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Abstract
Predicting which non-native species will negatively impact biodiversity is a longstanding research priority. 
The Functional Response (FR; resource use in relation to availability) is a classical ecological concept that 
has been increasingly applied to quantify, assess and compare ecological impacts of non-native species. 
Despite this recent growth, an overview of applications and knowledge gaps across relevant contexts is 
currently lacking. We conducted a systematic review using a combination of terms regarding FR and 
invasion science to synthesise scientific studies that apply the FR approach in the field and to suggest new 
areas where it could have valuable applications. Trends of publications using FR in invasion science and 
publications about FR in general were compared through the Activity Index. Data were extracted from 
papers to reveal temporal, bibliographic, and geographic trends, patterns in study attributes such as type of 
interaction and habitat investigated, taxonomic groups used, and context-dependencies assessed. In total, 
120 papers were included in the review. We identified substantial unevenness in the reporting of FRs in 
invasion science, despite a rapidly growing number of studies. To date, research has been geographically 
skewed towards North America and Europe, as well as towards predator-prey interactions in freshwater 
habitats. Most studies have focused on a few species of invertebrates and fishes. Species origin, life stage, 
environmental temperature and habitat complexity were the most frequently considered context-depend-
encies. We conclude that while the FR approach has thus far been narrowly applied, it has broad potential 
application in invasion science and can be used to test major hypotheses in this research field.
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Introduction

With rates and effects of biological invasions magnifying worldwide (Pyšek et al. 2020; 
Diagne et al. 2021; Seebens et al. 2021), predicting and quantifying which non-native 
species (NNS) will have the greatest impacts has become a research priority, especially 
in the face of ongoing anthropogenic environmental change (Kumschick et al. 2015; 
Ricciardi et al. 2021). Invasion science has been slow to develop predictive approaches 
that explain and forecast the negative ecological impacts of existing invasive and emerg-
ing NNS under relevant contexts (Dick et al. 2017a). This hampers management pri-
oritisation towards the most damaging species across invasion stages (Robertson et al. 
2020). Moreover, research has been highly uneven across taxa, trophic groups, regions 
and forms of impact (Pyšek et al. 2008; Bellard and Jeschke 2016; Braga et al. 2017; 
Crystal-Ornelas and Lockwood 2020), possibly reflecting the lack of standardised and 
broadly applicable methods (but see Dick et al. 2014, 2017a).

The rapid exploitation of resources (e.g. food, water, space, nutrients) is considered 
a characteristic trait of high-impact invasive consumers (Johnson et al. 2008; Morrison 
and Hay 2011; Ricciardi et al. 2013). It has been hypothesized that the most ecologi-
cally disruptive NNS typically exploit resources more efficiently than other resident 
species (Funk and Vitousek 2007; Ricciardi et al. 2013). On this basis, a valuable 
and still largely underexploited approach to quantify and compare NNS ecological 
impact is the classical Functional Response (sensu Solomon 1949; Holling 1959), the 
relationship between resource availability and resource consumption rate. In addition 
to being employed in studying predator-prey dynamics (e.g. Sinclair et al. 1990; Eby 
et al. 1995; Heikinheimo 2001), the Functional Response (FR) has also been used to 
evaluate the efficacy of biological control agents towards target organisms (van Dri-
esche and Bellows 1996; Madadi et al. 2011), sport fish-angler interactions (Johnson 
and Carpenter 1994; Yodzis 1994; Eggleston et al. 2003), and impacts of human hunt-
ing on wildlife conservation (Sinclair et al. 1998; Swanepoel et al. 2015). Over the 
past decade, the FR has been applied to predict and quantify NNS impacts on native 
populations and communities (Dick et al. 2014, 2017a).

The Functional Response has been broadly characterised into linear (Type I), hy-
perbolic (Type II), sigmoidal (Type III), or dome-shaped (sometimes called Type IV) 
curves (Jeschke et al. 2004). As many invasion hypotheses are centred on trophic in-
teractions (Catford et al. 2009; Ricciardi et al. 2013; Enders et al. 2020), FRs can be 
useful in hypothesis testing and measuring trophic impacts of non-native consumers 
(Dick et al. 2014). Indeed, as all living organisms use resources, there is no limit taxo-
nomically or trophically to the use of FRs, and hence it could be a unifying method 
across all NNS (Dick et al. 2017a). Furthermore, the type of FR mediates impact; 
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for example, predators exhibiting Type II FRs are deemed to be more destabilising to 
resource populations than those exhibiting Type III FRs, owing to high proportional 
feeding rates at low resource densities and a concomitant lack of low-density refugia for 
prey (Murdoch and Oaten 1975).

The comparative FR approach has been grounded in relative pairwise comparisons 
of native and NNS under standardised conditions, or by comparison of the same NNS 
under different contexts when trophic analogues are absent, normally in controlled 
laboratory environments (but see Smout et al. 2013; Goss-Custard et al. 2006 for field-
derived FRs). By carefully matching comparator species according to size, sex, life stage, 
and other variables, a balanced comparison of per capita impacts is sought, usually in 
terms of consumer attack rates, handling times, maximum feeding rates, and combina-
tions of such parameters (Cuthbert et al. 2019b), acknowledging NNS impacts relative 
to native consumers or different contexts. Critically, NNS with a higher magnitude 
FR, characterised by greater search efficiencies and/or shorter handling times (depend-
ing on the FR shape), are predicted to have greater per capita ecological impacts than 
trophically analogous native species with lower magnitude FRs (Fig. 1). Across stud-
ies, there is a tight corroboration of these experimentally derived patterns with actual 
impacts recorded in the field (Dick et al. 2017a). Indeed, the FR could be considered 
a universal per capita measure for consumptive effects within the classical Parker-Lons-
dale impact equation which defines that the total impact of a given NNS is the product 
of its abundance, range, and per capita effect (Parker et al. 1999; Dickey et al. 2020).

A species FR is not a fixed trait and, like NNS impacts, can vary across myriad 
biotic and abiotic contexts. The advantage of FRs is that these context-dependencies 
can be incorporated into experimental designs to provide more realistic assessments 
while isolating the variables of interest (Dick et al. 2017a, 2017b; Penk et al. 2017), 
and help to understand how NNS impacts relate to physical habitat conditions (i.e. the 
Environmental Matching Hypothesis; Iacarella et al. 2015a). Nevertheless, although 
context-dependent variation remains a challenge for reliably predicting NNS impacts, 
the malleability of the FR approach makes it an excellent tool to explicitly incorporate 
and test context-dependencies. Given ongoing climate and land-use changes, for ex-
ample, it is relevant to test variation in FRs under different temperatures (Englund et 
al. 2011; Uiterwaal and DeLong 2020) or related abiotic variables to understand how 
impacts of NNS may be altered. Furthermore, FRs can be combined with different 
levels of habitat complexity, a feature that may have direct implications on the type of 
FR and thus on resource population stability (Toscano and Griffen 2013; Murray et 
al. 2016; Kalinkat et al. 2023). Biotic contexts, such as organism life stage, multiple 
predator effects or higher-order predator presence, can also be useful to understand im-
pacts, considering that consumers may not forage alone in nature (Smout et al. 2010; 
Ball et al. 2015; Médoc and Spataro 2015).

The FR measures individual per capita effects and then can be scaled with the 
numbers of individual consumers to derive a measure of overall impact (i.e. Total Re-
sponse = Functional Response × Numerical Response; Holling 1959), as has been 
done with biological control (e.g. killing rate per individual agent × number of agents) 
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and fisheries assessments (e.g. overall offtake rates by predators). The Relative Impact 
Potential (RIP) metric integrates numerical responses (consumer population change) 
or their proxies – such as field abundances or other population-level metrics (Dick et 
al. 2017b; Dickey et al. 2020) – to reveal overall expected field impacts of novel NNS. 
Further advances to this approach have amalgamated different parameters of the FR to 
streamline impact comparisons (e.g. the Functional Response Ratio, FRR; Cuthbert 
et al. 2019a) and integrated measures of propagule pressure that combine impact with 
risk assessment (Dickey et al. 2022). Moreover, GIRAE (Generalised Impact = Range 
size × Abundance × per-unit Effect) has been recently developed as a tool to predict per 
capita ecological and economic effects of NNS based on available data, again stemming 
from the Parker-Lonsdale impact equation (Latombe et al. 2022).

There are some important criticisms to the comparative FR approach related to 
its generalization and the potentially unrealistic nature of the experiments. Vonesh et 
al. (2017) argues that if consumers used in trials have different ecological parameters 
beyond those estimated in experiments, the comparison of their FRs has less ecological 
meaning. Specifically, two consumers may differ in their mortality rate when resources 
are absent (background mortality) and also on the proportion of resource consumed 

Figure 1. Functional Responses of known impactful invasive non-native species (NNS) are often higher 
when compared to those of native or non-invasive NNS trophic analogues, as shown for aquatic snails: the 
invasive NNS Pomacea canaliculata, the non-invasive NNS Planorbarius corneus, and the native Bellamya 
aeruginosa feeding on four locally occurring plant species in China. Reproduced from Xu et al. (2016).
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that is effectively converted into increasing the abundance of the consumer (conversion 
efficiency), which can substantially influence consumer effects on resource dynamics in 
the long-term (Landi et al. 2022). Likewise, Griffen (2021) points out that the com-
parative FR approach is only useful if species respond similarly to the artificial condi-
tions and techniques employed, and that directly scaling FRs measured on individuals 
to entire populations could yield misleading results. However, previous syntheses of 
the limited number of FRs available in the context of invasion impacts attest to its high 
potential to explain and predict impact (Dick et al. 2017b).

Despite the rapidly increasing use of the FR approach in invasion science, we 
still lack a synthesis of its application in this field that could reveal knowledge gaps 
to be addressed and avenues for future improvement. Currently, studies are poten-
tially disparate across different life stages of the same organism, taxonomic groups, 
trophic groups, environments, and geographic regions, meaning likely unevenness 
in the testing of the approach in different study systems, and in turn frustrating the 
holistic assessment of its efficacy. Therefore, this timely systematic review of studies 
to date aims to synthesise the available scientific literature that applies the FR ap-
proach in invasion science to elucidate potential shortcomings that can be addressed 
in future work to improve the representativeness and the explanatory and predictive 
capacities of the method.

Methods

Literature search and screening

We performed a literature search in January 2021 using the Web of Science database 
(WoS). The following combination of search terms was used: TOPIC = (“functional 
response*”) AND (invasive OR invader OR introduced OR alien OR exotic OR non-
native OR nonnative OR non-indigenous). We limited our search to papers published 
up to 2020. After the removal of duplicates, publications were evaluated by their title 
and abstract in the first screening, and through full reading in the second screening 
(Suppl. material 1). Papers were excluded if they:

i. did not conduct classical FR experiments (i.e. application of FR in mathematical 
models; using only a single resource density; did not estimate the parameters; did 
not model the type of curve; strictly investigated feeding preference);

ii. were observational studies (the initial densities and the consumption were not 
controlled, only estimated);

iii. did not use NNS in the experiments, either as a consumer or as a resource, or the 
NNS was only indirectly related (effect of their presence in the FR of a native spe-
cies, for example);

iv. were in other languages than English;
v. were book chapters or other types of documents that did not present original data.
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Despite the comparative FR approach being the reason that sparked interest in ap-
plying FR in invasion science, we found a variety of study frameworks beyond explicit 
native versus NNS comparisons. While all of these studies were included because they 
met the above criteria, they are not comparative per se. Thus, the term “FR approach” 
is used here to refer to any study in our review (i.e. that used a NNS as a consumer or 
resource in FR experiments), whereas the “comparative FR approach” refers only to 
those that clearly make a comparison between native and NNS.

Data extraction and publication trends

Data were extracted through a full reading of the papers selected in the second screen-
ing (a list of the data extracted from each study is available in Suppl. material 2). 
To compare the trend of publications using FR in invasion science with publications 
concerning FR in general, a new search in the WoS database was performed using only 
the search term TOPIC = (“functional response*”), again up to 2020. The results were 
then filtered through the WoS website, as follows:

i. the Research Area filter was used to refine the search for ecological studies and to 
exclude mathematical modelling studies (corresponding to the first and second 
steps in our original search);

ii. the Languages filter was used to select only English papers (corresponding to the 
fourth step in our original search);

iii. the Document Types filter was used to exclude reviews and book chapters (cor-
responding to the fifth step of the original search).

To make this comparison between FR publications in invasion science and in gen-
eral, we calculated the Activity Index (AI) (Caliman et al. 2010; Evangelista et al. 2014):

AI
CY
CT

TY
TT   (1)

where CY is the number of papers using FR in invasion science published in a given 
year; CT is the total number of papers using FR in invasion science published in all 
years; TY is the number of papers on FR in general published in a given year; and TT 
is the number of papers on FR in general published for all of the years studied. Con-
sidering this, AI = 1 indicates that papers on FR in invasion science were published at 
the same relative rate as those in the overall literature (in our case, publications that 
used FR in studies other than invasion science); AI > 1 indicates that papers on FR in 
invasion science were published at a higher relative rate compared to the overall litera-
ture; and AI < 1 indicates that papers on FR in invasion science were published at a 
relatively lower frequency compared to the overall literature. Due to the low number 
of papers that used FR in invasion science until the 1990s, we analysed the AI for the 
last 30 years. Journal trends were also analysed as an absolute and weighted number of 
publications per journal (Suppl. material 3).
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Study attributes

Papers were classified into three categories regarding their main aims: biological con-
trol, biotic resistance, or impact assessment. Papers about biological control tested the 
efficiency of a native or NNS as a biological control agent of a pest using FR experi-
ments. Papers classified as biotic resistance tested the ability of a native consumer to 
consume a non-native resource. On the other hand, impact assessment papers used FR 
to predict or evaluate the effect of NNS as consumers or resources in different contexts. 
The type of interaction, whether predator-prey, host-parasitoid, herbivore-plant, filter-
feeding, or plant-nutrient was recorded according to the authors’ classification. Finally, 
the habitat where the experiment was performed was classified into freshwater, marine/
brackish water, or terrestrial according to the methods described in each paper and the 
country where the study was conducted was recorded to identify geographic trends of 
FRs in invasion science.

A Pearson’s chi-squared test of homogeneity was used to test if the frequency of 
studies was evenly distributed across the different types of interaction and habitats 
investigated. A chi-square test of independence was used to test for independence be-
tween these attributes and the study category (biological control, biotic resistance, or 
impact assessment).

Taxonomic trends

The Latin names of the species used in the FR experiments were recorded. Some stud-
ies did not identify the consumer/resource to the species level, so we used the most 
specific classification given (whether family or genus). Some studies used more than 
one species in each case, so the number of species exceeded the number of studies. Each 
species used in the studies, whether as a consumer or as a resource, was classified into 
its corresponding coarse taxonomic group following Pyšek et al. (2008). A chi-square 
test of homogeneity was used to verify if the frequency of studies was evenly distributed 
through the taxonomic groups used, both as consumer and resource.

The origin of the species used as consumer and resource was defined according to 
the authors’ own classification. Species classified as adventive, alien, exotic, immigrant, 
imported, invader, invasive, introduced, naturalised, non-indigenous, non-native, or 
novel, were considered here as “non-native” in origin. For species classified as pests, we 
checked their origin in the literature. Species described as endemic, indigenous, na-
tive, or natural were considered “native” in origin. When the origin of the species was 
not clearly stated in the text, the classification was searched elsewhere or considered as 
“non-identified” when it was not possible to confirm.

Context-dependencies and FR types

A single study can perform more than one FR experiment under different contexts. 
Here, we recorded the number of different contexts used, as well as whether they are 



Larissa Faria et al.  /  NeoBiota 85: 43–79 (2023)50

biotic (such as life stage, starvation period, and sex) or abiotic (for example, tempera-
ture and habitat complexity), and which treatments were tested within each context (a 
list of treatments for each context is available at Suppl. material 4).

For each FR experiment, the FR type was identified through the text, tables, or fig-
ures according to the authors’ classification. If the paper did not explicitly classify into 
one of the FR types, it was identified by the equation used to model the curve. For ex-
ample, Rogers’ random predator equation and Holling’s disc equation were considered 
Type II FR, whereas Hassell’s equation was considered Type III. Pearson’s chi-squared 
tests of independence were used to test for independence between the FR curve type 
and the type of interaction, or the habitat studied. All analyses were performed in R v. 
4.1.0 (R Core Team 2021), considering a significance level of alpha = 0.05.

Results

Literature search and screening

The search yielded 785 documents and the first screening through title and abstract 
was more conservative, so all potentially relevant papers were selected for the next step, 
totalling 175 papers. The second screening through full-text reading resulted in 120 
papers included in the systematic review (Suppl. material 1; the list of all references 
included in the systematic review is available in Suppl. material 5).

Publication trends

The first paper published in our survey of FRs in invasion science dates from 1966; 
however, this study investigated a non-native consumer FR without clearly aiming to 
assess impacts or test invasion hypotheses. Likewise, publications were generally rare 
(i.e. one or none per year) and strictly related to biological control until 2003 (Fig. 2A). 
The relative frequency of studies using FR in the context of invasion science only sur-
passed those of FR in general in 2014, corroborating the growth in the AI (Fig. 2B). 
Journal trends are presented in Suppl. material 3.

Study attributes

Most of the studies were classified as impact assessment (62.5%), whereas 28.3% were 
categorised as biological control and 9.2% as biotic resistance. Studies investigating 
predator-prey interactions were by far the most common (76.7%), followed by host-
parasitoid interactions (12.5%), herbivory (5.8%), and filter-feeding (4.2%), while 
plant-nutrient interactions were the least studied (0.8%). Therefore, the distribution of 
studies according to the type of interaction was not homogeneous (χ2 =245.2, df = 4, 
n = 120, p < 0.001), with predator-prey interactions predominantly featuring in impact 
assessment studies, and all studies of host-parasitoid interactions classified as biological 
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control (χ2 = 47.1, df = 8, n = 120, p < 0.001; Fig. 3). There are also significant differ-
ences regarding the type of habitat, as almost half of the studies featured freshwater envi-
ronments (50.8%), followed by terrestrial (35.8%) and marine/brackish water (13.3%) 
(χ2 = 25.7, df = 2, n =120, p < 0.001). Most studies in the terrestrial environment were 
those classified as biological control (79%), whereas all the freshwater studies were clas-
sified as impact assessment or biotic resistance, and hence these two variables were not 
independent (χ2 = 92.8, df = 4, n = 120, p < 0.001; Fig. 3). Regarding geographic trends, 
most studies were conducted in the UK (n = 35), followed by USA (n = 20), Canada 
(n = 13), and China (n = 8). Six papers were conducted in more than one country and 
thus were counted more than once. Striking gaps in FR reporting from NNS were 
found across much of Asia, Africa, Eastern Europe, and South America (Fig. 4).

Figure 2. Temporal trends of papers using Functional Response in invasion science (i.e. FR + NNS) 
and Functional Response in general (FR) A number of published papers per year (please note the differ-
ent scale on the right) B the Activity Index (AI) in research output that used Functional Response in the 
context of invasion science relative to all studies about Functional Response in general in the same period.
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Figure 3. The proportion of studies per category A regarding type of interaction B regarding habitat 
type. The numbers inside the bars indicate the total number of papers. The plant-nutrient interaction type 
was omitted in plot A to facilitate visualisation (only one study in the freshwater environment).

Figure 4. World map showing the number of studies conducted per country included in this review. 
Antarctica is omitted from the map but there are no studies conducted in this region.

Taxonomic trends

In general, insects and crustaceans were the most studied taxonomic groups, both as 
consumers (χ2 = 98.1, df = 7, n = 122, p < 0.001) and as resource (χ2 = 176.5, df = 7, 
n = 134, p < 0.001), followed by fish and molluscs as consumers and resources, respec-
tively (Fig. 5). Yet within crustaceans, gammarids (Gammaridae) comprised almost 
half (49%) of the studies using a crustacean as a consumer. Among biological con-
trol studies in the terrestrial habitat, investigations of host-parasitoid interactions were 
most common and always used insects as study species. Regarding impact assessment 
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and biotic resistance studies, most investigations were related to predator-prey interac-
tions, mainly using crustaceans and fish.

As some studies used more than one species as a consumer and/or resource, a total 
of 249 species were used in the FR experiments. Some species were used both as a con-
sumer and as a resource, resulting in 147 species used as consumers and 112 as resour-
ces. Regarding consumer species, Gammarus pulex (Amphipoda: Gammaridae) (n = 15 
studies) was most frequently used, followed by Dikerogammarus villosus (Amphipoda: 
Gammaridae) (n = 8), Gammarus duebeni celticus (Amphipoda: Gammaridae) (n = 6), 
and Hemimysis anomala (Mysida: Mysidae) and Neogobius melanostomus (Perciformes: 
Gobiidae), which were both used in five studies each. All other species were used 
in fewer than five studies. The species most commonly used as a resource was also 

Figure 5. Frequency of studies for each taxonomic group considering the different study categories 
A regarding the consumer used B regarding the resource used. Studies that used species from different 
taxonomic groups were counted once for each case.
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G. pulex (n = 9), followed by Daphnia magna (Diplostraca: Daphniidae) (n = 8), and 
Asellus aquaticus (Isopoda: Asellidae) and Tuta absoluta (Lepidoptera: Gelechiidae), 
which were both used in five studies each. All other species used as a resource were 
employed in fewer than five studies. In 22 studies, the resource was not identified at 
the species level, with Chironomidae larvae being most frequently employed (n = 14).

Most studies used non-native consumers (39.2%), or compared native and non-
native consumers (38.3%), whereas 22.5% used a native consumer only. Regarding 
the resources, the greatest number of studies used only non-native resources (40.7%), 
whereas 18.6% of studies used native resources and 17.8% compared native and NNS. 
For some studies, it was not possible to identify the origin of the resource used, either 
in the text or in other sources (22.9%).

Context-dependencies and FR types

Most studies (81.7%) considered context-dependency in their experimental design by 
modelling the FR under different biotic and abiotic treatments. From these, the major-
ity tested biotic contexts (65.7%), followed by studies testing different abiotic contexts 
(20.2%), while just 14.1% used both biotic and abiotic treatments. Each study used 
from one to four different treatments, and because of that, the 120 papers yielded data 
from 735 FR curves. Among the biotic contexts, the most frequently used were consum-
er or resource origin (i.e. native or non-native), and life stage (Fig. 6). Regarding abiotic 
contexts, the most frequently tested were temperature and habitat complexity (Fig. 6).

Most of the 735 FR curves recorded were classified by the study as Type II (87.7%). 
Those classified as Type III accounted for 7% of the FR curves, and only 25 (3.4%) 
were classified as Type I. One study classified the curve as Type IV, whereas four studies 
did not clearly define the FR type in the text or figures, nor the type of equation used 
to model the FR. The type of interaction and the FR type are not independent, as Type 
II FRs were more common for all types of interaction except filter-feeding (χ2 = 243.3, 
df = 6, n = 717, p < 0.001). Type II was also the most common type of FR regardless 
of the type of habitat studied (χ2 = 33.2, df = 4, n = 717, p < 0.001).

Discussion

The Functional Response can be applied broadly to any consumer-resource interaction, 
despite being classically used to understand how predation affects population dynamics 
(Jeschke et al. 2004). In recent years, this concept has gained attention due to its ap-
plication in fields beyond population ecology, biological control, fisheries management 
and in particular, invasion science (Ricciardi et al. 2021). However, the rapidly grow-
ing number of invasion science studies that use FR have done so in environmentally, 
geographically and taxonomically restricted applications, thus impeding large-scale 
quantitative comparisons and tests of hypotheses across different contexts. There is a 
conspicuous bias in the geographic distribution of studies, reflecting a common trend 
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in invasion science (Pyšek et al. 2008; Bellard and Jeschke 2016). A limitation of our 
review is that we only searched for publications in English (Angulo et al. 2021); if we 
had included grey literature or used other repositories, we may have further broadened 
the geographic distribution of the reviewed papers. Nevertheless, we found that FR 
research has been geographically skewed towards North America and Europe (espe-
cially the United Kingdom), where research capacities are comparatively high, as well 
as towards predator-prey interactions in freshwater habitats, with a paucity of terrestrial 
and marine studies and other trophic and taxonomic groups. In turn, most studies have 

Figure 6. Different contexts used in experiments of the studies which derived Functional Responses un-
der more than one treatment A regarding biotic contexts B regarding abiotic contexts. For biotic contexts, 
treatments used in two or fewer studies (alternative resource 2, invasion gradient 2, consumer experience 
1, consumer source 1, resource exposition 1, and starvation period 1) were included in “other”. For abi-
otic contexts, treatments used in only one study (depth, disturbance, field versus laboratory, light regime, 
period of the day, and site) were included in “other”.
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focused on a few species of crustaceans, insects, molluscs, and fishes, and considered or-
igin, life stage, temperature, and habitat complexity as principal context-dependencies.

Despite rapid growth in the FR approach in the last decade, the first study investi-
gating the FR of a NNS (Mook and Davies 1966) was published only seven years after 
the seminal paper about FR by Holling (1959). The Activity Index (AI) showed that, 
after 2014, papers using FR in invasion science were published at a higher relative rate 
compared to the overall literature on FR (i.e. AI >1). This coincides with the publication 
of a series of seminal papers using FR in the context of invasion science between 2008 
and 2014 (e.g. Bollache et al. 2008; Dick et al. 2013a; Alexander et al. 2014), culminat-
ing in the first paper formally outlining the use of the comparative FR as a methodology 
to predict NNS impacts (Dick et al. 2014). This suggests that the papers published in 
the period and empirical demonstrations of the method (e.g. Alexander et al. 2014) 
had a substantial impact in the field, generating a ‘boom’ of studies applying the FR 
approach in impact assessment of NNS, which was claimed to be a method capable of 
unifying invasion science (Dick et al. 2017a but see Vonesh et al. 2017; Griffen 2021).

Among study types, it was revealed that studies using the FR approach to demon-
strate the impact of NNS were more common than those with a biological control focus 
or investigating biotic resistance. However, it is important to highlight that our search 
string was focused on invasion science terminology. Despite many pests being NNS, 
their origin is often disregarded in purely biological control studies, whereas studies 
that investigate NNS ecological impacts generally clearly state the non-native origin 
of the species. Therefore, we do not expect to have captured all studies that used FR in 
the biological control context, largely because of a different terminology (e.g. “pest” or 
“weed” species). There is also a difference in journals that typically publish these study 
types. For instance, we found that Biological Invasions and Biological Control were the 
journals with a higher number of publications of FRs in invasion science; however, the 
former published proportionally more impact assessment studies than the latter.

We found important biases regarding study attributes, such as the type of interac-
tion and habitat investigated. Studies on the FR of predators are numerous, and this 
was somewhat expected given that predators are long recognised as damaging NNS 
(Salo et al. 2007; Paolucci et al. 2013). Also, the general idea of FR was classically 
applied to understand the effects of predators on prey population dynamics (Holling 
1959; Oaten and Murdoch 1975) and in early work concerning FRs in invasion sci-
ence (Bollache et al. 2008), although FR use was recognised in algal nutrient uptake 
(e.g. Tilman 1977) and herbivory (e.g. Farnsworth et al. 2002; Gioria and Osborne 
2014). Thus, there is a historical bias towards the investigation of predator-prey inter-
actions. This pattern is also found in a global compilation of FR data, where more than 
90% of the compiled curves were from predators (FoRAGE database; Uiterwaal et al. 
2022). The second most studied type of interaction was host-parasitoid, albeit always 
in biological control studies. As parasitoids are often specialists, this may explain their 
application to biological control investigations, mainly when trying to control an in-
troduced pest that is released from its natural enemies in the invaded system (Hassell 
and Waage 1984). Despite this, it is important to highlight that FRs can be applied 
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to other forms of resource exploitation (including resources other than food), such as 
plant nutrient uptake, habitat conversion, shelter use, pollination of flowering plants, 
and so on (Dick et al. 2017a; Dickey et al. 2020). An example of its potential for 
diverse application is the employment of FRs to quantify the exploitation of invasive 
macrophyte as case-building material by larval caddisflies (Crane et al. 2021).

Another striking bias is the number of studies performed in the freshwater envi-
ronment, given that the vast majority of NNS are in terrestrial ecosystems (Cuthbert 
et al. 2021), and most studies in invasion science focus on the terrestrial realm (Pyšek 
et al. 2008; Jeschke and Heger 2018). A priori, one might thus assume that there 
would be more FR studies of NNS in this realm. One potential driver for this preva-
lence of freshwater research could be the practicalities of measuring FRs in aquaria, for 
which methods have been well developed, in addition to the interests of active research 
groups in the field that use FR. However, experiments can also be easily performed 
in other environments, as evidenced by similar proportions of FR curves derived for 
marine, terrestrial and freshwater environments in the FoRAGE database (Uiterwaal 
et al. 2022), with greater research effort therefore needed to measure FRs of NNS in 
terrestrial and marine realms. When studying marine organisms, researchers can use 
artificial seawater in experimental setups similar to those applied in freshwater studies 
(e.g. Alexander et al. 2015; DeRoy et al. 2020). On the other hand, cages placed in the 
field can aid in investigating FRs of terrestrial organisms outside of the laboratory. For 
instance, Norbury and van Overmeire (2019) measured the predation rate of the inva-
sive European hedgehog on native invertebrate prey, placing small cages in pastures of 
native and non-native vegetation.

The bias in habitat types is also reflected in the taxonomic groups and species used 
in the experiments. Crustaceans and insects are significantly more employed, not only as 
resources but also as consumers, a trend also observed in the FoRAGE database (Uiter-
waal et al. 2022). Although it is not surprising regarding biological control studies, given 
that many pests are insects (as well as their respective predators and parasitoids; or weeds 
with insect agents), it is unexpected in the case of impact assessment and biotic resist-
ance investigations. This may be explained by invertebrates being small-sized and easier 
to maintain in artificial environments such as laboratories. Additionally, many coun-
tries are faced with restrictions on the use of vertebrates in experimental studies, which 
may bias investigations towards invertebrate interactions. An alternative is to derive 
FRs using field data for vertebrate taxa (Goss-Custard et al. 2006; Smout et al. 2013) 
or through the use of quantitative PCR of gut contents. However, even when it is pos-
sible to use vertebrates in experiments, a common challenge is the number of organisms 
needed to perform sufficient replications under an adequate gradient of initial resource 
densities. Recently, novel approaches have been applied to quantify FR using fewer in-
dividuals, such as via measuring time between captures and gut content analysis (Mofu 
et al. 2019; Coblentz and DeLong 2021) which could allow FR studies to involve more 
practically challenging taxa (e.g. limited numbers, large-sized, ethically restricted).

The species most commonly used as both a consumer and a resource was Gammarus 
pulex, being already studied in a wide variety of contexts such as infection (Haddaway 
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et al. 2012; Bunke et al. 2019), temperature (Laverty et al. 2017), habitat complexity 
(Barrios-O’Neill et al. 2015), and substrate (Dodd et al. 2014; Cuthbert et al. 2019b). 
Moreover, we noticed a similar trend for freshwater crustaceans in general (gammarids, 
mysids, decapods), which may reflect their prevalence as invasive freshwater species 
(Gherardi 2007; Strayer 2010), as well as the value of these taxa as model organisms for 
predator-prey interactions. Several known impactful species, for example the walking 
catfish (Clarias batrachus) and the red imported fire ant (Solenopsis invicta), and rapidly 
spreading NNS such as the striped eel catfish (Plotosus lineatus), however, are still entire-
ly understudied regarding their FRs. In particular, we found only one study measuring 
FRs of invasive plants, but this may relate to differences in terminology in terms of re-
source acquisition in plants (e.g. “uptake curves”, Rossiter-Rachor et al. 2009; “resource 
use efficiency”, Funk and Vitousek 2007; “nutrient responses”, King and Wilson 2006).

Despite the comparison of the FR of non-native and native analogue consum-
ers being proposed as a practical tool to predict and quantify the impacts of NNS, 
just half (53%) of the impact assessment studies have performed such a comparison. 
We highlight that the comparative FR approach is a phenomenological rather than a 
mechanistic method to understand impacts of NNS and should be interpreted relative 
to native trophic analogue consumers. When native analogues are absent, it can still be 
used within species as a response to different relevant contexts. For example, four stud-
ies compared the FR of the same species from different populations of its native and 
introduced ranges (Dick et al. 2013a; Howard et al. 2018; Boets et al. 2019; Grimm et 
al. 2020). Intraspecific inter-population comparisons in disparate geographical regions 
and eco-evolutionary contexts may help to shed light on the adaptive mechanisms of 
NNS that make them impactful in their introduced region. Moreover, impact assess-
ments based on estimates from single populations or a single site could be misleading 
due to context-dependencies (Howard et al. 2018; Boets et al. 2019; Grimm et al. 
2020), and further studies comparing multiple populations must be performed to un-
derstand sources of variation in per capita effects of the same species in different regions.

Indeed, the possibility of incorporating different context-dependencies in FR ex-
periments is taken as one of the main advantages of this methodology in NNS impact 
prediction (Dick et al. 2014, 2017a). Several different biotic and abiotic variables can 
influence the FR (Holling 1959), and accordingly many studies use different treat-
ments to simulate more realistic conditions when deriving FR curves for a species. 
The biotic contexts most investigated were the origin (native or non-native) of the 
consumer or resource species, which was expected given the studies targeted by this 
review. Following origin, the second most studied biotic context was the life stage. It 
is well known that the diet of a given species can change along with its ontogenetic 
development (Werner and Gilliam 1984) and reproductive cycle (Dalal et al. 2021), 
influencing the identity and quantity of the resources used. Additionally, the life stage 
is directly related to size, influencing the FR parameter of handling time and thus the 
maximum consumption rate (Vucic-Pestic et al. 2010; Barrios-O’Neill et al. 2016).

Ecological interactions such as cannibalism, intra-guild predation, competition, 
and higher-order predator presence (Paterson et al. 2015; Bunke et al. 2019; DeRoy et 
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al. 2020; Otturi et al. 2020) were among the most highly investigated biotic contexts. 
These contexts are critical for upscaling interactions to the ecosystem level where, for 
example, the presence of conspecifics or other species can lead to facilitation or inter-
ference (Griffen 2006; Médoc and Spataro 2015; Médoc et al. 2015), in turn directly 
influencing consumption rates. This is a feature that should be more often incorpo-
rated in future FR studies in the context of invasion science to provide realistic assess-
ments (Griffen 2021).

In addition to biotic variables, the most tested abiotic contexts across studies were 
temperature and habitat complexity. Temperature has well-known effects on metabo-
lism of ectothermic organisms (DeLong et al. 2018), directly influencing consumption 
rates across species. The general relationships between temperature and the FR param-
eters attack rate and handling time have become well established (Englund et al. 2011; 
Uiterwaal and DeLong 2020). They suggest that under future climate warming (IPCC 
2021) the negative trophic effects of NNS will be exacerbated (Sorte et al. 2013). 
Many studies thus tested projected temperatures to better understand the impacts of 
non-native consumers in this scenario (Pellan et al. 2016; Gebauer et al. 2018; Kemp 
and Aldridge 2018).

Habitat complexity is also an important abiotic context, given its capability of 
changing the FR curve type. Complex environments create barriers between the con-
sumer and the resource, particularly at low densities, which favours the observation of a 
Type III FR; whereas in simpler habitats it is common to observe Type II FRs (Alexander 
et al. 2012, 2015; Barrios-O’Neill et al. 2015). Furthermore, the simplified habitat of 
aquaria and cages used in experiments and their limited space intensifies consumer-
resource encounters, likely resulting in higher consumption rates than those expected to 
be observed in natural conditions (Bergström and Englund 2004; Uiterwaal et al. 2019; 
Griffen 2021). However, rather than trying to derive “true” FRs of species, it is the com-
parison among species (i.e. relative FRs) that are of interest in this context. Indeed, rela-
tive FR values correspond with actual impact in the field; for example, NNS/native spe-
cies FR disparities explained differential impacts of invasive mysids (Dick et al. 2013b).

From our set of 120 papers, we obtained data from 735 FR curves, with Type II 
the most commonly reported form, and this is considered the simplest curve to model 
(Jeschke et al. 2002, 2004). However, it is important to keep in mind that this curve 
type can again be a result of the simplified arena and limited space used to perform 
trials, or the absence of alternative resources and thus lack of switching opportunities 
(Kalinkat et al. 2023). However, we found that studies employing more complex habi-
tats in the experiments do not frequently observe the expected change from Type II to 
Type III curves. These studies found that the FR magnitude (i.e. the maximum feeding 
rate) was higher in low complexity environments (Alexander et al. 2015; Norbury and 
van Overmeire 2019) or that the estimated parameters differed (South et al. 2017). 
Although Barrios-O’Neill et al. (2015) found subtle changes towards Type III in more 
complex environments when using a flexible FR model, the same data were also ad-
equately categorised as Type II. This underlines the potential importance of other con-
texts that modulate FR form, such as prey preferences and switching in environments 
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with diverse prey assemblages (Murdoch 1969; Kalinkat et al. 2023). Typically, FR 
studies provide only one resource, therefore accentuating impacts and neglecting to 
consider more complex communities that could influence resource refugia.

The pattern of Type I FR being typical for filter-feeders (Jeschke et al. 2004) is 
often cited in the literature. Surprisingly, we found the most common curve type for 
filter feeders to be Type III, however this was heavily influenced by a single study 
which derived 16 FR curves under various treatments, from which 13 were classified as 
sigmoidal (Marescaux et al. 2016). When this study was excluded, Type I was indeed 
shown to be most common (10 FR curves from a total of 11) for filter feeders, how-
ever not exclusively, with examples encountered for parasitoids (Matadha et al. 2005; 
Savino et al. 2012; Wang et al. 2020) and predators (Kushner and Hovel 2006; Tilves 
et al. 2013; Benhadi-Marín et al. 2018; Poley et al. 2018).

Our results highlight some challenges in FR analysis in general. The classification 
of FR types and the correct estimation of parameters is not trivial and depends on data 
quality (i.e. enough number of replications and optimised initial resource densities). 
Indeed, there is still a lot of discussion in the literature around how to achieve a more 
accurate result based on data from laboratory experiments that are often heteroscedas-
tic (Uszko et al. 2020; Papanikolaou et al. 2021). Flexible or generalised models, where 
a scaling component q can assume values that range from a strict Type II FR (q = 0) 
gradually to a Type III (q = 1) can be useful to avoid a dichotomy among types (e.g. 
Mistri 2004; Kushner and Hovel 2006; Twardochleb et al. 2012; Joyce et al. 2020). 
The type of FR can nevertheless provide different information to the parameters in 
terms of theoretical resource stability implications (i.e. Type II FRs can be more desta-
bilising to low-density resources than Type III FRs), thereby complementing informa-
tion from FR parameters, which can be incomparable between different FR types and 
models. However, despite being complementary pieces of information, the magnitude 
of the FR curve, and therefore its parameters, can be more informative regarding the 
effect of the consumer on the resource population than the FR type, particularly in im-
pact assessment studies (Boets et al. 2019). Indeed, it has been shown in previous stud-
ies that the maximum feeding rate (1/h) can predict damaging invaders, which is the 
rationale to use it as the per capita effect within the RIP metric (e.g. Dick et al. 2017b).

Outlook and recommendations

This review shows that the use of FR in invasion science is increasing, particularly 
since the first paper conceptualising the comparative approach (Dick et al. 2014). De-
spite the burgeoning number of publications, FR studies are highly variable regarding 
their approaches, and there are pervasive biases in the geographic regions, taxonomic 
groups, and habitats being studied. Besides addressing the gaps and biases identified 
here, we propose other underexploited avenues for futures studies applying the com-
parative FR approach; some general areas of research as well as examples of hypotheses 
in invasion science that could be tested are presented in Table 1.
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We have four primary recommendations to advance the use of the comparative FR 
approach in invasion science. First, invasion scientists should keep abreast of develop-
ments in the analysis of FR to refine their approaches. Despite the FR being a classical 
ecological concept, its application is still developing, with new studies proposing best 
practices, analysis protocols, and how parameters may be accurately estimated and 
interpreted (Rosenbaum and Rall 2018; Uszko et al. 2020; Novak and Stouffer 2021; 
Papanikolaou et al. 2021; Giacomini 2022). For example, research is needed to under-
stand how different conversion efficiencies and background mortalities may affect the 
general pattern of FRs; and if so, how to consider this in the method. As proposed by 
Landi et al. (2022), short-term FR experiments can be paired with longer consumer 
growth response experiments, to check if changes in consumer biomass across resource 
densities are significantly different between consumers.

Second, future studies should embrace the possibility of including context-de-
pendencies to provide more realism to experimental results. For instance, species usu-
ally have more than one type of resource available in natural environments and will 
often not be foraging alone, thus facing competition for resources with conspecifics 
and other species. The presence of alternative resources leading to prey switching can 
effectively change the FR curve type (Murdoch 1969), so it is important that we also 
unravel this during experimental trials. Additionally, we can use FR-based metrics to 
assess the impacts of NNS through competition for resources (Dickey et al. 2020). 
Thus, there is an urgent need to include alternative resources, and inter- and intraspe-
cific competition in FR experiments to obtain more accurate and realistic assessments 
(e.g. Médoc et al. 2015; DeRoy et al. 2020; Otturi et al. 2020). Likewise, the source 
of the organisms used in the experiments needs attention. Many studies use resources 
(and even consumers) sourced from artificial suppliers such as aquaculture and pet 
retailers (e.g. South et al. 2017, 2019; Cuthbert et al. 2019a), but this may bias the 
results as the species have not coexisted naturally and likely respond differently to those 
in nature. If we want to understand real ecological impacts, it is fundamental to favour 
organisms sampled from the natural habitat whenever possible, with a special focus on 
ecologically relevant resources.

Third, we recommend that future studies use FR-based metrics to improve impact 
predictions. Given that FR considers only per capita effects, consideration of numerical 
responses or associated proxies could improve predictive efforts (e.g. by accounting for 
the influence of field abundance or reproductive efforts on impact), such as with the 
RIP metric (Dick et al. 2017b; Dickey et al. 2020). Differential numerical responses 
should be addressed in risk assessment studies, given that FRs from NNS and native 
comparators may often be similar or even greater for natives, but impacts can be ex-
plained by the higher abundances of non-natives. In turn, the RIP metric originally 
considered only the maximum consumption rate of the species, but a more intricate 
relationship of impact and FR parameters can exist. Given this, a useful metric is the 
Functional Response Ratio (FRR), which reveals impacts through the ratio between 
the FR parameters attack rate and handling time (i.e. FRR = a/h), and can be a reliable 
tool for risk assessment of new NNS (Cuthbert et al. 2019a).
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Table 1. Examples of research topics and hypotheses related to non-native species (NNS) that could be 
explored using the comparative Functional Response (FR) approach. Further relevant hypotheses that 
could be explored can, for example, be found in Enders et al. (2020) and Daly et al. (2023).

Topic Application Key references
Trophic 
interactions

Classical concepts including prey switching, omnivory, multiple 
and non-lethal predator effects, interaction strengths, and 

trophic cascades, can be measured and compared under different 
experimental contexts using the FR.

Alexander et al. 2012; 
Barrios-O’Neill et al. 

2015, 2016; Iacarella et 
al. 2018

Non-trophic 
interactions and 
behaviour

The effects of key behaviours such as aggression, activity, and 
boldness can be quantified by the FR, yielding predictive 

information on NNS success and ecological impacts. Competitive 
interactions (e.g. of omnivores) can be revealed using combinations 

of stable isotope metrics to quantify shifts in trophic niche space and 
comparative FRs to quantify interaction strengths.

Dominguez Almela et 
al. 2021; McGlade et 

al. 2022

Ecomorphology 
and ecophysiology 
traits related to 
ecological impacts 
of NNS

As the FR can be a phenomenological approach, integrating 
ecomorphological traits (e.g. body size, feeding structures), 

metabolic rate measurements, or immunoassay analysis can provide 
mechanistic explanations for differences in consumption impacts, 

thus improving predictive capacity.

Naranjo and Hagler 
2001; Taylor and Dunn 
2018; Luger et al. 2020; 

Giacomini 2022

Spatiotemporal 
variation in the 
impacts of NNS

Impact prediction based on estimates from single populations can 
be misleading if per capita effects vary greatly across space and time. 
Studies comparing variation in FRs across conspecific populations 
have tested the importance of the environmental context and, in 
some cases, revealed predictable patterns. Largescale geographical 

comparisons, thus far rare, could test fundamental questions such as 
whether predation intensity (e.g. attack rate) is higher in the tropics.

Dick et al. 2013b; 
Iacarella et al. 2015b, 
a; Howard et al. 2018; 

Grimm et al. 2020; 
Freestone et al. 2021

Differential 
impact of invasive 
species based on 
biogeographic 
origin

In some situations, native species are considered invasives. The FR 
can be applied to compare the differential impact of NNS, whether 

invasive or not, to invasive native species.

Valéry et al. 2008; 
Simberloff et al. 2012; 

Cunico and Vitule 2014; 
Xu et al. 2016

How consumer 
population 
abundance affects 
trophic impacts

While the FR considers only per capita effects, consideration of 
numerical responses or associated proxies in combined metrics 
improve predictive efforts. Furthermore, the FR can be derived 

under different combinations of consumer density.

Dick et al. 2017b; 
Iacarella et al. 2018; 
Dickey et al. 2020

Hypothesis Prediction (in italics) and application Key references
Resource 
Consumption

Successful NNS are often more efficient at exploiting key resources than 
functionally-similar native species. Invasive and non-invasive NNS 
and trophically analogous native species could be compared with 

respect to per capita effects related to feeding efficiency and voracity 
(e.g. attack rate, handling time). 

Funk and Vitousek 
2007; Johnson et al. 

2008; Morrison and Hay 
2011; Dick et al. 2013b; 

Ricciardi et al. 2013; 
Gioria and Osborne 

2014
Biotic Resistance Diverse communities of native species (and previously established NNS) 

inhibit subsequent establishment, population growth, and impacts of 
subsequently introduced NNS through antagonistic interactions including 
competition and predation. FR experiments can be used to measure the 

magnitude of consumptive effects of native consumers on NNS.

Twardochleb et al. 2012; 
MacNeil et al. 2013

Invasional 
Meltdown

NNS can facilitate one another in various ways to increase colonisation 
success, abundance, or performance, thereby causing an acceleration 
in the rate of invasion and increasing the likelihood of synergistic 

impacts. FR experiments could compare interactions between NNS 
and native consumer-resource combinations, besides different 

combinations of NNS to reveal if impacts of co-occurring NNS are 
additive, antagonistic, or synergistic.

Simberloff and Von 
Holle 1999; Simberloff 
2006a; Braga et al. 2020
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Hypothesis Prediction (in italics) and application Key references

Ecological Naïveté NNS will be more impactful if the recipient community do not share 
an eco-evolutionary experience with functionally similar species, 
being naïve to the novel species. One can use the FR to test the 

prediction that prey exposed to novel generalist predators would 
be more likely to be destabilised by the interaction (i.e. FR Type 

II, with high maximum feeding rate), compared to prey that 
have experience with such predators. Similarly, comparisons of 

conspecific populations of NNS on islands and mainlands could 
be done to test the related hypothesis of increased susceptibility of 

prey in insular habitats.

Ebenhard 1988; Cox 
and Lima 2006; Saul and 
Jeschke 2015; Anton et 

al. 2020

Enemy of My 
Enemy

A NNS co-evolved enemy has a stronger negative effect on resident 
native species, thereby reducing biotic resistance. The effect of parasites 
on per capita effects of NNS and natives could be used to evaluate 

competitive abilities with and without the presence of natural 
enemies.

Colautti et al. 2004; 
Dick et al. 2010; 

Toscano et al. 2014

Enemy Inversion Co-evolved enemies of NNS are less harmful for them in the non-native 
than in the native range, due to altered biotic and abiotic conditions. 
This hypothesis could be tested for predator-prey and herbivore-

plant interactions in different biogeographic contexts using 
comparative FR experiments.

Colautti et al. 2004

Evolution 
of Increased 
Competitive Ability

The release or reduction of enemies that constrain a NNS population or 
performance in the native range can trigger the evolution of increased 
competitive traits in the introduced range. This hypothesis could be 
tested through a comparison of FR per capita effects of conspecific 

populations in invaded and native ranges.

Blossey and Nötzold 
1995

Evolutionary 
Imbalance

Successful and more competitive NNS are likely originating from 
geographic regions of high phylogenetic diversity. FRs can compare 
per capita effects, and thus competitive abilities, of functionally 

or phylogenetically similar consumers from regions of contrasting 
diversity.

Fridley and Sax 2014

Environmental 
Heterogeneity

Spatiotemporal heterogeneity creates refugia against the impacts of NNS 
on native resources, thereby facilitating coexistence. FR experiments 
can incorporate multiple levels and types of habitat complexity to 

compare its effects on trophic impacts of NNS.

Melbourne et al. 2007; 
Barrios-O’Neill et al. 

2014

Environmental 
Matching

The impact of a NNS is inversely correlated with the distance of the 
novel habitat conditions from the species’ environmental optimum. 
FRs can be used to measure variation in per capita effects across 

physicochemical gradients in the lab and in the field.

Kestrup and Ricciardi 
2009; Iacarella and 

Ricciardi 2015; Iacarella 
et al. 2015a

Invasion Front Individuals at the front of a spreading NNS population have higher 
resource consumption rates (leading to higher trophic impacts) than those 
from the well-established core population, owing to selection for reduced 

intraspecific competition at the core. The comparative FR approach 
could be applied to test intraspecific differences in per capita effects 
across an expanding population to account for variation in impact 

across space and time.

Iacarella et al. 2015b

Taxonomic 
Distinctiveness

NNS that belong to taxonomic groups (genera, families) that are not 
present historically in the invaded community are more likely to cause 
significant impacts on biodiversity, food webs, or ecosystem processes, 

owing to novel use of resources (see also Ecological Naïveté hypothesis). 
The comparative FR approach can be used to test differences in the 
impacts of conspecific NNS populations in invaded communities 

that contain genera shared with the NSS versus those communities 
in which the NNS belong to a novel genus. 

Ricciardi and Atkinson 
2004
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Our final recommendation is to unite disparate terminology in animal and plant 
research on FRs as well as between fields considering NNS (invasion science and bio-
logical control), as differences in nomenclature may impede us identifying patterns in 
NNS resource use among different taxa and study systems. This is an issue faced not 
only in ecology but in science in general (Hodges 2008; Jeschke et al. 2019), and poly-
semy may hinder our comprehensive understanding of NNS impacts across different 
types of interaction, simply because we cannot track relevant studies. For example, 
we found two papers that used the term “functional response” for assessing growth 
performance of plants (Radford et al. 2007; Radford 2013), so they did not meet 
the criteria to be included in our review. However, we may have conversely missed 
important studies with plants that used different terminology (e.g. uptake curves and 
nutrient responses).

There is still a long path to establish the comparative FR approach as a poten-
tial universal NNS impact assessment tool, but here we have aimed to advance 
this goal by revealing knowledge gaps and identifying potential fertile ground for 
research. We advocate that FR-based metrics can be included in official risk assess-
ment protocols adopted by the IUCN, such as the Environmental Impact Clas-
sification for Alien Taxa (EICAT). Although useful to categorise species regarding 
its impacts, EICAT depends solely on invasion history which is not available for all 
NNS. The incorporation of FR in this analysis would potentially allow proactive 
rather than reactive management, while supporting white and blacklists of NNS 
(Simberloff 2006b).

As NNS can cause impact at any moment after introduction before going through 
the various invasion stages (e.g. Blackburn et al. 2011; Ricciardi et al. 2013), the FR 
approach can help target which species are more likely to cause harm before they be-
come too entrenched to manage. In this sense, we conclude that the FR approach can 
also be valuable to disentangle the impacts of NNS from those of native species that 
eventually behave like invasives (i.e. increase their range and abundance), ultimately 
unravelling the role of biogeographic origin on consumptive and non-consumptive ef-
fects (Richardson and Ricciardi 2013; Simberloff and Vitule 2014).
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