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Abstract
Focused fluid flow through sub-seafloor pipes and chimneys, and their seafloor mani-
festations as pockmarks, are ubiquitous. However, the dynamics of flow localization
and evolution of fluid escape structures remain poorly understood. Models based on
geomechanical mechanisms like hydro-fracturing and porositywave propagation offer
some useful insights into fluid flow and escape dynamics, but face limitations in cap-
turing features like mobilized granular matter, especially in the upper sediment layers
where the link between fracture and pockmark is not always clear. Here, we pro-
pose a mathematical model based on the multiphase theory of porous media, where
changes in subsurface and seafloor morphology are resolved through seepage-induced
erosion, fluidization, transport, and re-deposition of granular material. Through simu-
lation of an idealized scenario of gas escape from overpressured shallow gas reservoir,
we demonstrate that our model can capture flow localization and formation of pipes,
chimneys, and pockmarks. Our simulations show (1) formation of conical focused-
flow conduits with a brecciated core and annular gas channels; (2) pockmarks ofWand
ring shapes; and (3) pulsed release of gas. Sediment erodibility and flow anisotropy
control themorphology of focused fluid flow and escape structures, while permeability
shows negligible impact. While the geological setting for this study is theoretical, we
show that our results have real-world analogs.
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1 Introduction

Pockmarks are subcircular depressions on the seafloor. First reported on the Scotian
Shelf (King and MacLean 1970), pockmarks have since been found worldwide in
large numbers and in a wide range of settings [e.g., shallow and deep waters offshore
(Hovland and Judd 1988; Pilcher and Argent 2007; Dandapath et al. 2010; Sultan et al.
2014; Roy et al. 2015; Schattner et al. 2016; Chen et al. 2015, 2017; Roelofse et al.
2020), onshore (Bogoyavlensky et al. 2020; Chuvilin et al. 2020), in lakes (Wessels
et al. 2010; Reusch et al. 2015; Loher et al. 2016), and as recent and relict/buried
features (Gay et al. 2007;Andresen et al. 2008;Waghorn et al. 2018;Böttner et al. 2019,
2021)]. Pockmarks range from a fewmeters to hundreds of meters in diameter and few
centimeters to tens ofmeters in depth (Judd andHovland 2007), and display variability
in their shape and geometry [e.g., circular, semicircular, elliptical, and ring-like in plan-
view (Sun et al. 2011; Chen et al. 2018; Zhang et al. 2020) and U-, V-, and W-shaped
in cross section (Benjamin et al. 2015; Gafeira et al. 2018)]. Pockmark formation is
predominantly attributed to venting of subsurface fluids to the surface accompanied
by erosion and removal of sediments. Fluid sources include thermogenic gas and light
hydrocarbons (Hovland et al. 1998), biogenic gas (Chen et al. 2017), groundwater
(Reusch et al. 2015; Andresen et al. 2021), gas hydrate decomposition (Riboulot et al.
2011; Ruffine et al. 2013; Sultan et al. 2014), and melting permafrost (Solheim and
Elverhøi 1985; Roy et al. 2012, 2015; Shakhova et al. 2017). Their formation occurs
over a wide range of time scales [e.g., from hundreds of days (Cathles et al. 2010;
Lohrberg et al. 2020) to hundreds of thousands of years (Judd and Hovland 2007;
Wenau et al. 2017)] and is controlled by a variety of underlying geological structures
and fluid releasemechanisms [e.g., salt structures (Masoumi et al. 2013; Roelofse et al.
2020), faults (Pilcher and Argent 2007; Maia et al. 2016; Pape et al. 2019; Roelofse
et al. 2020), ridges (Eruteya et al. 2018) and buried channels (Gay et al. 2003), sea
level fluctuations (Bertoni et al. 2013; Riboulot et al. 2013), changes in sedimentation
patterns, and organic matter degradation (Andresen et al. 2008; Marsset et al. 2018)].
Other processes thought to be responsible for pockmark formation include bottom
current scour, reduced sedimentation, gravity flows, up-drifting ice detached from the
seafloor, and biotic activity (Paull et al. 1999; Picard et al. 2018; Paull et al. 2002;
Mueller 2015).

Pockmarks typically form on top of focused fluid conduits that appear as pipes or
chimneys in seismic data (Andresen 2012; Karstens and Berndt 2015). Such features
are generally attributed to a localized release of overpressure in the subsurface through
hydraulic connection with deeper sediment layers (Hustoft et al. 2009; Cathles et al.
2010; Böttner et al. 2019). Focused fluid conduits are extremely efficient pathways for
fluid migration from deeper sediments to the seafloor, and are critical for constraining
global carbon emissions and predicting climate change impacts (Berndt 2005; Judd
andHovland 2007; Etiope et al. 2008;Karstens andBerndt 2015; Lohrberg et al. 2020).
Moreover, fluid discharge at pockmarks leads to enhanced microbial activity, creating
importantmarine ecological hotspots (Berndt 2005; Gay et al. 2006; Judd andHovland
2007; Panieri et al. 2017). The presence of active gas emissions from pockmarks are
reliable indicators of subsurface hydrocarbon reservoirs, and are therefore, very impor-
tant for oil and gas exploration (Heggland 1998; Judd andHovland 2007; Strozyk et al.
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2018). Furthermore, actively venting pockmarks can affect seafloor stability, posing a
threat to offshore infrastructure (Judd and Hovland 2007; Vanneste et al. 2014). There
is also a risk of reactivation of inactive or dormant pockmarks (Judd andHovland 2007;
Pilcher and Argent 2007; Cathles et al. 2010; Roelofse et al. 2020), and consequent
impacts on seafloor and subsurface installations, including subsurface carbon capture
and storage (Karstens and Berndt 2015). It is, therefore, crucial to understand the pro-
cesses that control the formation, progression, and activity of focused flow pathways
and pockmarks, as they can provide critical proxies for subsurface fluid flow and help
in the management of subsurface resources and geohazards.

From a modelling perspective, the dynamics of focused fluid flow is a highly mul-
tiphysics problem characterized by a combination of coupled and competing physical
processes with many plausible driving mechanisms. In the literature, most field obser-
vations of pockmarks, pipes, and chimneys have been qualitatively explained using a
variety of conceptual models based on mechanisms like capillary invasion, hydraulic
fracturing, and seepage-induced erosion and weathering; or, where reactive media is
involved, secondary mechanisms like local volume loss due to carbonate dissolution
and hydrate dissociation are also invoked (e.g., Böttner et al. 2019, 2021; Cough-
lan et al. 2021; Andresen et al. 2021; Karstens and Berndt 2015; Cartwright and
Santamarina 2015 and references therein).

Togain some sense of themultiphysics complexity andhierarchyof these competing
mechanisms, consider a classical two-phase setting where free gas invades a fully
saturated medium through a point source. In a rigid medium, the invading gas can
migrate through a combination of its buoyancy and capillary forces (Helmig 1997).
Capillary invasion is diffusive in nature,meaning that the capillary forces act equally in
all directions around thepoint source,whereas thebuoyancy forces direct theflow in the
upward direction. If the gas source is overpressured, the nature ofDarcy velocity is also
diffusive,meaning that the overpressurewill release equally in all directions around the
point source. Therefore, in a homogeneous medium with no pre-existing preferential
flow pathways (like open fractures or high-permeability lenses), buoyancy must be
many orders of magnitude higher than the competing diffusive fluxes in order to focus
fluid flow into chimney-like configurations (Selker et al. 2007; Cathles et al. 2010).
However, if the pressure within the gas reservoir is high enough, the invading gas can
initiate a sub-vertical fracture (or a network of fractures), and hydraulic fracturing can
drive focused fluid flow, even for lower-buoyancy fluids (Wangen 2020; Karstens and
Berndt 2015; Berndt 2005). Alternatively, the concept of solitary porosity waves has
been proposed,where self-propagating, high-porosity, and high-permeability channels
may emerge spontaneously due to complex and highly nonlinear coupling between
fluid buoyancy, asymmetric compaction/decompaction of the pores, and viscoplastic
deformations of the sediment matrix (Yarushina et al. 2015; Räss et al. 2014, 2019;
Yarushina et al. 2021; Peshkov et al. 2021).

While hydro-geomechanical coupling and fracture propagation are considered the
most common drivers of focused fluid flow, especially from deeper source rocks,
there are limits imposed by the large overpressure magnitudes necessary for keeping
the fractures open. Moreover, the upper sediment layers are typically not fully consol-
idated, and the mechanical energy rapidly dissipates in these layers, limiting further
upward propagation. In fact, in these cases where the fracture does not propagate up
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to the seafloor, the tip of the fracture can itself be seen as a point gas source where the
link between focused fluid flow through the upper sediment layers and emergence of
pockmarks cannot be explained through hydro-fracturing or buoyancy and capillary
forces alone.

Especially in such cases, the mechanism of seepage-induced erosion and hydrody-
namic sediment transport (i.e., erosive fluidization) may play an important role in the
genesis of focused flow pathways (Cartwright and Santamarina 2015). For example,
field observations and core samples show evidence of fluidization and mobilization
of sediments within focused flow conduits (Kang et al. 2016; Hurst and Cartwright
2007; Huuse et al. 2005; Böttner et al. 2021). Sandbox experiments for simulating
piercement structures with air/gas injection (McCallum 1985; Nichols et al. 1994;
Frey et al. 2009; Nermoen et al. 2010; Philippe and Badiane 2013) also show that
seepage erosion can form surface and subsurface morphologies that are remarkably
similar to pipes, chimneys, and pockmarks. Recently, Vidal and Gay (2022) have elu-
cidated the merits and challenges of modelling the dynamics of fluid migration in
sedimentary layers in the upper 500m using concepts of frictional multiphase flow in
dense deformable media (Juanes et al. 2020). In the same review, the authors have also
briefly proposed conceptualization of a particles-based (i.e., discrete element method
coupled with computational fluid dynamics, DEM-CFD) modelling approach.

Given the level of conceptual complexity and the hierarchy of competing multi-
physics mechanisms, in this manuscript we focus our attention narrowly on the
dynamics of erosive fluidization and its role in the genesis of focused flow path-
ways and fluid escape structures like pockmarks. More specifically, we study if, and
under what conditions, this mechanism can be a primary driver of flow localization
into focused flow configurations. As discussed above, in the literature there is a lack
of mathematical formalism for testing this mechanism. While the model concept pro-
posed by Vidal and Gay (2022) is promising for analyzing multi-physics couplings at
small scales (e.g., sandbox), the computational costs associated with particles-based
numerical schemes are formidable for realistic simulations. Therefore, we propose a
mathematical model framework on the continuum scale that can resolve the flow local-
ization through internal erosion and fluidization, and simulate the evolution of seafloor
and subsurface morphology through sediment transport and redistribution. Within the
scope of this study, we focus narrowly on the mechanism of erosive fluidization. How-
ever, the model is developed in a generalized manner such that it can be modularly
extended to include geomechanical and chemomechanical coupling conditions. We
have developed our numerical simulator in-house using an open source framework,
and in this manuscript we provide a detailed description of the model as well as the
simulator development. Using numerical simulations of an idealized scenario of gas
escape from an overpressured shallow gas reservoir, we show how the process of
erosive fluidization can localize the fluid flow into well-defined chimney-like config-
urations and impact the subsurface and seafloor morphologies. We also analyze the
influences of the sediment properties related to flow and erosion on the morphology
of the emerging fluid escape structures.

123



Mathematical Geosciences (2023) 55:1101–1123 1105

2 Methods

2.1 Model Concept

Tomodel the physics of erosive fluidization, we conceptualize the subsurface sediment
as an additive decomposition of two distinct physical states (or phases, in the macro-
scopic sense): (1) intact sediment, where the porous structure is preserved, and (2)
fluidized sediment, where the porous structure is destroyed, and the granular material
is suspended in water in a dense muddy slurry. This conceptual model is similar to the
sand production models (e.g., Vardoulakis et al. 1996; Papamichos and Vardoulakis
2005; Steeb et al. 2007). Here, phase transition of the intact sediment into fluidized
sediment and vice versa is controlled by erosion due to fluid seepage, and deposi-
tion due to limited carrying capacity of pore water. Therefore, fluid flow through the
sediment column drives phase transitions and leads to a mass-conservative redistribu-
tion of the granular material, opening up preferential flow pathways and fluid escape
structures. Sediment redistribution manifests as a variety of distinct morphological
features at the seafloor. Constraining the characteristics of the internal sediment–fluid
interactions can offer important insights to link seafloor morphological observations
with subsurface fluid flow.

2.2 Mathematical Model

The above conceptual model is formalized through a generalized mathematical and
numerical framework where the coupled fluid flow, sediment–fluid interactions, and
sediment transport and redistribution are described within the macroscopic theory of
porous media, and the changing seafloor morphology is resolved as a manifestation
of the redistribution of aggregate sediment mass (i.e., the sum of the intact and the
fluidized sediment phases).

2.2.1 Preliminaries

Our domain of interest � ⊂ R
d with d = {2, 3} is partitioned into two distinct sub-

domains, viz., the free surface-water domain �w ⊂ � and porous subsurface domain
�p ⊂ �, s.t. �w ∪ �p = � and �w ∩ �p = ∅. Furthermore, the inner boundaries
between these sub-domains, denoted with �wp ⊂ R

d−1, are not stationary but rather,
may evolve over time due to processes such as erosion, sedimentation, surface-water
runoff, and other external factors such as sea level changes. Mathematical descrip-
tion of conservation laws in both sub-domains is based on the homogenized variables
defined over a representative elementary volume (REV). On the REV scale, the fol-

lowing homogenized variables are defined: local porosity φ (x, t) := Vp

VREV
and local

wetting phase saturation Sw (x, t) := Vw

Vp
, where VREV ⊂ � is the volume of an

arbitrary REV, Vp ⊂ VREV is the volume of void space where fluid flow is possible,
Vw ⊂ Vp is the volume of thewetting fluid, x ∈ � is the position, and t ⊂ R is the time.
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Furthermore, the void spaces are fully occupied by at least one or both of the following

two fluids: seawater and invading fluid (e.g., gas), s.t. Sn := VREV − Vw

Vp
= 1 − Sw.

Finally, for φ = 0, the definitions of Sw and Sn break down, and the model degener-
ates. Therefore, this model is only valid for porosity strictly greater that 0. The porous
domain is characterized by 0 < φ < 1, and the surface water domain by φ = 1.

2.2.2 Conservation Equations

We consider a multiphase system composed of three distinct phases: (1) seawater,
denoted with subscript w, (2) an “invading” phase (e.g., gas, light hydrocarbons)
denoted with subscript n, and (3) a continuum sediment phase denoted with subscript
s. The phase-wise mass balance can be summarized as

∂tφρwSw + ∇ · ρwvw = Qw, (1)

∂tφρn Sn + ∇ · ρnvn = Qn, (2)

∂t (1 − φ) ρs = Qs, (3)

where ρ(·) (x, t) is the density, Q(·) (x, t) the volumetric source terms, and v(·) (x, t)
the phase velocity for the respective homogenized phases.

Finally, we assume that the eroded sediment particles form a suspension within
the pore fluids, and express the transport and eventual downstream deposition of the
fluidized sediment, denoted with subscript f, as

∂tφρw

(
Sw + ρn

ρw

Sn

)
� f + ∇ · ρw

(
vw + ρn

ρw

vn

)
� f = −Qs, (4)

where � f (x, t) is the mass fraction of the sediment suspended in the pore fluids.
A main reason to treat sediment particles as suspended in water, and not a separate
fluidized phase, is that the phase boundaries between a continuous fluidized phase and
sediment-free pore water are poorly constrained.

The carrying capacity of pore fluids diminishes rapidly with decreasing phase den-
sity; for the gaseous invading phase, where ρn/ρw � 1, we can reasonably assume
that the sediments form a suspension only in the water phase, and rewrite the transport
equation for fluidized sediment as

∂tφρwSw� f + ∇ · ρwvw� f = −Qs, (5)

where � f (x, t) is the mass fraction of the sediment suspended in seawater.
Note that Eq. 4 is a general statement of mass balance for fluidized sediment in a

two-fluid-phase setting, whereas Eq. 5 is a special case applicable only to the scenarios
with high density contrast between porewater and the invading phase.Within the scope
of this study, we will limit analysis to gas as an invading phase, and will therefore
focus on the model with Eq. 5.
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2.2.3 Phase Velocities

The erosive action of subsurface fluid seepage is generally characterized by lower
Reynolds numbers and larger time scales.We, therefore, assume that within this study,
the Darcy model is sufficient to resolve the fluid phase velocities in both sub-domains,
s.t. velocity fields evolve based only on the body forces and gradient of the respective
phase pressures, Pα (x, t) for each α = {n, w}.

For each α = {w, n}, vα = −K (φ)
krα (Sw)

μα

(∇Pα + ραg) , (6)

where Ki = K0,i exp

[
a0,i

(
φ − φ0

1 − φ0

)]
for each i ∈ d, (7)

and krw = S(2/λ+3)
w ,

krn = (1 − Sw)2
(
1 − S(2/λ+1)

w

)
. (8)

The intrinsic permeability of the sediment, K, is a d-dimensional second-order diag-
onal matrix. K0,i and φ0 are “reference” permeability and porosity of the intact (or
uneroded) sediment, and a0,i is a model parameter that controls the range of perme-
ability variationwith respect to porosity (Hommel et al. 2018). Note that whenφ = φ0,
Ki = Ki,0, and when φ = 1, Ki := Ki,max = K0,i exp

(
a0,i

)
. Finally, krw and krn

are the relative permeabilities of the w- and n-phases, respectively (Helmig 1997).
Note that, in general, a combination of Darcy–Brinkmann–Stokes models would be

more accurate to resolve the flow velocities in the vicinity of the seafloor, especially
when the erosion due to surface water runoff is more dominant compared to the erosive
action of internal fluid seepage. However, the computational overhead of these models
is extremely steep, and to the best of our knowledge, there is very limited literature on
the extension of thesemodels tomultiphase settingswith evolving internal sub-domain
boundaries. Therefore, we do not consider a Darcy–Brinkmann–Stokes formulation
within the scope of this manuscript, but acknowledge this as an important extension
for more quantitative analyses in future.

2.2.4 Capillary Pressure

Capillary forces lead to a pressure jump across the fluid–fluid phase boundaries, s.t.

Pn − Pw := pc (φ, Sw), (9)

where pc is called the capillary pressure. Here, we choose a standard Brooks–Corey
(Helmig 1997) model to parameterize the capillary pressure function, and extend it
using a power-law model to account for the effects of changing porosity (Goda and
Behrenbruch 2011)

pc = pe,0

(
1 − φ

1 − φ0

)β

S−1/λ
w . (10)

123



1108 Mathematical Geosciences (2023) 55:1101–1123

The exponents λ ≥ 1 and β ≥ 1 are material parameters related to the particle size
distribution, and pe,0 ≥ 0 is the capillary entry pressure, which is a material parameter
representative of the average pore sizes in the sediment matrix.

Note that while our general model resolves capillary pressure effects through Eq. 9,
within the scope of this study, pc is ignored so that the focus of our our analysis remains
only on the erosive fluidization mechanism, isolated from any consequences related to
the capillary pressure hypothesis (Cathles et al. 2010).We consider this as an important
step because capillary-driven flows and erosive fluidization are competing hypothe-
ses, and since capillary pressure introduces a very strong nonlinearity, it can become
nearly impossible to analyze whether erosive fluidization can drive flow localization
independently or not.

2.2.5 Source Terms

In this study, there are no external sources and sinks present for the pore fluids. Further-
more, since we assume that the pore fluids are immiscible, there are also no internal
sources and sinks due to phase transitions and mass exchange. Therefore, Qw = 0
and Qn = 0.

However, due to the erosion and deposition processes, there is a continuous
exchange of mass between intact sediment and fluidized sediment, which leads to
the internal source terms

Qs :=
∑

α=n,w

(−εα (φ, |vα|) + δα

(
φSα,� f

))
, (11)

where εα and δα are phase-wise erosion and deposition rates, respectively (seeRahmati
et al. 2013 and references therein)

εα = eα,0 (1 − φ)m |vα|n, (12)

δα = dsα,0

(
� f

φSα

)γ

, (13)

internal erosion length scales eα,0, intrinsic deposition rates dsα,0, and empirical
parameters m, n, and γ .

As previously stated, in this manuscript we focus only on the invasion of the gas
phase, s.t. ρn

ρw
� 1. Therefore, the general source terms in Eqs. 12 and 13 reduce to

the special cases

εn = en,0 (1 − φ)m , εw = 0, δw = dsw,0

(
� f

φSw

)γ

and δn = 0. (14)
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2.3 Numerical Solution Scheme

The mathematical model has four main governing equations: (1)–(3) and (4 or 5).
We chose the following primary variables for our numerical model: Pw, Sn , φ, and
� f (or � f ).

The governing equations are discretized spatially using a fully upwinded cell-
centered finite volume scheme with a linear two-point flux approximation defined
on an orthogonal mesh with rectangular (d = 2) or cuboidal (d = 3) ele-
ments, and temporally using an implicit finite difference scheme. Additionally, in
order to evaluate the erosion rates, the fluid velocity fields are reconstructed using
an L2 projection (http://www.mathematik.tu-dortmund.de/~featflow/en/software/
featflow2/tutorial/tutorial_l2proj.html) of the phase pressures from their native P0
space to a higher Q1 space. The spatially discretized model is partitioned into three
sub-modules: (1) the two-phase flow module M1, composed of the governing equa-
tions (1) and (2) with primary variables P1 = [Pw, Sn]T , (2) the L2 projection
module M2, with the projected phase pressures as “intermediate” primary variables,

P2 = [
Pw, Pn

]T
, and (3) the sediment module M3, composed of the governing

equations (3) and (4 or 5) with primary variables P3 = [
φ,� f (or � f )

]T
. At each

time step, the numerical solution of the coupled problem is obtained by solving the
sub-modules iteratively in a blocked Gauss–Seidel scheme (Gupta et al. 2015).

The resulting numerical scheme is implemented within version 2.8 of the DUNE-
PDELab framework based on C++ (Bastian et al. 2010; Sander 2020) and uses the
in-built matrix assembler, linearization algorithm (Newton method with a numerical
Jacobian), and linear solver [parallel algebraic multi-grid (AMG) solver with a stabi-
lized bi-conjugate gradient (bi-CG) preconditioner]. The DUNE libraries used in this
study are preserved at https://gitlab.dune-project.org/pdelab/dune-pdelab and devel-
oped openly at https://www.dune-project.org/. The source code for the model and test
scenarios presented in this manuscript is archived in the following public repository:
https://github.com/shub-G/ErosiveFluidizationModel/releases/tag/v1.0.0. The com-
putations for this study were performed on the high-performance computing cluster
at Kiel University (CAU).

2.4 Test Setting and Computational Domain

To understand the effects of erosive fluidization on the sediment and seafloor mor-
phology, we simulated and analyzed the sediment redistribution in a representative
geological scenario that is commonly linked with focused fluid flow and escape struc-
tures, namely, the infiltration of buried overpressured gas into an overlying sediment
layer connected to the seafloor (Judd andHovland 2007;Cathles et al. 2010;Cartwright
and Santamarina 2015). The idealized test setting, shown in Fig. 1, considers a light
hydrocarbon (e.g., methane gas) trapped under high pressure in a buried reservoir
sealed by a capillary barrier. The overlying sediment is assumed to be stratigraphi-
cally homogeneous, fully water-saturated, and continuously connected to the seafloor.
At t = 0, a fracture spontaneously punctures the capillary barrier and allows the over-
pressured gas to escape. Note that this fracture does not cross into the porous sediment
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Fig. 1 a Test setting and two-dimensional computational domain, b the representative control volume and
definitions of the homogenized variables, and c model parameters used for the numerical simulations
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layer. Rather, it only opens a flow pathway for overpressured gas into the overlying
sediment layers. The overpressure in the gas reservoir is not maintained indefinitely,
but only until the gas plume reaches the seafloor. We identify a two-dimensional
computational domain � as a region around the fracture opening above the capillary
barrier. The computational domain encompasses the overburden �p and the surface
water column�w, and explicitly resolves the seafloor�wp. The computational domain
parameters and the material properties are summarized in Fig. 1. The reference per-
meability and porosity of the sediment are chosen to represent permeable silty sands
(Forster et al. 2003).

It is important to note that we do not resolve the source of the free gas in the
gas reservoir and the cause of the fracture. We also ignore the effects of bottom
water currents in �w in the vicinity of �wp. These assumptions allow us to focus
exclusively on the erosive fluidization and flow localization processes within �p, and
isolate the evolution of �wp from drivers other than the erosion in the subsurface.
Similarly, we also ignore the capillary effects and geomechanical feedback so that we
can categorically identify the correlation between the parameters of erosivefluidization
and the emerging subsurface and seafloor morphologies.

3 Results and Discussion

Selected results from the numerical study are shown in Figs. 2 and 3 where snapshots
of (a) redistributed sediment (i.e., volume of fluidized and intact sediment per unit
REV, s := (1 − φ) + ρs

ρw
φSw� f ), (b) redistributed sediment relative to pore water

(i.e., volume of fluidized and intact sediment per unit pore water, s′ := s
Sw
), and

(c) gas saturation Sn are plotted at t = 2 years, and (d) average Sn measured at the
seafloor (black) and Sn at the deepest point of the pockmarks on the seafloor (green)
are plotted over the duration of the simulations. The quantity of interest (qoi) s is
a conservative property bounded between 0 and 1. It shows the distribution of the
aggregate sediment mass (i.e., sum of intact and fluidized sediment) and highlights
the focusedflowpathways. The qoi s′ is not a bounded quantity, but it is very interesting
because it highlights the gas channels, which cannot be identified by looking at the
distribution of aggregate sediment mass alone. Results show that the mechanism of
erosive fluidization leads to localization of gas flow into distinct focused flowpathways
in the subsurface, which manifest as pockmarks at the seafloor, as marked in Figs. 2a
and 3a. The shape and size of the focused flow pathways and pockmarks are analyzed
with respect to three main sediment characteristics related to seepage and erosion:
(1) erodability r0 := en,0

dsw,0
(i.e., ratio of erosion and deposition rates; see Fig. 2), (2)

flow anisotropy KF := K0,0
K0,1

(i.e., lateral vs. vertical permeability; see Fig. 3), and (3)
intrinsic permeability K0,1 (see Fig. 5).

The key findings based on our numerical results are as follows:

1. Erosive fluidization leads to morphological features like a conical focused-flow
pathway with annular gas flow, which may be interpreted as gas pipe or chimney,
encased in a halo of low permeability sediment that acts as an effective seal against
lateral gas transport. The sediment within the focused-flow pathway undergoes
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Fig. 2 Impacts of erodibility r0 ∈ {100, 50, 25} on a total sediment distribution(
s := (1 − φ) + ρw

ρs
φSw� f

)
, b sediment distribution in pore water

(
s′ := s

Sw

)
, c gas saturation

(Sn := 1 − Sw), and d gas pulses on the seafloor. The numerical results are plotted for the particular
scenario with flow anisotropy KF = 1 and correspond to time t = 2 years. The quantity s shows the
gas chimney/pipe encased in a low-porosity, low-permeability halo in the subsurface, culminating in a
W-shaped pockmark on the seafloor. The quantity s′ highlights the gas flow pathways, which appear to be
annular within the pipe/chimney. High r0 leads to a narrower focused flow path with a tighter sediment
halo (i.e., pipe), while low r0 leads to a wider focused flow path with a more diffuse sediment halo (i.e.,
chimney). Moreover, a combination of low anisotropy (KF = 1) and high erodibility (r0 = 100) leads to a
ring-shaped pockmark. In general, active fluid flow tends to form W-shaped pockmarks. Finally, sediment
erodibility also impacts gas flow, where high r0 leads to high-frequency and low-amplitude gas pulses
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Fig. 3 Impacts of flow anisotropy KF ∈ {1, 10, 100} on a distribution of total sediment mass(
s := (1 − φ) + ρw

ρs
φSw� f

)
, b distribution sediment mass in unit pore water volume

(
s′ := s

Sw

)
, c

gas saturation (Sn := 1 − Sw), and d gas pulses on the seafloor. The numerical results are plotted for the
particular scenario with sediment erodibility r0 = 50, and correspond to time t = 2 years. The quantity s
shows the gas chimney/pipe encased in a low-porosity, low-permeability halo in the subsurface, culminating
in a W-shaped pockmark on the seafloor. The quantity s′ highlights the gas flow pathways, which appear
to be annular within the pipe/chimney. High flow anisotropy makes the sediment halo more diffuse due to
higher lateral sediment transport. The impact of flow anisotropy on pockmark shape is nonlinear because
of a competition between lateral sediment transport and limited carrying capacity of the pore water. Flow
anisotropy has a large impact on the gas flow, where high KF leads to high-frequency and high-amplitude
gas pulses
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intense fluid seepage-driven mixing, which results in brecciation (interpreted in
our model as regions with low intact sediment volume and high fluidized sediment
volume). Figures2a and 3a show the focused-flow pathway and the sediment halo,
while Figs. 2b and 3b highlight the annular gas channels embedded within the
brecciation zones. Interestingly, each of these features bears striking similarities
with the sandbox experiments where the formation of piercement structures was
analyzed through controlledfluidization using pressurized air injection (McCallum
1985; Nermoen et al. 2010).

2. Erosion and deposition are competing processes with a complex feedback loop:
within the sediment, high erodability (r0) leads to a more prominent near-
cylindrical gas chimney and “tight” halo around the focused-flow pathway. On
the other hand, high flow anisotropy (KF ) leads to a wider focused-flow pathway
and wider and a more diffuse sediment halo.
In the literature, the terms “chimney” and “pipe” are often used interchangeably
to describe focused-flow pathways, although some authors (e.g., Andresen et al.
2021;Karstens andBerndt 2015) consider a stricter nomenclaturewhere pipe refers
to cylindrical flow conduits with sharp boundaries between the focused flow zone
and the the host sediment, and chimney refers to irregular conduits with chaotic
transition towards the host sediment. Based on this nomenclature, our results indi-
cate that high r0 leads to pipes, and high KF leads to chimneys, although the
transition between the two structures is a continuous spectrum.
On the seafloor, high r0 leads to narrower pockmarks with sharp depressions,
while KF shows more nonlinear trends related to depth and width of pockmarks.
In general, high KF implies a higher lateral flow of the sediment mass, and vice
versa. If erosion rate is high, sediment tends to collect on the rim of the pockmark,
forming a raised ring-shaped encasing. On the other hand, when erosion rates
are low, less sediment mass reaches the surface, and therefore, ringed pockmarks
do not form. For high erosion rates, if anisotropy is low, the ring shape of the
pockmark is more pronounced. As anisotropy increases, more lateral flow occurs,
leading to flattening of the ring, formation of secondary rings, and widening of
the pockmark depressions. For low erosion rates, increasing anisotropy leads to
widening of the pockmark depression up to the point where the carrying capacity
ofwater is unable to keep upwith the erosion process, afterwhich a further increase
in sediment anisotropy leads to progressively narrower and shallower pockmark
depressions.

3. Gas release occurs in pulses (see Figs. 2d and 3d). Low r0 and high KF values
lead to high amplitude of the gas pulses (black curves), while high r0 and high KF

values result in high frequency of gas pulses. The cause of this pulsed gas flow is
the nonlinear coupling between seepage velocity, erosion and deposition rates, and
porosity: The rate of erosion is proportional to seepage velocity, which is propor-
tional to porosity. Higher seepage velocity leads to higher erosion, which leads to
increased porosity and even higher seepage velocity. However, higher erosion also
leads to higher concentration of suspended granular material, which increases the
fluid density as well as deposition rates, thereby reducing the porosity and, in turn,
the seepage velocity. Since the mass transport and the sediment phase transitions
are dynamic and rate-based (i.e., not spontaneous), the seepage velocity shows a
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periodic increase and decrease, leading to pulsed gas flow. In nature, the periodic-
ity of higher-frequency gas pulses is likely masked by the bottom water currents.
However, our results suggest that the pulsed release of gas is an intrinsic feature
of the physics of flow localization through erosive fluidization. Interestingly, this
pulsed gas release was also reported in sandbox experiments of piercement struc-
tures through air injection (Nermoen et al. 2010), and the localization of gas in the
subsurface predicted by ourmodel (e.g., Fig. 3cwith KF = 100) closely resembles
the air accent imaged in these experiments. Pulsed gas release was also observed
at the Scanner pockmark (Callow et al. 2021).While at the Scanner site, gas pulses
have been linked to tidal fluctuations (Li et al. 2020), our results suggest that gas
pulses can, in theory, also occur due to intrinsic dynamics of flow localization
without any external forcings like storm or tidal waves.

4. Differences in sediment–fluid interaction characteristics lead to diversity in pock-
mark shapes and sizes. Within the constraints of this test setting (i.e., short time
scale and continuous gas seepage), two interesting pockmark geometries emerge:
W-shaped and ring-shaped, as shown in Fig. 4. Although our test setting was the-
oretical, there are many real-world analogs where our simulation results seem to
apply.

4.1. W-shaped pockmarks (Lazar et al. 2019; Hovland and Judd 1988; Callow
et al. 2021; Watson et al. 2020; Gafeira et al. 2018), also referred as “inverted”
pockmarks (Lazar et al. 2019), are associated with active fluid escape (Lazar
et al. 2019; Schattner et al. 2012).
Our results suggest that the depression of the annular gas channel follows radial
symmetry.
A real-world analog is a radially symmetric W-shaped pockmark reported in
the continental shelf offshore northern Israel (Schattner et al. 2012), formed
in a geological setting strikingly similar to the idealized setting considered in
this study. The pockmark is roughly 60m across and 10m deep, and is the
result of active venting of methane gas, with seabed gas emission occurring
at shallow water depths (< 100m). It lies in a region of low cohesion and is
located directly above a chimney that extends up to the last glacial maximum
(LGM) unconformity at depth between 100 and 200m (Schattner et al. 2012).

4.2. Ring-shaped pockmarks have one or more concentric raised rims, formed due
to a combination of high erosion rate and low flow anisotropy, as discussed in
key finding no. 2. A prominent example of ring-like pockmarks is found in the
Hudson Bay (Roger et al. 2011 and references therein). Movement of icebergs
may have caused the breaching of the capillary seals, allowing the escape of
hitherto unknown hydrocarbon fluids from the source rocks supposedly lying
between depths of 80m upto 200m (Zhang 2008 and references therein).
The origin of these ring pockmarks remains speculative, although similar ring-
like features have been previously observed in the Hudson Basin (Dimian
et al. 1983) and attributed to hydrocarbon escape from possible salt-related,
block-faulting, and chemosynthetic formation mechanisms. Regardless of the
underlying fluid source, the geological scenario bears similarities with our
computational setting, and our simulations suggest that erosive fluidization
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Fig. 4 Comparison of selected numerically simulated pockmarks on the basis of shapes. a W-shaped
pockmarks, b ring-shaped pockmarks

from the migration of the escaped fluid in sediments with low flow anisotropy
and high erosion rate can lead to such ring-like pockmarks on the seafloor.

5. The intrinsic permeability K0,1 does not impact the shape and size of pockmarks
and pipes/chimneys, as shown in Fig. 5a (compare left and right). It only affects the
timescale of their evolution (e.g., pockmarks emerge within ∼ 1 yr in sediments
with K0,1 = 10−13 m2 and ∼ 100 years when K0,1 = 10−15 m2). However,
differences do appear in the frequency of gas pulses, with lower K0,1 leading
to higher frequencies. This behavior is illustrated in Fig. 5b. In the same figure
(5a, compare left and center), we also see that the morphology of pockmarks and
pipes/chimneys is controlled by the ratio of en,0 and dsw,0 (i.e., r0) but not by their
individual magnitudes. However, similar to K0,1, the magnitudes of en,0 and dsw,0
do affect the amplitude of the gas pulses, with lower en,0 (or conversely higher
dsw,0) leading to higher amplitude.

4 Conclusions

We presented a continuum-based model for simulating the formation of focused flow
and escape structures based on the mechanism of erosive fluidization. Numerical sim-
ulations of an idealized scenario of gas escape from an overpressured gas reservoir
showed that erosive fluidization and sediment transport lead to (1) formation of conical
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Fig. 5 Impacts of intrinsic permeability K0,1 and erosion rate constants e0 on the evolution of surface
and subsurface morphological features as well as the gas flow behavior. Snapshots for scenarios with
K0,1 = 10−15 m2 correspond to time t = 100 years, while those with K0,1 = 10−13 m2 correspond to
t = 1 year. Results of a sediment distribution show identical profiles, implying that K0,1 has no effect on
morphology, and neither does the magnitude of e0 (for a given r0). However, snapshots of b gas saturation
show that while the subsurface flow of gas remains identical, K0,1 and e0 have noticeable impact on gas
pulses at the seafloor

focused-flow conduits with brecciated core and annular gas channels encased within
a halo of low-permeability sediment, (2) pockmarks of diverse shapes and sizes on
the seafloor, including W and ring shapes, and (3) pulsed release of gas. Analysis of
sediment characteristics revealed that intrinsic permeability has no impact on the sub-
surface and seafloor morphologies. Sediment erodibility and flow anisotropy emerged
as dominant controls.Although the test settingwas theoretical, our results have striking
real-world analogs in nature as well as controlled experiments.

An important takeawayof this study is that themechanismof erosivefluidization can
lead to flow localization into focused-flow configurations without any capillary and/or
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geomechanical feedback, or in otherwords, erosive fluidization can be a primary driver
of flow localization. Therefore, quantitative models for analyzing focused fluid flow
must include this process along with other chemo-hydro-geomechanical multiphysics
couplings. To that effect, this manuscript proposes a flexible mathematical formalism
that can be integrated into other existing models and software with relative ease.

While the focus of this studywas narrowly on themechanismof erosive fluidization,
it is clear that no singlemechanism can universally describe all the observed features of
focused fluid flow. The quantitative analysis of this problem demands a comprehensive
multiphysics model framework that can handle both hydrogeomechanical processes
and sediment fluidization, and possibly also biogeochemical feedback. Therefore, the
similarities of our results with real-world analogs must be viewed as solely qualitative,
with the caveat that both the geomechanical and capillary effects were ignored.

The computational framework for the proposed model was developed keeping the
strongly multiphysics character of the focused flow problem in mind, and is therefore
highly general and modular by design. In this manuscript we have demonstrated the
capability of this framework in terms of handling the sediment phase transitions and
transport. Future work will include more complex couplings like capillary effects,
mechanical deformation, and gas miscibility.
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