
Therefore, FDA has the potential to be applied for non-linear
natural problems such as soil erosion, dust, flood, and land-
slide.

2.4 Evaluation of machine learning algorithms

In our DSSA and SESA assessment, 70 % of point data are
randomly selected for the training dataset and 30 % for model
validation. The prediction accuracy of the machine learning
algorithms is assessed by comparing the DSSA map with
the validation dataset of dust sources. These data were ex-
tracted from MODIS images, and some indicators are ex-

plained in Sect. 2.1.2. The receiver operating characteristic
(ROC) curve and the area under the curve (AUC) are applied
following past studies that used these to test the prediction
skill of a model for the occurrence or non-occurrence of the
studied phenomena (Naghibi et al., 2017). The AUC ranges
from 0 to 1 in which the models that better perform represent
the AUC close to 1.

3 Results and discussion

3.1 Spatial distribution of DSSA

3.1.1 Dust aerosol detection

An illustration of a dust storm seen in MODIS FCC (false
color composite) satellite imagery over the Lut watershed on
7 August 2019 is shown in Fig. 4. Following a visual anal-
ysis of the images, we determined that the false color com-
bination (red: BTD2931, green: band 4, blue: band 3) is the
best and applied it to 26 MODIS images of dusty days. As a
result, the Lut watershed’s dust source locations were identi-
fied (Fig. 4).
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Figure 4. The dust storm on 7 August 2019, as seen above, is an example of the visual inspection of a dust storm. (a) MODIS true color
(red: band 5, green: band 4, blue: band 3) and (b) enhanced MODIS satellite photo (red: BTD2931, green: band 4, blue: band 3).

3.1.2 The importance of conditioning factors for DSSA

Since multicollinearity among factors has been identified as
an obstacle to explaining the results (Roy and Saha, 2019),
the variance inflation factor (VIF) was calculated to assess
the relationships among conditioning factors. This was con-
ducted because multicollinearity among factors will reduce
the accuracy of the models (Arabameri et al., 2019b). In the
present study, VIF values for DSSA mapping range from
1.05 to 1.57, which illustrated no collinearity among the eight
factors. Therefore, no exclusion was applied, and all factors
were considered in successive calculations and modeling.

The importance and impact of each factor depend on the
machine learning algorithms. The result of DSSA mapping
using RF showed that NDVI, elevation, land use, and lithol-
ogy had the greatest degree of effect among conditioning fac-
tors. Land use and NDVI as an index of vegetation cover
proved to have a controlling impact on wind erosion and
dust emission (Gholami et al., 2020). Elevation is an effec-
tive factor for DSSA in which lowlands have higher impacts
than highlands. This was confirmed by other studies such as
Darvand et al. (2021). Lithology is another important fac-
tor in this watershed since dust emission mostly occurs in
the sensitive lithology rather than resistant ones (Sissakian
et al., 2013). Overall, the impacts of these factors on DSSA
have been proved by previous investigations (Gholami et al.,
2020a, b). Other factors such as the distance from rivers,

rainfall, and slope were identified as rather weak predictors,
respectively. These findings agree with other research (Bor-
oughani and Pourhashemi, 2020; Darvand et al., 2021).

The FDA approach showed, however, that elevation,
NDVI, and land use had the highest effects on dust source
susceptibility; other factors had no impact on DSSA. Sim-
ilarly, with the ANN, elevation, NDVI, and land use were
identified as the three most effective factors, and other factors
were weaker predictors rather than the former three. How-
ever these two FDA and ANN models provide similar results
in terms of the importance of conditioning factors, and FDA
could be used rather than the ANN because of its higher ac-
curacy, which is shown in the next section.

3.1.3 Spatial distribution of dust source susceptibility

The dust source susceptibility (DSS) maps created by RF,
FDA, and ANN algorithms are classified into five risk classes
(very high, high, moderate, low, and very low), shown in
Fig. 5. These classes are set as in earlier studies (Mosavi et
al., 2020; Boroughani et al., 2022). The results of the model
evaluation using the ROC indicate that the RF model with an
accuracy of 75.0 % provides the most accurate outputs. FDA
and ANN algorithms had similar performances with the ac-
curacy of 71.7 % and 70.7 %. In terms of the true skill statis-
tic (TSS), similar results have been obtained in which RF
with an accuracy of 45.8 % again had the best performance in
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Figure 5. Dust source susceptibility area (DSSA) based on random
forest (RF), artificial neural network (ANN), and flexible discrimi-
nant analysis (FDA) algorithms.

comparison to FDA (32.4 %) and the ANN (35.8 %). In this
way, RF introduces different priorities for the effective fac-
tors in comparison with FDA and ANN algorithms. RF pro-
poses NDVI, elevation, land use, and lithology as the most
important factors, while FDA and the ANN suggest eleva-
tion, NDVI, and land use as the most influencing factors.
The dominance of NDVI, elevation, and land use as the most
effective factors for DSS is consistent with the understand-
ing of dust source locations that are typically found in topo-
graphic depressions with sparse or no vegetation. The DSSA
map from RF was selected for further analysis due to the
highest accuracy, although the differences between FDA and
ANN algorithms are in the statistical sense relatively small.
According to the DSSA maps, 29 % and 17 % of the water-
shed were classified as areas of high and very high DSSA,
i.e., almost half of the study area. Only 4 % and 16 % of the
watershed have a very low and low susceptibility to soil ero-
sion through winds, respectively. The spatial extent of high
and very high risk areas from RF is smaller than the ones ob-
tained by ANN and FDA algorithms. In all three maps, it can
be seen that the biggest potential for dust emission is located
in the central parts (Lut Desert) of the watershed. These re-
sults are consistent with other research, indicating that RF
allows more detailed spatial mapping of dust source suscep-
tibility compared to other machine learning algorithms (Rah-
mati et al., 2020a; Gholami et al., 2019b; Darvand et al.,
2021).

As mentioned before, the watershed is one of the key re-
gions with dust concentration in southwest Asia. Spatial dis-
tribution of dust sources in this region is a key roadmap
for preventive and adaptive measurement. This would reduce
dust emission across the watershed, region, and even other
near countries.

3.2 Soil erosion susceptibility map

3.2.1 Relative influential conditioning factors for SESA

There are some differences in the contributions of influential
factors among models. RF indicates that rainfall, the TWI,
slope, elevation, land use, and geology are the most impor-
tant conditioning factors. Considering this watershed is lo-
cated in an arid region of Iran, rainfall and the TWI play a
decisive and crucial role in soil erosion among them. The
TWI, which indicates soil moisture and water-saturated ar-
eas (Silva et al., 2023), has also been identified as an effective
factor for different kinds of soil erosion such as rill–interrill,
gully, and piping erosion (Sholagberu et al., 2017; Hosseinal-
izadeh et al., 2019). Slope also influences soil erosion rate
through affecting runoff velocity, vegetation cover, and soil
type (Avand et al., 2022). This conditioning factor has also
been reported as one of the most influential factor in most
studies (Sholagberu et al., 2017; Pournader et al., 2018; Lei
et al., 2020). Moreover, distance from roads and rivers was
recognized as the least important factor. These findings of
the impact of conditioning factors for SESA are similar in
other regions (Arabameri et al., 2019a; Hosseinalizadeh et
al., 2019). For the ANN, TWI, slope, and land use were the
most effective factors for prediction, which are followed by
NDVI, land use, and distance from the river. The results from
FDA indicated that the most important conditioning factors
are the TWI, slope, and elevation, geology, and NDVI. The
TWI has an important impact on SESA in all three models.
This is because the study watershed predominantly has low
slopes and elevation. The opposite result of this finding was
obtained by Silva et al. (2023).

A large area of the watershed is land with typically lit-
tle rain and vegetation cover such that bare soil is the main
physical attribute in the watershed. This kind of surface is
known to be prone to water-induced soil erosion, when rain
events occur. The erosion can be particularly pronounced
over slopes. This understanding is consistent with all algo-
rithms, pointing to a major role of the TWI and slope for
SESA.

Some environmental factors (rainfall, TWI, slope, eleva-
tion, and geology) influence SESA more than DSSA. Land
use as a human-induced conditioning factor, however, affects
both SESA and DSSA, which underlines the importance of
land-use planning and management.

3.2.2 Spatial modeling of SESA

Figure 6 shows the SESA predictions from the three machine
learning algorithms, classified by the soil erosion risk in the
ArcGIS environment. Validation of the three machine learn-
ing algorithms highlights that RF was again the most reliable
algorithm amongst the three, indicated by the best predic-
tion rate. Based on the ROC, RF yields a 94 % accuracy for
SESA (Fig. 6c). The ROC coefficients of the ANN and FDA
were slightly lower but still high with an accuracy of 91 %
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Figure 6. Soil gully erosion susceptibility map (GESM) using ran-
dom forest (RF), artificial neural network (ANN), and flexible dis-
criminant analysis (FDA) algorithms.

and 89 %, respectively. In the case of the TSS index, better
performance was obtained again for RF (89 %) rather than
the ANN (78 %) and FDA (78 %). The high performance of
RF model in classification issues is related to its potential
to handle big datasets and apply a large number of condi-
tioning factors (Naghibi et al., 2018). In addition, Rahmati
et al. (2020b) state that high accuracy of RF is the result of
several advantages of this model, such as its iterative nature
and ability to prevent problems by overfitting (Rahmati et al.,
2020a).

The majority of the land in the watershed (81 %) has a high
and very high risk for water-induced soil erosion by RF. This
is slightly lower than for the ANN and FDA which classified
85 % and 89 % of the watershed as highly and very highly
susceptible areas. The highly and very highly susceptible ar-
eas for water-driven soil erosion are mostly located in the
north and southwest parts of the watershed. The highly and
very highly susceptible areas have socio-economic implica-
tions, particularly because most settlements and cities of the
watershed are located in the same regions. This can mean that
human activity is a contributing factor to the water-induced
soil erosion. Mutually, intensified soil erosion might lead to
migration of resident people to other places and even other
countries.

3.3 Land degradation susceptibility

The majority of the study watershed is susceptible to a sub-
stantial risk for land degradation. The spatial distribution of
land degradation susceptibility, shown in Fig. 7, indicates
that only 4 % of the land area has low to very low risks of
land degradation. Areas susceptible to soil erosion by both
water and winds together constitute 43 % of the total area.
Approximately 45 % and 8 % of the study area are at risk of

Figure 7. Land degradation susceptibility map in terms of soil ero-
sion and dust source areas.

soil erosion by water and wind, respectively. Taken together,
it means that the majority of the Lut watershed falls under the
category of land degradation risks. The watershed accounts
for 12.5 % of the total land of Iran. The findings of the present
study are therefore consistent with a report that indicated that
water erosion is an environmental hazard in Iran (Tien Bui et
al., 2019). The results of the study will be helpful and appli-
cable for identifying water-induced and dust source hotspots
across the watershed and prioritizing appropriate conserva-
tion measurements and rehabilitative policies.

The areas that fall under the category of both kinds of land
degradation might be most vulnerable concerning local self-
sufficiency for food security and sustainability of human ac-
tivities. For instance, dust storms drive water loss through
failure of agricultural crops in Iran (Boroughani et al., 2022).
Moreover, the adverse impacts of water-induced soil erosion
are known from numerous other regions (Lal and Molden-
hauer, 2008; Gao et al., 2015; Panagos et al., 2018; Roy et
al., 2022).

4 Conclusions

Investigation of soil erosion through water, along with wind-
driven soil erosion from dust sources, has received little at-
tention in past studies, despite the importance for land degra-
dation with associated social, economic, and environmental
impacts. The present study used several different datasets,
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conducted a field survey, and paired the data with three dif-
ferent machine learning algorithms to construct spatial maps
for areas of risk for land degradation for the Lut watershed
in Iran. Three machine learning algorithms were success-
fully applied to create land susceptibility maps describing
dust aerosol occurrence considering methodological uncer-
tainty. In addition, these models were used to identify the
areas prone to soil erosion by surface water runoff. These
obtained maps were synthesized to generate a single map for
risks of land degradation.

The results of the present study show that the random for-
est algorithm outperformed the other two machine learning
approaches for both dust sources and soil erosion suscepti-
bility mapping, with an accuracy of 75 % and 94 %, respec-
tively.

As expected, the vegetation cover, elevation, land use, and
geology were important prerequisites for dust-emission oc-
currence in the watershed, while rainfall, the topographical
wetness index (TWI), terrain slope, terrain elevation, land
use, and geology were identified as the most influential fac-
tors for water-induced soil erosion.

Based on the land degradation map, almost the entire study
region is at risk. A large fraction of 43 % of the area is prone
to both high wind-driven and water-driven soil erosion. In
addition to these areas, another 45 % and 8 % of the area
are at risk of water-driven and wind-driven soil erosion, re-
spectively. The methods tested in this study could be later
transferred to similar assessments in other regions around
the world. Choosing this region in Iran is further motivated
by the impact of land degradation on the country’s economy.
The current study has some limitations, including the small
sample size and non-uniform distribution of water-induced
soil erosion points because of lack of accessibility to a road
network in some parts of the watershed. Despite these limita-
tions, these results can potentially be useful for managers and
policymakers to identify local hotspots for land degradation
to implement mitigation and adaptation measures in this wa-
tershed. Future studies could work on improving the spatial
resolution and coverage of the risk assessment for providing
more information on risks for land degradation. In addition,
it is suggested that future research should estimate the role
of other climatic factors such as humidity and air tempera-
ture in soil erosion and dust source susceptibility. Prediction
of NDVI and rainfall as the most effective factors on soil
erosion and dust sources and estimation of their impacts on
future water-induced soil erosion and dust source suscepti-
bility are also suggested for the other studies. This requires
more measurements for soil erosion by water and winds to
train the machine learning models.
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