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Zusammenfassung

Ziel meiner Arbeit war die Entwicklung eines Kerndichteschätzers mit
guter Auflösung typischer Strukturen in Wahrscheinlichkeitsdichten von
Ozeandaten am Beispiel organischer Kohlenstoffisotopendaten (δ13CPOC)
innerhalb des neu entstehenden Felds Marine Data Science. Klassische
Datenwissenschaften, ein allgemeines Verständnis der Ozeanforschung,
Kommunikationsfähigkeit und Selbstsicherheit sind grundlegende Anfor-
derungen an Wissenschaffende der Marine Data Science.

Organische Kohlenstoffisotopendaten waren zu Beginn meiner Arbeit
mit etwa 500 Datenpunkten global verfügbar. Ich habe den vorhande-
nen Datensatz in einer ersten Version auf zunächst 4732 Datenpunkte
erweitert, in einer zweiten auf 6952. Beide sind bei PANGAEA veröffent-
licht zusammen mit Metainformationen wie Messort, -zeit und -methode
und Interpolationen. Eine Beschreibung der zeitliche und geographische
Verteilung der ersten Version habe ich bei Earth System Science Data
veröffentlicht.

Die Entwicklung des Kerndichteschätzers habe ich auf die existierende
Idee, ihn als Lösung der Diffusionsgleiung zu berechnen, aufgebaut. Mein
Algorithmus nutzt finite Differenzen im Ort und equidistante Zeitschritte
mit einem impliziten Euler-Verfahren und approximiert den optimalen
Glättungsparameter durch zwei Pilot-Schritte. Im Vergleich zu anderen
bekannten Kerndichteschätzern erzeugt mein Algorithmus verlässliche
Approximationen von multimodalen und Rand-nahen Verteilungen auf
künstlichen und realen Ozeandaten und ist robust gegenüber Rauschen.
Meine Implementierung ist als Python-Paket auf Zenodo veröffentlicht,
ihre Beschreibung bei Geoscientific Model Development eingereicht.

Ich konnte in meiner Arbeit zeigen, dass mein Kerndichteschätzer
zuverlässig Ozeandaten auswertet und damit eine Grundlage zur verbes-
serten Kalibrierung von Erdsystemmodellen legt. Gleichzeitig konnte ich
zur Definition und Etablierung des feldes Marine Data Science beitragen.
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Summary

My work developed a kernel density estimator that well resolves typical
structures of probability densities, which was demonstrated on a newly
compiled marine data set of organic carbon-13 isotope ratios (δ13CPOC).
All work was conducted within the emerging field of marine data science.
I identified classical data science, a general understanding of ocean science,
communication skills, and confidence as requirements for marine data
scientists.

In the beginning of my work, the existing δ13CPOC data consisted of
about 500 data points in the global ocean. I expanded the existing data
set to 4732 data points in a first version, and additionally to 6952 in a
second. Both are published at PANGAEA along with meta information
such as measurement location, time, and method, and interpolations. I
have published a description of the temporal and geographic distribution
of the first version at Earth System Science Data.

I designed the development of the kernel density estimator algorithm
on the existing concept of computing it as a solution of the diffusion
equation. My algorithm uses finite differences in space and equidistant
time steps with an implicit Euler method, and approximates the optimal
smoothing parameter by two pilot steps. Compared to other well-known
kernel density estimators, my algorithm produces reliable approximations
of multimodal and boundary-close distributions on artificial and real
marine data and is robust to noise. My implementation is published as a
Python package on Zenodo, its description is submitted to Geoscientific
Model Development.

I was able to show that my kernel density estimator reliably evalu-
ates ocean data and thus lays a foundation for calibrating Earth system
models. At the same time, I was able to contribute to the definition and
establishment of the field of Marine Data Science.
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Part I

Introduction





Chapter 1

Being a researcher in the emerging
interdisciplinary field of marine

data science

An ocean of data – The slogan of my graduate school refers to the increas-
ing amount of available marine data and the huge opportunity to draw
knowledge from these. Currently, the evaluation of marine data relies
on the proper selection and application of a data evaluation technique
within the specific marine research domain. This can result in keeping
outdated measures in the analysis or the application of unsuited tools,
since the selection of such tools is generally difficult. The development
of data analysis methods is the main task of data science and usually
conducted without a specific target application. This makes data science
tools well applicable to a broad variety of data without specific restrictions
or requirements. But domain data generally comes with specific features
and domain research with specific requirements for what to draw from
the data. Marine data science is an emerging interdisciplinary research
field that approaches the development and application of data science
tools directly targeted towards the evaluation of marine data. Marine
data scientists require a fundamental education in well established data
science fields such as mathematics, computer science or engineering as
well as a broad overview of marine science knowledge and typical data
characteristics [VTA+21]. By this, marine data scientists can tackle current
marine research questions by evaluating marine data with best suited data
science methods and furthermore (re)design methods directly targeted to
best support marine research.

The aim of my doctoral research in marine data science was to develop
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1. Being a researcher in marine data science

a statistical tool for the application on data with typical features of marine
data. My research required in-depth knowledge about non-parametric
statistics, analysis, numerics and computer science on one hand and a good
understanding of marine biogeochemical modeling on the other. Initial in
my work, I had to overcome typical challenges of interdisciplinary research:
get to know different domain specific languages, identify different domain
specific research steps and goals, and learn about non-transferability of
concepts such as optimization procedures for models [OCK+22].

My first important marine data science step was the collection of
data. Mathematical methods are developed and designed for general and
non-specific data X P Rn, n P N in marine science the application on
real (measurement or simulation) data is commonly standard. For this,
I manually collected, pre-processed and double-checked thousands of
data points from ocean measurements. The sources were mainly data
sets from other marine researchers [e.g. GF94; TGH+19; LPC+19] and
a data platform [Alf]. I published these data on PANGAEA, an Earth
science data publishing platform [VST+21; PST+22] and a description of
the resprective data in an Earth science data journal [VSS+21].

For the development of my statistical tool, I used my previously col-
lected data (among others) to directly test its performance on real marine
data. I used different marine biogeochemical data sets as well as direct
communication with marine researchers to identify typical marine data
characteristics and requirements for an analytic tool. I published the
software at a general-purpose open repository [PS23]. Furthermore, I
submitted a paper describing the algorithm to a geoscientific modeling
journal (Part II, Chap. 4).

Finally, I decided to additionally support the establishment of this
emerging research field of marine data science. For this, I became the
student representative of my local graduate students. This included to
represent their interests in the steering board. We discussed the general
structure of the education of young marine data scientists, decided which
research projects should be funded and how to best support the growths of
marine data science. Furthermore, I hosted a workshop about researchers’
demands and desires towards marine data science and published the
outcome in the Frontiers journal together with my fellow marine data
scientist Carola Trahms [VTA+21]. Finally, the two of us brought marine

6



data science to an international young marine researchers conference as
an individual session.

Developing own significant research while connecting and communi-
cating with researchers from both – marine and data sciences – is key in
successfully becoming a marine data scientist.
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Chapter 2

Opportunities and challenges in
modelling the carbon cycle

Carbon is a crucial element for life on Earth. It is part of all living or-
ganisms, fluxes throughout the entire Earth system, supplies energy and
determines climate conditions. Since the beginning of the industrial era
the global carbon cycle is strongly perturbed by human activities, such
as mining, burning of fossil fuels, deforestation and factory farming. By
this, anthropogenic CO2 emissions form one of the main driving forces of
current and future climate change [IPC13].

The ocean acts as an important role in buffering the rise of atmospheric
CO2 due to fossil fuel emissions. Gaseous atmospheric carbon dissolves
at the surface of the Earth’s oceans, some of which gets incorporated
into biomass by photosynthesizing phytoplankton and passes through the
marine food web. As parts of feces and dead biomass, carbon sinks as
particulate organic matter down towards the ocean sediments. The majority
of this carbon gets remineralized. Other parts can be buried and enter an
enormous storage pool for up to thousands to million of years. About 60%
of the anthropogenic CO2 emissions have already been compensated by
such natural sinks, still leaving the atmosphere anthropogenically enriched
by about 880 Gt CO2 since 1750 [IPC14]. Observing specific carbon isotopes
can help to identify sources of carbon [RW86]. The particulate organic
carbon-13 isotope is generally denoted as a ratio as

δ13C =

 13C
12C
Rstd

´ 1

 , (2.0.1)

where Rstd = 0.0112372 is a standard ratio and 12C and 13C are the absolute
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2. Opportunities and challenges in modelling the carbon cycle

concentrations of the respectove carbon isotopes [Hay04].
Earth system models can serve to understand and predict global carbon

dynamics. They simulate the element cycling [ISS+13; HRA+14] and thus
the ocean’s carbon uptake capacity [BWR+17; NMK+16]. Also, model-
ing of specific carbon isotopes has become of particular interest [TB08;
SGC+13; SS16]. Earth system models can assist the understanding of past
and present and predict future conditions. Furthermore, they serve as a test
laboratory for mitigation strategies to tackle the current threats of climate
change. Hence, the reliability of these models is crucial, and thus their
calibration by comparison of simulation to corresponding observational
data is a common strategy.

Calibrating models is important to improve their robustness, since
these are simplified representations of the real world. The comparison
of simulation to field data can give an impression into how well the
model reproduces real world processes and their associated data patterns.
Important processes, interactions, and exchanges between the atmosphere,
hydrosphere, biosphere, and chemosphere must be appropriately resolved.
Consequently, a tuning of model parameters can increase the ability of the
model to reproduce data patterns observed in-situ.

Typical calibration methods require equally sized data of observations
and corresponding model outputs and reduce the data down to a compa-
rable amount. Field data measurements are unevenly distributed as well
in time as in space, and furthermore usually sparse. In comparison to this,
model data is available in every single grid cell and time step for each
simulated tracer. A typical calibration method is the root mean squared
error, which requires field and model data to be equally sized. The reduc-
tion of data to comparable subsets is commonly achieved by incorporating
only data points from grid cells, where both data types are available. By
this, many likely useful information gets lost and spatial biases of the
model are highly resolved in the error calculation. A different approach
that considers more information is to calculate a mean or median of the
data before comparison allowing to use all available data. Nevertheless, for
multimodal data this approach is highly unsuited, because it completely
disregards many possibly occurring data structures.

The ability to explore data distributions as a continuous functions
independent of the amount of available data provides an opportunity to
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compare unevenly sized data sets. Such a tool can be used to explore field
and simulation data individually and afterwards construct a cost function
comparing these two results. Before such exploration, data can be selected
from meaningful locations and times, e.g. biomes and seasons, to stay
within a comparable data subsample. Still, this approach allows to take
all available data into account and disregards spatial or temporal biases
within a reasonable range.
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Chapter 3

Data exploration by
nonparametric density estimation

Probability density functions (PDFs) are simple tools to explore data struc-
tures more independent of the amount of available data points than other
traditional approaches, while still resolving important data distribution
features. PDFs are constructed from data values and neglect meta informa-
tion as space and time. Mathematically, they are integrable non-negative
functions f : A Ñ [0, 8] from a probability space (Ω,A, P) into the non-
negative real numbers and allow to directly relate the probability of the
occurrence of a data value x P R within a specific range [a, b] Ď R via the
relationship

P (a ă x ă b) =
∫ b

a
f (x) dx for all a ă b P R (3.0.1)

[Sil86]. This connection is possible since the PDF is the derivative of the
distribution of the data [Irl10].

Statistical approaches towards the estimation of PDFs are differentiated
in parametric and non-parametric ones. The traditional parametric ap-
proach for estimation of an unknown density assumes that this belongs to
a class of known distributions. In this case only the distribution parameters
– like mean and variance – are estimated. Many real world data sets do not
belong to known distributions and hence such an estimate is designed to
fail. Non-parametric statistics target the estimation of the PDF without the
introduction of assumptions and construct the estimate directly from the
data [Tsy09] and therefore are used in this work.

A kernel density estimator (KDE) is a common non-parametric method
for the estimation of PDF. It equips every data point with a so called kernel
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3. Data exploration by nonparametric density estimation

(function). The kernels are usually downscaled versions of well-known
PDFs, ensuring the final estimate being a PDF itself by inheriting all
properties of its kernels. The final KDE is the weighed sum of all kernels
and by this takes information of every single data point into account and
treats all of them equally. Consequently, every point’s information equally
contributes to the resulting estimate. A smoothing parameter determines
the smoothness of the KDE by defining the width of the individual kernels.
Generally, a kernel function K : R Ñ Rą0 shall satisfy

sup
yPR

|K (y)| ă 8 ^

∫
|K (y)| dy ă 8 ^ lim

yÑ8
|yK (y)| = 0 ^

∫
K (y) dy = 1.

The KDE of the density f of a data set X := (Xi)
N
i=1 Ď R is defined as

f̂ : R ˆ Rą0 Ñ Rě0, (x; t) ÞÑ
1

n
√

t

N

∑
i=1

K
(

x ´ Xi√
t

)
. (3.0.2)

The parameter
√

t P Rą0 denotes the smoothing parameter of the KDE
[Par62].

KDEs promise to be useful for the evaluation of Earth system data, but
available implementations have shortcomings in the application on marine
biogeochemical data. The most commonly used is the Gaussian KDE. This
is built from Gaussian kernel functions and known to work fast and be
insensitive to noise. Unfortunately, it tends to oversmoothing [BMP77].
This makes the Gaussian KDE perform poorly on multimodal data and
boundary close values [MR94]. For example, in a model assessment,
important data features can be unresolved and create a false impression of
the model’s performance.

A modern approach to construct a KDE is done by solving the partial
differential equation describing the diffusion heat process [CM00]. This
approach proofed to work better on multimodal and boundary close
data [BGK10], and further studies already showed robust results of this
KDE [BGK10; DCR11]. The time parameter of this differential equation
equals the squared bandwidth parameter t P Rą0 [CM00]. Together
with a parameter function, Neumann boundary conditions and the δ-
distribution of the input data as initial value [BGK10], this approach can
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be summarized in the initial value problem

B

Bt
u (x; t) =

1
2

d2

dx2

(
u (x; t)
p (x)

)
, x P Ω, t P Rą0 (3.0.3)

B

Bx

(
u (x; t)
p (x)

)
= 0 , x P BΩ, t P Rą0 (3.0.4)

u (x; 0) =
1
N

N

∑
j=1

δ
(

x ´ Xj
)

, x P Ω (3.0.5)

with Ω Ď R a domain, X P ΩN the input data and p P C2 (Ω, Rą0) such
that ∥p2∥8 ă 8. The solution of this system u P C2,1 (Ω ˆ Rą0, Rě0) is
then called the diffusion KDE.

The parameter function p acts inversely to a classical diffusion coeffi-
cient. By this, it provides adaptive smoothing to the diffKDE. The smaller
the values of p are, the higher is the diffusion impact and vice versa.
Selecting p as a simple KDE itself lets the estimation best improve from
this property [BGK10].

An optimal choice for the smoothing parameter is generally seen to be
a minimizer of the asymptotic mean integrated squared error [Par62]. For
the diffusion KDE, this means that the final iteration time in the solution
of Eq. 3.0.3 is optimally chosen to be

T˚ =

 E
(√

p (X)
)

2N
√

π

∥∥∥∥( f
p

)2
∥∥∥∥2

L2


2
5

(3.0.6)

[BGK10]. The calculation of this is depending on the parameter function
p as well as on the true PDF f . I propose here to apply a simple KDE to
pre-calculate a first estimate for f to be used in Eq. 3.0.6. Using simple
first KDE calculations in support of the calculation of the diffusion KDE is
generally called pilot estimation steps [Abr82].

Designing a diffusion KDE algorithm and software for the exploration
of marine biogeochemical data can fundamentally increase the knowledge
that can be extracted from these data. The KDE can resolve the distribution
from multimodal and boundary-close data even from noisy data sets.
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3. Data exploration by nonparametric density estimation

To be appropriate for such task, the diffusion KDE requires a suitable
approximation of the final iteration time T˚ and the two pilot estimates
for p and f . Choosing a proper discretization and programming language
are furthermore important for the applicability in marine research. Finally,
testing the diffusion KDEs efficiency and performance on real marine data
ensures its usefulness in the calibration of Earth system models.

16



Chapter 4

Data collection and experimental
setup

The aim of my work was to develop a kernel density estimator (KDE) for
the exploration of marine data. I collected and compiled a new δ13CPOC
data set as an example application for the KDE. The carbon isotope ra-
tio δ13CPOC provides useful information into carbon origins and traces
through the Earth system. All of this work was elabrorated in the frame-
work of the emerging field of marine data science. My specific marine data
science research is located in between the fields of statistics, probability
theory, numerics, optimization, analysis and computer science, marine
biogeochemical modeling, marine biology and marine chemistry.

4.1 Drawing the perspective of marine data sci-
ence

Conducting research in an emerging field provides scientists the opportu-
nity to actively shape the future direction of their field. I aim to strengthen
the general definition and visibility of marine data science by my own
research as well as by meta research about this field. For this, I teamed
up with my fellow marine data scientist Carola Trahms and organized a
workshop with marine and data scientists and marine data science gradu-
ate students. Our aim was to obtain general information from all of them
about

Ź expected benefits for own research field in educating and employing
marine data scientists
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4. Data collection and experimental setup

Ź the difference between a support scientist and a marine data scientist

Ź skills and knowledge a marine data scientist should possess

Ź career opportunities for marine data scientists

We published the outcome of the workshop [VTA+21] and set up a
collaborative team of scientists of all domains and career stages listed in
Tab. 4.1. Carola Trahms and I were the co-leaders of the study. Together we
set the goals for the content and distributed the tasks among the coauthors.
The resulting input contributions are summarized in Tab. 4.2

Table 4.1. Authors team of the marine data science publication

Marine scientists Data scientists Marine data scientists

PhD students Carola Trahms
Maria-Theresia Pelz

Martin Prinzler
Coordinators Avan Antja

Enno Prigge
Researchers Christopher Somes

Markus Schartau
Professors Arne Biastoch Thomas Slawig

Thorsten Dickhaus
Matthias Renz

Table 4.2. Authors contributions to the marine data science publication

contribution researcher
marine data Schartau, Somes
marine science knowledge Antja, Biastoch
data science knowledge Dickhaus, Renz, Slawig, Prinzler
soft & interface skills Antja, Prigge
training Prigge
introduction, summary, conclusion Trahms, Pelz
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4.2. Collection of the δ13CPOC data

4.2 Collection of the δ13CPOC data

The first step of this work was to set up a data base of marine field data. I
chose δ13CPOC data that shall later be incorporated in model calibration
[SS16]. I published the new data set together with one of my supervisors
and other marine researchers at the world data center for for Earth and
environmental science PANGAEA [Alf]. Currently, there are two versions
of the data available: my first originally published data base referred to
as first version [VST+21] and a second updated data base extended by
additional data referred to as second version [PST+22]. Additionally, I
published a data description paper in the journal Earth System Science
Data (ESSD) explaining in detail the set up of first data base version and
showing its main data characteristics [VSS+21].

I built the first version on an existing data base by [GF94]. I collected
data from [Alf] and added data provided by [LPC+19] and [TGH+19].
The data base is set up in a CSV file containing all relevant meta informa-
tion. Together with Christopher Somes, we additionally provided NetCDF
files of the data interpolated onto two different global grids. A coarse one
for model calibration on a UViC Earth System Model grid [SS16] and a
fine one for comparison with other gridded data [GWP+18].

The second data base version was set up with support of my super-
visor Christopher Somes. It contains extensions by data from [CH20;
ZZC+14; WCW+99; EPH+19; GEH+21]. This version is also provided as
a spreadsheet file and as a NetCDF file interpolated into a global grid
[GWP+18]. The second data base version is also published at the data
platform PANGAEA [PST+22].

4.3 Development of a diffusion-based kernel den-
sity estimator

The idea to calculate the classical Gaussian KDE by solving the diffusion
heat partial differential equation was first proposed by Chaudhuri and
Marron [CM00] and its benefits were mainly investigated by Botev et al.
[BGK10]. The latter stated that this approach is well suited for multimodal
and boundary close data. This inspired me to choose the diffusion ap-
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4. Data collection and experimental setup

proach to build a software package for the approximation of probability
density functions designed for typical data features of marine biogeo-
chemical data. These generally include multiple modes from different
biogeochemical influences, boundary close data as in size analyses and
also noise from measurement errors or numerical simulations.

I decided to design a new algorithm of the diffusion KDE that best
estimates densities of marine data. I will refer to this new diffusion KDE by
diffKDE from here on. The algorithm is mainly based on a new bandwidth
approximation of Eq. 3.0.6, which builds on two pilot estimation steps
for the unknown functions f and p in Eq. 3.0.6. Using simple KDEs as
pilot estimates was already a common strategy to increase the accuracy of
the final estimate [Abr82; She04]. Previously, pilot estimates were often
chosen as Gaussian KDEs [BGK10]. Both of my pilot estimates are derived
by solving the diffusion equation. Their final iteration times are data based
approaches by [Sil86]. The pilot estimates are directly plugged into Eq.
3.0.6 for calculation of the final iteration time of the diffKDE. One of
them additionally acts as a parameter function in Eq. 3.0.3 inversely to a
diffusion coefficient as proposed by [BGK10].

An additional feature of my implementation is the provision of a family
of estimates at different smoothing intensities and letting the user choose
their own preference of smoothing intensity. This is an implicit feature of
the temporal solution of the diffusion equation. It solves the possibility
of no single optimal smoothing parameter being available [Sco12] by
following the idea to provide a series of estimates [BMP77; She04].

I chose the software language Python 3 [VD09] using SciPy [GVB+22]
and Numpy [HMW+20]. Visualizations are realized with Matplotlib
[Hun07] and calculations based on the Python Math package [Van20]. I
chose Python, because it is an open source and a popular programming
language in scientific research and data exploration.

My first approach was a finite element discretization build on the
software framework FEniCS [ABH+15]. This approach delivers fast and
reliable results, but is depending on running the software in an own envi-
ronment [Inc20] on Unix platforms and even more difficult approaches
like docker [Mer14] on Windows machines.

To make my software valuable for a broad community, I decided to re-
implement the software based on finite elements. This new discretization
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4.3. Development of a diffusion-based kernel density estimator

follows concepts by [Sla15] and was already used in a similar approach to
implement a diffusion based kernel density estimator for linear networks
implemented in R by [MBN16].

I published my software package at Zenoodo [PS23] and submitted a
description paper of the new algorithm and implementation to Geoscien-
tific Model Development (GMD) [PSS+23].
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Please note that my first three publications were published under the
name Verwega. I – Maria-Theresia Pelz – am first author of these.
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Earth System Sciences have been generating increasingly larger amounts of

heterogeneous data in recent years. We identify the need to combine Earth System

Sciences with Data Sciences, and give our perspective on how this could be

accomplished within the sub-field of Marine Sciences. Marine data hold abundant

information and insights that Data Science techniques can reveal. There is high demand

and potential to combine skills and knowledge from Marine and Data Sciences to

best take advantage of the vast amount of marine data. This can be accomplished by

establishing Marine Data Science as a new research discipline. Marine Data Science is an

interface science that applies Data Science tools to extract information, knowledge, and

insights from the exponentially increasing body of marine data. Marine Data Scientists

need to be trained Data Scientists with a broad basic understanding of Marine Sciences

and expertise in knowledge transfer. Marine Data Science doctoral researchers need

targeted training for these specific skills, a crucial component of which is co-supervision

from both parental sciences. They also might face challenges of scientific recognition

and lack of an established academic career path. In this paper, we, Marine and Data

Scientists at different stages of their academic career, present perspectives to define

Marine Data Science as a distinct discipline. We draw on experiences of a Doctoral

Research School, MarDATA, dedicated to training a cohort of early career Marine Data

Scientists. We characterize the methods of Marine Data Science as a toolbox including

skills from their two parental sciences. All of these aim to analyze and interpret marine

data, which build the foundation of Marine Data Science.

Keywords: Marine Data Science, interface science, emerging science, Ph.D training, Data Science, Marine

Sciences, Earth System Sciences

MOTIVATION

Earth System Sciences have seen enormous technological progress within the past decades,
generating huge data sets from various sources. Increasingly, applications of big data are being
used to generate policy advice, monitor regulations, and test potential mitigation measures. Using
science to guide decision making requires transparent analyses and impartial communication.
Uncertainties and limitations of scientific output must be clear to public, policy makers, and
the media.

1. Perspectives on Marine Data Science
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At the same time, Data Scientists apply, redesign, and develop
new methods in statistics, data mining, and machine learning.
These methods can be established to tackle specific challenges
of research questions in Earth System Sciences. They have to
prove their usefulness in applications to data stemming from this
area of research, as it is often unknown whether the assumptions
that regulate Data Science methods are met by real data from
other disciplines. Therefore, combining unique non-conforming
data sets not typically used together, with relevant research
questions, provides a scientific benefit. Such research also serves
to improve the development of data and computer science
methods themselves.

We argue that it is time to integrate the fields of Earth System
Sciences and Data Science. Data Science should be established
as a fourth paradigm (Hey et al., 2009) in Earth System Sciences
beyond observations, theory and modeling, requiring its own
experts and specialists. We will present Marine Sciences as an
example for Earth System Sciences since these are the areas of
expertise of our consortium. We call this emerging interface
field Marine Data Science (MDS) and the scientists within this
field Marine Data Scientists (MDSc). To define this field and
identify its needs, we conducted a workshop with eight principal
investigators from both Marine and Data Sciences, and 14
doctoral candidates conducting research within MDS projects.
This expert team was formed by members of a graduate school
(MarDATA), which aims to educate early career MDSc and shall
serve as an example of how such a pathway can be implemented.

Marine Data Science as an Emerging Field
Marine Sciences have been generating huge amounts of
heterogeneous data stemming from, for example, experiments,
observations, and model results including high frequency data
streams (Williams et al., 2016; Mayer et al., 2018; Tanhua et al.,
2019). Major advances in automated and remote observation
capacity and the simultaneous collection of increasingly diverse
data challenge conventional data handling methods. As more
of the ocean is measured and mapped, and modeling increases
in complexity, the need for innovative tools and methods will
increase. Marine Scientists must extract scientific information
from sparse data through smart analyses. However, Marine
Scientists have little or no formal training in Data Science
methods such as machine learning approaches. Data Scientists,
similarly, lack formal knowledge of Marine Sciences. By merging
disciplinary expertise in Marine Data Science, both groups of
scientists can harness mutual advantages and provide maximal
insights from complex data.

The integration of Data and Marine Sciences already takes
place for numerous scientific applications but mostly in an ad-
hoc manner (with the exception the established research field of
bioinformatics). Successful approaches have been implemented
originating in Marine Sciences (Malde et al., 2020; Sonnewald
et al., 2020), as well as Data Science (Faghmous et al., 2015;
Adibi et al., 2020). These approaches highlight the potential
in combining the knowledge and power of these two scientific
fields. They need to be differentiated from efforts like pangeo.io1

1https://pangeo.io/

FIGURE 1 | Elements of Marine Data Science. The object of MDS research is

marine data (1). Knowledge involved in MDS bases on the parental sciences,

Marine and Data Sciences (2). Key methods of MDS are collected in the

Marine Data Scientist’s Toolbox (3). This includes the Marine Data Mining

Pipeline as well as Computer and Interface Scientist Skills.

or Pangaea2. Pangeo focuses on making computer science
technology (not necessarily Data Science methods) available to
natural scientists. Pangaea focuses on offering a platform for
publishing research data.

These examples show that establishing Marine Data Science
can be approached from two perspectives: from a specialized
field in Marine Sciences with an expansion toward Data Science
methodologies, or fromData Science with a specialization toward
the Marine Sciences.

In both cases new Data Science methods have the potential
to generate added value to marine research, for example in
ocean models by aiding the scientific interpretation of 4D model
data. They help in improving the workflow and analysis of large
volumes of model data. Also, they may help formulate and
construct parameterizations of unresolved and underrepresented
marine processes.

Even though we find the first way of establishing Marine
Data Science important to expand the education of Marine
Scientists into this new methodological field, the latter approach
was themotivation for the establishment of the Helmholtz School
for Marine Data Science (MarDATA)3. We view MarDATA as
an example for strategic fusion of both methodologies and an
application of Data Science methods in Marine Sciences.

In this paper, we present a template to establish a profile for
Marine Data Scientists that offers structured training and career
perspectives for researchers entering the field. In the following
sections, we expand on the MDS components in Figure 1, which
is followed by a concept on how to train MDSc. We provide
an overview and discussion that can help both in designing
and conducting MDS research, and guiding the research profile
of early career researchers. This shall serve as an example
of integrating Earth System Sciences and Data Science while
focusing on the specific needs of Marine Sciences.

2https://www.pangaea.de/
3MarDATA: https://www.mardata.de/
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1. MARINE DATA

Marine data form the base of MDS research. Since Marine
Sciences include the full range of natural sciences, MDSc
deal with data that originate from small-scale experiments
to globally operating autonomous instruments, satellites, and
ocean model outputs. In consequence, their origin, format,
scope, and characteristics are diverse. It is crucial for MDSc to
understand the background of these data. This includes gathering
knowledge about the method of data collection and learning
about the suitability of the data for answering specific research
questions. Interestingly, Marine and Data Scientists may apply
different criteria to evaluate the usefulness of data. Marine
Scientists are concerned with the ability of their data to resolve
particular processes, while Data Scientists put more emphasis on
completeness, consistency, and uncertainties in the data. Both
the structural organization and content of data sets are vital for
analyses to reach their full potential.

Accessing data from various sources, MDSc face the
challenge of combining highly heterogeneous data. This
heterogeneity can affect the following areas: Sources, Data
Formats and Data Structures, Origin, Processing Levels, Spatial
and Temporal Resolution.

Heterogeneity of Sources, Data Formats and Data Structures
arises in the absence of a single, consistent, standardized, global,
and generic infrastructure for marine data. Data acquisition,
processing, and accessibility depends on national efforts, and
repositories are often uncoordinated. Few ongoing efforts exist
that coordinate and streamline data repositories, formats, and
accessibility (e.g., Ocean Observatories4, GOOSMoltmann et al.,
2019, OOI Schofield et al., 2010, 2013 based on cyberstructure
from Farcas et al. (2011)).

Heterogeneity of Origin distinguishes marine data by the
disciplinary expertise who generated them. We identified three
categories, that are not mutually exclusive:

1. Observational Data are collected and preprocessed by
researchers. The researchers hold expertise in measurement
devices and protocols, instrument calibration, data cleaning,
and quality control. The data sources might be ship based
measurements, moorings, gliders, autonomous underwater
vehicles, drifters and floats, sea-floor optic cables, or
laboratory measurements.

2. Highly Processed Data Products are extrapolated and
interpolated in space and time, such as the objectively analyzed
data of the World Ocean Atlas [WOA, (e.g,. Garcia et al.,
2013; Locarnini et al., 2019)]. Remote sensing measurements
can be combined with field observations. Algorithms, models
and neural networks derive estimates of ocean properties,
which can utilize and expand field observations.

3. Synthetic data from Simulations and Models are generated
from models that are imperfect representations of the real
world. They cover temporal and spatial scales beyond the
observational data (e.g., Matthes et al., 2020) and include,
for example, future climate projections (e.g., Eyring et al.,

4https://oceanobservatories.org/

2016). Unlike data (1) and (2), simulation output data
are usually available on a unique grid depending on the
specific model simulation. Climate models, for example,
typically provide a four-dimensional space-time grid. Thus,
a comparison of model output and measurements always
involves interpolation or data aggregation.

Heterogeneity of processing levels is concerned with the implicit
uncertainty of the data in the specific level, depending
on individual processing steps, as well as their underlying
assumptions. The levels span raw measurements (level 0),
quality-controlled data sets (level 1), derived data and data-
model synthesis products (level 2 and higher) to synthetic data
from simulations. Although the explicit assignment of processing
levels has become common practice in Marine Science, the
levels may be defined differently by scientists from different
research perspectives.

Heterogeneity of spatial and temporal resolution is a common
feature in ocean observations. Most field data describe properties
of the upper ocean’s pelagic layers (upper 500 m), where
substantial variability can occur on much shorter time scales
than changes in the deep ocean. Global oceanographic data from
greater depth remain more scarce. Some ocean regions are still
hardly covered at all, such as the southeastern Indian Ocean or
the ice-covered polar oceans. Thus, observational data from great
depths and from remote ocean regions are highly valuable and
these data ought to be well-prepared and made accessible.

Marine data typically reflect multiple dynamical processes
that are interconnected or simply overlap, while spanning a
wide range of scales (Dickey, 2001). These scales can often
not be regarded in isolation. Figure 2 shows the continuum
of features and processes changing in time and space in the
marine environment. Failing to account for heterogeneity in the
spatio-temporal resolution of data may lead to misinterpretation
of results. It might even mask processes of interest, potentially
mistaking a relevant signal for noise.

2. KNOWLEDGE FROM MARINE AND DATA
SCIENCES

Having noted the challenges that arise from the heterogeneity of
marine data, we now describe the core aspects ofMarine andData
Sciences that join to form MDS.

2.1. Marine Sciences
An understanding of the ocean requires comprehension of
its physical, chemical, biological, and geological processes as
well as their interconnection with society. The methods and
conceptual approaches of these disciplines differ substantially.
They are based on mathematical, physical, biological, geological,
or societal system understanding. They range from theoretical
approaches, lab-based experiments and in situ measurements to
global models. Consequently, specific toolboxes (methods and
software) and the conceptual framework used depend strongly
on the research question and the data type.

It is neither possible nor necessary for any individual MDSc
to have a deep understanding of all Marine Sciences. As in
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FIGURE 2 | Processes and features that generate variability in the ocean on various temporal and spatial scales. The sketch has been refined and redrawn, inspired

by an illustration by Dickey (2001).

any field, it is possible to understand the big questions and the
areas of possible breakthrough that big data can mediate. MDSc
strive to attain a meta-level understanding of marine processes,
and a focused deeper knowledge of the specific research theme
they work on. They know the state-of-the-art analytical tools.
The tool’s strengths, weaknesses, and limitations influence the
framing of MDS research questions.

At all scales, ocean models help to test hypotheses and
simulate projections. These simulations solve systems of
differential equations, using techniques from advanced
numerics, parallelization, and high performance computing.
Model calibration is usually a high-dimensional nonlinear
optimization problem, which requires observational data as
constraints. Model parameterizations, for example of ocean
mixing or biogeochemical processes, are imperfect and data
assimilation methods are one option to provide improved
model solutions. Typically, model optimizations require a high
number of simulations, increasing the computational power
requirement. Model calibration and validation is difficult because
of the sparseness and uncertainty of observational data.

Increasingly, Marine Sciences address global challenges such
as climate change, biodiversity loss, and the sustainable use of
natural resources. Scientific advances, often enabled by data-
driven insights, provide the knowledge base for policy and
societal action. Examples are the predictions of climate change
given by earth system models (Masson-Delmotte et al., 2018),
and the development of a digital twin for the ocean that can
assess solution options to marine problems (Voosen, 2020).
MDSc find themselves at the forefront of this research. They are
challenged not just by the research complexity, but by the need to
communicate its socioeconomic and ethical implications.

2.2. Data Science
As is the case for Marine Sciences, Data Science is also
not a research discipline on its own. It encompasses fields
such as statistics, probability theory, or machine learning
from traditional disciplines such as mathematics and
computer science.

Handling and processing data involves established computer
science methods. These include standard algorithms (searching
and sorting, usage and manipulation of graphs, etc.) and data
structures. MDSc have to understand their functionalities in
order to use these tools effectively and efficiently. This also applies
to data management concepts. While every domain-specific
database system has its own characteristics, basic concepts such
as primary and secondary keys, queries, etc. must be known
and understood.

Core definitions and theorems of pure mathematics are
required in essentially all fields of Data Science. A strong
background in these topics forms the foundation necessary to
utilize and further develop Data Science tools. Calculations on
data points are basically fundamental operations on elements of
fields or vector spaces. Their foundations lie in puremathematics,
algebra, and analysis. Utilizing data for finding, for example, a
best procedure, requires methods from optimization or optimal
control theory. Implementing these concepts into computer
programs is part of numerics. Knowledge about convergence,
consistency and stability of such algorithms is important to
judge their suitability to address a problem as well as to
judge the reliability of the result. Application of statistical
methods incorporates results from probability theory, hence
understanding of basic stochastic calculus is essential to choose
the correct statistical method and understand its outcome.
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Ordinary and partial differential equations are essential to assess
the existence and uniqueness of solutions of numerical models.

Finally, it is crucial to transform data into information,
and ultimately into knowledge. Specifically in MDS, advanced
machine learning and data mining methods that are designed
for complex-structured data are required. Such data include
high-dimensional data, sequence data, time series data, data
streams, graph data as well as spatial and spatio-temporal data
and unstructured data such as text. Awareness of the capabilities
and limitations of these techniques is crucial.

3. THE MARINE DATA SCIENTIST’S
TOOLBOX

We next discuss the skills that guide MDSc to successfully take
on their research challenges (see Figure 1). We emphasize that
substantial discussion with Marine Scientists about the expected
scientific achievements is essential at the start of any MDS
project. Only after this exchange can the choice of the specific
tool be made.

3.1. Marine Data Mining Pipeline
To facilitate knowledge discovery, MDSc work along a data
mining pipeline. This includes selection, preprocessing, and
transformation of the data for feature selection for the machine
learning and pattern mining algorithms. It is important to
emphasize that data put into this pipeline’s preprocessing step
have already been processed, cleaned and maybe even imputed
by Marine Scientists in their own data preprocessing routines.
At the end of the marine data mining pipeline stands a
meaningful evaluation of model performance utilizing expressive
visualization. Along this pipeline, MDSc have to cope with
data sparsity, problems of overfitting, treatment of outliers and
noise, and sorting and weighting data according to quality and
uncertainty. Due to this complexity, knowledge discovery is
tackled by an iterative process with multiple loops over the
pipeline steps. In the following we will focus on aspects of this
data mining pipeline applicable to MDS.

During data selection, MDSc must keep in mind the scientific
question, differences in processing levels and uncertainties
between data types. Close collaboration with Marine Scientists
is crucial in this step. This includes consideration of boundary
conditions and an assessment of the plausibility of a solution,
which distinguishes this approach from blind data mining.

In the preprocessing step the data is integrated, completed, and
made consistent. MDSc consider the origin, temporal and spatial
coverage, available metadata, and preprocessing performed on
the data. When handed to MDSc, marine data is usually already
preprocessed to a higher data level (see section 1).

The next step is transformation of the data into a format
for machine learning and data mining. This includes feature
selection, feature transformation, and dimensionality reduction.
Gaussianity can facilitate some analyses and may even be a
prerequisite. It can be met for e.g., by applying Gaussian
anamorphosis for improved state estimations (Amezcua and
Leeuwen, 2014) or logarithmic transformations. Data that
exhibit non-Gaussian characteristics might be transformed by

other parametric or non-parametric statistical measures (e.g.,
Tsybakov, 2009).

At the heart of Data Science are knowledge discovery methods
such as machine learning and pattern mining. Their application
presumes familiarity with the range of the spatio-temporal scales
of the data and the processes involved (see sections 1 and 2).
When working with complex, multi-source data, MDSc adapt
methods of data mining to account for uncertainties in the data
(Liu et al., 2016).

The evaluation of the results involves experts from Marine
and Data Sciences. Techniques such as explainable artificial
intelligence might be more useful than black-box solutions.
They facilitate communication of the results and their origins
to non-Data Scientists. Although blind data mining might
expose unknown and unexpected interdependencies, it requires
close collaboration (see section 3.3) to assess whether identified
patterns are useful. Once the quality of the results is assessed,
the pipeline can be backtracked to repeat steps, applying
alternative approaches.

Visualization communicates the message extracted from the
data. Descriptive statistics support visualization by removing
noise, and summarizing core features. Graphic and dynamic
visualization are utilized to communicate results to (Marine
Science) colleagues. Innovative ways of presenting or animating
data contribute significantly to dissemination of results.

3.2. Computer Science and Programming
Skills
To facilitate the steps of the marine data mining pipeline, MDSc
apply classical programming skills such as handling databases
and UNIX platforms as well as different programming languages.

Database systems build the foundation to access and store
marine data in a standardized and well-defined format. MDSc
know how to work with relational as well as other database
designs, such as NoSQL solutions. MDSc run and parallelize
analyses on diverse systems, such as High-performance
architectures with numerous CPUs or GPUs and associated
storage systems.

Programming languages are essential for performing
computer-supported calculations and analyses. Currently, huge
marine models are often written in classical programming
languages like C, C++, and Fortran5. Statistical analyses and
data visualization in Marine Sciences are often performed in R6,
MATLAB7, and programs such as Excel8 out of convenience. For
the data mining pipeline e.g., Python9 is a helpful choice.

To ensure transferability, reproducibility and sustainability
of the developed scripts and software they need to be created

5Fortran https://fortran-lang.org/ (accessed January 10, 2021).
6R Core Team (2020). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing Vienna. Available online at: https://www.R-

project.org/ (accessed January 10, 2021).
7MATLAB (2010). version 7.10.0 (R2010a). Natick, MA: The MathWorks Inc.

Available online at: https://de.mathworks.com/ (accessed April 25, 2021).
8Microsoft Excel https://www.microsoft.com/de-de/microsoft-365/excel

(accessed January 10, 2021).
9Python Software Foundation. Python Language Reference, version 3.9. https://

www.python.org/ (accessed January 10, 2021).
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using standard routines such as version control (e.g., git10) and
modularity as well as good documentation. Hence MDSc need to
apply best practices of software engineering.

3.3. Interface Scientists Skills
MDSc are scientists working across disciplines with
different conceptual approaches, academic cultures, and
disciplinary languages. Hence, they must develop personal
and communication skills to allow them to contribute to a
joint understanding of scientific questions and research design.
In-depth bilateral scientific exchange between Marine and Data
Scientists for co-definition of research questions and expected
outcomes is the first step of any MDS project. A succinct
guide to how such a collaboration could be established and
nurtured is given by Ebert-Uphoff and Deng (2017). They
suggest that rather than Data Scientists and Marine Scientists
trying to gain proficiency in the field of the other, active and
persistent collaboration is the way to join expertise. Defining the
problem, approach and expectation of the scientific outcome
will lead to the selection and application of appropriate data
methods. Together with the interpretation of results these are a
joint responsibility and must be iterated throughout the entire
research process.

Interface skills for MDSc include grasping the conceptual
approach and specific terminology of the marine problem
while avoiding excessive detail. An innate, curiosity driven
motivation, that enables research to be fun, stimulates lateral
and innovative thinking and an openness for serendipity
help greatly in this process. At a personal level, MDSc are
continually operating beyond their comfort zone—they interact
as non-experts in new fields. They must navigate among their
collaborators and communicate their expertise at conferences
and meetings with domain scientists. This requires confidence,
questioning the input they receive and having an entrepreneurial
mindset that shows resilience, determination, and an enthusiasm
for multitasking.

In communication of results to stakeholders and
decision makers, MDSc need to address and clarify
uncertainties and limitations of their scientific output. This
is fundamental to contributing MDS input to policy making and
public understanding.

4. HOW TO TRAIN A MARINE DATA
SCIENTIST

By defining MDS as a new research field with characteristic
methods, workflows and required skills, we see the need for
targeted education of early career scientists. This is motivated by
Marine Data Science as an example of how Data Science could be
fused with all fields of Earth System Sciences into a new interface
discipline. We present here our experiences in developing and
implementing targeted training for doctoral researchers in MDS
within a dedicated graduate school of the Helmholtz Association.

10Software Freedom Conservancy. Git. https://git-scm.com/ (accessed January 10,

2021).

This can serve as an example of how data and earth sciences can
be bridged to form a new interface discipline.

The Helmholtz School for Marine Data Science
(MarDATA)11, established in 2019, aims at training doctoral
candidates (the German equivalent of a Ph.D) in MDS. It is
a cooperation of GEOMAR - Helmholtz Centre for Ocean
Research Kiel and the Alfred Wegener Institute (AWI)
Helmholtz Centre for Polar and Marine Research with partner
Universities in Kiel and Bremen, and was initiated by the
Helmholtz Association to prepare the next generation of
scientists for a data-heavy future. Conducting MDS requires
highly specialized Data Science methods, thus we chose doctoral
candidates with aMasters degree in Data Sciences. Their doctoral
training is conceived to provide a Marine Sciences background
as well as targeted in-depth training in information and Data
Sciences. They also receive training to sharpen transferable skills
that enhance their research output. Their research projects range
from the improvement of autonomous underwater navigation
over pattern recognition in large data sets to the development
of new tools for data analysis. Most of the doctoral researchers
aim at a degree in Data Science that could lead to a post-doctoral
career inside Earth System Sciences (not necessarily restricted
to Marine Sciences), and also prepares them for a career
outside academia.

The core of MarDATA is the joint definition of research
questions by professors and senior scientists from both Marine
and Data Sciences. Regular meetings between the doctoral
candidates and both their supervisors (one each from the
Marine and Data Science disciplines) have proven to be the
most effective. They are essential for a joint understanding of
the research question and monitoring research progress. All
participants share responsibility for exchange of disciplinary
understanding and maintaining useful dialogue. It quickly
became apparent, however, that doctoral candidates cannot be
the only “glue” between their supervisors.

MarDATA supports scientific exchange by offering joint
events, such as datathons12, hacky hours13, and other networking
opportunities. Doctoral researchers in the MarDATA school gain
lateral, interface skills by contributing lectures or workshops to
early career Marine Scientists. This contributes visibility to the
profile of MDSc in the marine field.

Training measures draw on project-specific expertise from
the supervisors, as well as block courses and summer schools.
The training is always open for a number of external
participants providing an opportunity for knowledge transfer
and exchange. Recurring lecture formats allow training in
particular methodologies and provide an overview of state-
of-the-art research in both domains. Workshop formats allow
all involved researchers to strengthen their interface skills, for
example in lateral thinking and design thinking.

11MarDATA: https://www.mardata.de/.
12A datathon is an event where Data Scientists meet to solve Data Science

challenges. These challenges can originate from applied fields or other data-heavy

research disciplines.
13A hacky hour is a fixed informal weekly meeting, where researchers and

programmers come together to discuss and solve code and programming

related problems.
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5. SUMMARY AND CHALLENGES

In this paper we provide our perspective of the current state
and future of Marine Data Science (MDS) as a marine example
for the fusion of Earth System Sciences with Data Science. To
suggest a pathway for its development, we propose a model for
the training for early career Marine Data Scientists (MDSc).
The discussed ideas are inspired by the Helmholtz Graduate
School forMarine Data Science (MarDATA), which is an example
of training for a future generation of MDSc. MDSc should be
trained both in classical Data Science skills as well as developing
strong communication skills across disciplines. The Data Science
skills include handling databases and programming languages,
while maintaining software development standards, as well as
dealing with diverse marine data types. The Marine Science
skills include an overview of the marine environment and the
characteristics of its data. MDS potentially extricates information
from marine data, leading to new knowledge, and can identify
new research questions.

Despite the obvious benefits of joining forces of Marine
and Data Sciences, MDS comes with its own challenges as
regards perspectives for a career after the doctorate. MDSc might
struggle with appropriate scientific recognition, since publication
strategies in Marine and Data Sciences differ greatly. Marine
Scientists usually publish in journals whereas Data Scientists
mostly publish in conference proceedings. The latter do not have
the same assessment-metrics as journal publications, such as the
impact factor. MDSc need to position themselves between these
cultures. To attain publication recognition in Marine and Data
Science, there is a risk that they will need to publish double the
amount expected of pure Marine or Data Scientists.

The definition and education of MDSc is only the first
step. Structural change is the necessary second step. Structural
support could come through involving MDSc in new projects,
assigning permanent positions to MDSs, and offering a pathway
to an academic career including professorships in MDS. Besides
their scientific expertise, MDSc draw from a range of interface
and transferable skills. These qualify MDSc also for a career
path outside of academia, in innovation sectors such as
business, product development, public and private research and
entrepreneurship. MDSc can thus easily transition between or
merge the academic with the private and public sectors.

Although this is a Marine Sciences example, we believe that
similar potentials and challenges exist for any variant of Earth
System Data Science.

6. CONCLUSION

MDS is an example of a novel and highly demanded
interdisciplinary research field between the Earth System
Sciences and Data Science that needs to be properly defined
and established. MDS comes with a high demand on knowledge
and skills from both Marine and Data Sciences to be able to
effectively work with marine data. It still has to develop a
strategy for publishing with best impact, and recognition to

facilitate entering a academic career. Also, it has to find a balance
between incorporating experiences from the parental sciences
while exploring new ways of combining and advancing Marine
and Data Sciences simultaneously. We envision MDSc will be
able to providemajor benefits in advancingMarine as well as Data
Sciences, understanding marine data and bridging two distinct
scientific fields.

The approach and pitfalls of establishing Marine Data Science
mapped out in this paper could be used as a blueprint for
establishing other fields of research that fuse Earth System
Sciences and Data Science.
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Abstract. Marine particulate organic carbon stable isotope ratios (δ13CPOC) provide insights into understand-
ing carbon cycling through the atmosphere, ocean and biosphere. They have for example been used to trace the
input of anthropogenic carbon in the marine ecosystem due to the distinct isotopically light signature of an-
thropogenic emissions. However, δ13CPOC is also significantly altered during photosynthesis by phytoplankton,
which complicates its interpretation. For such purposes, robust spatio-temporal coverage of δ13CPOC observa-
tions is essential. We collected all such available data sets and merged and homogenized them to provide the
largest available marine δ13CPOC data set (https://doi.org/10.1594/PANGAEA.929931; Verwega et al., 2021).
The data set consists of 4732 data points covering all major ocean basins beginning in the 1960s. We describe
the compiled raw data, compare different observational methods, and provide key insights in the temporal and
spatial distribution that is consistent with previously observed large-scale patterns. The main different sample
collection methods (bottle, intake, net, trap) are generally consistent with each other when comparing within
regions. An analysis of 1990s median δ13CPOC values in a meridional section across the best-covered Atlantic
Ocean shows relatively high values (≥−22 ‰) in the low latitudes (< 30◦) trending towards lower values in the
Arctic Ocean (∼−24 ‰) and Southern Ocean (≤−28 ‰). The temporal trend since the 1960s shows a decrease
in the median δ13CPOC by more than 3 ‰ in all basins except for the Southern Ocean, which shows a weaker
trend but contains relatively poor multi-decadal coverage.

1 Introduction

Carbon is an essential element for life, and it regulates cli-
mate via its atmospheric form CO2, a long-living greenhouse
gas. Understanding carbon cycling is fundamental to reliably
projecting changes in the Earth’s future climate. Carbon is
subject to transformation and cycling throughout the ocean,
land and atmosphere. It is a major part of organic matter of all
living organisms which can both consume (e.g., photosynthe-
sis) and produce (e.g., respiration) inorganic carbon. Besides
the natural cycling processes, the total amount and distribu-
tion of carbon is strongly perturbed by human activity caused
by industrialization, most notably due to fossil fuel emis-

sions, deforestation, farming, cement production and other
industrial processes. Anthropogenic CO2 emissions are one
of the main driving forces of modern climate change which
is likely to continue in the future (IPCC, 2013). Only about
60 % of anthropogenic CO2 emissions have been compen-
sated for by natural sinks, including the dissolution of inor-
ganic carbon in the ocean. This means the atmosphere has
already been enriched with anthropogenic carbon by about
880 Gt CO2 since 1750 (IPCC, 2014), which is driving the
increase in global temperature levels. The ocean serves as
an important buffer as it absorbs a significant amount of an-
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thropogenic carbon, with the ocean interior being the largest
readily exchangeable reservoir of carbon in the Earth system.

Marine phytoplankton convert dissolved inorganic carbon
(e.g., aqueous CO2) into organic carbon via photosynthe-
sis in the euphotic surface layer. This organic carbon forms
the base of the food web for higher tropic levels in marine
ecosystems. Some particulate organic carbon (POC) sinks
down to ocean depths, where it either is respired back to dis-
solved inorganic carbon by heterotrophic organisms or be-
comes buried in ocean sediments (Suess, 1980). This process
is known as the soft-tissue biological carbon pump, an im-
portant mechanism for sequestering carbon to the deep ocean
from the atmosphere (Volk and Hoffert, 1985; Banse, 1990;
McConnaughey and McRoy, 1979). Since the deep ocean has
a residence time of about a millennium, it is a key carbon
reservoir influencing long-term climate change.

Carbon isotopes provide additional insights into the cy-
cling of carbon in the Earth system (Zeebe and Wolf-
Gladrow, 2001). The element carbon exists in two naturally
occurring stable isotopes, 12C and 13C, with abundances of
around 98.9 % and 1.1 %, respectively. Knowledge of their
pathways through carbon reservoirs can support deeper un-
derstanding of carbon transfer and can help identify carbon
sources with different isotopic ratios (Rounick and Winter-
bourn, 1986). Relative abundances of carbon isotopes are
usually given in δ notation, which is based on the carbon iso-
tope ratio

13C
12C , standardized and given in parts per thousands

as

δ13C=

 13C
12C
Rstd
− 1

 . (1)

The constant Rstd = 0.0112372 is a standard ratio, originally
referring to the calcareous fossil Pee Dee Belemnite. The val-
ues 12C and 13C are the absolute concentrations of the indi-
vidual isotopes (Hayes, 2004).

Distributed within the carbon cycle, the fractionation of
δ13C is influenced by biological and thermodynamic pro-
cesses (Gruber et al., 1999). Air–sea gas exchange plays a
dominant role at the ocean surface. Phytoplankton photosyn-
thesis and POC remineralization increase their influence in
the ocean interior (Gruber et al., 1999; Morée et al., 2018).
The processes are dependent on circulation and temperature,
and thus their individual influence varies with geographic lo-
cation (Gruber et al., 1999; Schmittner et al., 2013).

Phytoplankton preferentially incorporate (i.e., fractionate)
the lighter 12C carbon isotope into its organic matter. This
fractionation causes phytoplankton organic δ13C to be 10 ‰
to 25 ‰ lower than that of inorganic δ13C, which depends on
a variety of environmental, ecological and physiological con-
ditions (e.g., Popp et al., 1989, 1998; Rau et al., 1989, 1996).
The main factors that control phytoplankton fractionation are
concentrations of CO2(aq), species-specific effects enforced
by the phytoplankton composition and the cellular growth
rate, although uncertainties remain regarding the quantifica-

tion of the specific processes and mechanisms that cause vari-
ations in phytoplankton fractionation (e.g., Fry, 1996; Laws
et al., 1995; Popp et al., 1998; Bidigare et al., 1997; Cassar
et al., 2006).
δ13CPOC provides insights into physical and biological

carbon cycle processes in the ocean (e.g., Fry and Sherr,
1989). It helps to diagnose carbon pathways from the at-
mosphere to the deep ocean including the biological carbon
pump (e.g., Jasper and Hayes, 1990; Popp et al., 1989; Free-
man and Hayes, 1992) and assists reconstruction of oceanic
carbon cycling and even plankton cell size and community
structure (e.g., Tuerena et al., 2019; Lorrain et al., 2020). For
example, anthropogenic carbon emissions have a distinctly
low δ13C content, making δ13C a useful property for trac-
ing anthropogenic carbon throughout the Earth system (Eide
et al., 2017; Levin et al., 1989; Ndeye et al., 2017). Atmo-
spheric δ13CCO2 has decreased from −6.5 ‰ in preindustrial
times to−8.4 ‰ presently (Rubino et al., 2013). The measur-
able decrease due to anthropogenic fossil carbon emissions is
known as the Suess effect (Keeling, 1979), which enters the
ocean via air–sea gas exchange. However, changes in marine
δ13CPOC are also significantly influenced by changes in phy-
toplankton fractionation due to other anthropogenic controls.
For example increasing CO2(aq) concentrations increase sur-
face δ13C fractionation (Young et al., 2013) and changes in
phytoplankton composition and temperature influence phyto-
plankton growth rates and δ13C fractionation over the air–sea
interface (Zhang et al., 1995). But determination of the driv-
ing processes(es) of δ13CPOC spatial and temporal trends re-
mains a challenge. We also stress that all of these processes
are sensitive to temperature changes which adds additional
complexity to understanding how fractionation may change
in space and time. A better understanding of the contribu-
tions from all of these effects requires a robust global data
set of δ13CPOC.

Theoretical projection and understanding of changes as-
sociated with δ13CPOC can be executed by models of differ-
ent scales, which include δ13CPOC circulation. Earth system
models serve to simulate and test hypotheses in different sce-
narios as unbiased assessments (e.g., IPCC, 2014) and may
support future decision-making. Besides resolving the mass
flux of carbon, many models also simulate stable carbon iso-
topes (e.g., Schmittner and Somes, 2016; Buchanan et al.,
2019; Hofmann et al., 2000; Jahn et al., 2015; Tagliabue and
Bopp, 2008; Morée et al., 2018; Magozzi et al., 2017). For
reliable calibrations and validations of such processed-based
mechanistic models, a spatially and temporally comprehen-
sive data set is essential. This additional constraint provided
by marine δ13CPOC assists the reconstruction of oceanic car-
bon cycling including how much anthropogenic carbon is
entering marine ecosystems and being exported to the deep
ocean. But until today, there has been a lack of suitable data
sets as constraints. This results in large and mostly unknown
uncertainties in model results.
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Data sets of marine δ13CPOC improve our understanding
of marine carbon cycling by providing another independent
constraint. Recent model approaches support long-term past
climate projections (Tjiputra et al., 2020) and assess estima-
tions of the Suess effect (Liu et al., 2021). To date, numerous
individual δ13CPOC data sets exist, while the number of ac-
cessible, merged data sets is lacking. Existing merged data
sets contain data from several sources but have often been
focused on a specific region or process (e.g., Goericke, 1994;
Tuerena et al., 2019). Individual data sets are usually col-
lected during a specific cruise or time series station and are
often neglected since they contain relatively few data. Such
data sets can easily be accessed on data platforms such as
PANGAEA and, when combined, they can represent an im-
portant and significant source of data.

In this study, we provide a novel merged seawater δ13CPOC
data product (Verwega et al., 2021) that – to our knowledge
– contains the most expansive spatio-temporal coverage to
date. It contains all available δ13CPOC seawater data from
PANGAEA and the merged data sets by Goericke (1994),
Tuerena et al. (2019) and Young et al. (2013), as well as un-
published data from different cruises by Anne Lorrain. No
data were excluded, even if sampled at extreme locations
(e.g., trenches, hydrothermal vents). The metadata comprise
information about the sampling location, time, depth and
method as well as the original source, which makes origi-
nal raw data values, methods, and further technical descrip-
tion easily accessible. Provided data files are Network Com-
mon Data Form (NetCDF) files interpolated onto two differ-
ent global grids and a csv file that includes the data and their
anomalies with respect to their overall mean together with all
corresponding available meta-information.

The paper is structured as follows: we provide a brief
overview of δ13CPOC data acquisition in Sect. 2 and their
compilation and metadata in Sect. 3. The characteristics of
the collected δ13CPOC data are shown in Sect. 4. We present
their spatial distribution in Sect. 5 and temporal distribution
in Sect. 6. Lastly, we provide a short summary and conclud-
ing remarks.

2 Data acquisition

The data set includes 4732 entries for δ13CPOC from 185 dif-
ferent sources and ranges from the 1960s to the 2010s. In ad-
dition to many data sets from the data platform PANGAEA,
we included unpublished data provided by Anne Lorrain and
the data products from Tuerena et al. (2019), Goericke (1994)
and Young et al. (2013). The adjustments that we conducted
are described in the following.

2.1 Data sources

As a basis of our data set, we chose the 1990s data col-
lection by Goericke (1994). This was established to inves-
tigate variations in δ13CPOC with temperature and latitude.

The δ13CPOC sample data and measurements were conducted
by investigating zooplankton, net plankton or particulate
organic matter. We cross-checked and extended this data
set by looking up all available primary sources. Goericke
(1994) originally included 476 δ13CPOC data points from 17
contributions. The largest contributions came from Fischer
(1989) with 107 entries, Fontugne et al. (1991) with 97, and
Fontugne and Duplessy (1981, 1978) with 78. Large exten-
sions were possible, e.g., in the Fischer (1989) and Eadie and
Jeffrey (1973) data sets, incorporating more than 70 addi-
tional data points from these primary sources. With this ex-
tension, we could increase the data set to 626 data points for
δ13CPOC.

We collected most data from the PANGAEA data plat-
form, an open-access online library archiving and provid-
ing geo-referenced Earth system data, hosted and monitored
by the Alfred-Wegener-Institut (2020) – Helmholtz Centre
for Polar and Marine Research (AWI) – and the Center
for Marine Environmental Sciences, University of Bremen
(MARUM). With the data made available therein, we could
further extend the data set by an additional ∼ 3500 measure-
ments of δ13CPOC. Most δ13CPOC data from PANGAEA are
associated with samples collected during the Joint Global
Ocean Flux Study (JGOFS, 2020), with more than 2000
δ13CPOC data points. Additionally, 529 samples are contri-
butions by the Antarctic Environment and Southern Ocean
Process Study (AESOPS, 2020), 342 are by the Archive of
Ocean Data (EurOBIS Data Management Team, 2020) and
279 are by the SFB313 research project (Thiede et al., 1988).

Other collected data were provided by Robyn Tuerena
and Anne Lorrain. Robyn Tuerena provided a data contri-
bution coming from the data set mentioned in Tuerena et al.
(2019), which we will refer to as the Tuerena data set. This
contains 595 data points including 501 from Young et al.
(2013) and covers samples within the euphotic zone and
an observation time frame of 1964–2012. Moreover, we in-
cluded 69 unpublished data points provided by Anne Lor-
rain, covering the years 2012–2015 and sampled during the
cruises CASSIOPEE, PANDORA, OUTPACE, NECTALIS-
3, NECTALIS-4 and KH-13. We refer to this data set as the
Lorrain data set.

A recent collection of 303 measurements of δ13CPOC has
been provided by Close and Henderson (2020), largely based
on data gathered from individual publications referenced
therein. Since our analyses originally relied on data sources
that differed from those of Close and Henderson (2020), we
find our collection to be as yet incomplete. Especially mea-
surements from national databases might provide a huge fu-
ture benefit.

2.2 Adjustments made

All data were taken with as many details as possible from
the sources and have been reshaped to fit the structure of
the data set. No rounding or cutoff of detailed data was
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made. Spatial coordinates originally given as depth inter-
vals were replaced by their respective midpoints. Time in-
tervals were not changed in this way. If they contained just
1 month or year, this was included; otherwise the time in-
formation was omitted. Sample depth given as “surface” was
denoted as 1 m. Longitude values were converted to the for-
mat [−180◦,180◦] by the transformation

Longnew =

{
Longold− 360◦ for all Longold ∈ (180◦,360◦]
Longold otherwise.

(2)

Wherever possible the data were taken from their original
publication. Changes made to the data by Goericke (1994)
are described in Table 1 and changes to all other data in Ta-
ble 2. The complete structure is presented in Table 3.

Most data listed in the Goericke (1994) data set could be
gathered from the original publications directly. Some data
are not accessible from an original source, including those
data labeled as “Harrison”, “Hobson” and “Schell”, which
were included as unpublished data by personal communi-
cation in Goericke (1994). Also, we could not identify the
original data sources of “Voss (1991)” and “Sackett et al.
(1966)”. Data from these sources are used as provided by
Goericke (1994). All other data could be directly compared
with and linked to their origin. According to Table 3 we
complemented the data with the month, year, depth, sample
method, cruise, trap duration and references wherever avail-
able. Special notes given in Goericke (1994) were conserved
in our “project/cruise”-named meta-information. Rounded
values were adjusted to their source values as well as data
with interchanged longitudinal information, which is shown
in detail in Table 1.

In two cases we identified multiple δ13CPOC data sets
from a single event (time, place, investigator) where the data
had been subject to different stages of processing or differ-
ent types of measurement: in Westerhausen and Sarnthein
(2003), we chose the “mass spectrometer” data set because
this was the originally measured one. In Trull and Armand
(2013a, b), we used the “blank corrections” data set of δ13C,
since this set of δ13Corg values is recommended to be consid-
ered (Trull and Armand, 2001).

The primary source of the Tuerena and Lorrain data was
mentioned in our data set in the project/cruise column. In
the data set from Tuerena et al. (2019), this was originally
labeled as “source” and in the Lorrain data set as “cam-
paign”. In both data sets the longitude was converted to
[−180◦,180◦] from a [0◦,360◦] format by Eq. (2). In the
data of MacKenzie et al. (2019) we deleted a typo where the
depth value was set equal to the negative longitude value. We
disregarded the trap duration given in Voss and von Bodun-
gen (2003), which was given as the negative value −1.

3 Content and structure of the data set

The data collection is made available in files of raw and in-
terpolated values (Verwega et al., 2021). The raw data are

in a csv file that includes the δ13CPOC measurements, their
anomalies with respect to their mean and all available meta-
information. The interpolated data are provided as NetCDF
files on two different global grids: a 1.8◦× 3.6◦ resolution
and 19 depth layers from a model that simulates δ13CPOC
(e.g., Schmittner and Somes, 2016), in the following referred
to as the UVic grid, and the 1◦×1◦ resolution and 102-depth-
layer grid of the World Ocean Atlas (Garcia et al., 2018), in
the following referred to as the WOA grid. Interpolation re-
quired the availability of the full spatial information (latitude,
longitude and depth) of included δ13CPOC data to locate them
on the grid.

On the WOA grid we provide 13 NetCDF files contain-
ing only data with full spatio-temporal metadata: one aver-
ages all observations from each year together, each year ac-
counting for a time increment on the time axis, and the other
12 files average only observations from an individual month
with again each year accounting for a time increment on the
time axis. These files provide a variety of analysis opportu-
nities but also limited the content of δ13CPOC data.

On the UVic grid we provide seven individual NetCDF
files: six of them each represent one of the decades from
the 1960s to the 2010s containing all data which were able
to be assigned to their respective decade. One file contains
all available δ13CPOC data completely independent of their
measurement time. This individual provision of data on a
decadal and overall timescale increases the fraction of usable
δ13CPOC data for the following analyses.

3.1 Raw data file

The csv-format data file includes δ13CPOC measurements,
anomalies and meta-information in its columns. A full de-
scription of the content, value range and coverage of the in-
dividual columns is given in Table 3. Anomalies of δ13CPOC
were calculated, based on the arithmetic mean of the full data
collection. The mean was calculated, rounded to two digits
after the floating point and used as

meanδ13CPOC
=−23.96‰. (3)

Anomalies contain all the relevant information with respect
to the variability in the δ13CPOC data in space and time. This
way it becomes easier to analyze bias information separately,
e.g., during the first steps of model calibration.

The reference includes the citations in as much detail as
possible. Wherever available, this is taken from the original
source. Otherwise, we tried to include the author, title, publi-
cation year and platform, and DOI. For unpublished data like
Harrison’s (unpublished data, quoted from Goericke, 1994)
from the Goericke (1994) data set or those included by the
co-authors, we specified from where we took the data.

Coordinates are given in decimal degrees over
[−90◦,90◦]× [−180◦,180◦]. The sample depth is given in
meters measured positively from the ocean surface down-
wards. Data published as measured at 0 m were included
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Table 1. Changes that were introduced into data taken from Goericke (1994): the first column names the publication or author of the primary
data set. The second column lists in which part of the data we applied changes. The third and fourth columns show what these changes were,
and the last column gives the reason for this.

Data set Changed From To Reason

Degens et al. (1968) long Goericke (1994) source value E and W interchanged
Eadie and Jeffrey (1973) long Goericke (1994) source value E and W interchanged
Fischer (1989) long Goericke (1994) source value E and W interchanged
Fontugne and Duplessy (1978) long Goericke (1994) source value E and W interchanged
Fontugne and Duplessy (1981), MD13 Osiris III long Goericke (1994) source value E and W interchanged
Francois et al. (1993) long Goericke (1994) source value E and W interchanged
Harrison∗ long Goericke (1994) source value E and W interchanged
Sacket et al. (1965) long Goericke (1994) source value E and W interchanged
Saupe et al. (1989) long Goericke (1994) source value E and W interchanged
Wada et al. (1987) long Goericke (1994) source value E and W interchanged
Eadie and Jeffrey (1973) lat, long Goericke (1994) source value rounded in Goericke (1994)
Fischer (1989) all but INDOMED leg 12 lat, long Goericke (1994) source value rounded in Goericke (1994)
Fontugne and Duplessy (1978) lat, long Goericke (1994) source value rounded in Goericke (1994)
Fontugne and Duplessy (1981) lat, long Goericke (1994) source value rounded in Goericke (1994)
Francois et al. (1993) lat, long Goericke (1994) source value rounded in Goericke (1994)
Sacket et al. (1965) lat, long Goericke (1994) source value rounded in Goericke (1994)
Eadie and Jeffrey (1973) δ13CPOC not included added not included in Goericke (1994)
Fischer (1989) δ13CPOC not included added not included in Goericke (1994)
Sacket et al. (1965) δ13CPOC not included added not included in Goericke (1994)
Wada et al. (1987) δ13CPOC not included added not included in Goericke (1994)
Fischer (1989) δ13CPOC Goericke (1994) source value rounded in Goericke (1994)
Fontugne and Duplessy (1978) δ13CPOC Goericke (1994) source value rounded in Goericke (1994)
Fontugne and Duplessy (1981) δ13CPOC Goericke (1994) source value rounded in Goericke (1994)
Fischer (1989) temperature Goericke (1994) source value rounded in Goericke (1994)
Fontugne and Duplessy (1981) temperature Goericke (1994) source value rounded in Goericke (1994)
Francois et al. (1993) temperature Goericke (1994) source value rounded in Goericke (1994)
Sacket et al. (1965) temperature Goericke (1994) source value rounded in Goericke (1994)
Fischer (1989) δ13CPOC Goericke (1994) deleted not found in source
Fontugne and Duplessy (1978) temperature Goericke (1994) deleted not found in source

∗ The original source was not available, but we highly suspected an error in the coordinates that interchanged east and west.

Table 2. Changes made in other data: this table’s structure is equivalent that of to Table 1. It refers to all changes made in general and any
data other than the Goericke (1994) data.

Data set Changed From To Reason

Any depth “surface” 1 comparability
Any depth depth range average1 comparability
Trull and Armand (2013a) δ13CPOC three available “blank correction” mentioned in Trull and Armand (2001)
Trull and Armand (2013b) δ13CPOC three available “blank correction” mentioned in Trull and Armand (2001)
Any using sediment traps month, year range explicit value2 comparability
Chang et al. (2013) month, year range explicit number just one date for trap sampling given
Lorrain project/cruise “campaign” provided by Anne Lorrain
Tuerena project/cruise “source” provided by Robyn Tuerena
Tuerena long [0◦,360◦] [−180◦,180◦]3 comparability
Lorrain long [0◦,360◦] [−180◦,180◦]3 comparability
MacKenzie et al. (2019) depth original deleted suspected typo
Voss and von Bodungen (2003) trap duration original deleted suspected typo
De Jonge et al. (2015a) method multiple investigations in situ pump found in De Jonge et al. (2015b)

(MULT)

1 By arithmetic mean. 2 Only for sample durations entirely within an explicit month and year, otherwise information on time frames has been discarded. 3 We applied Eq. (2).
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Table 3. Available data and meta-information: the columns of the raw data set correspond to the provided data and meta-information. Their
names are given in the first column of this table. The second holds a short description of their content and the third their ranges of values. In
the final column we give how well this data kind is covered relative to the size of the full data set.

Column Content Range of values Coverage1

Reference citation2 description full3

No. running index {1, . . .,4732} full
Lat latitude in decimal degrees4

[−90◦,90◦] 4604/4732
Long longitude in decimal degrees4

[−180◦,180◦] 4604/4732
d13C δ13C4

POC [−55.15,−4.5] full
d13Canomaly δ13CPOC−mean5

δ13CPOC
[−31.19,19.46] full

Temp temperature in degrees Celsius4
[−1.8,31.12] 1622/4732

Month month as number {1, . . .,12} 4114/4732
Year year CE {1964, . . .,2015} 4483/4732
Depth depth in meters [0,4850] 3917/4732
Method measurement method of δ13CPOC description 3164/4732
Origin associated project or cruise description 3921/4732
Note special circumstances description 140/4732
Trap duration duration of trap activity in days [1,133] 533/5876

1 Ratio of available entries relative to the full number of data points. 2 Wherever possible, this includes: author(s),
year, title, journal name, full, number, issue, pages and DOI. 3 Primary source was not available in every case as a
reference. A note, where the data were taken is included in this case. 4 With as many decimal places as available.
5 Rounded to two decimal places. 6 Here, abundance is given relative to the full number of sediment trap samples.

as this, while no surface microlayer measurements were
included. The month and year were used to describe the
sample date; specific days are neglected.

Anomalies of δ13CPOC are given in the δ ratio described
in Eq. (1). A sample method was added, wherever avail-
able. Any special sampling circumstances were given in the
“Note” column. Activity duration of sediment traps was de-
noted in the last column.

The “Origin” columns listed the associated project or
cruise or author note. Some samples were given with mul-
tiple project connections; all of them were given in this col-
umn.

3.2 Interpolated data sets

The interpolated δ13CPOC data are available as NetCDF files
on two global grids with different resolutions. NetCDF files
are machine-independent and support the creation, access-
ing and sharing of array-oriented scientific data. On the UVic
grid, we provide seven different files, each of them indepen-
dent of time and averaged over the available spatial informa-
tion. Six of them contain an individual decade each (from the
1960s through the 2010s). The seventh file comprises a com-
bined set of all interpolated δ13CPOC data. On the WOA grid,
we provide 13 files including all δ13CPOC measurements with
complete spatial–temporal information, averaged across time
and space.

One major aim of this work is to support reliable valida-
tion and calibration of δ13CPOC-simulating models. Hence,
we chose the grid of the UVic model version 2.9, as used,

e.g., in Schmittner and Somes (2016). Horizontally, it con-
sists of 100× 100 cells with a resolution of 1.8◦× 3.6◦, ar-
ranged from 0 to 360◦ in longitude (LONG) and −90 to 90◦

in latitude (LAT). Vertically, it is split up into 19 vertical lay-
ers (DEPTH), decreasing in resolution with depth. The two
uppermost layers reach down to depths of 50 and 130 m,
respectively, and they are supposed to comprise the upper
ocean’s euphotic zone.

The WOA grid is based on the 1◦× 1◦ grid of the World
Ocean Atlas (Garcia et al., 2018). It has a horizontal res-
olution of 360 arranged from −180 to 180◦ in the longi-
tude (LONG) and 180 arranged from −90 to 90◦ in the lat-
itude (LAT) direction. Vertically, it is split up into 102 lay-
ers (DEPTH). The time axis (TIME) increases in increments
for each year from 1964 to 2015 by 1 and has a size of
52. This interpolation includes only δ13CPOC data with full
spatio-temporal metadata coverage; i.e., additionally to lati-
tude, longitude and depth, we also required and included year
and month information.

Ferret scripts were used for the interpolations. These aver-
aged the irregularly measured data points within the ocean
grid to one single data point representing each covered
grid cell. The interpolation function SCAT2GRIDGAUSS by
NOAA’s Pacific Marine Environmental Laboratory (2020)
performed the spatial averaging under PyFerret v7.5. Cal-
culations in this function are based on a work by Kessler
and McCreary (1992) and can be summarized as follows:
let (x1,y1), . . ., (xn,yn)⊆ R2 be an equidistant grid and
(x̃1, ỹ1), . . ., (x̃m, ỹm)⊆ R2 be irregular measurement loca-
tions of a real tracer Dj ,j ∈ {1, . . .,m}. Then the value Di ∈
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R at grid point (xi,yi), i ∈ {1, . . .,n} becomes interpolated as

Di :=

∑m
j=1DjWi,j∑m
j=1Wi,j

, (4)

where

Wi,j :=


0; τi,j < e

−CX

0; τi,j < e
−CY

τi,j otherwise,

(5)

where τi,j := exp
(
−

(
(xj−xi)2

X2 +
(yj−yi)2

Y 2

))
is the Gaus-

sian weight function, X,Y ∈ R comprises scaling arguments
andC ∈ R the cutoff parameter. We setX = 1.8, Y = 0.9 and
C = 1 in our script.

Since the interpolation into the WOA grid excluded all
data without full spatio-temporal metadata coverage, we fo-
cus the following descriptions of interpolated data on the
UVic grid interpolations. These also include data without
month information in the six decadal files and even com-
pletely without temporal information in the seventh time-
independent file.

4 Main data set characteristics

The final data set includes 4732 individual δ13CPOC mea-
surements of seawater samples. We show the distribution
of δ13CPOC values by Gaussian kernel density estimation
(KDE) in Fig. 1. KDEs are non-parametric density estima-
tions (Silverman, 1986) for the approximation of probabil-
ity density functions, which are theoretically similar to his-
tograms but with continuous curves not dependent on rigid
intervals. We applied a Python implementation from the
SciPy stats package (Virtanen et al., 2020) to create the re-
sults presented here. Likewise, we derived conditional prob-
ability densities of δ13CPOC values, given the different mea-
surement method applied (Fig. 3).

4.1 Range and outlier values

The data distribution is presented by its KDE in Fig. 1.
The interval of δ13CPOC values ranges over [−55.15,−4.5]
with a mostly smooth distribution. Most of our data ex-
hibit values around δ13CPOC ≈−24 ‰, which becomes
clearly identifiable as a single maximum in the KDE. Two
smaller modes are visible at around δ13CPOC ≈−27.5 ‰
and δ13CPOC ≈−22 ‰ (see also Table A1 in the Ap-
pendix). A steep decline to zero is visible outside the
two outer modes. The steep decline in the KDE stops at
around δ13CPOC =−37 ‰ and δ13CPOC ≈−14 ‰. Between
δ13CPOC ≈−37 ‰ and δ13CPOC ≈−55.15 ‰ as well as be-
tween δ13CPOC ≈−14 ‰ and δ13CPOC ≈−4.5 ‰ the KDE
closely aligns to the x axis, which indicates very few data
points lie in this range.

Figure 1. The density function of all individual δ13CPOC measure-
ments approximated by Gaussian kernel density estimation: values
of the estimated density are drawn on the y axis; the δ13CPOC val-
ues run on the x axis. The higher the value of the estimated density
is, the more δ13CPOC points have been measured around this value.

Below δ13CPOC =−37 ‰ we find 17 data points rang-
ing down to δ13CPOC =−55.15 ‰. Down to δ13CPOC =

−48‰ these were all taken from Lein and Ivanov (2009)
and Lein et al. (2006), measured in September or Octo-
ber 2003, around the location 10◦ N, 104◦W and below
2500 m depth in the vicinity a hydrothermal field close to
the Pacific coast of middle America. The lowest outlier at
δ13CPOC =−55.15 ‰ was taken from Altabet and Francois
(2003a) from November 1996 and at 62.52◦ S, 169.99◦ E at
the ocean surface south of New Zealand.

Above δ13CPOC =−10 ‰ we find 15 data points ranging
up to δ13CPOC =−4.5‰. Three of them were taken from
Lein et al. (2007) and measured at 800 m depth at a hy-
drothermal vent located 30.125◦ N, 42.117◦W in the mid-
dle north Atlantic. Ten were taken from Calvert and Soon
(2013b, c, a). All of these were measured between 636 and
901 m depth around 49◦ N, 130◦W close to the American
coast of the Pacific, and all of them were measured in Febru-
ary or May, except one in August. The final two were part of
the Lorrain data set. Both were measured at the ocean surface
in the South Pacific, in July at 5.3◦ S, 164.9◦ E and December
at 20.9◦ S, 159.6◦ E.

Since more than 98 % of the data (4668 of the 4732 data
points) have values that lie between δ13CPOC =−35 ‰ and
δ13CPOC =−15 ‰, we will focus on this range in our fol-
lowing analyses.

We tested the robustness of our KDE approach in a sub-
sampling experiment. We considered 500 random subsets of
20 % of the original data over the range with the highest
data density [−35,−15] and visualize their KDEs in Fig. 2.
They show peaks at δ13CPOC ≈−23 ‰, fitting the maxi-
mum and the second smaller mode to the right of it, and
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Figure 2. A random sample of 20 % of the δ13CPOC data was taken
from the full data set for 500 times to generate an ensemble of sub-
sets. Their densities were approximated with a Gaussian kernel den-
sity estimator. Panel (a) shows all 500 estimated densities by indi-
vidual lines. Panel (b) shows the mean and the variance of the full
ensemble of densities by a graph and the shaded area around it, re-
spectively.

at δ13CPOC ≈−27.5 ‰. Outside [−27,−22] the KDEs are
closely aligned. The mean of and standard variation in the
KDE ensemble also show the highest variability around the
two modes at δ13CPOC =−23 ‰ and δ13CPOC =−27.5 ‰.

4.2 Sampling methods

Various sampling methods were involved in obtaining the
δ13CPOC data. Around 67 % of the data had associated
sampling-method information, which included 18 different
sampling methods. In principle, all 18 methods could be
grouped into five main observational types: bottles, intake,
nets, traps and diverse. “Bottle” data include samples taken
from Niskin bottles and samples collected via Sea-Bird sub-
mersible pumps. By “intake” we refer to all versions of

pumps and underway cruise track measurements, as well as
multiple-unit large-volume filtration systems (MULVFSs).
“Net” data represent all occurring versions of plankton nets,
and “traps” refers to all represented sediment traps and moor-
ings. Finally, the deep-sea manned submersible (MIR2) is not
classified into any of these groups and was assigned to a clus-
ter that we refer to as “diverse”.

All sample devices provided data over all sample depths.
Deeper samples were mainly taken from traps and pump sys-
tems and the upper samples from bottle and net data. Most
data sampled deeper than 2600 m were collected by sedi-
ment traps. At 3800 m there were several trap contributions
by Calvert (e.g., Calvert, 2002), mostly from the late 1980s.
Data sampled by a deep-sea manned submersible were given
at locations down to 2520 m (Lein and Ivanov, 2009).

For resolving differences between sampling methods we
chose data from the Atlantic Ocean which comprise all four
major methods (with data embracing a region between 45◦ S
and 80◦ N and 70◦W and 20◦ E). In addition, data were dis-
tinguished by tropical, temperate and polar subregions. By
crudely sorting the data according to their sampling loca-
tions, we gain some insight into methodological variability
within a subregion and may relate this to variations between
the three subregions (Fig. 3). Overall, we do not find any se-
vere bias with respect to any particular method. Bottle data
seem to cover most of the lower δ13CPOC values that typ-
ically range between −28 ‰ and −21 ‰, which could be
due to samples collected at greater depths. Intake and net
measurements are rather restricted to the upper ocean lay-
ers, and these methods often yield δ13CPOC values larger
than −25 ‰, with some polar net measurements being a no-
table exception (Fig. 3d). For the tropical Atlantic (30◦ S–
30◦ N) the net and intake measurements vary around−21 ‰,
with 95 % confidence limits between −24 ‰ and −18 ‰
(see Table A2 in the Appendix). According to our compar-
ison, we could not identify any method that yields much
greater variance of δ13CPOC values than others. The spatio-
temporal variations of the δ13CPOC compare well among dif-
ferent methods, but we advise caution when comparing bottle
measurements with data of other methods because of poten-
tial differences in the depth range covered.

In the full Atlantic Ocean, densities of intake and net data
are most representative of the maximum full δ13CPOC sam-
ple. From the intake data shown here, ∼ 80 % were sampled
within 30◦ S and 30◦ N. When restricting data to this area,
net data better resemble the full data. Of all net sample data,
∼ 80 % were collected between 30 and 60◦ N, where they fit
the overall δ13CPOC density best, followed by trap data. Trap
and bottle data deliver the lowest δ13CPOC measurements in
the Atlantic Ocean. Of both data kinds,∼ 74 % to 85 % were
sampled north of 60◦ N. A restriction to this area shows trap
and bottle samples being closely aligned to the full data in
this region.

The variance of the intake and trap data is ∼ 3 ‰ and
lower than the variance of all δ13CPOC together, which is
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Figure 3. Separation of δ13CPOC in the Atlantic Ocean data by four main sample methods: bottle, intake net and trap data. Panel (a) shows
the full Atlantic Ocean, panel (b) the equatorial core of the Atlantic Ocean, panel (c) the Atlantic between 30◦ S and 30◦ N, and panel (d)
its most northern area. In each plot, the density of the δ13CPOC sample groups with enough data was approximated by Gaussian KDEs
and drawn with an individual color. An additional graph shows the comparison to the full-δ13CPOC-data density in the respective area. The
numbers of used data points are indicated in each KDE label.

∼ 5 ‰, the highest value observed here. Both bottle and net
data show a variance of less than 2 ‰. Furthermore, trap, net
and full δ13CPOC show a pronounced second mode in their
densities, while bottle and net data show a clear individual
maximum. Median values of net and intake data are∼ 1 ‰ to
∼ 2 ‰ higher, respectively, than the one of the full data. This
has a median of δ13CPOC = 22.46 ‰. Both bottle and trap
data show a ∼ 2 ‰ lower median. Analytical errors and un-
certainties are typically 0.2 ‰ or lower (Young et al., 2013)
and thus are not likely to significantly contribute to the much
larger variance in the observations

5 Spatial distribution

We show the spatial distribution of δ13CPOC measurements
across the global ocean surface and depths. Most δ13CPOC

data have been measured in the uppermost few ocean me-
ters, and the best surface coverage is available for the At-
lantic Ocean. Changes in δ13CPOC on the ocean surface were
evaluated based on the UVic grid.

5.1 Vertical distribution of the data set

Depth values are available for more than 80 % of the sam-
ple data with most of them located in the upper ocean. The
distribution of depth measurements is shown in Fig. 4. An ap-
proximation of the depth measurements by Gaussian KDE is
visualized in Fig. 5 along with the δ13CPOC value distribution
over them in the main ocean basins. The KDE resolves the
best data coverage for the uppermost ∼ 500 m of the oceans
and a second far smaller maximum at ∼ 3800 m. The depth
ranges presented in Fig. 4 correspond to the depth intervals of
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Figure 4. Vertical data coverage in depth layers based on the UVic
grid: the uppermost 50 m is divided into subranges; below they are
according to the UVic grid. The number of δ13CPOC data points
available is plotted against its respective depth range.

the UVic grid; only the two uppermost layers are presented in
more detail, and the last four are combined. Within the first
130 m we observe the highest data density and find nearly
2500 measurements of δ13CPOC, where nearly 1000 of them
were measured within [0m,10m). A total of 200 δ13CPOC
values were available in the depth interval [3430m,3900m).
The two deepest values were taken from Fischer (1989)
and Altabet and Francois (2003b) and sampled at 4500 and
4850 m depth, respectively.

Values of δ13CPOC are, apart from in the North Pacific,
closely aligned within the individual ocean basins. The At-
lantic, South Pacific and Indian Ocean show values mostly
of −28 ‰ to −19 ‰. The δ13CPOC values in the Arctic
reach down to approximately−30 ‰ and those in the South-
ern Ocean even to approximately −35 ‰. The North Pacific
shows a wide spread of δ13CPOC values, especially between
50 and 100 m depth and at 2500 m depth. There they reach
either down to less than −40 ‰ or up to more than approxi-
mately −10 ‰ at a depth of 2500 m.

Measurements in the North Atlantic, North Pacific and In-
dian Ocean reach down to more than 3500 m. Measurements
down to nearly 5000 m were sampled in the Southern Ocean.
The South Pacific was sampled down to a depth of 2500 m
and the Arctic Ocean and South Atlantic only in the upper-
most few hundred meters.

5.2 Horizontal distribution of the data set

All global oceans are covered with δ13CPOC data. In Fig. 6
the horizontal distribution of available data is depicted for
both grids. For the UVic grid we show data from the file in-
cluding all data independent of time; the WOA grid is aver-
aged over all times. In both cases, we averaged data over all

depths and also added data without depth information to best
visualize the horizontal coverage. A similar plot, although
with a different purpose, is given later in this work in Fig. 10
showing only surface data locations.

Many cruises are visible as lines formed by connected grid
cells in Fig. 6, especially in the Atlantic and Indian Ocean
and less so in the Southern Ocean. Also, smaller sample
spots occur, mainly located in the Pacific, Arctic and South-
ern Ocean. The Atlantic Ocean provides the best data cover-
age. Then the Southern and Indian oceans contain the next
best coverage with the North Pacific having the sparsest.

The highest δ13CPOC values are evident in low-latitude re-
gions. In the Atlantic Ocean the highest values were mea-
sured between 0–30◦ N and 30–60◦W as well as close to the
western coast of France, reaching up to at least −17 ‰. The
Indian Ocean shows generally high values of approximately
−20 ‰. In the Pacific Ocean the highest values are close to
the Peruvian coast and Papua New Guinea. We also find high
values in the Bering Strait and on the northern edge of the
Southern Ocean at around 65◦ E.

The lowest δ13CPOC values are mostly found in the South-
ern Ocean. Nearly all measured grid cells here belong to
δ13CPOC values lower than around−28 ‰. The Arctic Ocean
shows low values as well, for instance in the Kara Sea. The
lowest values in the Pacific Ocean occur in the Southern
Ocean at high latitudes.

5.3 Meridional trend of δ13CPOC values

We show the north–south trend of δ13CPOC over the At-
lantic Ocean based on the time-independent UVic grid and
restricted to the uppermost 130 m, which resembles the eu-
photic zone in the UVic model. We chose this section due
to it having the best data coverage. A biome mask accord-
ing to Fay and McKinley (2014) was applied to the grid-
ded data, thereby defining latitudinal zones in the entire At-
lantic Ocean. Distributions of δ13CPOC within the biomes are
shown in Fig. 7 (see also Table A3 in the Appendix).

The biomes derived by Fay and McKinley (2014) are ar-
eas with consistent biological and ecological properties. The
chosen biomes cover the Atlantic Ocean and extend to the
Arctic Sea and parts of the Southern Ocean. The biomes are
numbered 9 to 17, excluding 14. The biomes 15 to 17 repre-
sent parts of the Southern Ocean and were restricted to 70◦W
and 20◦ E. Their locations are shown in Fig. 7.

Observations by the biomes are consistent with the ones
from Fig. 6. The two biomes showing the lowest δ13CPOC
values from −28 ‰ to −29 ‰ are those located farthest
south. The biome located farthest north contains the next-
lowest values of about −24 ‰. The biomes with more posi-
tive δ13CPOC values are in the lower latitudes and show sim-
ilarly higher values from −23 ‰ to −21 ‰.
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Figure 5. The vertical distribution of available δ13CPOC samples is shown (a) as the approximated density of the measurement depths
and (b–d) as measured δ13CPOC values relative to their respective measurement depth. Panel (a) provides the estimated density of the
depth values on the y axis and the depth in meters on the x axis. The estimation was realized by a Gaussian KDE. Panel (b) resolves the
measurements of the Southern, Indian and Arctic Ocean, (c) the North Atlantic and South Atlantic, and (d) the North Pacific and South
Pacific. The last three panels show the depth in meters on the y axis and the measured δ13CPOC value on the x axis. Different colors are used
to mark different ocean basins.

6 Temporal distribution of the data set

The full δ13CPOC data cover a time period of around 50 years
over 1964–2015 and all 12 calendar months. The number of
samples measured during individual decades varies consider-
ably with most measurements in the 1990s. Coverage within
the months is quite comparable; only winter months in both
hemispheres exhibit fewer data.

The distribution of δ13CPOC samples over the years is re-
solved in Table 4 and is visually approximated by Gaussian
KDE in Fig. 8. The 1990s shows the best data coverage. More
than half of the data points are associated with a year in this
decade, which is visible by a pronounced maximum in the
estimated density. The sparsest data are found in the 1960s,
when only 74 data points were sampled. All other decades

come with between around 300 and 600 δ13CPOC data points.
The latest data are mostly from Anne Lorrain, MacKenzie
et al. (2019) and Kaiser et al. (2019). The oldest data were
taken from the data sets by Robyn Tuerena, Degens et al.
(1968), and Eadie and Jeffrey (1973).

6.1 Monthly variations

Monthly clustered data of the Northern Hemisphere and
Southern Hemisphere show monthly variations, but more
observations are required to demonstrate robust seasonality
within different regions. Since more than 50 % of the avail-
able δ13CPOC data originate in the 1990s, we selected data
from this decade to exclude changes that might be introduced
by longer-term trends. Furthermore, we restricted our data
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Figure 6. Global distribution of the δ13CPOC data is visualized
based on the (a) UVic grid and (b) WOA grid. The data used for
(a) are independent of time and include all available measurements
with latitude and longitude information. The data shown in (b) in-
clude only data with complete temporal metadata and are averaged
over the years 1964–2015. Both kinds of data are averaged over all
measurements including data with missing depth information. Each
colored square refers to a grid cell with available δ13CPOC mea-
surements. The colors indicate the δ13CPOC value in the respective
grid cell.

Table 4. Data coverage within the available decades: the first col-
umn lists the available decades and the second column the number
of sampled δ13CPOC data points within this time frame.

Decade δ13CPOC values
available

1960s 74
1970s 321
1980s 463
1990s 2403
2000s 614
2010s 589

to the uppermost 130 m, which resembles the euphotic zone
in the UVic model. In Fig. 9 we displayed all months with
enough data points by a KDE and indicate the same months
by the same colors. We excluded July, November and De-
cember in the Northern Hemisphere from this KDE repre-
sentation because these months provided three or fewer data
points each, which resulted in a KDE that overgrew the oth-
ers by magnitudes and made their visual comparison diffi-
cult. The KDEs are supported by comparison of the median
values of the individual months in Table 5.

The monthly resolved variations in δ13CPOC do not reveal
any significant seasonal pattern (Fig. 9; see also Table A4 in
the Appendix). In general we find the highest δ13CPOC val-
ues in the Northern Hemisphere, with a median δ13CPOC of
−20.4 ‰ in April and a median δ13CPOC of −21.5 ‰ in Oc-
tober, which are typical months with enhanced primary pro-
duction (Northern Hemisphere spring and autumn blooms).
Similarly high median δ13CPOC values cannot be ascertained
for any month with data of the Southern Hemisphere, where
values of δ13CPOC above −20 ‰ have rarely been observed
at any time of the year. In fact, there is an overall ten-
dency towards low δ13CPOC values for the Southern Hemi-
sphere, which becomes well expressed during the months
April and September, with medians of δ13CPOC =−28.1 ‰
and δ13CPOC =−28.5 ‰, respectively. However, interpreta-
tions of this north–south trend should be treated with caution
because the apparent tendency is likely conditioned by some
imbalance in the number of high-latitude data points. Com-
pared to the number of data points from the Southern Ocean,
samples from the Arctic Ocean are considerably underrepre-
sented (see also Fig. 10). Furthermore, the discrimination be-
tween data of the Northern Hemisphere and Southern Hemi-
sphere is crude, and we encourage the use of our data collec-
tion for more advanced analyses of seasonal, monthly based
changes in the δ13CPOC signal.

6.2 Decadal variations

The decadal UVic grid NetCDF files are the basis for show-
ing long-term changes in the δ13CPOC data. An overview of
where the data within the individual decades were sampled
is given in Fig. 10. This shows that the sparsest coverage was
obtained in the 1960s, located close to the central American
continent. Most data in the Indian Ocean were sampled in
the 1970s. A cruise across the southern part of the Atlantic
Ocean up to 30◦ N and some samples close to Iceland were
also measured in this decade. The 1980s is similarly sparse
in spatial coverage to the 1960s. Measurements of the 1980s
were taken at locations in the Southern Ocean, in the Arctic
and in the Atlantic close to the Equator. The 1990s has the
best coverage including most ocean basins. Most Southern
Ocean data were sampled within the 1990s. The 2000s pro-
vides good coverage of the Arctic Ocean. Finally, the 2010s
data were mostly sampled in the Southern Hemisphere in the
open Pacific and Atlantic. A smaller number of Eurasian con-
tinental sea data were also part of the 2010s samples.

We show the changes in δ13CPOC values over the available
decades by density estimates in Fig. 11 (see also Table A5
in the Appendix) and by their median in Fig. 12. Figure 11
visualizes the sparse coverage of the Southern Ocean outside
of the 1990s, which is why the area is not part of any further
discussion here. The Southern Ocean is defined as the ocean
area south of 45◦ S. All presented analyses were restricted to
the euphotic zone, i.e., the uppermost 130 m resembling the
two first layers of the UVic grid.
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Figure 7. The north–south trend of sampled δ13CPOC values is visualized by a cross section over the Atlantic Ocean. Biomes (Fay and
McKinley, 2014) define the latitudinal bands of the interpolated data set. Panel (a) presents a Gaussian KDE for each biome approximating
the density of the contained δ13CPOC data. Different colors mark the individual biomes, and a black line shows the general global δ13CPOC
distribution. The number in parentheses in each KDE label counts the number of δ13CPOC measurements used for the respective graph.
Panel (b) shows in a box plot the steep decline in δ13CPOC values from the tropical biomes towards the higher latitudes. The x axis provides
the mean latitudes of the biomes introduced in (a). The y axis measures the δ13CPOC value. Panel (c) shows the biome locations. Each biome
is drawn in the color of its corresponding density estimate in (a) above. The biome numbers increase from the north to the south.

Table 5. Monthly median change in δ13CPOC. Due to their having the best data coverage, the analyses were carried out within the 1990s and
in the uppermost 130 m.

Hemisphere Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

North −24.815 −24.12 −20. −24.06 −24.7 −21.746 −23.67 −22.83 −21.4 −23.5455 −23.368
South −26.45 −26.41 −23.34 −28.2 −28.65 −27.95 −27.9 −26.08

A clear decrease in δ13CPOC densities in Fig. 11 can
be identified for the global ocean outside of the Southern
Ocean. All decades but the 1980s show one clear maximum
in their approximated densities. The 1980s shows a second
expressed density maximum at lower values. The main max-
imum shifts from the 1960s at δ13CPOC ≈−19.9 ‰ to the
2010s at δ13CPOC ≈−23 ‰. This decrease is also clearly

visible in the comparison of the decadal medians (Fig. 12).
The Southern Ocean provides far worse data coverage. Only
the 1980s and 1990s include enough data to construct a com-
parable KDE. Due to this very low data availability, all of
these results must be taken with the highest caution.
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Figure 8. The distribution of δ13CPOC data samples over the years
approximated by Gaussian KDE. The density is drawn on the y axis;
the sample year is on the x axis. A higher altitude of the graph
indicates years with more available data.

7 Data availability

The described δ13CPOC data are available at https://doi.org/
10.1594/PANGAEA.929931 (Verwega et al., 2021).

8 Conclusions

The aim of this work was to construct the largest publicly ac-
cessible δ13CPOC data set. The starting point of our collection
and analyses was the readily available data collection of Go-
ericke (1994), which comprised 467 data points. Our primary
objective was to elaborate this set of data by adding useful
meta-information from the original publications and by in-
troducing additional δ13CPOC measurements, as recorded in
the world ocean database PANGAEA and made available by
Robyn Tuerena and Anne Lorrain. This way we could ex-
pand the data collection substantially, from the original 467
to 4732 data points. This new δ13CPOC data set provides the
best coverage to date and will be a useful tool to help con-
strain many marine carbon cycling processes and pathways
from ocean–atmosphere exchange to marine ecosystems, as
well as to better understand observations and validate mod-
els. To ensure dynamic growth of our data collection, the cor-
responding author will provide annual updates of the data
set. Furthermore, he may be contacted by any interested re-
searcher who would like to add their data to this collection.

The data are provided in a csv structure and interpolated
onto two different global grids in NetCDF format. The csv
file contains the δ13CPOC values, their anomalies to their
mean and all available meta-information. The interpolations
are provided on a coarse 1.8◦× 3.6◦ grid of a δ13CPOC-
simulating model and a finer 1◦×1◦ grid by the World Ocean
Atlas. We have provided a detailed description of our data

Figure 9. Monthly variations are split up by hemisphere with the
Northern Hemisphere in (a) and Southern Hemisphere in (b). Due
to their having the best data coverage, the analyses are carried out
within the 1990s and in the uppermost 130 m. The δ13CPOC val-
ues are split up by sample month, and for every month with enough
available data points (here more than three) a Gaussian KDE ap-
proximates their density. The number of used data points is given
in each KDE label. For each hemisphere the densities are drawn all
together; each month is indicated by an individual color.

collection procedure, all added meta-information and data
coverage as well of the interpolation procedure carried out.
We took the utmost care to make all data coherent, compara-
ble and back-trackable and all adjustments transparent. As-
sumptions, changes and deletions of the used data sets have
been described in detail.

We have described the general spatial and temporal trends
of the sampled δ13CPOC data of the raw data file. Distribu-
tions were always approximated by Gaussian kernel density
estimators. The data range from 1964–2015 with by far the
best coverage in the 1990s. Sample locations reach down to
a depth of nearly 5000 m and best cover the uppermost 10 m,
especially in the Atlantic and Indian Ocean. We were able to
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Figure 10. Grid locations of the δ13CPOC data, colored by sampling decades. Only data of the uppermost layer are considered in this plot.
The different colors indicate the different sample decades and were plotted increasing in time above each other.

Figure 11. The decadal shift in δ13CPOC values for all but the
Southern Ocean (a) and only the Southern Ocean (b) shown by esti-
mated densities of δ13CPOC values. The differently colored graphs
refer to the individual decades. Southern Ocean data are sparsely
covered, and the region does not provide enough data for a reason-
able comparison.

Figure 12. The decadal shift in δ13CPOC values in the uppermost
130 m for all but the Southern Ocean: δ13CPOC decadal median
against the decades. The shaded area around the graph marks the
variance of the respective decade in each direction.

show our δ13CPOC data values are mostly located between
δ13CPOC =−15 ‰ and δ13CPOC =−35 ‰ with two max-
ima at around δ13CPOC =−27 ‰ and δ13CPOC =−23 ‰,
the latter one being more pronounced. A comparison of the
main sample methods showed consistent results when com-
pared with regions. δ13CPOC data separated by months indi-
cate counteracting seasonal trends in both hemispheres, but
more data are required to demonstrate robust seasonality.

The interpolated data provide insights into geographical
behavior of the sampled δ13CPOC data. We showed a good
general coverage of all global oceans by δ13CPOC but ob-
served a lack of data in PANGAEA that cover North Pacific
regions. Since the Atlantic Ocean provides the best coverage,
corresponding data were used for a north–south trend anal-
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ysis, where we observed that the lowest values (/− 28 ‰)
can be found in the Southern Ocean, whereas the highest
('− 22 ‰) are restricted to low-latitude regions. This might
also have influenced the observed lower δ13CPOC values in
the Southern Hemisphere compared to the Northern Hemi-
sphere, due to the relatively good coverage of the Southern
Ocean. Finally, we showed the sample locations and value
development of δ13CPOC over the observed decades. Since
the Southern Ocean data were mainly sampled in the 1990s, a
significant multi-decadal trend could not be detected there. In
all other oceans our δ13CPOC data show a decrease by about
3 ‰ over the observed time frame, which is about double the
rate of the known Suess effect (Keeling, 1979) on aqueous
δ13CO2 (Young et al., 2013). This corroborates an increase
in phytoplankton carbon fractionation that may be associ-
ated with a change in phytoplankton communities as previ-
ously suggested (Lorrain et al., 2020; Young et al., 2013).
The data set shows promise for better understanding, con-
straining and prediction of carbon cycling as it provides a
validation tool for mechanistic models and supports separa-
tion of non-spatial components in δ13CPOC variations.

Appendix A: Statistical properties of δ13CPOC kernel
density estimates

In Tables A1, A2, A3, A4 and A5 we present the modes, me-
dians and confidence limits of the KDEs derived in Figs. 1,
3, 7, 9 and 11, respectively.

Table A1. Statistical properties of the KDE derived for Fig. 1 eval-
uated on an equidistant grid over [−55.15,−4.5] with 1001 grid
points: the first column indicates the respective KDE, the following
two its modes, the fourth the median and the fifth the 95 % confi-
dence interval of the respective KDE. All values are given in per
mill.

δ13CPOC KDE Dominant Second Median 95 % confidence
mode mode interval

Figure 1 −23.6 −26.9 −23.8 [−30.9,−17.0]

Table A2. Statistical properties of the KDEs derived for Fig. 3 eval-
uated on an equidistant grid over [−35,−15] with 1001 grid points:
the first column indicates the respective KDE, the following two
its modes, the fourth the median and the fifth the 95 % confidence
interval of the respective KDE. All values are given in per mill.

δ13CPOC KDE Dominant Second Median 95 % confidence
mode mode interval

Figure 3a, full −21.8 −24.3 −24.3 [−26.8,−18.3]
Figure 3a, bottle −25.1 – −24.8 [−26.9,−22.0]
Figure 3a, intake −21.6 – −20.7 [−24.0,−17.4]
Figure 3a, net −21.6 −27.4 −21.7 [−26.4,−19.5]
Figure 3a, trap −24.3 −21.6 −24.1 [−27.2,−20.0]
Figure 3b, full −21.6 – −21.3 [−24.2,−18.0]
Figure 3b, intake −19.5 −21.1 −20.3 [−24.8,−17.2]
Figure 3b, net −21.5 – −21.6 [−23.9,−19.4]
Figure 3c, full −21.6 – −21.6 [−26.4,−17.6]
Figure 3c, bottle −24.7 – −24.9 [−29.8,−21.1]
Figure 3c, net −21.6 – −21.6 [−24.0,−19.5]
Figure 3c, trap −21.8 −18.8 −21.7 [−22.8,−18.5]
Figure 3d, full −24.9 – −24.6 [−27.1,−21.9]
Figure 3d, bottle −25.2 – −24.8 [−26.5,−22.1]
Figure 3d, net −22.8 −26.9 −24.2 [−29.4,−19.7]
Figure 3d, trap −24.3 −26.6 −24.5 [−27.2,−22.9]

Table A3. Statistical properties of the KDEs derived for Fig. 7 eval-
uated on an equidistant grid over [−35,−15] with 1001 grid points:
the first column indicates the respective KDE, the following two
its modes, the fourth the median and the fifth the 95 % confidence
interval of the respective KDE. All values are given in per mill.

δ13CPOC KDE Dominant Second Median 95 % confidence
mode mode interval

Figure 7a, all −21.8 – −22.8 [−29.9,−18.1]
Figure 7a, biome 9 −24.0 – −23.8 [−27.5,−18.5]
Figure 7a, biome 10 −21.7 – −21.5 [−25.0,−17.9]
Figure 7a, biome 11 −21.6 −21.1 −21.3 [−24.4,−17.7]
Figure 7a, biome 12 −21.7 – −21.9 [−23.2,−20.8]
Figure 7a, biome 13 −21.9 −24.9 −22.0 [−24.4,−20.4]
Figure 7a, biome 15 −22.7 – −22.8 [−26.5,−19.2]
Figure 7a, biome 16 −28.7 −26.0 −27.7 [−30.7,−24.1]
Figure 7a, biome 17 −27.8 – −28.5 [−32.7,−24.9]
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Table A4. Statistical properties of the KDEs derived for Fig. 9 eval-
uated on an equidistant grid over [−35,−15] with 1001 grid points:
the first column indicates the respective KDE, the following two
its modes, the fourth the median and the fifth the 95 % confidence
interval of the respective KDE. All values are given in per mill.

δ13CPOC KDE Dominant Second Median 95 % confidence
mode mode interval

Figure 9a, Feb −24.7 – −25.0 [−29.2,−22.3]
Figure 9a, Mar −24.3 – −24.0 [−26.6,−20.3]
Figure 9a, Apr −19.0 – −20.4 [−26.2,−16.5]
Figure 9a, May −24.1 −27.0 −24.0 [−28.3,−19.0]
Figure 9a, Jun −24.0 −27.9 −25.2 [−30.5,−20.1]
Figure 9a, Aug −23.9 – −23.6 [−27.7,−18.9]
Figure 9a, Sep −22.0 −26.0 −23.1 [−28.9,−18.7]
Figure 9a, Oct −21.5 – −21.5 [−23.4,−19.7]
Figure 9b, Jan −27.2 – −26.5 [−28.9,−22.1]
Figure 9b, Feb −29.9 – −26.2 [−30.3,−19.8]
Figure 9b, Mar −23.3 −28.5 −23.3 [−29.0,−21.0]
Figure 9b, Apr −28.4 −21.6 −28.1 [−32.6,−19.9]
Figure 9b, Sep −28.9 −20.4 −28.5 [−30.8,−23.6]
Figure 9b, Oct −28.5 −22.3 −27.7 [−31.7,−20.8]
Figure 9b, Nov −28.1 – −27.7 [−31.8,−20.1]
Figure 9b, Dec −26.7 −24.4 −26.0 [−28.3,−23.3]

Table A5. Statistical properties of the KDEs derived for Fig. 11
evaluated on an equidistant grid over [−35,−15] with 1001 grid
points: the first column indicates the respective KDE, the following
two its modes, the fourth the median and the fifth the 95 % confi-
dence interval of the respective KDE. All values are given in per
mill.

δ13CPOC KDE Dominant Second Median 95 % confidence
mode mode interval

Figure 11a, 1960s −20.0 – −19.9 [−26.8,−16.5]
Figure 11a, 1970s −19.8 – −20.4 [−25.0,−18.0]
Figure 11a, 1980s −21.7 −25.3 −22.1 [−26.9,−18.5]
Figure 11a, 1990s −21.8 −27.3 −22.1 [−27.6,−18.2]
Figure 11a, 2000s −22.4 – −23.2 [−30.4,−19.2]
Figure 11a, 2010s −23.1 – −23.3 [−27.4,−17.6]
Figure 11b, 1960s −27.5 −30.3 −27.7 [−31.4,−25.2]
Figure 11b, 1980s −31.0 – −29.8 [−34.3,−15.0]
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E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-
0686-2, 2020.

Volk, T. and Hoffert, M. I.: Ocean carbon pumps: analysis of rela-
tive strengths and efficiencies in ocean-driven atmospheric CO2
changes, American Geophysical Union; Geophysical Mono-
graph, 32, 99–110, 1985.

Voss, M. and von Bodungen, B.: Carbon and nitro-
gen from mooring NB2, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.106805, 2003.

Wada, E., Terazaki, M., Kabaya, Y., and Nemoto, T.: 15N and 13C
abundances in the Antarctic Ocean with emphasis on the biogeo-
chemical structure of the food web, Deep-Sea Res., 34, 829–841,
https://doi.org/10.1016/0198-0149(87)90039-2, 1987.

Westerhausen, L. and Sarnthein, M.: δ13C of plankton
from surface water (Table A2), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.89388, 2003.

Young, J. N., Bruggeman, J., Rickaby, R. E. M., Erez, J., and Conte,
M.: Evidence for changes in carbon isotopic fractionation by
phytoplankton between 1960 and 2010, Global Biogeochem. Cy.,
27, 505–515, https://doi.org/10.1002/gbc.20045, 2013.

Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium,
Kinetics, Isotopes, Elsevier Science B.V., Elsevier Oceanography
Series, Amsterdam, the Netherlands, 65, 2001.

Zhang, J., Quay, P., and Wilbur, D.: Carbon isotope fractionation
during gas-water exchange and dissolution of CO2, Geochim.
Cosmochim. Ac., 59, 107–114, https://doi.org/10.1016/0016-
7037(95)91550-d, 1995.

Earth Syst. Sci. Data, 13, 4861–4880, 2021 https://doi.org/10.5194/essd-13-4861-2021

59





Chapter 3

The second version of the global
marine particulate carbon-13

isotope data set

The originally published δ13CPOC data set [VST+21] has been extended
and re-published in a second version [PST+22]. The number of incorpo-
rated data points have increased from 4732 data points to 6952 data points
in the second version. The new data are mainly Southern Ocean samples
[GEH+21; CH20]. Again, the second version is available on the global
WOA grid and as a spreadsheet file including all data points and their
meta information on the data platform PANGAEA. In the following, I give
an impression into the second database version, how the data has changed
from the first to the second version and what new insights generate from
the updated data.

Fig. 3.1 presents the global distribution of the second data set version.
The figure is an adapted version of Fig. 6 in [VSS+21] showing the values
of the second data base version in their respective grid cells. The used grid
is the WOA grid [GWP+18], which is the only grid the second data version
is available on. It is visible that mainly Southern Ocean data has been
added, but also some data points in the prior sparsely sampled northern
Pacific Ocean.

The added Southern Ocean values are in agreement with the previous
observations and similarly widespread. The new data show mainly values
around δ13CPOC = ´30 ‰. Most of them are south of New Zealand, Cape
Horn and Tasmania, all reaching down to the Antarctic coast. Furthermore,
cruises have been added reaching from below South Africa to the Antarctic
coast at around 0˝ and 60˝ E, the latter one extending along the coastline
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3. The second version of the isotope data set

Figure 3.1. All available δ13CPOC data in the second data base version: The colored
regions mark grid cells with available δ13CPOC data. The colorscale indicates the
values of the δ13CPOC measurements at the respective locations.

up to around 150˝ E. The lowest values are now measured between 150˝ E
and 150˝ W and around 60˝ W reaching down to less than δ13CPOC = ´32
‰. The highest values were measured close to the Antarctic coast at
around 75˝ E reaching up to around δ13CPOC = ´22 ‰.

The northern Pacific Ocean is still sparsely covered. Nevertheless,
individual data points have been added between 120˝ E and 150˝ W, mostly
north from 30˝ N. West from 180˝ E there were no δ13CPOC data available
in the first version. All added data show values around δ13CPOC = ´23
‰.

In Fig. 3.2 I provide KDEs of all δ13CPOC data from the first and the
second data set version in comparison. The KDEs are diffKDEs [PS23]
from the first and second data base versions and the originally published
Gaussian KDE of the first data base version (see Fig. 2) in [VSS+21]). The
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Figure 3.2. All available δ13CPOC data of the first and second data base version:
Both data set versions are visualized with the diffusion KDE, the first data set
version also with the originally published Gaussian KDE.

comparison of the Gaussian KDE to the new diffKDE on the first data
base version reveals how the Gaussian KDE oversmoothed at least two
important data features with (local) minima at around δ13CPOC = ´22
‰and δ13CPOC = ´27 ‰. These are well resolved by the diffKDE. The
comparison of the diffKDEs of the first and second data set version present
the influence of the amount of added Southern Ocean data. These are
generally far lower δ13CPOC values, reaching down to δ13CPOC = ´32 ‰,
which is well visible by a far stronger pronunciation of the smallest mode
at δ13CPOC = ´28 ‰.

In Fig. 3.3, I show the long term decadal trend of δ13CPOC values in
the second data base version. This is an update of Fig. 12 in [VSS+21].
In [VST+21] the data were taken from decadal averages, which are not
available from the second data base version. For the second version, the
data means are calculated from the spreadsheet file. Analogously to the
first version, selected data is restricted to the euphotic zone and excluding
the Southern Ocean. A comparison with the plot from [VSS+21] shows a
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3. The second version of the isotope data set

Figure 3.3. Decadal changes of δ13CPOC drawn from the second data base version:
Decadal averages of δ13CPOC data are drawn in the black line against their respec-
tive decades. The grey shaded area in the back visualizes the variance. All δ13CPOC
data is restricted to the euphotic zone and excluding Southern Ocean data.

comparable long term trend from around δ13CPOC = ´20 ‰in the 1960 to
around δ13CPOC = ´23 ‰in the 2010s. Only this time the trend is more a
monotically decreasing function exhibiting the prior dip at the 2000s and
already starting to decrease in the 1970s.
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Abstract. Probability density functions (PDFs) comprise basic information about the variability of observed or simulated vari-

ables within a system of interest. In geoscience data distributions are often expressed by a parametric estimation of their PDF,

such as e.g. a Gaussian distribution. At present there is a growing attention towards the analysis of non-parametric estimation

of PDFs, where no prior assumptions about the type of PDF are required. A common tool for such non-parametric estimation

is a kernel density estimator (KDE). Existing KDEs are valuable but incomplete, because of the difficulty of specifying op-5

timal bandwidths for the individual kernels. A diffusion-based KDE provides a useful approach to mitigate the difficulty in

identifying bandwidths that resolve desired details of multi-modal data while being insensitive to noise. Therefore we designed

and developed a new implementation of a diffusion-based KDE as an open source Python tool. We tested our implementation

on artificial and real marine biogeochemical data individually and against other popular KDEs. Our estimator is able to detect

relevant multiple modes and resolve boundary close data while suppressing details induced by noise and individual outliers.10

The convergence rate is comparable to the Gaussian estimator, but with a generally smaller error, most notably for small data

sets with up to around 5000 data points. We exemplify and discuss the general applicability of such KDEs for data-model

comparison in geoscience, in particular for sparse data. We also provide an example for how our approach can be efficiently

utilized for the derivation of plankton size spectra in ecological research.

1 Introduction15

In geoscience the application of Earth system models (ESMs) has become an integral part of climate research (IPCC, 2022).

Given the complexity of ESMs and the associated manifold of model solutions, there is strong demand for assessing the

agreement of simulation results with observational data. In fact, such necessity is not only restricted to simulations with ESM

but is transferable to other model applications as well, like in social science, in financial- or ecological research. A viable

evaluation procedure is to compare probability density functions (PDFs) of the data with their simulated counterparts, which20

may also be quantified by some distance measure or divergence between respective PDFs (Thorarinsdottir et al., 2013). Along

with the examination of the suitability of specific divergence functions for data-model assessment as done by Thorarinsdottir

et al. (2013), a necessary prerequisite is the approximation of PDFs based on available data and model results.

1
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Mathematically formulated, PDFs are integrable non-negative functions f : A→ [0,∞] from a probability space (Ω,A,P )

into the non-negative real numbers. By definition, they allow to directly read the probability of the occurrence of a data value25

X ∈ R within a specific range [a,b] ⊆ R via the relationship

P (a < X < b) =

b∫

a

f (x)dx for all a < b ∈ R. (1)

The application of kernel density estimators (KDEs) has become a common approach for approximating PDFs in a non-

parametric way (Parzen, 1962), which means that no probability parameters (like expectation or variance) of the data and no

type of the underlying probability distribution (as, e.g., normal or log-normal) are prescribed or assumed. The general concept30

of KDEs takes into account information of every single data point and treats all of them equally. Consequently, every point’s

information weighs the same in the resulting estimate, without introducing additional assumptions.

A KDE is based on a kernel function and a smoothing parameter. The kernel function is ideally chosen to be a PDF itself.

It is usually unimodal and centered around zero (Sheather, 2004). In the estimation process, the kernel function is sequentially

centered around each data point. The sum of these individual kernels is standardized by the number of data points. This35

ensures that the final estimate is again a PDF by inheriting all properties of its kernels. The smoothing parameter, referred to as

bandwidth, determines the smoothness of the estimate. If it is chosen to be small, more details of the underlying data structure

become visible. If it is larger, more structure becomes smoothed out (Jones et al., 1996), and information from single data points

might get lost. Hence, it is crucial to determine some kind of an optimal size of the bandwidth parameter to represent a suitable

signal-to-noise ratio that allows a separation of significant distinctive features from ambiguous details. The question of optimal40

bandwidth selection is widely discussed in the literature (e.g., Sheather and Jones, 1991; Jones et al., 1996; Heidenreich et al.,

2013). It also takes into account that there might not be one single "optimal" choice for such bandwidth (Abramson, 1982;

Terrell and Scott, 1992; Chaudhuri and Marron, 2000; Scott, 2012).

The reformulation of the most common Gaussian KDEs (Sheather, 2004) into a diffusion equation provides a different view

on KDE (Chaudhuri and Marron, 2000). This perspective change is possible, because the Gaussian kernel function solves the45

partial differential equation describing the diffusion heat process as the Green function. The time parameter of this differential

equation corresponds to the smoothness of the estimate, and thus becomes tantamount to the estimate’s bandwidth parameter

(Chaudhuri and Marron, 2000). The initial value is typically set to include the δ-distribution of the input data. This differentiates

the initial value problem from classical problems, since the δ-distribution is not a proper function itself. In specific applications

this diffusion approach delivered convincing results (e.g., Botev et al., 2010; Deniz et al., 2011; Qin and Xiao, 2018). However,50

it tends to resolve too many details or overfit the data in others (e.g., Ma et al., 2019; Chaudhuri and Marron, 2000; Farmer

and Jacobs, 2022). One main benefit of the diffusion KDE is that it provides a series of PDF estimates for a sequence of

bandwidths by default (Chaudhuri and Marron, 2000). As a consequence, it offers the chance to choose between different

grades of smoothness by design.

In this study, we present a new, modified diffusion-based KDE, for which we provide a Python implementation. Our aim is55

to retain the original idea of diffusion-based KDEs by Chaudhuri and Marron (2000) and Botev et al. (2010), but to avoid the

2
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complex fixed-point iteration by Botev et al. (2010). The main objective of our refined approach is to achieve high performance

for analyses of high variance and multimodal data sets. Our diffusion-based KDE is based on an iterative approximation that

differs from others, using a default optimal bandwidth and two preliminary, so-called pilot estimates. This way the KDE can

provide a family of estimates at different bandwidths to choose from in addition to a default solution optimally designed for60

data from geoscience and ecological research. Thus, an interactive investigation option of these different estimates becomes

possible in an easy way.

This paper is structured as follows: At first, we will briefly recall the general concept of KDEs. Afterwards, our specific

KDE approach will be introduced and described, as developed and implemented in a software package. We explain the two

pilot estimation steps and the selection of the smoothing parameters. Then the performance of our refined estimator will be65

compared with other state-of-the-art KDEs, while considering known distributions and real marine biogeochemical data. The

real test data include carbon isotope ratios of particulate organic matter (δ13CPOC) and plankton size data. Our analyses

presented here involve investigations of KDE error, runtime, the sensitivity to data noise and the characteristics of convergence

w.r.t. increasing sample size.

2 Theory and methods70

2.1 Kernel density estimation

A kernel density estimator (KDE) is a non-parametric statistical tool for the estimation of probability density functions (PDFs).

In practice, diverse specifications of KDEs exist that may improve the performance with respect to individual needs. Before

we explain our specifications of the diffusion-based KDE, we will provide basic background information about KDEs.

For all following let Ω ⊆ R be a domain, Xj ∈ Ω, j ∈ {1, ...,N}, be N ∈ N independent real random variables.75

2.1.1 The general kernel density estimator

The most general form of a KDE approximates the true density f of the input data (Xj)
N
j=1 by

f̂ : R×R>0 → R≥0, (x;h) 7→ 1
nh

n∑

j=1

K

(
x−Xj

h

)
. (2)

In this formula the kernel function K : R → R>0 has to satisfy the following conditions (Parzen, 1962):

sup
y∈R

|K(y)| < ∞,

∫

R

|K(y)|dy < ∞, lim
y→∞

|yK(y)| = 0,

∫

R

K(y)dy = 1. (3)80

The parameter h determines the smoothness of the estimate calculated by Eq. 2 and is called the bandwidth parameter

(Silverman, 1986). In the following we will exclusively deal with the squared bandwidth (h2) and therefore adapt a notation

where some t is defined as h2 =: t ∈ R. An optimal choice for the bandwidth parameter is regarded as the minimizer of the

asymptotic mean squared error between the true density of (Xj)
N
j=1 and their KDE (Sheather and Jones, 1991). The mean

3
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integrated squared error is defined as85

MISE
(
f̂
)

: R>0 → R, t 7→ E



∫

R

(
f̂ (x; t)− f (x)

)2

dx


 (4)

for all PDFs f and respective KDEs f̂ (Scott, 1992). If now f̂ is a KDE and there exists a t∗ ∈ R>0 with

AMISE
(
f̂
)

(t∗) = min
t∈R>0

AMISE
(
f̂
)

(t) , (5)

we call t∗ the optimal bandwidth of f̂ by (Xj)
N
j=1 (Scott, 1992). For the general KDE from Equation 2, this can be calculated

according to Parzen (1962) as90

t∗ =

(
f (x)

∫
K2 (y)dy

N4∥f2∥2

) 2
5

. (6)

As we see from Eq. 6, the true density f is involved in the calculation of the optimal bandwidth t∗, which is in turn needed

for the approximation of f by a KDE. Thus, a direct derivation of an optimal bandwidth is precluded. One possibility of how

this implicit relation can be solved is the calculation of pilot estimation steps. Our specific approach to this is shown in Sec.

2.1.3 and Sec. 2.1.4.95

There exists a variety of available choices for the type of kernel function K, which all have their individual benefits and

shortcomings. Amongst them are for example the uniform, triangle, or the Epanechnikov kernel (Scott, 1992):

KE : R → R≥0,w 7→ 3
4
(
1−w2

)
. (7)

A common choice for K is the Gaussian kernel (Sheather, 2004):

Φ : R → R≥0,w 7→ 1√
2π

e−
1
2 w2

. (8)100

The standard KDE from Eq. 2 – despite being widely applied and investigated – comes with several disadvantages in practical

applications (Khorramdel et al., 2018). For example, severe boundary bias can occur when applied on a compact interval

(Marron and Ruppert, 1994). It means that a kernel function with a specified bandwidth, attributed to a single point nearby the

boundary, may actually exceed the boundary. Furthermore, it can lack a proper response to variations in the magnitude of the

true density f (Breiman et al., 1977). The introduction of a parameter that depends on the respective data region can address105

the latter (Breiman et al., 1977). Unfortunately, no true independent local bandwidth strategy exists (Terrell and Scott, 1992),

meaning that in all local approaches there is still an influence of neighboring data points on each locally chosen bandwidth.

2.1.2 The diffusion-based kernel density estimator

The diffusion-based KDE provides a different approach to Eq. 2. It solves the partial differential equation describing the

diffusion heat process, starting from an initial value based on the input data (Xj)
N
j=1, that progresses up to an estimate at a final110

time T ∈ R>0. An advantageous connection to Eq. 2 is that the widely applied Gaussian kernel is a fundamental solution of this

4
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differential equation. Precisely, the Gaussian kernel from Eq. 8 as applied in the construction of a Gaussian KDE depends on

the location x ∈ R and the smoothing parameter h ∈ R>0 and has the form (x; t) 7→ 1√
2π

e
− 1

2

(
x−Xj√

t

)2

for any j ∈ {1, ...,N}.

This function solves

∂

∂t
u(x; t) =

1
2

d2

dx2
u(x; t) ,x ∈ Ω, t ∈ R>0 (9)115

as the Green’s function, where the time parameter t ∈ R>0 equals the squared bandwidth parameter h2 (Chaudhuri and Marron,

2000). This idea to use the diffusion heat equation to calculate a KDE was first proposed by Chaudhuri and Marron (2000). Its

benefits were widely explored in Botev et al. (2010).

Our implementation of the diffusion KDE is based on Chaudhuri and Marron (2000) and is extended by some advancements

proposed by Botev et al. (2010): We included a parameter function p ∈ C2 (Ω,R>0) with ∥p′′∥∞ < ∞ into Eq. 9, acting120

inversely to a diffusion quotient. Boundary conditions are set to be Neumann and the initial value being a normalized sum

of the δ-distributions centered around the input data points. In the following, we call a function u ∈ C2,1 (Ω×R>0,R≥0) the

diffusion kernel density estimator (diffKDE), if it solves the diffusion partial differential equation

∂

∂t
u(x; t) =

1
2

d2

dx2

(
u(x; t)
p(x)

)
, x ∈ Ω, t ∈ R>0, (10)

∂

∂x

(
u(x; t)
p(x)

)
= 0, x ∈ ∂Ω, t ∈ R>0, (11)125

u(x;0) =
1
N

N∑

j=1

δ (x−Xj) , x ∈ Ω. (12)

In Eq. 12, the data are incorporated as initial values via the Dirac δ-distribution, i.e., a generalized function which takes the

value infinity at its argument and zero anywhere else. Regarded as PDF, it puts all probability in the corresponding data point.

The δ-distribution can be defined exactly as a limit of functions, the so-called Dirac sequence. In actual implementations, it has

to be approximated, see Sec. 2.2.3.130

The final iteration time T ∈ R>0 of the solution process of Eq. 10 is called the squared bandwidth of the diffKDE.

This specific type of KDE has several advantages. First of all, it naturally provides a sequence of estimates for different

smoothing parameters (Chaudhuri and Marron, 2000). This obliterates identifying one single optimal bandwidth whose exis-

tence is questioned (e.g., Abramson, 1982; Terrell and Scott, 1992; Chaudhuri and Marron, 2000; Scott, 2012). Even more,

such a sequence allows a specification of the estimate’s smoothness that is most appropriate for the analysis. The parameter135

function p introduces adaptive smoothing properties (Botev et al., 2010). Thus, setting p properly solves the prior problem

of having to locally adjust the bandwidth to the respective region to prevent oversmoothing of local data structure (Breiman

et al., 1977; Terrell and Scott, 1992; Pedretti and Fernàndez-Garcia, 2013). In contrast to local bandwidth adjustments, local

variations of the smoothing intensity can be applied to resolve multimodal data as well as values close to the boundary.

5
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2.1.3 Bandwidth selection140

According to the relationship T = h2 between final iteration time T of the diffKDE and bandwidth parameter h (Chaudhuri

and Marron, 2000), we from now on focus on the selection of the optimal squared bandwidth T ∈ R>0 and refer to this as the

bandwidth selection for simplicity.

In Eq. 6 we stressed that the optimal choice of the bandwidth parameter depends on the true density f . In our setup of the

diffKDE, the analytical solution for T of Eq. 5 depends not only on the true density f , but also on the parameter function p. It145

can be calculated as

T ∗ =




E
(√

p(X)
)

2N
√

π

∥∥∥∥
(

f
p

)′′∥∥∥∥
2

L2




2
5

(13)

(Botev et al., 2010). The role of the parameter function p is in detail described in Sec. 2.1.4.

In the simplified setup with p = 1 as in Eq. 9, the analytical optimal solution of Eq. 6 becomes

T ∗(p=1) =

(
1

2N
√

π∥f ′′∥2
L2

) 2
5

. (14)150

Still, the smoothing parameter depends on the unknown density function f and its derivatives. So we will need to find a suitable

approximation of f , which might again be dependent of f and so on. Botev et al. (2010) use an iterative scheme to solve this

implicit dependency. This additional effort is avoided in our approach.

The prior claimed possibility of no existence of one single optimal bandwidth for complicated densities (e.g. Scott, 2012) is,

by default, no problem for the diffKDE. A solution to this problem is to create a family of estimates from different bandwidth155

parameters (Breiman et al., 1977), ranging from oversmoothed estimates to those with beginning oscillations (Sheather, 2004).

For the diffKDE the progression of the time t up to a final iteration time T is equivalent to the creation of such a family of

estimates. For the diffKDE we thus only need to find a suitable optimal final iteration time T ∗. Then, the temporal solution of

Eq. 10 provides solutions for the diffKDE for the whole sequence of the temporal discretization time steps smaller than T ∗,

which we can then use as the requested family of estimates.160

2.1.4 Pilot estimation

A crude first estimate of the true density f can serve as a pilot estimation step for several purposes (Abramson, 1982; Sheather,

2004). The most obvious in our case is to obtain an estimate of f for the calculations of the optimal bandwidth in Eq. 13.

The second purpose is its usage for the definition of the parameter function p in Eq. 10. Setting this as an estimate of the

true density itself introduces locally adaptive smoothing properties (Botev et al., 2010). Since p appears in the denominator165

in the diffusion equation, it operates conversely to a classical diffusion coefficient. Choosing p to be a function allows for

a spatially dependent influence on the smoothing intensity: at points where the function p is small, the smoothing becomes

more pronounced, whereas if p is larger, the smoothing is less intense. This resolves the expected structure in data dense areas,

6
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but expands in sparsely sampled areas. Eventually, we calculate two pilot estimates – one for p and one for f – to support

the calculation of the diffKDE. We set both pilot estimates to be the solution of Eq. 9 with an optimal smoothing parameter170

approximating Eq. 14. This approach combines Gaussian and diffKDE interchangeably to make best use of both of their

benefits (Chung et al., 2018).

2.2 Discretization of diffusion kernel density estimator

Equation 10 is solved numerically, using a spatial and temporal discretization. The discretization is based on finite differences

and sparse matrices in Python. A similar approach can be found in a diffusion-based kernel density estimator for linear networks175

implemented in R by McSwiggan et al. (2016).

2.2.1 Spatial discretization

We start with the description of the discretization of the spatial domain Ω ⊆ R. This will reduce the partial differential equation

in Eq. 10 into a system of linear ordinary differential equations.

Let n ∈ N and (xi)
n
i=0 ⊆ Ω̄, an equidistant discretization of Ω with xi−1 < xi and R>0 ∋ h := xi−xi−1 for all i ∈ {1, . . . ,n}.180

For the following calculations, we set x−1 := x0 −h ∈ R and xn+1 := xn + h ∈ R. Let u be the solution of the diffKDE and

p its parameter function, both as defined in Sec. 2.1.2. We assume that u and p are both defined on x−1 and xn+1 and we set

ui = u(xi) and pi = p(xi) for all i ∈ {−1, . . . ,n + 1}.

Let t ∈ R>0. We approximate Eq. 11 at x = x0 by applying a first order central difference quotient as

0 =
∂

∂x

(
u(x0; t)
p(x0)

)
=

1
2h

(
u1 (t)
p1

− u−1 (t)
p−1

)
.185

This implies

u−1 (t)
p−1

=
u1 (t)
p1

.

We approximate Eq. 10 at x = x0 by applying a second order central difference quotient

u′0 (t) =
1
2

1
h2

(
u1 (t)
p1

− 2
u0 (t)
p0

+
u−1 (t)
p−1

)
=

1
2

1
h2

(
2
u1 (t)
p1

− 2
u0 (t)
p0

)
. (15)

Analogously, we approximate Eq. 11 and Eq. 10 at x = xn again by first and second order central difference quotients,190

respectively. This gives

u′n (t) =
1
2

1
h2

(
un+1 (t)
pn+1

− 2
un (t)
pn

+
un−1 (t)
pn−1

)
=

1
2

1
h2

(
2
un−1 (t)
pn−1

− 2
un (t)
pn

)
. (16)

Finally, we derive from Eq. 10 by applying a second order central difference quotient for all i ∈ {1, . . . ,n− 1}:

u′i (t) =
1
2

1
h2

(
ui+1 (t)
pi+1

− 2
ui (t)
pi

+
ui−1 (t)
pi−1

)
. (17)

Now, we identify p := (p0, . . . ,pn) ∈ Rn+1, u′ (t) := (u′0 (t) , . . . ,u′n (t)) ∈ Rn+1 and u(t) := (u0 (t) , . . . ,un (t)) ∈ Rn+1195

with their spatial discretizations. Furthermore, we define vupper := (2,1, ...,1) ∈ Rn, vmain := (−2, ...,−2) ∈ Rn+1 and vlower :=

7
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(1, ...,1,2) ∈ Rn to be the upper, main and lower diagonal of the tridiagonal matrix V ∈ R(n+1)×(n+1). Now, we set

1
2

1
h2

V
1
p

=: A ∈ R(n+1)×(n+1), (18)

where the division by p is meant to be column-wise. Then, Eq. 15, Eq. 16 and Eq. 17 can be summarized as a linear system of

ordinary differential equations:200

u′ (t) =
1
2

1
h2

V
u(t)
p

= Au(t) . (19)

By these calculations the partial differential equation from Eq. 10 becomes a system of ordinary differential equations:

u′ (t) = Au(t) , t ∈ R>0. (20)

2.2.2 Temporal discretization

The time-stepping applied to solve the ordinary differential equation from Eq. 20 and Eq. 12 is again built on equidistant205

steps forward in time. Let ∆ ∈ R>0 small and set t0 := 0 and tk := tk−1 + ∆ for all k ∈ N. Set uk,i := u(xi, tk) ∈ R for all

i ∈ {0, . . . ,n + 1} and k ∈ N0 and identify uk := (uk,i)
n
i=0 ∈ Rn+1 for all k ∈ N0 with their discretizations.

We use an implicit Euler method to approximate Eq. 20 for all k ∈ N0

uk+1 = ∆Auk+1 + uk (21)

from which we obtain210

uk = (In+1 −∆A)uk+1 for all k ∈ N0. (22)

Together with the initial value Eq. 12 this describes an implementation-ready time stepping procedure. The linear equation for

uk+1 will be solved in every time step k ∈ N0.

2.2.3 Initial value

The initial value in Eq. 12 depends on the δ-distribution (Dirac, 1927). The δ-distribution is not a proper function, but can be215

calculated as a limit of a suitable function sequence. A common approximation for the δ-distribution is to use a Dirac sequence

(Hirsch and Lacombe, 1999). Such is a sequence (Φn)n∈N of integrable functions that are non-negative and satisfy
∫

Φn (x)dx = 1 for all n ∈ N (23)

and

lim
n→∞

∫

R\Bρ(0)

Φndx = 0 for all ρ ∈ R>0. (24)220

For our implementation we define a Dirac sequence (Φh)h∈R>0
depending on the spatial discretization fineness h ∈ R>0 as an

approximation of δ in Eq. 12. The relationship |Ω|
n = h provides the dependency of Φh on n ∈ N and the equivalence of the

8
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Figure 1. Dirac sequence (Φh)h∈R>0
for the approximation of the δ-distribution in the initial value in Eq. 12. The function Φh is depending

on the spatial discretization fineness h and converges to δ for h→ 0. The function Φh is piecewise linear with a peak at each data point

Xj , j ∈ {1, ...,N} integrating to 1.

limits n →∞ and h → 0 in this framework. In the following we give the specific definition of our function sequence of choice

and proof that this indeed defines a proper Dirac sequence.

We assume 0 ∈ Ω. Then there exists an i ∈ {0, . . . ,n} with 0 ∈ [xi−1,xi). If not readily defined, we set xi−2 := xi−1−h ∈ R225

and xi+1 := xi + h ∈ R. We define (see also Fig. 1)

Φh : Ω → R,x 7→





xi

h3 x + xi|xi−2|
h3 , x ∈ [xi−2,xi−1)

xi+xi−1
h3 x + xi

xi+xi−1
h3 − xi−1

h2 , x ∈ [xi−1,xi)
xi−1
h3 x + xi+1|xi−1|

h3 , x ∈ [xi,xi+1]

0 else.

(25)

Then Φh ∈ L1 (R) is non-negative for all h ∈ R>0 and
∫

Φh (x)dx = 1 (see Appendix).

Now, let ρ ∈ R>0 and set h = ρ
2 ∈ R>0. Then we have by Eq. 25

∫

R\Bρ(0)

Φhdx =

ρ∫

−∞

Φhdx +

∞∫

ρ

Φhdx =

ρ∫

−∞

0dx +

∞∫

ρ

0dx = 0,230

and it follows

lim
h→0

∫

R\Bρ(0)

Φhdx = 0 for all ρ ∈ R>0. (26)

Hence Eq. 25 defines a Dirac sequence. We use Φh for the approximation of the δ-distribution in our implementation of

Equation 12.

9
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The concept of the Dirac sequence also provides the justification to generally rely on the δ-distribution in the construction235

of the initial value of the diffKDE. The Gaussian kernel defined in Eq. 8 that solves the diffusion equation as a fundamental

solution is again a Dirac-sequence (Boccara, 1990). This link connects the diffKDE directly back to the δ-distribution.

2.3 Implementation of the diffusion kernel density estimator

The selected implementation is a straight forward approach using equidistant finite differences in space and time and a direct

solution of the diffusion equation by an implicit Euler. It is build on the three times sequent solution of the diffusion equation,240

providing two pilot estimates for the calculation of the final diffKDE. The three chosen bandwidths increase in complexity and

accuracy over this iteration. The implementation is realized in Python 3.

2.3.1 Selection of pilot function and optimal bandwidth

For the optimal bandwidth T ∗ from Eq. 13 we need the parameter function p as well as the true density f . We approximate

them both by a simple KDE, each as pilot estimation steps. We use for both cases the simplified diffKDE defined in Eq. 9,245

without additional parameter functions. We denote the bandwidths for p and f as Tp,Tf ∈ R>0, respectively. We use a simple

bandwidth as variants of the rule of thumb by Silverman (1986) for both of them.

We begin to estimate Tp, which is the bandwidth for the KDE that serves as p. It shall be the smoothest of the three

estimates, since p limits the resolution fineness of the diffKDE as a lower boundary. This is, because the diffKDE converges to

this parameter function and hence never resolves less details than p itself (Botev et al., 2010).250

As seen in Eq. 14, the optimal bandwidth for the approximation of p is depending on the second derivative of f . We therefore

need to make some initial assumption about f . For a first simplification, we assume that f belongs to the normal distribution

family. Then the variance can be estimated by the standard deviation of the data. This leads us to the parametric approximation

of the bandwidth TP (Silverman, 1986)

Tp =

(
1

2N
√

π∥f ′′∥2
L2

) 2
5

=

(
1

2N
√

πσ−5 ∥Φ′′∥2
L2

) 2
5

=

(
1

2N
√

πσ−5 3
8

1√
π

) 2
5

= σ2

(
4
3
N

)− 2
5

, (27)255

whose estimate is known to be overly smooth on multimodal distributions.

To calculate the bandwidth Tf for the approximation of f in Eq. 13 we choose a refined approximation of Eq. 14, which has

been proposed by Silverman (1986) as

Tf =
(

0.9min

(
σ,

iqr (data)
1.34

))2

N− 2
5 . (28)

We approximate optimal bandwidth T ∗ from Eq. 13 by calculating p and f by Eq. 9, based on Eq. 27, and Eq. 28 respectively.260

The nominator is approximated by the unbiased estimator (Botev et al., 2010)

E(p(X)) =
1

n + 1

n+1∑

i=0

√
p(xi) =: Eσ (29)
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and the second derivative in the denominator by finite differences (McSwiggan et al., 2016)
(

f

p

)′′
(xi) =

1
h2

(
f

p
(xi+1)− 2

f

p
(xi) +

f

p
(xi−1)

)
=: qi (30)

for all i ∈ {1, ...,n}. For the boundary values we set265

(
f

p

)′′
(x0) =

1
h2

(
2
f

p
(x1)− 2

f

p
(x0)

)
=: q0 (31)

and
(

f

p

)′′
(xn+1) =

1
h2

(
2
f

p
(xn−1)− 2

f

p
(xn)

)
=: qn+1. (32)

We set the finite differences approximation from Eq. 30, Eq. 31 and Eq. 32 as a discrete function with image q := (q0, ..., qn+1).

In this way we derived an already discrete formula for approximation of the optimal squared bandwidth T ∗ ∈ R>0 of the270

diffKDE on the discretization Ω as

T ∗ =

(
Eσ

2N
√

π∥q∥2
L2

) 2
5

. (33)

The L2-norm is calculated on the discretized versions of f and p by array operations. The integration is performed by the trapz

function of the SciPy integrate package (Gommers et al., 2022), the square root is part of the math package (Van Rossum,

2020).275

2.3.2 The diffKDE algorithm with optimized bandwidth

The implementation is realized in Python and its concept shown in Alg. 1. We use the Python libraries Numpy (Harris et al.,

2020) and SciPy (Virtanen et al., 2020; Gommers et al., 2022) and the Python Math module (Van Rossum, 2020) for data

preprocessing, calculation of the bandwidths, setup of the differential equations and their solution. The algorithm iteratively

calculates three KDEs: first the two for the approximations of p and f as the pilot estimation steps described in Sec. 2.3.1 and280

the last one being u the solution of the diffKDE built on the two prior. All three KDEs are calculated by solving the diffusion

equation up to the respective final iteration time. The solution is realized in while-loops solving Eq. 22. The two pilot estimation

steps can be calculated simultaneoulsy, since they are independent of each other and only differ in their final iteration times Tp

and Tf . All input variables are displayed in Tab. 1 the return values listed in Tab. 2.

The spatial grid Ω is setup according to the description in Sec. 2.2.1 in lines 1 and 2 of Alg. 1. It consists of n ∈ N intervals,285

where n can be set by the user. The boundary values are xmin := minX ∈ R and xmax := maxX ∈ R by default, but can

also be chosen individually. Setting the boundary values to an individually chosen interval in the function call results in a

clipping of the used data to this smaller one before KDE calculation. Outside the interval boundaries, the diffKDE adds two

additional discretization points to make it applicable for the case of a data point Xi, i ∈ {0, ...,n + 1} being directly located

at one of the boundaries. This way it is possible to construct the initial value defined in Eq. 25, which takes into account the290

two neighbouring discretization points in each direction. This leads to a full set of n+1 equidistant discretization points saved
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Algorithm 1 Finite differences based algorithm for the implementation of the diffusion KDE.

Note: the routine solve(M,b) means that the system Mx = b is solved.

Require: X ∈ RN , n ∈ N, timesteps ∈ N, xmin ∈ R, xmax ∈ R

1: h← (xmax−xmin)/(n− 4)

2: Ω← (xmin− 2h,xmin−h, ...,xmax + h,xmax +2h) ∈ Rn+1

3: p,f ,u← Φh

4: Tp← σ2
(

4
3
N
)− 2

5

5: Tf ←
(
0.9min

(
σ, iqr(data)

1.34

))2

N− 2
5

6: t← 0, ∆p← Tp/timesteps, ∆f ← Tf/timesteps

7: while t < Tp do

8: p← solve(In+1−∆pApilot,p)

9: f ← solve(In+1−∆f Apilot,f)

10: t← t + ∆p

11: end while

12: q←
√∫

Ω

((
f
p

)′′)2

dh

13: Eσ← 1
n+1

∑n+1
i=0

√
p(xi)

14: T ←
(

Eσ
2N
√

πq2

) 2
5

15: t← 0, ∆← T/timesteps

16: while t < T do

17: u← solve(In+1−∆A,u)

18: t← t + ∆

19: end while

20: return u,Ω,Φh,p,stages,times

in the variable Ω. The spatial discretization Ω includes an inner discretization between the handed in (or default set) interval

endpoints xmin and xmax of n− 4 equally sized inner discretization intervals.

The Dirac sequence Φh for the implementation of the initial value is defined in Eq. 25 and we use the same for initialization

of all three approximations of the the PDF (p,f,u) in line 3 of Alg. 1. In its calculation, the algorithm searches for each295

j ∈ {1, ...,N} for the i ∈ {1, ...,n + 1} with xi being the closest right neighbour of Xj . Then the initial value is constructed

by assigning the values 1
h

xi−Xj

xi−xi−1
and 1

h
Xj−xi−1
xi−xi−1

at grid point xi and xi−1, respectively, and zero elsewhere. These values are

corresponding to the weighed heights Hi and Hi−1 displayed in Fig. 1. The final initial value is the normalized sum of all these

individual approximations of the δ-distribution. All three used KDEs (p,f,u) are initialized with this initial value.

In the pilot estimation steps, we calculate the KDEs for p and for f required for the set up of the bandwidth T ∗ for the300

diffKDE. The bandwidths Tp and Tf for p and f , respectively, are calculated based on the input data X in lines 4 and 5 of Alg.

1 as described in Sec. 2.3.1. Then, the KDEs are calculated by solving a linear ordinary differential equation by an implicit

Euler in the first while-loop in lines 7 to 9 of Alg. 1. For the pilot estimation steps calculating p and f the matrix A defined in
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Table 1. Input variables: The only required input variable for the calculation of the diffKDE is a one dimensional data set as an array like

type. All other variables are optional, with some prescribed defaults. On demand the user can set individual lower and upper bounds for their

data evaluation under the diffKDE as well as the number of used spatial and temporal discretization intervals. The individual selection of the

final iteration time provides the opportunity to choose the specific smoothing grade on demand.

index name type default description

0 data array like required input data X ∈ R

1 xmin float minX lower data boundary for KDE calculation

2 xmax float maxX upper boundary for KDE calculation

3 n integer 1004 number of spatial discretization intervals in Ω

4 timesteps integer 20 number of temporal discretization intervals

5 T float T ∗ final iteration time for diffKDE

Eq. 18 does not incorporate a parameter function and reduces to

1
2

1
h2

V =: Apilot ∈ R(n+1)×(n+1). (34)305

Apart from this, the solutions for the pilot KDEs are the same as for the final diffKDE. The two pilot KDEs can be solved

simultaneously, since they share their matrix Apilot and have independent pre-computed bandwidths. The difference in their

bandwidths is implemented in different time step sizes ∆p and ∆f for p and f , respectively, which are initialized in line 6 of

Alg. 1 directly before this first while-loop. The time forward is calculated timesteps ∈ N times in equidistant time steps until

each individual final iteration time derived by the respective bandwidths. Since we solve implicitly, there is no restriction to the310

time step size. But a larger timesteps parameter reduces the numerical error proportional to the step size parameters ∆p and

∆f . In this temporal solution we rely on the fact that the involved matrices are sparsely covered. The applied solver is part of

the SciPy Python library and designed for efficient solution of linear systems including sparse matrices (Virtanen et al., 2020;

Gommers et al., 2022).

The final bandwidth T for the diffKDE solution u is calculated after the calculations of p and f , using them both as described315

in Sec. 2.3.1 in lines 12 to 14 of Alg. 1. For the diffKDE u the differential equation is given in Eq. 20 and the solution approach

by the implicit Euler in Eq. 22. This is implemented in a second while-loop described in lines 16 to 18 in Alg. 1 and apart from

the final iteration time T ∗ and the matrix A identical to the calculations in the pilot step.

The return value is a vector providing the user the diffKDE, along with some main parameters and the opportunity to also

evaluate different approximation stages. It provides in the first and second entry the diffKDE and the spatial discretization320

Ω. The third entry is the initial value Φδ and the fourth pilot estimate p that influences the adaptive smoothing. The last

return values two vectors are handed back: stages and times. These include the approximation stages of the diffKDE and the

respective times exceeding the default optimal solution stored in the diffKDE and providing also some oversmoothed solution
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Table 2. Return values of the diffKDE: The return variable of the diffKDE is a vector. Its first entry is the diffKDE evaluated on the spatial

grid. Its second entry is the spatial grid Ω.

index name type size description

0 u Numpy array n +1 diffKDE values on Ω

1 Ω Numpy array n +1 spatial discretization

for individual evaluations. The times are the 20 timesteps used for the calculation of u and 10 additional with doubled stepsize

reaching up to the doubled approximated optimal final iteration time 2T ∗.325

Possible problems are caught in assert and if clauses. First of all, the data is reshaped to a Numpy array for the case of a list

handed in and it is made sure that this is non-empty. For the case of numerical issues leading to a pilot estimate including zero

values, the whole pilot is set back equal to 1 to ensure numerical convergence. Similar is done for the case of NaN value being

delivered for the optimal bandwidth for the diffKDE, in which case this is also set to the bandwidth chosen for f in Eq. 28.

2.4 Pre-implemented visual outputs330

Besides the standard use to calculate a diffKDE at an approximated optimal final iteration time for direct usage, we also

included three possibilities to generate a direct visual output, one of them being interactive. Matplotlib (Hunter, 2007) provides

the software measures for creating the plots. Most methods are part of the submodule Pyplot, the interactive plot is based on

the submodule Slider.

The function call evol_plot opens a plot showing the time evolution of the diffKDE. The plot includes drawings of the335

data points on the x-axis. In the background the initial values are drawn, but cut off at 20 % above the global maximum of

the diffKDE to preserve focus of the graphic on the diffKDE and evolution. The evolution is presented by drawings of the

individual time evolution stages using the sequential color map Viridis. In the front the diffKDE is drawn. This visualization of

the evolution provides the user insight into the data distribution and their respective influence on the final form of the diffKDE.

The function call pilot_plot opens that shows the diffKDE together with its pilot estimate p, showing the intensity of local340

smoothing. With this the user has the possibility to gain insight to the influence of this pilot estimator on the performance of

the diffKDE. This plot also includes the data points on the x-axis.

The function call custom_plot opens an interactive plot, allowing the user to slide through different approximation stages of

the diffKDE. This feature is based on the Slider module from the Matplotlib library (Hunter, 2007) and opens a plot showing the

diffKDE. On the bottom of this plot is a scale that shows the time, initially being set to the optimal iteration time derived from345

Eq. 13 in the middle of the scale. By clicking to the scale, the user can display the evolution stages at the respective (closest)

iteration time. This reaches down to the initial value and up to the doubled optimal iteration time. This interactive tool provides

the user a simple tool to follow the estimate at different bandwidths, the intensity of smoothing at different localizations. With
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the help of such plot it is possible to decide on whether the diffKDE is desired to be applied with a final iteration time that is

different from the default.350

3 Results and Discussion

In the following we document the performance of the diffKDE on artificial and real marine biogeochemical data. Different data

sources are chosen to best show possibilities and performance of the diffKDE. Additionally, snapshots of the pre-implemented

plot routines are given as examples. Whenever not stated otherwise, we used the default values of the input variables stated in

Tab. 2 in the calculation of the diffKDE.355

For testing our implementation against a known true PDF we first constructed a three-modal distribution. The objective is

to assess the diffKDE’s resolution and to exemplify the pre-implemented plot routines. The distribution was constructed from

three Gaussian kernels centered around µ1 = 3, µ2 = 6.5 and µ3 = 9 and with variances σ2
1 = 1, σ2

2 = 0.72 and σ2
3 = 0.52,

each of them with a relative contribution of 30 %, 60 % and 10 %, respectively:
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The performance of the diffKDE is then illustrated with real data of a) measurements of carbon isotopes (Verwega et al., 2021;

Verwega et al., 2021) and b) of plankton size (equivalent spherical diameter) (Lampe et al., 2021). We chose these data because

we propose to apply the diffKDE for the analysis of field data for assessment and optimization of marine biogeochemical- as

well as size-based ecosystem models. The carbon isotope data have been collected to constrain model parameter values of a

marine biogeochemical model that incorporates this tracer as a prognostic variable (Schmittner and Somes, 2016).365

3.1 Pre-implemented outputs

As described in Sec. 2.4, we included three plot functions in the diffKDE implementation. All of them open pre-implemented

plots, to give an impression of the special features that come with the diffKDE. An overview of the three possible direct visual

outputs of the diffKDE software is described below.

First we outline the possibility to display the diffKDE’s evolution. By calling the evol_plot function, a plot opens that370

shows all temporal evolution stages of the solution of Eq. 22. The temporal progress is visualized by a sequential colorscheme

progressing from light yellow over different shades of green to dark blue. On the x-axis, all used data points are drawn and in

the background a cut-off part of the initial value in light yellow as the beginning of the temporal evolution. The final diffKDE is

plotted as a bold blue line in front of the evolution process. This gives the user an insight in the distribution of the initial data and

their influence on the shape of the estimate. As an example of the default setting, we created an evolution plot from 100 random375

samples of Eq. 35 visualized in Fig. 2. The second example shows the possibility of displaying the diffKDE together with the

pilot estimate p by the function pilot_plot. This is the parameter function in Eq. 12 responsible for the adaptive smoothing.

Where this function is larger, the smoothing is less intense and allows more structure in the estimate of the diffKDE. Contrarily

where it is smaller, the smoothing becomes more pronounced and data gaps are better smoothed out. The result of the diffKDE
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Figure 2. Pre-implemented direct visual output of the evolution process of the diffKDE. The input data are 100 samples randomly collected

from Eq. 35. The individual data points are drawn on the x-axis. The y-axis represents the estimated probability density. The light yellow

vertical lines in the background are the initial value of the the diffKDE. The temporal evolution of the solution of Eq. 22 is visualized by the

sequent color scheme from light yellow over green to the bold blue graph in the front. The final diffKDE at the approximated optimal final

iteration time represents as this graph the end of the time evolution.

Figure 3. The diffKDE and its pilot estimate p. The input data are 100 samples randomly collected from Eq. 35. The data points are drawn

on the x-axis. The y-axis represents the estimated density of the diffKDE in blue and the pilot estimate in red.

is shown together with its parameter function p in figure Fig. 3 on the same random sample of the distribution from Eq. 35 as380

before.

Lastly, we illustrate example snapshots of the interactive option to investigate different smoothing stages of the diffKDE by

the function. We chose simpler and smaller example data for this demonstration, because these are better suited for visualization
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Snapshots of different approximation stages of the diffusion KDE

(a) Snapshot of first iteration step (b) Snapshot of small bandwidth

(c) Snapshot of optimal solution (d) Snapshot of large bandwidth

Figure 4. Different snapshots from the interactive visualization of the diffusion KDE generated from the artificial data set

(0.1,0.2,0.3,0.33,0.34,0.35,0.36,0.37,0.5,0.55,0.7,0.8). (a) shows the output at time = 0 and hence the initial value. (b) shows an

intermediate smoothing stage of the diffKDE. (c) shows the diffKDE of the input data at the approximated optimal iteration time T ∗. This

is the initial stage of the interactive graphic. By clicking the button on the lower right, the graphic can be reset to this stage. (d) shows an

oversmoothed version of the diffKDE at the doubled approximated optimal iteration time.

of this tool’s possibilities. The function custom_plot opens an interactive graphic, starting with a plot of the approximated

optimal default solution of the diffKDE at T ∗. In this graphic the user is able to individually choose, by a slider, the iteration385

time at which the desired approximation stage of the diffKDE can be seen. The time can be chosen from 0, where the initial

value is shown, up until the doubled approximated optimal time (2×T ∗). A reset button sets the graphic back to its initial stage

of the diffKDE at T ∗. Four snapshots of this interactive experience are drawn in Fig. 4.

3.2 Performance analyses on known distributions and in comparison to other KDEs

In this section we present results obtained by random samples of the trimodal distribution from Eq. 35 and lognormal distri-390

butions with differing parameters. Wherever suitable, the results are compared to other commonly used KDEs. These include

the most common Gaussian KDE with the kernel function from Eq. 8 (Gommers et al., 2022), the Epanechnikov KDE with

the kernel function from Eq. 7 (Pedregosa et al., 2012) and an improved implementation of the Gaussian KDE by Botev et al.

(2010) in a Python implementation by Hennig (2021). We begin with an example of how the user may choose individually
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Figure 5. Family of diffKDEs evaluated at different bandwidths: A data set of 50 random samples drawn as grey circles on the x-axis serve

to show the possibility to investigate a whole family of estimates by the diffDKE. The bold blue line represents the default solution of the

diffKDE by solving the diffusion equation up to the approximated optimal final iteration time T ∗. The other colors depict more detailed prior

approximation stages with smaller bandwidth, i.e. earlier iteration times, and a smoother estimate with a far larger iteration time.

different smoothing grades of the diffKDE, then compare the different KDEs with the true distribution, followed by investigat-395

ing the influence of noise on different KDEs, and finally show the convergence of different KDEs to the true distribution with

increasing sample size.

We start with an individual selection of the approximation stages. This is one of the main benefits of the diffKDE compared

to standard KDEs by providing naturally a family of approximations. This family can be observed by the function custom_plot.

Individual members can be produced by setting the bandwidth parameter T in the function call of the diffKDE. This gives the400

user the chance to choose among more and less smooth approximations. A selection of such approximations along with the

default solution are shown in Fig. 5 on a random sample of 50 data points from the trimodal distribution in Eq. 35. The plot

shows how smaller iteration times resolve more structure in the estimate, while a substantially larger iteration time has only

little influence on the increased smoothing of the diffKDE.

From now on we only work with the default solution of the diffKDE at T ∗. We start with comparisons of the diffKDE405

and the three other popular KDEs directly to the underlying true distribution. The three other KDEs are the Gaussian KDE

in an implementation from SciPy (Gommers et al., 2022), the Epanechnikov KDE in an implementation from Scikit-learn

(Pedregosa et al., 2012) and an improved Gaussian KDE by Botev et al. (2010) in a Python implementation by Hennig (2021).

We use differently sized random samples of the known distribution from Eq. 35 and the standard lognormal distribution

both over [−1,12], for a direct comparison of the accuracy of the KDEs. The random samples are 50 and 100 data points of410

each distribution and all four KDEs are calculated and plotted together in Fig. 6. The underlying true distribution is plotted

in the background to visually assess the approximation accuracy. In general, the diffKDE resolves more of the details of the

structure of the true distribution, while not being too sensitive to patterns introduced by the selection of the random sample and
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Figure 6. Test cases with known distributions: The plots (a) and (b) show KDEs of random samples of the trimodal distribution defined in

Eq. 35, (c) and (d) the same for a lognormal distribution. The left figure column is constructed from 50 random samples, the right from 100.

In all plots the true distribution is drawn in grey in the background and the random data sample as grey dots on the x-axis. Each subfigure

shows four KDEs: the diffKDE, the Botev KDE, the Gaussian KDE and the Epanechnikov KDE. In the labels of the KDEs are also the

integrals over the interval [−1,12] given for each of the KDEs

individual outliers. For the 50 random samples test of the trimodal distribution, all KDEs do not detect the third mode and only

the diffKDE and the Epanechnikov KDE detect the second. The magnitude of the main mode is also best resolved by these415

two. In the 100 random samples test of the trimodal distribution, the diffKDE and the Botev KDE are able to detect all three

modes. The main mode is best resolved by the diffKDE, whereas the third mode best by the Botev KDE. In both test cases

for the trimodal distribution, the Gaussian KDE is the smoothest and the Epanechnikov KDE provides the least smooth graph.

For 50 as well as for 100 random samples drawn from the lognormal distribution the magnitude and the steep decline to 0 is

best reproduced by the diffKDE. The Gaussian KDE always performs the worst. The Botev KDE is generally also close to the420

diffKDE, but resolves in the tail of the distribution too much influence of individual outliers. An analysis of the the integral of

the KDEs over the observed domain reveals that the diffKDE is the only one that integrates to 1 in all test cases.

We refined the test cases from Fig. 6 by investigating a lognormal distribution with different parameters and a restriction to

the interval [0,12] in Fig. 7. We varied mean and variances of the normal distribution and used two different means and three

different variances resulting in six test cases. All of them are run with 300 random samples and again with all four KDEs.425

The larger the variance becomes, the more structure of individual data points is resolved by the Botev KDE. The Gaussian

KDE fails for increasing variance too, resulting in intense oversmoothing. The Epanechnikov KDE performs well for smaller

variances and larger means, but also oversmoothes in the other cases. The diffKDE is generally one of the closest to the true

distribution, while not resolving too much of the structure introduced by the choice of the random sample, especially for
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Figure 7. Lognormal test cases with different mean and variance parameters. Of each distribution 300 random samples were taken and the

diffKDE, the Botev KDE, the Gaussian KDE and the Epanechnikov KDE calculated and plotted together with the true distribution. The

random data sample is drawn as gray circles on the x-axis. (a) and (b) use σ = 1, (c) and (d) σ = 0.5 and (e) and (f) σ = 3 in their underlying

normal distributions. The means are in the left column µ = 0, the right column µ = 1 of the underlying normal distribution.

increased variances. But this too tends to resolve too much structure in the vicinity of the mode for smaller variances. The430

integral of our implementation is again always exactly 1.

Now, we show the performance of the diffKDE on increasingly large data sets. We still use the trimodal distribution from Eq.

35. We start with four larger random data samples ranging from 100 to 10 million data points of the trimodal distribution and

then being restricted to our core area of interest [−1,12]. We calculate the diffKDE from all of them as well as the respective

runtime on a consumer laptop from 2020. We compare the results again to the true distribution in Fig. 8. All of the estimates435

could be calculated in less than one minute. For 100 data points there is still an offset to the true distribution visible in the

estimate. For the larger data samples the estimate only shows some minor uneven areas, which smooth out until the largest test

case.

Furthermore, we investigated the convergence of the diffKDE to the true distribution, again in comparison to the three other

KDEs. The error between the respective KDE and the true distribution is calculated by the Wasserstein distance (Panaretos440

and Zemel, 2019) with p = 1 by a SciPy function. We used increasingly large random samples from the trimodal distribution

starting with 10 and reaching up to 1 million. The errors calculated for each of the KDEs on each of the random samples are
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Figure 8. Test cases with different sample sizes: All four plots show the diffKDE of random samples of the known trimodal distribution

defined in Eq. 35. (a) is calculated from a subsample of 100 data points, (b) 100,000, (c) 1,000,000 and (d) 10,000,000, all cut to the

interval [−1,12] and hence lacking a few data points. The true numbers of incorporated data points in the four test cases are given in the

respective sub-headings. The measured computing time on a 2020 MacBook Air is also drawn in the respective label.

listed in Tab. 3. The values from Tab. 3 are visualized in Fig. 9 on a log-scale and with a linear regression for each KDE’s

error values. The diffKDE, the Gaussian and the Botev show a similar steep decline, while the Epanechnikov KDE far slower

decreases its error with increased sample size. The diffKDE and the Botev KDE generally show similar error values, the445

diffKDE relatively smaller ones on smaller data samples, the Botev KDE relatively smaller ones on data samples larger than

around 5000.

Finally, we investigated the noise sensitivity of the diffKDE compared to the three other KDEs on data containing artificially

introduced noise. We again used the trimodal distribution from Eq. 35 and 1000 random samples. From this, we created noised

data Xθ ∈ RN by450

(Xθ)i = (X)i + (−1)τ
rand10−2θσ for all i ∈ {1, ...,1000}, (36)

where θ ∈ {0,1,5,15,30} defines the percentage of noise with respect to the standard deviation σ ∈ R. τ ∈ {1,2} was chosen

randomly as well as rand ∈ [0,1]. The error is again expressed by the Wasserstein distance between the original probability

density and the respective KDE. The results are visualized in Fig. 10 with an individual panel for each KDE. The error of

the Epanechnikov KDE is overall the largest and also increases to the largest. The Gaussian KDE produces the second largest455

error, but this even decreases with increased noise. The Botev KDE produces the smallest errors, but for increased noise this

increases and approaches the magnitude of the one from the diffKDE. The error of the diffKDE only minimally responds to

increased noise in the data. Visually, all four KDEs follow a similar pattern of a shift to the left of the graph. The Botev KDE

additionally resolves more structure of the noised data as the noise increases.
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Table 3. Error convergence

sample size errordiffKDE errorBKDE errorGKDE errorEKDE

10 0.02354 0.03618 0.02662 0.0273

50 0.01813 0.02484 0.02182 0.02017

100 0.00422 0.00724 0.01371 0.00702

150 0.00664 0.00937 0.01526 0.00933

200 0.00787 0.00894 0.01522 0.00967

300 0.0053 0.00621 0.01385 0.00849

400 0.00368 0.00484 0.01147 0.0081

500 0.0027 0.00324 0.01057 0.00761

750 0.00361 0.00343 0.00999 0.00807

1000 0.00321 0.00238 0.00933 0.00785

2000 0.00235 0.00171 0.00743 0.00771

5000 0.00154 0.00187 0.00578 0.00802

10000 0.00199 0.00188 0.00437 0.00791

50000 0.00113 0.00093 0.00234 0.00811

100000 0.00074 0.00059 0.00181 0.00822

500000 0.00048 0.00038 0.00108 0.00835

1000000 0.00046 0.00034 0.00084 0.00838

3.3 Performance analyses on biogeochemical data460

In this final part, we show the diffKDE’s performance on real marine biogeochemical field data. We chose two example data:

A set of δ13C in particulate organic carbon (POC) (Verwega et al., 2021) data and a set of plankton size spectra data (Lampe

et al., 2021). Both data sets were already analyzed using KDEs in their original publications (Verwega et al., 2021; Lampe

et al., 2021). Here we expand these analyses by a comparison of the KDEs used in the respective publications to the new

implementation of the diffKDE. For the δ13CPOC data, the Gaussian KDE was the one used in the data description publication.465

Since we have done this in the previous chapter, we furthermore added the Epanechnikov and the Botev KDE to these graphics.

For the plankton size spectra data, we only compared the diffKDE to the two Gaussian KDEs used in the respective publication

to preserve the clarity of the resulting figures.

The δ13CPOC data (Verwega et al., 2021) was collected to serve for direct data analyses as well as for future model assess-

ments (Verwega et al., 2021). We show here the Gaussian KDE as it was used in the data publication in a direct comparison to470

the diffKDE. Furthermore, we added the Epanechnikov and the Botev KDE. Since in this case no true known PDF is available,

we have to compare the four estimates and subjectively judge their usefulness. In Fig. 11 we show the KDEs on four different
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Figure 9. The evolution of the errors of the diffKDE, the Gaussian KDE, the Epanechnikov KDE and the Botev KDE are drawn on log-scale

against the increasing sample size on the x-axis. The error has been calculated with the Wasserstein distance. A linear regression line on the

log-scale is constructed from the discrete values of the individual errors for all four KDEs.

Figure 10. Noised data experiments: A random sample of 1000 data points of the trimodal distribution is artificially noised by differing

amounts of the standard deviation. (a) shows the resulting diffKDEs of the differently noised data, (b) the Gaussian KDE, (c) the Botev KDE

and (d) the Epanechnikov KDE. In all four panels the original true distribution is drawn in grey in the background. The values of the error

between the KDEs and the original true distribution are also part of the respective labels.

subsets of the δ12CPOC data: a) the full data set, b) a restriction to the core data interval of [−35,−15], where 98.65 % of the data

is located, and then even further restricted to c) the euphotic zone and d) only data sampled in the 1990s. In all three cases that
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Figure 11. Comparison of KDE performance on marine biogeochemical field data: The δ13CPOC data (Verwega et al., 2021) is in detail

described in Verwega et al. (2021) and is covering all major world oceans, the 1960s to 2010s and reaches down into the deep ocean. In all

four panels the diffKDE is plotted together with the Gaussian, the Epanechnikov and the Botev KDE. (a) Shows KDEs from all available

data, (b) shows the KDEs of the data restricted to the core data values of [−35,−15], (c) shows the KDEs from only euphotic zone data with

values in [−35,−15] and (d) the KDEs from all 1990s data with values in [−35,−15].

involve deep ocean measurements, the Botev KDE produces strong oscillations while the Gaussian KDE strongly smoothes475

the dip between the modes at around δ13CPOC = −24 and δ13CPOC = −22 and mostly the one between around δ13CPOC = −28

and δ13CPOC = −24. The Epanechnikov KDE resolves more structure than the Gaussian, but still less pronounced than the

diffKDE. Especially in the full data analysis, the diffKDE reveals the most structure while not resolving smaller data features

of individual data points. The KDEs from the euphotic zone data are all reasonably smooth. The Gaussian KDE is again the

smoothest and missing the mode at δ13CPOC = −22 completely. The other three KDEs resolve a similar amount of data struc-480

ture. The Botev KDE reveals a better distinction between the modes at around δ13CPOC = −24 and δ12CPOC = −22 while the

diffKDE shows the first one more pronounced. These observations are consistent with those from the experiments from Fig.

7 and Fig. Figure 10, where especially the Gaussian and the Botev KDE struggle with the resolution of data with increasing

variances or noise. From the four here observed δ12CPOC data sets the euphotic zone data shown in panel (c) in Fig. 11 has

with 7.78 the smallest standard deviation. The other shown data has variances 13.91, 10.96 and 9.61 for panels (a), (b) and (d),485

respectively.

Another example demonstrates the performance of the diffKDE if applied to plankton size data (Lampe et al., 2021). The

data of size, abundance of protist plankton was originally collected for resolving changes in plankton community size-structure,

providing complementary insight for investigations of plankton dynamics and organic matter flux (e.g., Nöthig et al., 2015).

In the study of Lampe et al. (2021) a KDE was applied for the derivation of continuous size spectra of phytoplankton and490
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microzooplankton that can potentially be used for the calibration and assessment of size-based plankton ecosystem models. In

their study they used a Gaussian KDE, as proposed in Schartau et al. (2010), but with two different approaches for generating

plankton size spectra. Uncertainties, also with respect to optimal bandwidth selection, were accounted for in both approaches

by analyzing ensembles of pseudo-data resampled from original microscopic measurements. Smooth plankton spectra were

obtained using the combined approach, where all phytoplankton and all zooplankton data were lumped together respectively495

and single bandwidths were calculated for every ensemble member (set of resampled data). This procedure avoided over-

fitting but was also prone to over-smoothing. More structured size spectra were obtained with the composite approach, where

individual size spectra were calculated for each species or genus and then pieced together. Since the variance within species

or genus groups is smaller than within the large groups ’phytoplankton’ or ’zooplankton’, resulting bandwidths and therefore

the degree of smoothing were considerably smaller than in the combined approach. This computationally expensive method500

revealed many details in the spectra, but at the same time tended to resolve narrow peaks that were either clearly insignificant

or remained difficult to interpret (see supplemental material in Lampe et al. (2021)).The here proposed diffKDE is tested

with resampled data used for the simpler combined approach. The objective is to identify details in the size spectra that

remained previously unresolved while insignificant peaks, as found in the composite approach, become smoothed out. Figure 12

shows the performance of the diffKDE in comparison to the original combined and composite spectra that were derived as505

ensemble means of estimates obtained with a Gaussian KDE. The spatial discretization of the diffKDE was set to n = 600 to

be comparable to the other already published KDEs in this case. The diffKDE seems to meaningfully combine the advantages of

the two Gaussian KDE approaches in both spectra, of the phytoplankton and microzooplankton respectively. With the diffKDE

it is possible to generate estimates that display more detailed structure of the composite KDE for cell sizes smaller than 10 µm,

in particular in the microzooplankton spectrum. Concurrently, detailed variations, as caused by overfitting in the composite510

spectra, become suppressed for cell sizes larger than 10 µm. Thus, with the diffKDE it is possible to generate a single robust

estimate that otherwise is only achieved by analyzing a series of estimates of a Gaussian KDE.

3.4 Future application to model calibration

The robustness of Earth system models is crucial for providing reliable climate projections for a sustainable development into

Earth’s future. Such models can assist the understanding of past and present and predict future conditions in the Earth system.515

Earth system models simulate the ocean’s element cycling (e.g., Ilyina et al., 2013) and with this the ocean’s carbon uptake

capacity (e.g., Frölicher et al., 2015). They serve to assess the current and future state of our climate system and provide

projections for different mitigation scenarios. This information can be used to support a sustainable development in our climate

system (IPCC, 2022). As a consequence, political decisions depend on reliable projections to construct a safe pathway into

Earth’s future.520

Calibration can increase the reliability of Earth system models (e.g., Oliver et al., 2022). For this purpose, a metric calculates

the difference between simulated model output and measured field data. This metric defines the target or cost function in an

optimization process, where unknown or uncertain model parameters are identified or estimated by numerical algorithms. This
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Figure 12. Comparison of KDE performance on (a) phytoplankton and (b) microzooplankton size spectra. The construction of composite

and combined size spectra is described in Lampe et al. (2021) and based on Gaussian KDEs.Smoother combined spectra are the result of one

KDE with a common bandwidth for all data. More structured composite spectra were assembled from taxon-specific spectra with individual,

hence smaller, bandwidths.

process is sometimes also called "tuning" of the model. The result is usually a single or multiple sets of "optimal" parameters.

They provide the model configuration with results closest to the incorporated field data.525

Comparison of model and field data requires additional processing to account for spatial-temporal differences between

collected samples and model resolution. Typically, simulation results are available at every single spatial grid point and in

every time step. In comparison, field data are usually sparsely available only. Interpolating such sparse field data can introduce

high uncertainty (e.g., Oliver et al., 2022). PDFs provide a useful approach to investigate data independent of the number of

data points available (Thorarinsdottir et al., 2013). A comparison of two such functions can easily resolve the issue of non-equal530

field observations and simulation results. Histograms are commonly used as an approach to compare and ultimately constrain

the distribution of model data to observations. However, many issues arrive including the subjective selection of intervals and

histograms not being proper PDFs themselves.

The presented diffKDE provides a non-parametric approach to estimate PDFs with typical features of geoscientific data.

Being able to resolve typical patterns such as multiple or boundary close modes, while being insensitive to noise and individual535

outliers makes the diffKDE a suitable tool for future work in the calibration and optimization of Earth system models.

4 Summary and conclusions

In this study we constructed and tested an estimator (KDE) of probability density functions (PDFs) that can be applied for

analysing geoscientifc and ecological data. KDEs allow the investigation of data with respect to their probability distribution,

and PDFs can be derived even for sparse data. To be well suited for geoscientific data, the KDE must work fast and reliably on540

differently sized data sets, while revealing multimodal details as well as features nearby data boundaries. A KDE should not
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be overly sensitive to noise introduced by measurement errors or by numerical uncertainties. Such an estimator can be applied

for direct data analyses or can be used to construct a target function for model assessment and calibration.

We presented a novel implementation of a KDE based on the diffusion heat process (diffKDE). This idea was originally pro-

posed by Chaudhuri and Marron (2000) and its benefits in comparison to traditional KDE approaches were widely investigated545

by Botev et al. (2010). Our approach combines the solution of the diffusion equation with with two pilot estimation steps that

correspond to the Gaussian KDE. We used an approximation of the optimal bandwidth for the diffKDE by a central differential

quotient and plug-in of the pilot estimates. For their bandwidths we used variations of the rule of thumb by Silverman (1986).

Our approach results in three subsequent estimations of the PDF, each of them chosen with a finer bandwidth approximation.

Finite differences build the fundamentals of our discretization. The spatial discretization are equidistant finite differences.550

The δ-distribution in the initial value is discretized by piecewise linear functions along the spatial discretization points con-

structing a Dirac-sequence. For the timestepping we applied an implicit Eulerian algorithm on an ordinary differential equation

set up by a tridiagonal matrix corresponding to the diffusion equation on the spatial equidistant grid.

Our diffKDE implementation includes pre-implemented default output options. The first is the visualization of the diffusion

time evolution showing the sequence of all solution steps from the initial values to the final diffKDE. This lets a user see555

the influence of individual data points and outlier accumulations on the final diffKDE and how this decreases over time. The

second is the visualization of the pilot estimate that is also included in the partial differential equation to introduce adaptive

smoothing properties. This provides the user an easy insight into the adaptive smoothing as well as the lower boundary of

structure resolution given by this parameter function. Finally, an interactive plot provides a simple opportunity to explore all

of these time iterations and look even beyond the optimal bandwidth and see smoother estimates.560

Our implementation is fast and reliable on differently sized and multimodal data sets. We tested the implementation for up

to 10 million data points and obtained acceptably fast results. A comparison of the diffKDE on known distributions together

with classically employed KDEs showed reliable and often superior performance. For comparison we chose a SciPy imple-

mentation (Gommers et al., 2022) of the most classical Gaussian KDE (Sheather, 2004), an Scikit implementation (Pedregosa

et al., 2012) of an Epanechnikov KDE (Scott, 1992) and a Python implementation (Hennig, 2021) of the improved Gaussian565

KDE developed by Botev et al. (2010). We designed multimodal and different boundary-close distributions and found our

implementation to generate the most reliable estimates across a large range of sample sizes (Fig. 9). The diffKDE was neither

prone to oversmoothing nor overfitting of the data, which we could observe in the other tested KDEs. A noise sensitivity test

in comparison to the other KDEs also showed a good stability of the diffKDE against noise in the data.

An assessment of the diffKDE on real marine biogeochemical field data in comparison to usually employed KDEs reveals570

superior performance of the diffKDE. We used carbon isotope and plankton size spectra data and compared the diffKDE to the

KDEs that were used to explore the data in the respective original data publications. On the carbon isotope data, we furthermore

applied all previous KDEs for comparison. In both cases we were able to show that the diffKDE resolves relevant features of

the data while not being sensitive to individual outliers or uncertainties (noise) in the data. We were able to obtain a best

possible and reliable represantation of the true data distribution, better than those derived with other KDEs.575
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In future studies the diffKDE may potentially be used for the assessment, calibration and optimization of marine biogeochemical-

and Earth system models. Already a plot of PDFs, of field data and simulation results respetcively, may provide visual insight

into some shortcomings of the applied model. A target function can be constructed by adding a distance like the Wasserstein

distance (Panaretos and Zemel, 2019) or other useful metrics for the calibration of climate models that can be investigated

(Thorarinsdottir et al., 2013). Thus, KDE applications such as our diffKDE can greatly simplify comparisons of differently580

sized field and simulation data sets.

Code availability. The exact version of the diffKDE implementation (Pelz and Slawig, 2023) used to produce the results used in this paper

is archived on Zenodo: https://doi.org/10.5281/zenodo.7594915.

Appendix A

Here, we briefly give the proof of the integral property of the used Dirac sequence Φh defined in Equation 25. Let h ∈ R>0.585

Then we obtain

∫
Φh (x)dx =

xi−1∫

xi−2

Φh (x)dx +

xi∫

xi−1

Φh (x)dx +

xi+1∫

xi

Φh (x)dx

=
1
2

(xi−2 −xi−1)
1

xi−2 −xi−1

xi

xi −xi−1
+

1
2

(xi −xi−1)
(

1
xi−2 −xi−1

xi

xi −xi−1
+

1
xi+1 −xi

−xi−1

xi −xi−1

)

+
1
2

(xi+1 −xi)
1

xi+1 −xi

−xi−1

xi −xi−1

=
1
2
h

1
h

xi

h
+

1
2
h

(
1
h

xi

h
+

1
h

−xi−1

h

)
+

1
2
h

1
h

−xi−1

h
590

=
1
2

xi

h
+

1
2
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h
− 1

2
xi−1

h
− 1

2
xi−1

h

=
xi −xi−1

h

= 1. (A1)
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Chapter 5

Other approaches to the diffusion
kernel density estimator

In this chapter, I explore possibilities to implement a diffusion KDE that
differ from my published version [PS23]. These include my first (discon-
tinued) version with a discretization based on finite elements, a possible
finite elements based implementation in FEniCS [ABH+15] and a ver-
sion proposed by Botev et al. [BGK10] and implemented by Deniz et al.
[DCR11] in Python.

5.1 A finite element approach to the diffusion
kernel density estimator

Finite elements (FEM) were my first approach to discretize the diffusion
KDE. This follows a common solution strategy for time dependent partial
differential equations in two steps: first, discretize the time derivation by
finite differences and second, derive the variational formulation in each of
these time step. The result is a sequence of variational problems [LMW12].

In the following, I will show the FEM discretization on the specific
example of the diffusion equation from Eq. 3.0.3. Let n P N and un denote
the solution u P C2,1 (Ω ˆ Rą0, Rě0) of Eq. 3.0.3 at the n-th time step.
Now, we use a backward Euler to discretize the time stepping. By this, we
receive a sequence of time stationary differential equations:

un+1 ´ un

∆t
=

B

Bt
un+1 =

1
2
∇
(
∇
(

un+1

p

))
(5.1.1)

We use this backward differential quotient to approximate the time deriva-
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tive on the left hand side in Eq. 3.0.3.
Now, we identify the solution of the following time step un+1 =: u to

be the unknown and the current un as the known initial value from the
previous time step. This delivers

u ´ ∆t
1
2
∇
(
∇
(

u
p

))
= un (5.1.2)

The solution u for Eq. 5.1.2 shall from now on be searched within a trial
space defined as

V = {v P H1 (Ω) ;
B

Bν

(
v (x)
p (x)

)
= 0, x P BΩ} (5.1.3)

The restriction to V ensures the solution satisfying the Neumann boundary
condition from Eq. 3.0.4 [LMW12].

Next, we define a test space as

V̂ = {v P H1 (Ω) ; v (x) = 0, x P BΩ} (5.1.4)

and use elements from V̂ for multiplication of Eq. 5.1.2 to receive

u v ´ ∆t
1
2
∇
(
∇
(

u
p

))
v = un v. (5.1.5)

Integration by parts and the property that v (x) = 0 for all v P V̂ and
x P BΩ delivers for all v P V̂∫

Ω
u v dx +

∫
Ω

∆t
1
2
∇
(
∇
(

u
p

))
v dx =

∫
Ω

un v dx

ñ

∫
Ω

u v dx + ∆t
1
2

∫
Ω
∇
(
∇
(

u
p

))
v dx =

∫
Ω

un v dx

ñ

∫
Ω

u v dx + ∆t
1
2

∫
Ω

(
∇
(

u
p

))
∇v dx =

∫
Ω

un v dx (5.1.6)

The last line (Eq. 5.1.6) is the so called weak formulation of the stationary
diffusion partial differential equation Eq. 3.0.3.

The diffusion KDE can now be derived by solving Eq. 5.1.6 in every
time step n P N up to a final iteration time T P Rą0. For the first time
step, u0 is the initial condition given in Eq. 3.0.5. In every following time
stepn P N, the initial value un denotes the solution from the previous time
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step and Eq. 5.1.6 is solved for the next one denoted as u. The solution u
from the final time step is the diffusion KDE.

5.2 FEniCS implementation of the diffusion ker-
nel density estimator

A simple and fast way to implement a solver for a FEM approach discussed
in Sec. 5.1 is given by the software framework FEniCS [ABH+15; LMW12;
LL16]. FEniCS is a free Python tool for the calculation of FEM solutions
of partial differential equations. In this section, I present a possible FEM
implementation to calculate the diffusion KDE as proposed in Eq. 5.1.6.
This was my first attempt to the diffusion KDE realized in FEniCS. I
discarded it later on due to the demanding prerequisites for running the
FEniCS software.

As before, we use an input data vector X P ΩN , where Ω Ď R is a
domain and N P N the number of data points.

The calculations are carried out over an equidistant spatial discretiza-
tion of nel P N discretization points between the interval boundaries
xmin ă xmax P Ω. Boundaries of the spatial domain are minimum and max-
imum value of the input data. The trial and test space from Equation 5.1.3
and Equation 5.1.4 are set equal, since FEniCS does not account for bound-
ary conditions in its definition of function spaces. The Neumann boundary
conditions for the trial function u are default in FEniCS [ABH+15; LW10].
As FEM, I chose the linear Lagrange (P1) functions. These are triangles
with vertices at every edge. The solution u P V is continuous over Ω and
linearly within each FEM. The δ-distribution in the initial value can be
approximated by point sources at each data point. To ensure that the
estimate integrates to 1, I weigh the point sources by a mass of

point_mass =
nel

N (xmax ´ xmin)
.

For comparability, I set the number of spatial discretization points, time
step size and number equal those in the finite differences approach pre-
sented in Chap. 4. As well are the approximation of the optimal final
iteration times for u and the two pilot estimates, all described in detail for
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the finite differences implementation. The solution is delivered as a vector
of the diffusion KDE values on the spatial grid together with this. The full
implementation is described in Alg. 1.

Algorithm 1: Algorithm for FEM solver for the diffusion KDE

Require: X P RN

1: Ω Ð (xmin, xmin + h, ..., xmax ´ h, xmax) P Rn+1

2: V, V̂ Ð {v P H1 (Ω) ; v (x; t) = 0, x P BΩ}
3: p0, f 0, u0 Ð 1

N ∑N
i=1 δ (x ´ Xi)

4: Tp Ð σ2
(

4
3 N
)´ 2

5

5: Tf Ð

(
0.9min

(
σ, iqr(data)

1.34

))2
N´ 2

5

6: t Ð 0, timesteps Ð 20, ∆p Ð Tp/timesteps
7: while t ă Tp do
8: solve:

∫
Ω p v dx + ∆pt 1

2

∫
Ω ∇p∇v dx =

∫
Ω pnv dx @v P V̂

9: t Ð t + ∆p
10: end while
11: t Ð 0, ∆ f Ð Tf /timesteps
12: while t ă Tp do
13: solve:

∫
Ω p v dx + ∆ f t 1

2

∫
Ω ∇ f∇v dx =

∫
Ω f nv dx @v P V̂

14: t Ð t + ∆ f
15: end while

16: q Ð

√∫
Ω

((
f
p

)2
)2

dh

17: Eσ Ð 1
n+1 ∑n+1

i=0

√
p (xi)

18: T Ð

(
Eσ

2N
√

πq2

) 2
5

19: t Ð 0, ∆ Ð T/timesteps
20: while t ă T do
21: solve:

∫
Ω u v dx + ∆t 1

2

∫
Ω ∇

(
u
p

)
∇v dx =

∫
Ω un v dx @v P V̂

22: t Ð t + ∆
23: end while
24:
25: return Ω, u
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5.3. The approach by Botev et al. (2010)

The main differences from Alg. 1 to the finite differences implementa-
tion are the solvers of the differential equations for p, f and u in line 8, 13
and 21.

Next, I compare the performance of the FEniCS implementation fol-
lowing Alg. 1 to the published finite differences approach [PS23]. The first
test case is shown in Fig. 5.1 and build on known distributions: a trimodal
and a lognormal one. From both a random sample of 50 and 100 data
points are collected and both KDEs calculated an drawn together. In all
four cases the KDEs align well. In the main modes, the KDEs generally
differ the most. The finite differences approach resolves the true structure
better, but this is also true for the structure of individual outliers, mostly
prominent in the lognormal test cases.

A second test case shows the performance of the two different diffusion
KDE implementations on the δ13CPOC data [VST+21] in Fig. 5.2. The
chosen test cases correspond to Fig. 11 from the diffusion KDE description
in Chap. 4. Here, the true underlying dirstibutions are unknown and
therefore not availabe for comparison. Furthermore, the two estimators
are so closely aligned that I decided to evaluate their difference by the
Wasserstein distance [PZ19]. Their difference is in the magnitude of 0.0001
to 0.0002 and nearly undetectable in visual examination of the graphs.

5.3 The approach by Botev et al. (2010)

In their publication about the diffusion KDE [BGK10], Botev et al. provide
a discussion of the benefits of this approach and their own idea on how
to design a possible implementation. Their idea is built on a fixed point
iteration to solve optimal bandwidths implicit dependency on the true
distribution. In this section, I want to briefly discuss their approach and
show results of an implementation of this in comparison to my own
algorithm.

The algorithm by [BGK10] is based on a new bandwidth approxima-
tion algorithm refining ideas by [SJ91]. The idea is a fixed point iteration
for simultaneously solving the optimal bandwidth T˚ and the squared
L2-norm of the second derivative of the PDF || f (2)||2. The iteration starts
backwards with an initial guess for T˚ at machine precision and a guess

103



5. Other approaches to the diffusion kernel density estimator

Figure 5.1. Diffusion KDE performance on known distributions: All four plots show
the diffKDE and the FEM diffusion KDE on differently sized random samples
of known distributions. (a) and (b) used a trimodal distribution, (c) and (d) a
lognormal distribution. The true distribution is drawn as the grey shaded area and
the random data samples as grey circles on the x-axis.

for || f (8)||2. The latter guess can then be used to estimate a better approxi-
mation for T˚ and this for an approximation of || f (7)||2 and so on.

The full algorithm by Botev et al. is illustrated in Alg. 2 and corresponds
to ALG1 in [BGK10]. It uses the fixed point iteration to calculate the pilot
p evaluated at Tp and || f 2||2 to calculate the optimal bandwidth T˚ for
the diffusion KDE.

The first author of [BGK10] (Botev) provided an implementation
of the pilot step (Alg. 2 up to line 9) of their idea. I will refer to this
KDE as the Botev KDE. This implementation relies on the invariance
of the diffusion equation under the Fourier transformation [LT05]. The
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5.3. The approach by Botev et al. (2010)

Figure 5.2. Compared FEM diffusion KDE and diffKDE performance on δ13CPOC
data: (a) shows all available δ13CPOC data, (b) a restriction to the data core value
area of [´35, ´15], (b) only euphotic zone data over the core interval and (d) only
1990s data over the core interval.

implementation is provided by Botev in Matlab and re-implemented in
Phython by [Hen21]. This approach provides a fast solution in between
of Fourier transformation and back transformation. Approximation of
the optimal bandwidth and data smoothing are performed in the Fourier
space. The full implemented algorithm for the calculation of the Botev
KDE is given in Alg. 3. Lines 1 and 2 of Alg. describe the grid set up and
the interpolation of the data onto this. Lines 3 to 6 transform the data
into the Fourier space and lines 7 and 8 prepare the initial value for the
fixed point iteration. Lines 9 to 13 describe the fixed point algorithm for
the solution of the optimal bandwidth Tp corresponding to lines 3 to 7
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5. Other approaches to the diffusion kernel density estimator

Algorithm 2: The algorithm by Botev et al. (numbers in brackets
are referrin to the equation numbers in ALG1 [BGK10])

Require: X1, ..., XN P R

1: tl+1 = eps

2: || f (l+1)||2 Ð
(´1)l

N2 ΣN
k=1ΣN

m=1Φ(2l) (Xk, Xm; 2tl+1) |x=Xj {(27), [BGK10]}

3: for l = 7 to 2 : do

4: tl Ð

(
1+( 1

2 )
l+ 1

2

3
1ˆ3ˆ...ˆ(2l´1)

N
√

π
2 ∥ f l+1∥2

)
{(27), [BGK10]}

5: || f (l)||2 Ð
(´1)l

N2 ΣN
k=1ΣN

m=1Φ(2l) (Xk, Xm; 2tl) {(26), [BGK10]}
6: l = l ´ 1
7: end for
8: Tp Ð tl

9: p Ð 1
N ΣN

j=1Φ(2l) (¨, Xj; Tp
)

10: a Ð pα {α P [0, 1]}

11: || f 2||2 Ð
(´1)l

N2 ΣN
k=1ΣN

m=1Φ(2l) (Xk, Xm; 2tl)

12: L Ð 1
2

d
dx

(
a d

dx
f
p

)
13: ||L f ||2 Ð 1

N2 ΣN
i=1ΣN

j=1L˚Lκ (x, Xi; 2tl) |x=Xj {(32), [BGK10]}

14: T˚ Ð

(
1
N ΣN

i=1σ´1(Xi)

2N
√

π||L f ||2

) 2
5

{(23), [BGK10]}

15: smooth the diffusion estimator until T˚ as the diffKDE

in Alg. 2. Lines 14 to 16 use the optimal bandwidth Tp to calculate the
KDE of the input data in the Fourier space. In lines 17 to 21, this KDE is
backtransformed with an inverse Fourier transform and the final two lines
provide the re-scaled bandwidth of the Botev KDE.

A further extension of Alg. 3 to Alg. 2 was realized by [DCR11] in
Python and can be obtained by the authors upon request. I will refer to this
KDE as the Deniz KDE. I received the implementation by Stefan Rotter
from the Freiburg University (personal communication) and prepared
a comparison on the δ13CPOC data base [VST+21] and artificial data
generated from known distributions in Figure 5.3. The known distributions
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5.3. The approach by Botev et al. (2010)

Algorithm 3: Algorithm for the calculation of the Botev KDE

1: xmesh Ð range(MIN, MAX, 214) {set up equidistant grid}
2: Xinit Ð 1

N histc(X, xmesh); Xinit Ð
Xinit

∑ Xinit
{interpolate X in xmesh}

3: [nrows, ncols] Ð size(Xinit)

4: weight Ð

[
1; 2e´i(1:nrows´1) π

2˚nrows

]
5: Xinit Ð [Xinit(1 : 2 : end, :); Xinit(end : ´2 : 2, :)] {re-order columns}
6: X̃ Ð real(weightfft(Xinit) {DFT}

7: I Ð [1 : n ´ 1]2; X̃2 Ð

(
X̃(2:end)

2

)2

8: || f̂ (l+1)||2 Ð 2π2l ∑(Il X̃2e´Iπ2tl )

9: for l = 7 to 2 : {fixed-point-Alg. for t = ζ ˚ γ[5](t)} do

10: tl Ð

(
1+( 1

2 )
l+ 1

2

3
1ˆ3ˆ...ˆ(2l´1)

N
√

π
2 || f̂ (l+1) ||2

) 2
3+2l

11: || f̂ (l)||2 Ð 2π2l ∑
(

Il X̃2e´Iπ2tl
)

12: l Ð l ´ 1
13: end for

14: Tp Ð tl ´

(
1

2N
√

π|| f̂ (l) ||2

) 2
5

{return of fixed-point-iteration}

15: {turn Tp into smallest root by Matlab minimizer searcher}

16: X̃p Ð X̃e´[0:n´1]2
π2Tp

2 {smooth discrete cosine transform of X using
Tp}

17: [nrows, ncols] Ð size
(
X̃p
)

18: weights Ð nrowsei(0:nrows´1) π
2nrows

19: temp Ð real
(
ifft

(
weightsX̃p

))
{using equation (5.93) in Jain}

20: temp2 = zeros(nrows, 1); temp2(1 : 2 : nrows) Ð temp(1 : nrows
2 );

temp2(2 : 2 : nrows) Ð temp(nrows : ´1 : nrows
2+1 ) {re-order elements}

21: KDE Ð
temp2

MAX´MIN {inverse DFT}

22: Tp Ð
√

Tp (MAX ´ MIN) {re-scaled bandwidth}
23: {remove negatives (round-off errors) from KDE}
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5. Other approaches to the diffusion kernel density estimator

are the same that I have used in the diffKDE paper in Chap. 4. They are a
trimodal and a standard lognormal distribution. The comparisons between
diffKDE and Botev KDE on these data can already be seen in Chap. 4,
therefore it is not dicussed in further detail here. On the δ13CPOC data,
the Deniz KDE provides the smoothest estimate. Especially, on the full
data set many of data details get smoothed out. On the euphotic zone
δ13CPOC data, as well as on the trimodal data, all three KDEs are closely
aligned. On the trimodal distribution, the diffKDE and the Deniz KDE
detect the main mode most accurately, while the two smaller modes are
best resolved by the Botev and the Deniz KDEs. On the lognormal data
only the diffKDE resolves the decline left of the mode, which is generally
best resolved under the diffKDE. Furthermore, the diffKDE is the one
being most sensitive to structure introduced by the choice of the random
sample.

5.4 Fourier transform of the diffusion equation

The first author of [BGK10] provided a Matlab implementation of the pilot
step of Alg. 2 described in Alg. 3 relying on the Fourier transform [LT05],
therefore I will provide a closer look on this measure. The Fourier trans-
form is defined for partial differential equations including L1-functions
and delivers a simple solution for the diffusion equation [LT05] as we
defined it in Eq. 3.0.3. Our specifiic case is particularly difficult, because the
δ-distribution as part of the initial value in Eq. 3.0.5 is not a L1-function and
therefore needed special consideration before application of the transform.

The Fourier transform is a functional on L1 ([0, 1] , C) mapping func-
tions f P L1 ([0, 1] , C) to

f̂ (k) =
∫ 1

0
f (x) e´2πikxdx fot all k P Z and f P L1 ([0, 1] , C) (5.4.1)

Its limit as the limit of its symmetric partial sums converges to the input
function f [Con16]. The map f ÞÑ f̂ is called the Fourier transform and
denoted as F . The functional F defines a bijection on the vector space (and
algebra) of Schwartz functions, the space of rapid decreasing functions
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5.4. Fourier transform of the diffusion equation

Figure 5.3. The diffKDE in comparison to the pilot by [BGK10] implemented by
[Hen21] and full implementation of the [BGK10] algorithm by [DCR11]: (a) and
(b) show δ13CPOC data by [VST+21]. (a) shows all available data, (b) only euphotic
zone data restricted to a core area of [´34.5, ´15]. (c) and (d) show the KDEs of
100 random samples from known distributions that are drawn as grey shades in
the background.

defined as

S (Rm) := {φ : Rm ÞÑ C|φ P C8 (Rm) , supxPRm |xα
(

Dβ φ
)
(x) | ă 8}.

(5.4.2)
S (Rm) is dense in L2 (Rm), hence F can be extended to L2 (Rm) [Con16]
as

f̂ (ζ) =
∫

f (x) e´2πiζxdx for all ζ P Rm and f P L2 (Rm) (5.4.3)
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5. Other approaches to the diffusion kernel density estimator

with an inverse

f (ζ) =
∫

f̂ (x) e2πiζxdζ fot all x P Rm and f P L2 (Rm) (5.4.4)

and so F is a linear bijection on L2 (Rm). The applicability to our diffusion
follows [Con16], still apart of the initial value.

The δ-distribution, which is neither continuous nor bounded, is neither
in S nor in L2. The δ-distribution is part of the dual space of S, the class of
tempered distributions [Con16] defined as

S1 (Rm) := {L : S (Rm) ÞÑ C|L linear f unctional}. (5.4.5)

S1 (Rm) forms a complex vector space and differentiation and convergence
definitions can be extended to them [GRT16]. The δ-distribution for any
point a P R is part of the tempered distributions S1 (Rm) by

ă δa, φ ą:= φ (a) for all φ P S (Rm) (5.4.6)

[GRT16]. The Fourier transform of a tempered distribution u P S1 (Rm)
can be defined by giving its value at a Schwartz function φ P S (Rm) as

ă û, φ ą:=ă u, φ̂ ą . (5.4.7)

This defines a linear bijection from S1 (Rm) on itself and is the unique
weakly continuous extension of the Fourier transform of Schwartz func-
tions [Con16]. Now, it is straightforward to calculate the Fourier transform
of δ0 by solving

ă δ̂0, φ ą=ă δ0, φ̂ ą= φ̂ (0) =
∫

e´ix˚0 φ (x) dx =
∫

φ (x) dx =ă 1, φ ą

(5.4.8)
and receiving

δ̂0 = 1 (5.4.9)

as the Fourier transform of the δ-distribution distribution.

110



Chapter 6

Assessing Earth system models
supported by the diffusion-based

kernel density estimator

The overall goal of my research was to develop a kernel density estimator
for the evaluation of marine data. Achieving that goal can substantially
support the calibration of Earth system models. To use common target
functions like an Euklidean metric, it is necessary to make field and simu-
lation data of comparable size. A possibility for this, is to only incorporate
data from grid cells where both – field and simulation data – are available.
By this, a lot of simulation data has to be discarded. Furthermore, spatial
biases are highly resolved by a comparison of individual grid cells. The
emphasized approach here is to construct the target function not from
the data themselves, but from their PDFs. This provides the possibility to
incorporate all available data into the calibration process. The construction
of a target function from PDFs also disregards the influence of spatial
biases and directly resolves differences between the two entire data sets.
In this section, I discuss, how the diffKDE can serve for the construction of
such a target function that can be used for model calibration. I have shown
it to be fast and reliably resolving the typical multimodal data structure in
biogeochemical data while being insensitive to noise. A target function can
be constructed from diffKDEs of simulation and the respective field data.
A metric for PDFs can measure the distance between the two KDEs. Typi-
cally, during model calibration this difference is sought to be minimized
to obtain optimal model fit. There is a variety of metrics applicable to
measure the distance between PDFs and their choice in climate modeling
non-trivial [TGG13].
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6. Assessing Earth system models

As an example metric, I chose the Wasserstein distance [PZ19]. If
X f and Xs denote the vectors including the field and simulation data,
respectively, dW the Wasserstein distance and diffKDE the here presented
diffusion-based KDE, the error I want to discuss in the following is defined
as error

(
X f , Xs

)
:= dW

(
diffKDE

(
X f

)
, diffKDE (Xs)

)
(6.0.1)

In the following, I use δ13CPOC field data [VST+21] in comparison
with simulation results from [SDW+21] to construct example model-data
comparisons. The simulation data is averaged data from the year 2000. The
field data is available as decadal averages over either the 1990s or 2000s.
All diffKDEs are calculated over the data interval [´15, ´35].

In my first example in Fig. 6.1, I show the traditional approach of data
reduction to a comparable amount. I applied a mask to the data, that
kept only data from locations, where both data types were available and
calculated the diffKDEs of both resulting subset data sets. From these
diffKDEs, I calculated the error according to Eq. 6.0.1 and drew both
diffKDEs together providing a visual insight. This example includes four
different data samples: a comparison of all euphotic zone data to the 1990s
and 2000s and a split-up of the euphotic zone data into only Southern
Ocean data and all oceans excluding the Southern Ocean, both using data
from the 1990s.

The general shape of the diffKDEs are well matching between simula-
tion and field data, apart from the averaged 2000s data. In this case, the
data had to be reduced to only 39 data points. Furthermore, the 1990s
field data are more evenly geographically distributed [VSS+21]. I focus
my following discussion on the 1990s field data comparisons. In all graphs
it is visible that in general the model tends to overestimate the pronunci-
ation of δ13CPOC modes, especially in the Southern Ocean. Furthermore,
the model values are generally lower and all modes estimated at lower
δ13CPOC values than observable in the field data.

In my second example in Fig. 6.2, I present a model data compari-
son built on all available data. The conducted experiments are the exact
same apart from not restricting the data to shared grid cells before KDE
calculation.

First of all, we see how the 2000s field data is now far more comparable
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Figure 6.1. Model data comparison on masked data: Simulation and field data are
compared using only data points from grid cells, where both data types exist. The
simulation data is averaged from the year 2000. The field data are decadal averages
from the 1990s in panel (a), (c) and (d) and from the 2000s in panel (b). (a) and (b)
show a comparison of the KDEs of the simulation and field data taken from the
euphotic zone. (c) shows euphotic zone data excluding the Southern Ocean and
(d) euphotic zone data from exclusively the Southern Ocean.

to the year 2000 simulation results. The overall data range is well met. The
diffKDE structure is similar with the biggest mode being the one with
the highest δ13CPOC values at around δ13CPOC = ´22.5 ‰in the field data
and around δ13CPOC = ´21 ‰in the simulation data. The lowest mode is
also comparable at around δ13CPOC = ´29 ‰in the field data and around
δ13CPOC = ´30 ‰in the simulation data. In between them, there are three
more modes visible in the simulation data and only one in the field data,
where none of them seem directly correlated.
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6. Assessing Earth system models

The 1990s field data diffKDE even better fits the simulation data dif-
fKDE. There are two main modes detectable in the field data at around
δ13CPOC = ´22 ‰and δ13CPOC = ´28 ‰that are both located directly
in between the two outer modes of the simulation data. The mode at
δ13CPOC = ´22 ‰is more pronounced in the simulation than in the field
data. Again, the general data range is well met.

In the exclusion of the Southern Ocean, the main mode well correlates.
In the field data this is located at around δ13CPOC = ´22 ‰in the simula-
tion data this is again split up into two neighboring modes. A lower mode
at around δ13CPOC = ´27.5 ‰in the simulation data is barely detectable
in the field data.

The main mode of the Southern Ocean data is still overpronunced in
the simulation data and again underestimated in its value. In the field data
diffKDE this is located at around δ13CPOC = ´28 ‰, in the simulation
data at around δ13CPOC = ´30 ‰. A second smaller mode in the field
data is located at around δ13CPOC = ´26 ‰. The simulation data shows
four small and similarly pronounced modes close to this.

In all four cases, the incorporation of all available data reduced the
error by a magnitude of at least 13.89 % up to 89.38 %. Furthermore, the
general data range and locations of modes are far better met.

Overall, I am able to show in this experiment how my diffKDE can
highly increase the amount of incorporated data into model data compar-
isons and provide benefits for model calibration. In the classical masked
approach in Fig. 6.1, I had to reduce the simulation and field data to
only 39 to 158 data points each. In the unmasked experiment in Fig. 6.2, I
included all available data points from simulation results as well as from
field data and ended up with 2958 to 12772 data points from simulations
and 58 to 172 data points from field measurements. This second approach
allows to discard potential influence by local biases and already reveals
a smaller error in three out of the four sub-examples. This fourth exam-
ple is using field data from the 2000s decadal average and the data is
nearly exclusively sampled in the Arctic Ocean [VSS+21], which generally
complicates drawing useful conclusion from these in global comparisons.
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Figure 6.2. Model data comparison on all data: Simulation and field data are
compared using all available data points in the respective areas. The simulation
data is averaged from the year 2000. The field data are decadal averages from the
1990s in panel (a), (c) and (d) and from the 2000s in panel (b). (a) and (b) show a
comparison of the KDEs of the simulation and field data taken from the euphotic
zone. (c) shows euphotic zone data excluding the Soutehrn Ocean and (d) euphotic
zone data from exclusively the Southern Ocean.





Part III

Conclusion





Chapter 1

Successfully becoming a marine
data scientist

Marine data science is an emerging discipline extending data science
directly into marine sciences to develop data science measures directly
within specific marine research environments. This can improve the un-
derstanding of marine data and the ability to draw knowledge from these.
Still, marine data science is not an established field on its own. But every
scientist conducting research in marine data science is forming the future
of this field.

In Tab. 1.1, I present the necessary skills and knowledge a marine data
scientist needs to possess according to [VTA+21]. In-depth data science
knowledge is especially fundamental for the selection, development, appli-
cation and improvement of suitable methods. This comprises knowledge
of all basic statistics and probability theory, computer science and scientific
computing as well as pure and applied mathematics. Knowledge from
marine sciences is necessary to understand data origins and their typical
features, applications and uncertainties. Marine science knowledge should
cover a broad understanding of all parts of marine sciences and their
dependencies and interconnections. Skills from marine and data sciences
are again needed for development and application of data science tools on
marine data as well as for the interpretation of the results. Skills from both
parental sciences focus on data handling and programming. Addition-
ally, soft and interface skills are of significant importance for conducting
research at the boundary of such different domains. These comprise com-
munication and adaptability, but also a strong sense of oneselfs value as a
researcher.

Overall, marine data scientists need to be curious and with a drive to
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1. Successfully becoming a marine data scientist

Table 1.1. A marine data scientists necessary skills and knowledges.

Marine sciences Data sciences Soft and interface

Knowledge physics, geology statistics, probability theory
biology, chemistry algorithms, data bases

society ML, data mining
data characteristics numerics, optimization

differential equations
pure mathematics

Skills methods, software programming boundary communication
selection version control specific language

preprocessing application of knowledge necessary depth
transformation limitations of results
pattern mining questioning

evaluation entrepreneurial mindset
resilience, enthusiasm

confidence, determination

constantly extend their knowledge and broaden their perspective. They
need to be able to adapt to changing scientific environments, languages
and demands. But still, they need also to be able to focus on and identify
what is essential for them to solve their individual research questions. By
this, marine data scientists are able to develop state of the art solutions
and transfer them across scientific domain boundaries.
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Chapter 2

A global δ13CPOC data set

I created a new global marine carbon isotope δ13CPOC data set. Up until
then, the biggest available global δ13CPOC data set was by [GF94] and
comprising only around 500 data samples. I chose the δ13CPOC data as a
marine biogeochemical data example to provide them for future model
calibration [SDW+21].

Starting from the existing data base by [GF94], I extended the data to a
relational data base including different meta-information. In the first data
base version [VST+21], I was able to increase the data to 4732 samples.
The additional data originates from the data platform PANGAEA and data
provided by other marine researchers by personal communication. The
meta-information consist of sample time, location, method and original
source. From the first data set version I provide interpolations onto two
different global grids: one for model future calibration [SDW+21] and one
for general data analysis on a well known and widely used grid of the
World Ocean Atlas [GWP+18].

I designed the data base for dynamic growth, so that all additional
δ13CPOC data can easily be added to extend the data. A second extended
version is already available including additional 2220 data points [PST+22].
This version is again available as a spreadsheed file and onto the grid of
the World Ocean Atlas.

Along with the first version of the data base, I published a data de-
scription paper [VSS+21]. In this, I was able to show that my data base
is able to reproduce well known features of δ13CPOC such as the Suess
effect as a long term decadal trend. Furthermore, I gave some insights
into what kinds of analyses are possible with the provided data and meta-
information. These include separation of the data by sample kind and
comparison of regions by biomes and sampling method. The second data
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2. A global δ13CPOC data set

base version is already able to support these observations and provides
the possibility to explore even better covered geographical and temporal
scales.

By being the first well-covered global data base, my δ13CPOC data base
can substantially support investigations of the carbon cycle. It can be used
to reconstruct pathways of anthropogenic carbon through the Earth system
and by this assist to understand human impacts on our climate system. Its
ability to dynamically grow makes it well adaptable to insights provided
by new data.
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Chapter 3

A new approach to a diffusion
kernel density estimator for the

exploration of marine data

My overall and final marine data science task was the development of a
kernel density estimator (KDE) to explore data with typical features of ma-
rine data. For this, the KDE must work fast and reliable on large data sets
disturbed by different kinds of noise. Typical marine data structures are
multimodal and also near boundary, which must be well resolved by the
KDE. Noise is introduced numerically in simulations or by measurement
errors in field data. A short computation time is useful to provide several
evaluations for data analyses and model calibration.

I developed and published a new algorithm for the calculation of
a diffusion-based KDE (diffKDE) [PS23; PSS+23]. The idea to use the
diffusion equation for a KDE calculation was first proposed by [CM00]
and proven to be well suited for multimodal and boundary-close data by
[BGK10]. My new algorithm is built on two pilot estimation steps and a
direct approximation of the the analytical optimal smoothing parameter
by finite differences. The solution of the diffusion equation is discretized
by finite differences in space and equidistant timesteps. The temporal
solution is approximated by an implicit Euler. The initial value is set to
the weighed sum of the δ-distribution of the input data as proposed by
[BGK10]. I defined a Dirac sequence on the spatial grid to approximate
the δ-distribution.

I tested my implementation on different marine biogeochemical data
and artificial data of known distributions in comparison to other state of
the art KDEs and approaches to the diffusion KDE. As real marine data,

123



3. A new approach to a diffusion kernel density estimator

I used my previously collected δ13CPOC field data [VST+21; PST+22] as
well as simulation results [SDW+21] and plankton size data [LNS21].
Overall, the diffKDE is well able to reproduce known multimodal and
boundary close distributions and often outperforms other state of the
art KDEs on them. It furthermore turned out to be insensitive to noise.
The diffKDE shows a similar error convergence rate as the most common
Gaussian KDE, but with a generally smaller error. Especially on small data
sets with up to a few thousand data points, the diffKDE produces the
smallest observed error. On the real marine data, the diffKDE produces
detailed data structures, but does not account for individual outliers and
smoothes out uncertain data structures. Furthermore, the diffKDE turned
out to be faster than previously adapted implementations to the demands
of marine biogeochemical data [SLA10]. The software is published as a
Python package [PS23].

Finally, I provided an outlook into possibilities for KDE-based calibra-
tion of Earth system models. This can be done by calculating the diffKDE
of field and simulation data and afterwards using a metric for density
comparison such as the Wasserstein distance. The resulting value can
be used to determine the model error. Comparing KDEs instead of the
data themselves allows to make use of all available data and disregard
spatial biases inside the selected observation domain. Furthermore, the
visualization of the two KDEs next to each other gives a direct impression
into how well the model is able to reproduce specific data values. Building
such model calibration on a suitable KDE is crucial to construct reliable
Earth system models. My new diffKDE is well able to approximate PDFs
of marine data and thus can substantially improve calibration of Earth
system models.

Overall, my diffKDE well resolves structures of differently sized and
distributed data. This makes it well applicable to marine data, it supports
their exploration in general as well as in future specific applications like
model calibration. Beyond this, my diffKDE can provide substantial bene-
fits for general data exploration in many other research fields dealing with
data of unknown distributions.
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