
1. Introduction
The aim to understand natural systems is a driving force in science. An important task is the development of 
associated models, which are used to simulate the (present and future) behavior of a system and to verify concepts 
about underlying principles and processes. However, complex systems like the Earth system rely on many entan-
gled processes a model can represent neither completely nor precisely. It is therefore often difficult to choose the 
appropriate model complexity, for example, for a component of an Earth system model (ESM; Eyring et al., 2016).

Decisions about suitable model setups can be difficult if parameterized processes with uncertain parameters have 
a large influence in the model, and if model simulations are computationally demanding. This is commonplace 
in global coupled biogeochemical (BGC) ocean models (e.g., Anderson, 2005; Kriest, 2017; Leles et al., 2016; 
Shimoda & Arhonditsis,  2015). Kriest et  al.  (2010) showed that the impact of BGC interactions on model 
representations of key tracers such as oxygen or nutrients can be as large as that of ocean circulation (Najjar 
et al., 2007). However, BGC parameters like growth rates, consumption rates, and mortality rates are not exactly 
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known a priori, but are often only roughly constrained by laboratory or in-situ experiments, and integrate over 
many groups of organisms. Inverse model studies, that adjust parameters to fit the model to more easily observa-
ble quantities, such as nutrients or oxygen, can help to define credible intervals (e.g., Kane et al., 2011; Schartau 
et al., 2017). In practice, BGC parameters of global ocean models are typically adjusted manually in a given circu-
lation, that is, the BGC parameter values are adjusted until simulated tracers yield a good match with observed 
data. Systematic calibrations of biogeochemical model parameters need to apply an automated optimization 
procedure in order to minimize an objective model-data misfit measure, but require a large number of model 
evaluations. However, the high computational demand of global BGC models impedes this approach, which is 
therefore the exception rather than the rule; moreover, parameters adjusted in a given circulation may not perform 
well in a different one, thereby requiring a re-calibration whenever the circulation changes (Kriest et al., 2020).

The computational demand may be reduced by either applying computationally cheaper surrogate circulations 
(Khatiwala et  al.,  2005; Prieß et  al.,  2013), or by using efficient optimization algorithms. Several parameter 
optimization studies invoke gradient information of the misfit function to iteratively approach a locally optimal 
parameter vector from some initial estimate. The gradient information is mostly obtained by the—computationally 
efficient—adjoint method. Lawson et  al.  (1995) introduced it in the context of biogeochemical models. It is 
used to determine a direction of descent, for example, by a quasi-Newton method as in Friedrichs (2002); Spitz 
et al. (1998); Tjiputra et al. (2007); Xiao and Friedrichs (2014), and a step size to change the parameter vector. 
In the face of complex BGC ocean models (including discontinuous functions), the deployment of associated 
adjoint models is often difficult. Consequently, gradient-based methods are often unstable. Further, the conver-
gence speed of gradient-based methods can suffer from poorly conditioned Hessian matrices, and finding good 
pre-conditioners can be difficult or time-consuming, nullifying a possible gain in convergence speed. Stochas-
tic derivative-free search algorithms (e.g., used by Hurtt & Armstrong, 1996; Kidston et  al., 2011; Kaufman 
et al., 2018) are known to be more robust. They allow for a thorough yet efficient scan of the parameter space and 
can also avoid to get stuck in a (first) local optimum (cf. Schartau & Oschlies, 2003; Vallino, 2000). This is of 
particular importance given the complex topography of the model-data misfit measure typical for complex BGC 
models (see, e.g., Faugeras et al., 2003; Hurtt & Armstrong, 1996).

The covariance matrix adaption evolution strategy (CMA-ES, Hansen, 2006) is a stochastic search algorithm that 
is also applicable to poorly conditioned problems. It is popular for its competitiveness concerning effectivity and 
efficiency (cf., Hansen et al., 2010). Because of its advantages concerning robustness, efficiency and the balance 
between exploration and exploitation of the search space, Kriest et al. (2017) applied the CMA-ES algorithm in 
one of the first optimizations of a global ocean BGC model of intermediate complexity in combination with a 
sufficient model spin-up time (3,000 years) to approach annual tracer equilibria. In this study, we modified the 
CMA-ES algorithm in order to enhance the concept of parameter adjustment, in the view of uncertainties that 
arise from insufficiently resolved real-world processes.

When applying parameter optimization, the decision about appropriate model complexity is often accompanied 
by the question which BGC parameter values should be tuned (i.e., are changed during optimization in order to 
obtain a better model fit to observations), and which parameters should remain fixed at some reasonable, constant 
value during optimization. In order to save computational effort, it seems natural to exclude parameters from 
optimization that are of minor importance for the research question on hand and/or are unimportant with regard 
to the applied model-data misfit measure. Indeed, Kriest et al. (2017) observed the most insensitive parameter 
subject to their optimization experiment to converge the slowest. The same behavior was recently observed by 
Oliver et al. (2021) who applied an even faster (but less explorative) search algorithm to the same coupled BGC 
model setup, using twin experiment data. However, fixing some parameters from the start might impact the 
optimization of the other parameters. Actually, it may not always be the most realistic but pragmatic assumption 
that model parameters are constant at all. Optimal constant parameters can result in unexpected model responses, 
when the modeling purpose is changed. Our model processes are simplifications of reality. Therefore, a single 
model process might integrate over several relevant real-world processes, which may change in space and time. 
An example for unresolved processes is the impact of higher trophic levels on biogeochemical cycling. In general 
global coupled BGC models resolve only the first two to three trophic levels (of plankton), with zooplankton 
mortality as upper closure term. Here, zooplankton mortality parameterizes not solely the natural zooplankton 
mortality but in addition also the feeding pressure of higher trophic levels (HTL), such as fish, on zooplankton. 
Given that the spatial and temporal distribution of fish populations is variable, a constant mortality parameter of 
zooplankton (as currently applied in many BGC models) may not be well justified.
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Therefore, we target an optimization approach that allows to declare some parameters to be random parameters 
while optimizing those that are assumed to take fixed values. In this paper, a random parameter is drawn from a 
probability distribution for every singe model simulation (but stays constant within a model simulation). Solu-
tions that are obtained this way might be preferable, since.

1.  they are optimal with regard to a large range of (uncertain) parameters, and thereby may render the model 
applicable in a wider range of contexts (e.g., when coupled to fish models imposing spatially varying feeding 
pressures on zooplankton), so as to minimize the deterioration of the performance of the biogeochemical 
model.

2.  setting a parameter to the one or the other credible value may bias the optimization of the other parameters 
toward local optima, with consequences for the biogeochemical cycling (as, e.g., in Kriest et al., 2017).

However, exploring the model-data misfit across a large range of randomly varying parameters would dras-
tically increase the computational demand of the misfit evaluation. Indeed, global ocean BGC models are a 
paragon for the problem, as single model simulations already have a high computational demand. We provide 
an efficient way to deal with the given problem by introducing the new R-CMA-ES (a modification of the 
CMA-ES where R stands for random) in this study. We will examine the effects of the proposed optimiza-
tion procedure by applying it to the same global BGC model setup as used in Kriest et al. (2017) and Oliver 
et al. (2021).

The paper is organized as follows. In Section 2 we briefly describe the CMA-ES algorithm as well as our modi-
fications in order to efficiently solve problems with random parameters. While Section  2 is conceptual, the 
technical descriptions of the algorithms and their pseudo codes can be found in Appendix A and Appendix B, 
respectively. Further, in Appendix C we test our CMA-ES variant on a set of mathematical benchmark instances 
and selected random parameters in order to provide evidence that the algorithm serves the intended purpose. 
In Section 3 we introduce the global ocean biogeochemical model which we choose as our sample application 
along with an RMSE type model-data misfit measure, which has been used by Kriest et al. (2017) to calibrate 
the model. Based on an analysis of the calibration experiments of that former study, we declare one parameter 
a random parameter and derive the associated integrated model-data misfit measure (the expected model-data 
misfit measure with regard to the random parameter), which we want to optimize, here. In Section 4 the results 
of our BGC model calibrations with one random parameter are compared to the calibrations carried out by Kriest 
et al. (2017). We discuss the convergence behavior of both optimization approaches as well as scientific findings 
by the new calibration experiment and close with some conclusions.

2. Methods
For our approaches to optimization throughout this paper, we distinguish three types of model parameters:

•  fixed parameters: parameters stay fixed at a single, scalar value throughout the optimization. These are not 
further considered in this paper.

•  non-random parameters: parameters whose values are to be optimized and change through optimization. The 
parameter values are drawn from a probability distribution with changing standard deviation (see below, 
Section 2.1), and are hereafter denoted by p.

•  random parameters: parameters whose values are drawn at random from a (wide) probability distribution. 
In contrast to non-random parameters, the standard deviation of the probability distribution is kept constant 
throughout the optimization. However, equivalent to non-random parameters, random parameters remain 
constant during each simulation. Their value can only change for each new simulation.

Random parameters are hereafter denoted as q and characterized in detail in Section 2.2.

A suitable division of the parameters into random parameters and non-random parameters requires some prelim-
inary considerations. For instance, all parameters that are relevant for the research question on hand can be 
analyzed with regard to their covariances and/or their impact on the model-data misfit function, using multiple 
model runs (e.g., the simulations of a parameter sensitivity analysis or a deterministic model calibration experi-
ment). Based on this analysis, an appropriate parameter (set) can then be declared random.
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2.1. The CMA-ES Algorithm

Here, we adapt the Covariance Matrix Adaption Evolution Strategy (CMA-
ES) to allow for an efficient model calibration with random parameters. 
More precisely, we build upon the (μ/μw, λ)-CMA-ES (see Hansen,  2006; 
Hansen, 2016). From now on, we will simply write CMA-ES to refer to the 
(μ/μw, λ)-CMA-ES. We start with a brief recapitulation of the CMA-ES. A 
detailed description and the pseudo code (reduced by some subtleties) of the 
original algorithm can be found in Appendix A.

The CMA-ES algorithm allows the optimization of n model parameters with-
out the requirement to calculate model derivatives and the associated deriv-
atives of a cost function with respect to the parameters. It is popular for its 
robustness and efficiency in solving optimization problems that are charac-
terized by a difficult topography of a misfit function f(p), 𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑛𝑛
→ ℝ (cf., 

e.g., Hansen et al., 2010).

The algorithm maintains a multi-variate normal distribution over the 
n-dimensional parameter space of 𝐴𝐴 𝒑𝒑 ∈ ℝ

𝑛𝑛 . Similar to the definition of a 
uni-variate normal distribution 𝐴𝐴  (𝑚𝑚𝑚 𝑚𝑚) by its mean m and its standard deviation σ, a multi-variate normal distri-
bution 𝐴𝐴  (𝒎𝒎,𝐂𝐂) is uniquely defined by a mean vector m and a positive definite covariance matrix C. Figure 1 
illustrates the situation for the uni-variate and the bi-variate case. The algorithm's normal distribution is initial-
ized such that it covers a sufficient part of the parameter space. The algorithm then iteratively samples a popu-
lation, that is, a set of λ candidate solutions from the normal distribution. From the λ samples the 𝐴𝐴 𝐴𝐴 = ⌊

𝜆𝜆

2
⌋ 

best-ranked samples with respect to f are selected. The subset of selected samples is used to calculate an empirical 
normal distribution (i.e., an empirical mean vector and an empirical matrix of covariances), using rank-dependent 
weights w which (usually) sum up to 1. The suitable choice of λ, μ, w, and many other operational constants of the 
algorithm are mainly determined empirically (cf. Hansen, 2016) and details are given in Table A1 in Appendix A. 
The normal distribution that has been estimated from the sampled parameter vectors is in turn used to update the 
algorithm's normal distribution to a region with better misfit values. This procedure of sampling and updating the 
normal distribution is repeated until convergence (or for as many iterations as necessary/desired), that is, until f 
becomes sufficiently small and all parameter variances vanish. Figure 2 illustrates the convergence behavior of 

Figure 1. Examples for a uni-variate and a bi-variate normal distribution. 
Here, it is the standard normal distribution 𝐴𝐴  (0, 1) (left panel) and 𝐴𝐴  (𝒎𝒎,𝐂𝐂) 

(right panel) with m = (0,0) T and � =
⎛

⎜

⎜

⎝

1 0

0 1

⎞

⎟

⎟

⎠

 . The associated probability 

densities are indicated by the gray curve and mesh-grid, respectively. We also 
highlight the areas of one standard deviation which is an interval on the x-axis 
(limited by the blue vertical lines) in the uni-variate case, and an ellipse in 
the plane (blue ellipse) in the bi-variate case. In both cases, we realized some 
random samples (black dots) from the respective normal distribution.

Figure 2. Convergence examples of the CMA-ES algorithm for the uni-variate Griewank function (upper 6 panels) and the 
bi-variate Griewank function (lower 3 panels). In both cases we draw λ = 10 samples (indicated as dots) per iteration from the 
normal distribution. The better half of μ = 5 samples (black dots) is used to update the distribution. In the uni-variate case, 
the function is represented as black curve and the normal distribution is indicated as gray curve. In the bi-variate case, the 
function values are represented by the gray-scale color scheme with increasing values from dark to light shades. Here, like in 
Figure 1, blue ellipses denote the standard deviation of the normal distribution in the two-dimensional parameter space.
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CMA-ES for a uni-variate misfit function (upper six panels) and a corresponding bi-variate misfit function (lower 
three panels), respectively. We see that the variance of the distribution can increase as long as the good samples 
show a wide spread (e.g., iteration 3 in the one-dimensional case) but decrease if the good samples are close 
together like in the vicinity of the optimum (iterations 22 and 28 in the one-dimensional case).

The general applicability of CMA-ES to large-scale, real-world problems has been shown by, for example, Kriest 
et al.  (2017, 2020). These studies also benefited from additional features of CMA-ES, that help to accelerate 
shifts of the distribution's mean into directions of descent and also support reliable updates of the distribution 
with a small population size λ. These features are given in more detail in Appendix A.

2.2. The R-CMA-ES Algorithm

The CMA-ES provides a unique set of n optimal model parameters p*, that minimize a given misfit function. 
However, as mentioned above, and shown earlier (cf. Kriest et al., 2017), a given misfit function can be rather 
insensitive to some parameters, thereby slowing down the convergence, and resulting in poorly defined optimal 
parameter values. Moreover, the parameters may represent a number of unresolved processes, which are only 
vaguely defined; therefore, these parameters are associated with a large inherent uncertainty. We now aim to 
account for this uncertainty by introducing a random element into optimization, by extending and modifying 
CMA-ES as follows:

Let n be the number of non-random parameters p, 𝐴𝐴 𝒑𝒑 ∈ ℝ
𝑛𝑛 , whose values are to be optimized by a given misfit 

function, in analogy to CMA-ES described in Section 2.1. We consider these parameters to represent processes 
that are well-understood and well-defined by the model, and that can be constrained well by the given misfit 
function. Let further r be the number of random parameters q, 𝐴𝐴 𝒒𝒒 ∈ ℝ

𝑟𝑟 , that represent unresolved processes, and 
whose values can not be constrained by the given misfit function.

We may further assume without loss of generality an overall parameter vector (p; q), whose first n components 
consist of the non-random parameters and the following r of the random components: 𝐴𝐴 (𝑝𝑝1, . . . , 𝑝𝑝𝑛𝑛, 𝑞𝑞1, . . . , 𝑞𝑞𝑟𝑟) ∈ ℝ

𝑛𝑛+𝑟𝑟 . 
Our intention behind R-CMA-ES is to efficiently optimize p given randomly varying q. In other words, we seek 
for a parameter vector p* that is optimal over the entire range of q, where the mean value over the range of q can 
be generalized by applying a probability density function pdf(q). Such an optimal solution would then be minimal 
with respect to 𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑛𝑛
→ ℝ , defined by

𝐹𝐹 (𝒑𝒑) =
∫
𝒒𝒒∈ℝ𝑟𝑟

pdf(𝒒𝒒) ⋅ 𝑓𝑓 ((𝒑𝒑; 𝒒𝒒)) d𝒒𝒒, (1)

which is a weighted integral over a given misfit function 𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑛𝑛+𝑟𝑟

→ ℝ . For example, if we deal with only one 
random parameter q (r = 1) and allow q to take uniformly distributed values within a credible interval [a, b], then 
Equation 1 becomes

𝐹𝐹 (𝒑𝒑) =
1

𝑏𝑏 − 𝑎𝑎

𝑏𝑏

∫
𝑞𝑞=𝑎𝑎

𝑓𝑓 ((𝒑𝒑; 𝑞𝑞)) d𝑞𝑞𝑞 

that is, the mean f-value over [a, b].

When the evaluation of f is already computationally demanding, its computation over a wide range of q is prohib-
itive. Therefore, rather than applying the normal CMA-ES directly to F, we seek to design a modified CMA-ES 
that operates on the cheaper (point-based) misfit measure f(p; q), in order to converge to a parameter vector p* 
that minimizes F. The next two subsections describe our corresponding algorithmic modifications including a 
final sentence of justification at the very end of each subsection.

2.2.1. Distribution Handling for Random Parameters

The basic idea is to modify the update procedure of the maintained multi-variate normal distribution of parame-
ters such that it gets only updated for the non-random parameters but retains its initial distribution property with 
regard to the random parameters. More precisely, we desire that the standard deviation interval of the marginal 
distribution w.r.t. the random parameter always remains the entire credible interval of that parameter. Figure 3 
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sketches the intended behavior for a two-dimensional test function (Himmelblau's function): the top row shows 
the convergence of the CMA-ES algorithm; the bottom row illustrates the corresponding behavior of R-CMA-ES 
if the first parameter is random and the second parameter is optimized. In the example, the CMA-ES algo-
rithm converges to a point (parameter vector p*) that minimizes Himmelblau's function, that is, the mean of the 
normal distribution approaches the optimal point while all variances approach zero. In the modified algorithm, 
the normal distribution is supposed to “converge to a line,” leaving the variance of the first (random) parameter 
unchanged while forcing the variance of the second parameter to approach zero.

The intended adaption with regard to the normal distribution over random and non-random parameters is justi-
fied by the following fact: if the normal distribution converged in the sense that the variances of all non-random 
parameters approached zero, then the expected f((p; q))-value of any sample (p; q) is exactly the integrated value, 
F(p). However, in order to ensure that R-CMA-ES does actually converge to a parameter vector p that yields a 
small integrated misfit value F(p), we also have to adapt the sampling and selection procedure of the algorithm.

2.2.2. Modification of the Sampling and Selection Procedure

In an iteration of the CMA-ES, the good μ samples that are used to update the probability distribution are selected 
with regard to an f-value ranking. The same kind of selection is, however, not preferable if we want to update the 
normal distribution toward a solution with a small value of the integrated misfit function F defined by Equation 1. 
As an example, which is depicted graphically in Figure 4, we consider the two-dimensional linear function f(p, 
q) = −p − q on the feasible domain A = [0,1] 2 and declare q to be random. The misfit function f(p, q) takes its 
minimum in the upper right corner (1,1) T of A and the integrated misfit function F, defined by

𝐹𝐹 (𝑝𝑝) =

1

∫
𝑞𝑞=0

𝑓𝑓 (𝑝𝑝𝑝 𝑞𝑞)d𝑞𝑞𝑝 

is minimized for q = 1, that is, on the right boundary of A. With the selection criterion that is based on the rank-
ing according to the f-values, the μ selected samples can often occur quite balanced on both sides of the current 
distribution mean, implying too small distribution updates toward the right boundary of A, where the actual 
minimum (line) of A would be found. At the same time, the selected samples might not cover the full credible 
interval of the random parameter, as f pushes the selection toward its minimum in the upper right corner. Using 
this kind of selection (sketched in Panel (a) of Figure 4) for the new algorithm, it will likely not converge to the 

Figure 3. Convergence behavior of CMA-ES variants on a two-dimensional test case with Himmelblau's function. The 
gray-scale color scheme represents the function values f(p) with increasing values from dark to light shades. We draw λ = 50 
samples per iteration (many samples occur beyond the axis limits of the plot) and select the better μ = 25 samples (black 
dots) for the distribution update. Blue ellipses denote the standard deviation of the normal distribution in the two-dimensional 
parameter space. Upper panels: Iterations 1, 7, 10 and 20 of the CMA-ES. Lower panels: Iterations 1, 7, 10 and 20 of 
R-CMA-ES, where the variance of the first (random) parameter remains unchanged.
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right boundary of A. For this test, it converges to the solution indicated by the blue (slim, almost line-shaped) 
standard deviation ellipse in Panel (b) of Figure 4. We therefore prescribe the values of the random parameter to 
stay independently normally distributed with regard to the subset of μ selected samples (like it is the case with 
regard to all λ samples).

One possibility to attain the desired independency of selected parameter vectors is mirrored sampling and pairwise 
selection. Brockhoff et al. (2010) introduced the idea of mirrored sampling as a derandomization technique which 
can improve the convergence speed of evolution strategies (Auger et al., 2010). Auger et al. (2011) combined 
mirrored sampling with pairwise selection in order to avoid premature convergence caused by canceling effects 
on cumulative step-size adaptions. Recently, Wang et al. (2019) proposed mirrored orthogonal sampling which 
further improved the convergence behavior of CMA-ES. We adapt the idea of mirrored sampling to our situation 
and generate pairs of samples that are mirrored at the axis (hyper plane) of the random parameter(s). From each 
pair of mirrored samples we select the one with smaller f-value. An example for this kind of mirrored sampling 
is sketched in panel (c) of Figure 4. There, the combined sampling and selection procedure forces the distribution 
to approach the right boundary of the search space as desired (Figure 4, panel (d)).

To summarize, applying the adapted mirrored sampling to the CMA-ES — in conjunction with the afore described 
distribution handling for random parameters — supports the convergence to a parameter vector p* that actually 
minimizes F instead of f.

2.3. Boundary Handling

Biogeochemical model parameters are usually confined to a reasonable range, for example, negative growth 
or mortality rates are biologically meaningless. Therefore, when optimizing these parameters, usually credible 
boundaries are defined.

Yet, during the selection of discrete parameter values from the assumed distribution, the algorithm might select 
parameters slightly outside this range. Similar to Kriest et al. (2017), we exclude these values by adding a penalty 
term to the misfit. For the current study we apply a simpler boundary handling, which can be applied, without the 
need of further adaptions, to the case with random parameters. The procedure is as follows:

We assume that every parameter vector 𝐴𝐴 𝒑𝒑 ∈ ℝ
𝑛𝑛 must be contained in the set

𝐴𝐴 ∶= [𝑎𝑎1, 𝑏𝑏1] ×⋯ × [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛], 

where each interval [ai, bi] is the credible interval of parameter pi. We consider these constraints by adding to the 
objective function a penalty term, which depends on the distance of p to its own best approximation ϕ(p) in A. 
The best approximation ϕ(p) ∈ A of p is the vector in A which has (amongst all vectors in A) the smallest distance 
to p. It can be calculated component-wise by setting (ϕ(p))i = min(bi, max(ai, pi)) for all i = 1, …, n. Thus, for 
p ∈ A we have ϕ(p) = p and for p ∉ A the best approximation ϕ(p) lies on the boundary of A. The re-definition of 
f with regard to the penalty term is given by

Figure 4. Effects of different selection strategies, illustrated with the linear test function f(p, q) = −p − q, where p is a 
non-random parameter to be optimized, and q is a random parameter. The gray-scale color scheme represents the function 
values f(p, q) with increasing values from dark to light shades. We draw λ = 20 samples per iteration (shown as dots) and 
select μ = 10 samples (black dots) for the distribution update. Blue ellipses denote the standard deviation of the normal 
distribution. We also show the principal axis of the ellipses that corresponds to the random parameter. Panel (a) shows 
iteration three of an optimization using independent samples that are ranked and selected with regard to their f-values. Panel 
(b) shows iteration 50 of the same optimization. Panel (c) and (d) depict iterations 3 and 50 of another optimization, this time 
using mirrored sampling and pairwise selection (see text).
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𝑓𝑓 (𝒑𝒑) = 𝑓𝑓 (𝜙𝜙(𝒑𝒑)) + 𝑐𝑐 ⋅

𝑛𝑛∑

𝑖𝑖=1

(𝑝𝑝𝑖𝑖 − (𝜙𝜙(𝑝𝑝))𝑖𝑖)
2

, 

where c is a (large) constant. We apply this kind of boundary handling with both, the classical CMA-ES and 
R-CMA-ES.

Since we deal with boundary constraints of the form pi ∈ [ai, bi], we can restrict CMA-ES to operate on the unit 
cube [0,1] n. In this case, we obtain a parameter vector p ∈ A (with A as defined above) from a sample x ∈ [0,1] n 
by scaling and shifting every component: pi = ai + (bi − ai)xi.

We tested R-CMA-ES on a set of mathematical benchmark functions. The results of our test-bed confirmed 
the intended behavior of the algorithm. Our tests are summarized in Appendix C. They encouraged us to use 
R-CMA-ES in a real-world application, and compare its effects on algorithm performance, optimal model param-
eters and potential effects on biogeochemical turnover.

3. The Global Ocean Biogeochemical Model Setup
Kriest et  al.  (2017) applied the CMA-ES to optimize six parameters of the BGC Model of Oceanic Pelagic 
Stoichiometry (MOPS; Kriest & Oschlies, 2015). The approach was facilitated by the Transport Matrix Method 
(TMM; Khatiwala, 2007, 2018; Khatiwala et al., 2005) as a numerically efficient tool to represent the global 
ocean circulation. The TMM represents advection and mixing in terms of transport matrices which are precom-
puted from an online ocean circulation model simulation. Here, as in Kriest et  al.  (2017) and also in Oliver 
et al. (2021), we apply monthly mean transport matrices from a 2.8° global configuration of the MIT general 
circulation model (MITgcm), having 15 depth levels (Marshall et al., 1997). MOPS coupled to the TMM simu-
lates globally the concentrations and biogeochemical turnover of seven tracer components, namely phyto- and 
zooplankton, dissolved and particulate organic matter, phosphate, nitrate and oxygen.

To showcase the impact and performance of R-CMA-ES, we consider the same model setup as in Kriest 
et al. (2017), and optimize biogeochemical model parameters against a misfit function that includes global obser-
vations of nutrients and oxygen. Each biogeochemical model setup is simulated for 3,000 years, after which the 
model tracers approach a steady annual cycle.

3.1. The Misfit Function frmse

The misfit function considered in Kriest et al. (2017) is a weighted root mean squared error between simulated 
annual mean tracer concentrations of oxygen, phosphate, and nitrate and their observed equivalents after being 
mapped to the model grid with N = 52, 749 ocean grid boxes. For each grid box and each tracer the correspond-
ing misfit term is weighted with regard to both, the volume Vi of the grid box divided by the total ocean volume 
VT, and the global average observed tracer concentration 𝐴𝐴 𝑜𝑜𝑗𝑗 (j = 1 for phosphate, j = 2 for nitrate, and j = 3 for 
oxygen). Denoting the model output for a given parameter vector

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

𝑝𝑝6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅𝑅−𝑂𝑂
2
∶𝑃𝑃

𝐼𝐼𝑐𝑐

𝐾𝐾Phy

𝜇𝜇Zoo

𝑏𝑏∗

𝜅𝜅Zoo

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 

as mi,j and the corresponding observation as oi,j, i = 1, …, N, j = 1, 2, 3, the misfit function is

𝑓𝑓rmse

(
(𝑝𝑝1, . . . , 𝑝𝑝6)

𝑇𝑇
)
=

3∑

𝑗𝑗=1

1

𝑜𝑜𝑗𝑗

(
𝑁𝑁∑

𝑖𝑖=1

(𝑚𝑚𝑖𝑖,𝑗𝑗 − 𝑜𝑜𝑖𝑖,𝑗𝑗)
2 𝑉𝑉𝑖𝑖

𝑉𝑉𝑇𝑇

)1∕2

. (2)

 19422466, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003390 by H
G

F G
E

O
M

A
R

 H
elm

holtz C
entre of O

cean, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

SAUERLAND ET AL.

10.1029/2022MS003390

9 of 23

3.2. Zooplankton Mortality as Random Parameter

We here diverge from the setup by Kriest et al. (2017) and apply R-CMA-ES to consider zooplankton mortality 
κZoo (see Kriest & Oschlies, 2015, equations 9–11) as a random parameter. In particular, we aim to optimize the 
remaining five parameters (the light and nutrient affinity of phytoplankton, maximum zooplankton grazing rate, 
the oxygen demand of remineralization, and the exponent describing the particle flux curve) such that the model 
shows a good fit to the misfit function frmse of Equation 2 over a wide range of zooplankton mortalities. The 
choice of this parameter can be justified from a modeling point of view. As noted above, zooplankton mortality 
does not only represent the natural mortality but also the predation by higher trophic levels which is likely to 
vary, because, for example, of different fish populations preying upon zooplankton. Further, the model assumes a 
single zooplankton functionality, while in nature many different zooplankton organisms contribute with probably 
different mortalities. Moreover, the parameter optimization experiment OBS-NARR by Kriest et al. (2017) iden-
tified κZoo to be most insensitive among the six parameters that are optimized. Table 1 depicts the optimal param-
eter values of experiment OBS-NARR when only simulations which deviate from the best fit frmse(p*) by less 
than 5% (according to (frmse(p)/frmse(p*) − 1)*100) are included. Parameter κZoo has the widest range of variability 
([0.772,5.315]), exceeding both boundaries of the credible interval [1.6,4.8] used by Kriest et al. (2017). Rela-
tive to the credible interval, the range of variability is 142%. Further, together with the half-saturation constant 
for PO4 uptake, κZoo was the only parameter that showed a strong and long-lasting trend during the optimiza-
tion experiment OBS-NARR, while the other four parameters approached their optimum value much earlier (cf. 
Figure 5). Therefore, we decided to optimize the other five parameters considered by Kriest et al. (2017) such that 
the expected model-data misfit with regard to κZoo ∈ [1.6, 4.8] is minimized. More precisely, we aim to obtain 
five optimal parameters

𝒑𝒑 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑝𝑝1
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𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅𝑅−𝑂𝑂
2
∶𝑃𝑃

𝐼𝐼𝑐𝑐

𝐾𝐾Phy

𝜇𝜇Zoo

𝑏𝑏∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 

such that eventually the integral of frmse over the random parameter q = κZoo is minimized. If we assume a uniform 
distribution of κZoo within its credible interval [1.6, 4.8], the definition of the integral is simply the κZoo-averaged 
model-data misfit value

𝐹𝐹rmse(𝒑𝒑) =
1

3.2

4.8

∫
𝜅𝜅

Zoo
=1.6

𝑓𝑓rmse

(
(𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, 𝑝𝑝5, 𝜅𝜅Zoo)

𝑇𝑇
)
d𝜅𝜅Zoo. 

Parameter Bounds Opt.

5%-misfit ranges

Range Rel. width

Oxygen consumption: phosphate release during 
aerobic remineralization 𝐴𝐴

(
𝑅𝑅−𝑂𝑂

2
∶𝑃𝑃

)

150–200 167 150–192.5 85.0%

Half-saturation for light (Ic) 4.0–48 9.7 4.0–17.96 31.7%

Half-saturation for phosphate (KPhy) 0.001–0.5 0.5 0.001–0.530 106%

Maximum grazing rate of zooplankton (μZoo) 1.0–3.0 1.89 0.603–3.047 122%

Vertical increase in sinking speed of organic matter 
(b*) 0.4–1.8 1.34 1.066–1.538 33.7%

Zooplankton mortality parameter (κZoo) 1.6–4.8 4.57 0.772–5.315 142%

Table 1 
Optimal Parameter Values of Calibration Experiment OBS-NARR and Their Corresponding Ranges When Only 
Simulations Which Deviate From the Best Misfit by Less Than 5% Are Included
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More generally, using a probability distribution with density function pdf for the values of κZoo, we consider the 
expected model-data misfit value

𝐹𝐹rmse(𝒑𝒑) =

∞

∫
𝜅𝜅

Zoo
=−∞

pdf(𝜅𝜅Zoo) ⋅ 𝑓𝑓rmse

(
(𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, 𝑝𝑝5, 𝜅𝜅Zoo)

𝑇𝑇
)
d𝜅𝜅Zoo. (3)

In this contribution we assume normally distributed parameter values and define κZoo to be 𝐴𝐴  (3.2, 1.6) distrib-
uted, that is, normally distributed with mean 3.2 (the middle of the credible interval) and standard deviation 1.6 
(half interval length).

Thus, we compare two model calibration experiments. The first one is the reference experiment OBS-NARR by 
Kriest et al. (2017). Our new calibration experiment is referred to as OBS-RAND. It deviates from OBS-NARR 
by defining κZoo to be random and 𝐴𝐴  (3.2, 1.6) distributed, aiming to minimize the integrated misfit function Frmse 
instead of the parameter point-based misfit function frmse. The model configuration and the computing facility are 
the same for both experiments.

4. Results and Discussion
We note that both model calibration approaches have a common set of five non-random parameters to optimize. 
In order to compare their performance, following optimization we carried out 100 model simulations with the 
five optimal parameters over the range of zooplankton mortality rates. We then selected the minimum value of 
Equation 2 as representative for frmse, and the average over all 100 simulations as representative for Frmse. Note 
that for OBS-NARR, the former was the target of optimization with CMA-ES, whereas for OBS-RAND Frmse 
(the integrated misfit) was the implied target. Table 2 shows the results of this analysis, together with the optimal 
parameter sets.The optimized model-data misfit values of experiment OBS-RAND are quite close to the optimal 
model-data misfit value of experiment OBS-NARR. Indeed, we can see that the optimizations with R-CMA-ES 
(experiment OBS-RAND) improved the model-data misfit averaged over the entire range of zooplankton mortal-
ities from 0.4566 to 0.4537 (see Table 2), while the best misfit of 0.4499 for a single (six-)parameter vector has 
been found by CMA-ES in the reference experiment, OBS-NARR by Kriest et al. (2017).

Compared to experiment OBS-NARR by Kriest et al.  (2017), our global ocean biogeochemical model cali-
brations with random quadratic zooplankton mortality parameter pZoo hardly affect parameters related to long-
term and/or large scale model processes which are affected by circulation and latitude, such as Ic, 𝐴𝐴 𝐴𝐴−𝑂𝑂

2
∶𝑃𝑃  , and 

Experiment OBS-NARR OBS-RAND

Iterations 182 120

frmse 0.4499 0.4509

Frmse 0.4566 0.4537

Oxygen consumption: phosphate release during aerobic remineralization 𝐴𝐴
(
𝑅𝑅−𝑂𝑂

2
∶𝑃𝑃

)

167.0 167.9

Half-saturation for light (Ic) 9.66 9.70

Half-saturation for phosphate (KPhy) 0.5 0.284

Maximum grazing rate of zooplankton (μZoo) 1.89 1.72

Vertical increase in sinking speed of organic matter (b*)

1.34 1.35

Zooplankton mortality parameter (κZoo) 4.57 n.a.

Note. For CMA-ES, the frmse-value is the misfit value of the algorithm's solution. For R-CMA-ES, we state the empirically best frmse-value which is obtained a posteriori 
by fixing the non-random parameters of the solution vector but choosing 100 different κZoo-values such that each value covers an area of probability 𝐴𝐴

1

100
 . The same 100 

κZoo-values were also used to approximate the Frmse-values of both algorithms' solution vectors.

Table 2 
Optimized Parameters and Model-Data Misfit Values of Experiment OBS-NARR and Our New Experiment With Random Zooplankton Mortality Parameter, 
OBS-RAND
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the sinking speed parameter b*. On the other hand, the half saturation constant for nutrient uptake KPhy is not 
pushed to the upper bound of its credible interval any more, but is closer to its center. Also, the maximum 
grazing rate μZoo of zooplankton drops by 10%. A detailed view of the optimization trajectory is provided in 
Figure 5, which shows the convergence of the six free model parameters obtained by the reference experiment 
OBS-NARR while Figure 6 shows the corresponding result of experiment OBS-RAND. Figure 7 illustrates the 
exploration of the parameter space by R-CMA-ES, as well as its convergence toward five optimal parameters 
of p*.

Further we find that R-CMA-ES converged faster compared to CMA-ES, as indicated by the lower number 
of iterations required for convergence (cf. Table 2). Both of these responses might be a result of the modifi-
cations in the optimization procedure, as R-CMA-ES optimizes the expected misfit with regard to the most 
misfit-insensitive parameter.

Figure 8 shows the model-data misfit measure, frmse, for 100 parameter sets with varying κZoo given optimal 
vector of the non-random parameters p. In OBS-NARR the minimum misfit is obtained at the corresponding 
κZoo-value of 4.57 (blue dot). On the contrary, by minimizing the expected misfit Frmse(p) using R-CMA-ES, 
we obtain a lower minimum misfit over a wider range of κZoo. When partitioning frmse with respect to its three 
components, namely the misfit to observed oxygen, phosphate and nitrate (Figure 9).we see that the improve-
ment is mainly caused by a uniformly better RMSE of oxygen, while the RMSE of nitrate and, to a smaller 
extend, the RMSE of phosphate increased. Because the oxygen misfit comprises about 45% and both nutrients 
together only about 55% of the total misfit (cf. the right panel of Figure  9), the increased RMSEs of both 
nutrients could not compensate the better agreement with oxygen. Verifying the bias of the three tracers we 
find that the oxygen bias improves by 4 to 8 mmol m −3 for all κZoo-values in the credible interval [1.6,4.8] 
in experiment OBS-RAND (Figure  10, red lines in lower right panel) compared to the values of the refer-
ence experiment OBS-NARR (black lines). Averaging over κZoo in [1.6,4.8] the oxygen bias improved from 
+10.1 mmol m −3 to +5.6 mmol m −3, that is, we have a smaller overestimation of the observed global oxygen 
content (172.9 mmol m −3), which is also recognizable in the spatially resolved, depth integrated oxygen bias 
of Figure 11. Concerning the nutrient bias, there is almost no change for nitrate and phosphate between exper-
iments OBS-RAND and OBS-NARR (also cf. Figure 11), that is, their higher RMSEs appear to be caused by 
higher pattern errors, only.

Figure 5. Parameter convergence w.r.t. experiment OBS-NARR.
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4.1. Increasing Zooplankton Mortality Decreases Global Oxygen Inventory

To understand the reasons for the improved oxygen misfit across the range of zooplankton mortalities, we have to 
investigate the role of those two parameters (μZoo and KPhy) that changed significantly between the two optimiza-
tion approaches. We therefore set up a set of sensitivity simulations applying the optimal values for μZoo (hereafter 
dubbed MU) and KPhy (KP) derived by the two optimization procedures in different combinations (see Table 3). 
As for OBS-NARR (hereafter called NA) and OBS-RAND (RA) for each sensitivity set-up, we ran a set of 100 
simulations for different κZoo values. By doing so, we hope to disentangle the effects of μZoo, KPhy and κZoo on 
oxygen and biogeochemical cycling.

Figure  10 shows the change of the most important tracer concentrations and fluxes with regard to the four 
scenarios. We find considerable effects of the mortality rate on plankton concentrations. Increasing zooplankton 
mortality leads to a strong decline in zooplankton concentrations, less grazing on phytoplankton and thus an 
increase  in phytoplankton concentration. Because phytoplankton mortality is a linear function of its concentra-
tion, it increases with increasing zooplankton mortality. Egestion decreases in line with zooplankton concentra-
tion (and grazing; not shown here). The decline in zooplankton concentrations is, however, not strong enough to 
counteract the increase in its mortality rates, leading to an increase in the mortality flux. Zooplankton mortality 
contributes mostly to the production of sinking detritus, followed by phytoplankton mortality and egestion. The 
antagonistic responses of detritus production through egestion and the respective mortality fluxes cause a net 
increase in export production by about 8% for scenario RA. Larger export of organic matter to deep waters, where 
it is respired and thus consumes oxygen, in turn causes a decline in global average oxygen by about 8% (16.6 
Pmol in terms of global inventory or 14.2 mmol m −3 global average oxygen) for scenario RA after 3,000 years 
of simulation. The effects of changes in mortality rate are similar for all four model setups that apply different 
combinations of μZoo and KPhy.

Changes in these two parameters affect the oxygen inventory only by about 1%–2%, but we note that here we 
investigate a smaller range of variation in the parameters. A smaller KPhy (higher nutrient sensitivity) as in MU 
causes a more efficient nutrient uptake and larger growth of phytoplankton; yet, this is not reflected in its concen-
tration or mortality, but propagated into zooplankton grazing (not shown), egestion and mortality. The resulting 
increase in export production in turn causes a decline in oxygen; thus, for MU the decrease in oxygen is caused 
through zooplankton egestion and mortality. A smaller zooplankton grazing rate in KP causes a decline in its 

Figure 6. Parameter convergence using R-CMA-ES, keeping the normal distribution of the zooplankton mortality parameter 
(κZoo) as 𝐴𝐴  (3.2, 1.6) , while optimizing the other five free BGC parameters.
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concentration, egestion and mortality. However, it also relieves the grazing pressure on phytoplankton, thereby 
enhancing its concentration and mortality. The resulting increase in export production, which decreases the aver-
age oxygen concentration, is thus caused by phytoplankton mortality.

Setup RA combines both parameter changes (small KPhy and μZoo) which eventually add up to the highest export 
production and lowest global average oxygen concentration. Thus, the side effects of introducing a random 
zooplankton mortality in OBS-RAND lead, to some extent, to a modification in the model's biogeochemical 
cycling, which eventually results in a global oxygen inventory that is about 6 mmol m −3 (about 3%) lower than 
in OBS-NARR, which relied on a single, fixed value of zooplankton mortality. Nevertheless, the effects of 
zooplankton mortality on global oxygen content are about two to three times as large.

Figure 7. Model simulations of the first 80 iterations of experiment OBS-RAND. The 15 panels represent the projections of the six-dimensional parameter vectors (p; 
q) (sampled by R-CMA-ES) onto the planes of all possible parameter pairs. The gray-scale color scheme represents the function values frmse(p) with increasing values 
from dark to light shades (see color bar on the right). Blue ellipses denote the projections of the standard deviation ellipsoid of the normal distribution in iteration 80.
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5. Conclusions
We introduced R-CMA-ES as a new variant of the Covariance Matrix 
Adaption Evolution Strategy. R-CMA-ES allows us to declare one or more 
parameters to be random, that is, the algorithm seeks to adjust only the other 
(non-random) parameters in order to minimize a new misfit function, which 
is the expectation of the former misfit function, integrating over all values 
of the random parameters. Such a calibration can be more reasonable than 
searching for single optimal parameter values only. An example are situa-
tions where (e.g., due to model simplifications) it is not clear which natural 
processes are actually covered by a certain parameter and to what extent. 
Tests with mathematical benchmark functions confirm an efficient conver-
gence behavior of R-CMA-ES as compared to its deterministic counterpart.

We applied R-CMA-ES to a global ocean biogeochemical model setup, 
which inspired us to develop the algorithm. The model has been considered 
in a former optimization study by Kriest et  al.  (2017), who optimized six 
BGC parameters and observed that two of the parameters—the quadratic 
loss rate of zooplankton and the phytoplankton half-saturation constant for 
PO4—showed a long lasting drift during optimization. The quadratic loss of 
zooplankton parameter has high uncertainty because it mimics many differ-
ent processes (e.g., cannibalism within the highly aggregated zooplankton 
compartment; predation by fish and higher trophic levels; density-dependent 

population control through viral infection), as well as many different zooplankton species. Therefore, this param-
eter is an ideal candidate to declare random during optimization. Allowing the quadratic loss of zooplankton to 
vary randomly over a credible interval, R-CMA-ES converged faster than CMA-ES did in the reference experi-
ment of the former study. Moreover, the optimization now also reflects the potential spatio-temporal variability 
of this parameter, for example, due to higher trophic levels such as fish, which might be of relevance when a BGC 
model is coupled to a model of higher trophic levels (Getzlaff & Oschlies, 2017; Hill-Cruz et al., 2022). Further-
more, while optimization OBS-NARR seems to cause a bias of the half-saturation constant of phytoplankton for 
phosphate toward its upper limit, the same parameter is more in the center of its credible interval when we declare 
the quadratic zooplankton loss random. Another significant change is observed for the zooplankton maximum 
grazing rate.

Our model results suggest that after 3,000 years of simulation with climatological forcing, the uncertainty in 
zooplankton mortality causes a variation of oxygen inventory by 8% (16.6 Pmol or 14.2  mmol/m 3 average). 
Smaller changes in maximum zooplankton grazing rate or nutrient affinity of phytoplankton have a smaller effect 
on biogeochemical fluxes and the long-term global oxygen inventory, but suffice to improve the applied model-
data misfit measure over a wide range of zooplankton mortalities. The change in oxygen induced by mortality 
is of the same order of magnitude as changes induced by anthropogenic climate change (Oschlies, 2021), but 
it occurs after a considerably longer time span. Also, the oxygen variation across the spectrum of mortality 

rates is as large as the deviation of many global Earth system models from 
observations (e.g., Bopp et  al.,  2013). Our optimizations have shown that 
it is difficult, if not impossible, to constrain zooplankton mortality with a 
misfit function that targets at the RMSE of dissolved inorganic tracers (Kriest 
et al., 2017), which is a common practice when tuning global biogeochemical 
ocean models. A more flexible tuning strategy as presented here could poten-
tially help to account for this large uncertainty, and may also help to provide 
a sound and reliable upper closure term and interface for biogeochemical 
models coupled to higher trophic level (HTL) models.

In this study we used an ocean biogeochemical model to showcase the 
potential advantages of the R-CMA-ES to carry out model calibrations in 
the view of some uncertain model parameters. Of course, there are many 
more fields, that face parameter uncertainty, and where a model calibration 
with random parameters could be useful, such as the personalization cardiac 

Figure 8. Misfit values frmse in dependence of the random parameter κZoo if 
all other (optimized) parameters are fixed. The dashed curve corresponds 
to calibration experiment OBS-NARR. The solid curve corresponds to 
calibration experiment OBS-RAND. Dots represent the minima along the 
misfit curves. The area below the probability density function (pdf) of the 
normal distribution of parameter κZoo is colored gray.

Figure 9. Misfit components of frmse for the tracers PO4 (black curves), O2 
(blue curves), and NO3 (red curves) for experiments OBS-NARR (dashed 
curves) and OBS-RAND (solid curves) in dependence of the random 
parameter κZoo. The left panel shows values that are normalized w.r.t. the 
minimum of both corresponding curves. The right panel shows each tracer's 
portion of the total misfit in percent.
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models (Molléro et al., 2019), modeling of groundwater flow (Elshall et al., 2015; Lykkegaard et al., 2021) or 
morphodynamic models of a curved channel (Shoarinezhad et al., 2020). All these fields face the issue of param-
eter uncertainty. In general, a suitable partition of the model parameters into random parameters and non-random 
parameters needs some problem-dependent pre-considerations. For example, all parameters of interest can 
be analyzed w.r.t. their covariances and their impact on the model-data misfit function, using multiple model 
runs (e.g., the simulations of a parameter sensitivity analysis or a deterministic model calibration experiment). 
Depending on the research question and the observed misfit-sensitivities and covariances of the model parame-
ters, a suitable parameter (set) can be declared random during an optimization, which calibrates the model in the 
face of (random) parameter uncertainty.

Appendix A: Details of the Classical CMA-ES
As illustrated in Section 2.1 CMA-ES iteratively samples a population of λ candidate solutions from a multi-variate 
normal distribution 𝐴𝐴 

(
𝒎𝒎, 𝑠𝑠2𝐂𝐂

)
 , defined by a mean vector m, a positive definite covariance matrix C and an 

overall scaling factor s. A new normal distribution is empirically re-estimated from the better half of 𝐴𝐴 𝐴𝐴 = ⌊
𝜆𝜆

2
⌋ 

samples, and the new probability distribution is used for a smooth update of the former distribution, which in turn 
is sampled in the next iteration.

A1. Sampling the Normal Distribution

Sampling a parameter vector 𝐴𝐴 𝒑𝒑 ∈ ℝ
𝑛𝑛 from a multi-variate normal distribution 𝐴𝐴 

(
𝒎𝒎, 𝑠𝑠2𝐂𝐂

)
 is practically realized 

by choosing n independent samples from the uni-variate standard normal distribution 𝐴𝐴  (0, 1) (e.g., using the 
Box-Muller transform) to be the components of a vector 𝐴𝐴 𝒛𝒛 ∈ ℝ

𝑛𝑛 and defining

Figure 10. Upper panels: global phytoplankton concentration and its mortality flux to detritus, calculated from phytoplankton × 0.85 × 10.7 · yr −1 (left), zooplankton 
flux to detritus from egestion (middle) and quadratic mortality (right). Lower panels: zooplankton concentration (left), export of detritus sinking through 120 m 
(middle), and global oxygen inventory (right). The phyto- and zooplankton and biogeochemical fluxes are integrated over the upper 120 m and 1 year. Colors indicate 
the different scenarios: NA (black), RA (red), MU (pink), and KP (blue).
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𝒑𝒑 = 𝒎𝒎 + 𝑠𝑠𝐁𝐁𝐁𝐁𝒛𝒛 

where the matrices B and D correspond to an eigendecomposition

𝐂𝐂 = 𝐁𝐁𝐁𝐁
2
𝐁𝐁

𝑇𝑇 (A1.)

of C, that is, the columns B (i) of B are orthogonal eigenvectors of C, and D 2 is a diagonal matrix of corre-
sponding eigenvalues. Geometrically (cf. Hansen, 2016), B and D can be identified with the so called standard 
deviation ellipsoid, which is a surface of equal probability density of the normal distribution (see, e.g., the 

ellipses in Figures 3, 4 and 7). The orientations of the n principal axes of 
the standard deviation ellipsoid are given by the eigenvectors B (i) of C, and 
the lengths of its principal axes are given by the roots of the corresponding 
real and positive eigenvalues Di,i. Like in the uni-variate case, the proba-
bility that a sample lies within a given area of the search space is obtained 
by integrating the density function of the probability distribution (pdf) over 
that area. For a multi-variate normal distribution 𝐴𝐴  (𝒎𝒎,𝐂𝐂) , the correspond-
ing probability density function is given as

pdf(𝒑𝒑) =

exp

(
−

1

2

(𝒑𝒑 −𝒎𝒎)
𝑇𝑇
𝐂𝐂−1

(𝒑𝒑 −𝒎𝒎)

)

√
(2𝜋𝜋)

𝑛𝑛
det𝐂𝐂

. 

Figure 11. Model deviations from observations of vertically integrated oxygen, nitrate and phosphate (in mol m −2) for 
optimizations OBS-NARR and OBS-RAND, but both in expectation with regard to a random κZoo parameter in [1.6, 4.8]. that 
is, we consider the mean result of 100 model simulations with the different κZoo values described in the caption of Table 2.

Scenario μZoo KPhy Remark

NA 1.89 0.5 determined by OBS-NARR

RA 1.72 0.284 determined by OBS-RAND

MU 1.89 0.284

KP 1.72 0.5

Note. For each scenario we state the values of parameters μZoo and KPhy, 
respectively. Apart from that, each scenario's set of model simulations 
is defined by the same 100 different κZoo-values between 1.6 and 4.8. The 
remaining parameter values are constants that have been found by the 
reference model calibration experiment, OBS-NARR.

Table 3 
Sensitivity Scenarios
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A2. Updating the Distribution: Basic Principle

Given any set S = {p (1), …, p (λ)} of λ samples, empirical (re)estimates memp and Cemp of the distribution param-
eters can be calculated such that the expectation of memp is m and the expectation of Cemp is C. Clearly, the esti-
mates become more reliable the larger λ is. We may assume that the population S is increasingly ordered (ranked) 
with respect to the considered objective function 𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑛𝑛
→ ℝ , that is

𝑓𝑓
(
𝒑𝒑
(1)
)
≤ 𝑓𝑓

(
𝒑𝒑
(2)
)
⋯ ≤ 𝑓𝑓

(
𝒑𝒑
(𝜆𝜆)
)
. 

Now, by involving only the better half of 𝐴𝐴 𝐴𝐴 = ⌊
𝜆𝜆

2
⌋ samples, their distribution estimate 𝐴𝐴  (𝒎𝒎𝜇𝜇,𝐂𝐂𝜇𝜇) with corre-

sponding parameters mμ and Cμ will be modified to reproduce that μ samples with higher probability than the 
other λ − μ samples. CMA-ES uses values w1 ≥ w2 ≥⋯ ≥ wμ with 𝐴𝐴

∑𝑛𝑛

𝑖𝑖=1
𝑤𝑤𝑖𝑖 = 1 to give solutions a rank dependent 

weight in the updating process of both, mμ and Cμ (a more general version allows to involve all solutions, applying 
negative weights for the poor ranks). The new mean is, thus, calculated as 𝐴𝐴 𝒎𝒎𝜇𝜇 =

∑𝜇𝜇

𝑖𝑖=1
𝑤𝑤𝑖𝑖𝒑𝒑

(𝑖𝑖) . A subtlety is the 
choice of the reference mean value used for estimating Cμ. Instead of the new empirical mean mμ, the mean m of 
the former distribution is chosen and yields

𝐂𝐂μ =

𝜇𝜇∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖

(
𝒑𝒑
(𝑖𝑖)
−𝒎𝒎

)(
𝒑𝒑
(𝑖𝑖)
−𝒎𝒎

)𝑇𝑇
. 

It has the effect that the new distribution is elongated into directions of descend (cf., e.g., iteration 2 in the right 
example of Figure 2).

A3. Updating the Distribution: Working With Small Populations

As mentioned above, reliable distribution estimates require a sufficiently large number of samples. But, for 
a competitive computational performance CMA-ES should get along with a rather small number of samples. 
Therefore the information of former populations is involved by updating the covariance matrix C to be a (convex) 
combination of both the current C and its estimate Cμ, that is

𝐂𝐂← (1 − 𝑐𝑐𝜇𝜇)𝐂𝐂 + 𝑐𝑐𝜇𝜇𝐂𝐂𝜇𝜇. (A2)

Using this formula with cμ as in Table A1, it can be shown that 37% of the current matrix C's information dates 
back at least 𝐴𝐴 ⌊

1

𝑐𝑐𝜇𝜇
⌋ generations, that is, the choice of the smoothing factor cμ decides about the backward time hori-

zon of the update procedure.

Another feature that facilitates small population sizes λ is to calculate and update a vector pc that represents 
iteration averaged changes of the distribution mean and to use pc for a so called rank-one estimate 𝐴𝐴 𝐂𝐂𝟏𝟏 = 𝒑𝒑𝑐𝑐 𝒑𝒑𝑐𝑐

𝑇𝑇  of 
the covariance matrix. The idea behind this approach is that, using Cμ, distribution elongations into directions of 
descend do not distinguish the sign of the directions. The use of the vector pc (called evolution path) mitigates this 
effect: consecutive changes of the distribution mean into opposite directions would cancel out each other. Similar 

Selection and recombination Step size control Covariance matrix adaption

λ = 4 + ⌊3 log  n⌋ 𝐴𝐴 𝐴𝐴0 =
1

3
 𝐴𝐴 𝐴𝐴𝐴𝐴 =

4+𝜇𝜇
eff

∕𝑛𝑛

𝑛𝑛+4+2𝜇𝜇
eff

∕𝑛𝑛
 

𝐴𝐴 𝐴𝐴 = ⌊
𝜆𝜆

2
⌋ 𝐴𝐴 𝐴𝐴 =

√
𝑛𝑛

(
1 −

1

4𝑛𝑛
+

1

21𝑛𝑛2

)
 𝐴𝐴 𝐴𝐴𝜇𝜇 = min

(
1 − 𝐴𝐴1, 2

𝜇𝜇
eff

+ 1∕𝜇𝜇
eff

− 2

(𝑛𝑛+2)
2
+𝜇𝜇

eff

)
 

𝐴𝐴 𝐴𝐴𝑖𝑖 =
log(𝜇𝜇+0.5) − log(𝑖𝑖)
𝜇𝜇∑

𝑗𝑗=1

log(𝜇𝜇+0.5) − log(𝑗𝑗)

 𝐴𝐴 𝐴𝐴𝜎𝜎 =
𝜇𝜇eff + 2

𝑛𝑛+𝜇𝜇eff + 5
 𝐴𝐴 𝐴𝐴1 =

2

(𝑛𝑛+1.3)2 +𝜇𝜇eff
 

𝐴𝐴 𝐴𝐴eff =

(
𝐴𝐴∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖

)2

𝐴𝐴∑

𝑖𝑖=1

𝑤𝑤2
𝑖𝑖

=
1

𝐴𝐴∑

𝑖𝑖=1

𝑤𝑤2
𝑖𝑖

 

dσ = 1 + cσ

Table A1 
Operational Constants of the CMA-ES Algorithm (cf. Initialization in Algorithms 1 and 2)
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to the smoothing with factor cμ in the update of C in Equation A2, the update of pc is done with a smoothing factor 
cc. With a further smoothing factor c1 for the rank-one estimate C1, the combined covariance matrix update reads

𝐂𝐂← (1 − 𝑐𝑐𝜇𝜇 − 𝑐𝑐1)𝐂𝐂 + 𝑐𝑐𝜇𝜇𝐂𝐂𝜇𝜇 + 𝑐𝑐1𝐂𝐂1. 

While Cμ efficiently involves information from the current population into the update process, C1 exploits corre-
lations between generations. The former is important in large populations, the latter is particularly important in 
small populations.

A4. Step Size Control

Finally, there is an additional explicit adaption of the overall scale (the step size) of the distribution by adapting a 
scaling factor σ, actually using 𝐴𝐴 

(
𝒎𝒎, 𝜎𝜎2𝐂𝐂

)
 instead of 𝐴𝐴  (𝒎𝒎,𝐂𝐂) . Similar to the evolution path pc for the rank-one 

covariance matrix estimates above, the adaption of the scale σ involves an evolution path pσ that mirrors cumu-
lative changes of the mean. The difference between the update formulas of both evolution paths pσ and pc is that 
for pσ all step sizes are re-scaled with respect to the isotropic normal distribution 𝐴𝐴  (𝟎𝟎, 𝐈𝐈) , where I is the identity 
matrix and 0 is the zero vector. The expected step size between the mean vectors of two consecutive iterations is 
therefore the expected length χ of a sample of 𝐴𝐴  (𝟎𝟎, 𝐈𝐈) , which is

𝜒𝜒 ∶= 𝔼𝔼
(
‖
‖ (𝟎𝟎, 𝐈𝐈)‖‖

)
≈

√
𝑛𝑛

(
1 −

1

4𝑛𝑛
+

1

21𝑛𝑛2

)
. 

Now, a rather small length ‖pσ‖ compared to χ indicates that consecutive normalized moves of the mean vector 
canceled each other out, meaning that the overall scale of the distribution should be reduced by s. Vice versa, an 

Algorithm 1. CMA-ES

1: Initialization:
2:  Set λ, μ, w, μeff, s0, χ, cσ, dσ, cc, cμ, c1 according to Table A1
3:  Set 𝐴𝐴 𝒎𝒎 =

1

2
⋅ 𝟏𝟏

4:  Set pσ = pc = 0, C = B = D = I and σ = σ0
5: while stopping criterion is not met do
6:  Sample probability distribution:
7:    for k = 1, …, λ do
8:      Sample z (k) from 𝐴𝐴  (𝟎𝟎, 𝐈𝐈)

9:      Set y (k) = BDz (k)

10:      Set p (k) = m + sy (k)

11:    end for
12:    Sort samples by (penalized) objective function values
13: Update probability distribution:
14:  Update mean:
15:    Set 𝐴𝐴 𝒎𝒎 =

∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒑𝒑

(𝑘𝑘)

16:    Set 𝐴𝐴 𝒛𝒛 =
∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒛𝒛

(𝑘𝑘)

17:  Update evolution paths:
18:    𝐴𝐴 𝒑𝒑

𝝈𝝈
← (1 − 𝑐𝑐𝜎𝜎)𝒑𝒑𝝈𝝈

+

√
𝑐𝑐𝜎𝜎(2 − 𝑐𝑐𝜎𝜎)𝜇𝜇eff 𝐵𝐵𝒛𝒛

19:    𝐴𝐴 𝒑𝒑
𝒄𝒄
← (1 − 𝑐𝑐𝑐𝑐)𝒑𝒑𝒄𝒄

+

√
𝑐𝑐𝑐𝑐(2 − 𝑐𝑐𝑐𝑐)𝜇𝜇eff 𝐁𝐁𝐁𝐁𝒛𝒛

20:  Update covariances and scaling:

21:    𝐴𝐴 𝐴𝐴← 𝐴𝐴 ⋅ exp

(
𝑐𝑐𝐴𝐴

𝑑𝑑𝐴𝐴

(
‖𝒑𝒑𝝈𝝈‖

𝜒𝜒
− 1

))

22:    Set 𝐴𝐴 𝐂𝐂μ =

∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒚𝒚

(𝑘𝑘)
𝒚𝒚
(𝑘𝑘)𝑇𝑇 and 𝐴𝐴 𝐂𝐂𝟏𝟏 = 𝒑𝒑

𝒄𝒄
𝒑𝒑
𝒄𝒄

𝑇𝑇

23:    C ← (1 − cμ − c1)C + c1C1 + cμCμ
24:    Derive B and D according to (A1)
25:  end while

 19422466, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003390 by H
G

F G
E

O
M

A
R

 H
elm

holtz C
entre of O

cean, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

SAUERLAND ET AL.

10.1029/2022MS003390

19 of 23

evolution path pσ longer than χ indicates consecutive distribution drifts into correlated directions which justifies 
a larger overall scale of the distribution.

A5. Operational Constants and the Pseude Code

The classical CMA-ES is (reduced by some subtleties) outlined as Algorithm 1 (cf. Hansen, 2016). This pseudo 
code may serve to verify our adaptions to the new situation, which we will elucidate in detail in Appendix B and 
summarize as Algorithm 2. Here, we denote the identity matrix with I, the all-ones vector (1,…,1) T with 1, and 
the zero vector with 0. Note, that in Algorithm 1 the sampled candidate parameter vectors p (k) are always assumed 
to be increasingly ordered with respect to the (penalized) objective function, that is, the best μ out of λ parameter 
vectors are used for updating both, m and C.

Appendix B: Details of R-CMA-ES
As already explained in Section 2, we will modify both, the distribution and the sampling and selection procedure 
of the CMA-ES algorithm in order to efficiently optimize the integrated objective function F defined by Equa-
tion 1 instead of its point-based counterpart f.

Algorithm 2. R-CMA-ES: A random coordinates permitting CMA-ES variant

1: Initialization:
2:   Set μ, w, μeff, χ, cσ, dσ, cc, cμ, c1, s0 according to Table A1 (but 
λ = 2μ) and σ = σ0
3:    Set 𝐴𝐴 𝒎𝒎 =

1

2
⋅ 𝟏𝟏 ∖∖ (dimension n + r)

4:   Set pσ = pc = 0, C = B = D = I    ∖∖ (all with dimension n)
5: while stopping criterion is not met do
6:   Sample probability distribution:
7:     for k = 1, …, μ do
8:       Sample z (k) from 𝐴𝐴  (𝟎𝟎, 𝐈𝐈)

9:       Set 𝐴𝐴 𝒛𝒛
(𝜇𝜇+𝑘𝑘)

=

(
−𝒛𝒛

(𝑘𝑘)
𝑛𝑛 ; 𝒛𝒛

(𝑘𝑘)
𝑟𝑟

)

10:     end for
11:     for k = 1, …, λ do
12:       Set 𝐴𝐴 𝒚𝒚

(𝑘𝑘) = 𝐁𝐁𝐁𝐁𝒛𝒛
(𝑘𝑘)
𝑛𝑛      ∖∖ y (k) has dimension n

13:       Set 𝐴𝐴 𝒑𝒑
(𝑘𝑘) = 𝒎𝒎 +

(
𝜎𝜎𝒚𝒚(𝑘𝑘);

1

2
𝒛𝒛
(𝑘𝑘)
𝑟𝑟

)

14:     end for
15:     Sort samples (see paragraph above) so that selected samples have 
indices in [μ]
16:]  Update probability distribution:
17:   Update mean:

18:     Set 𝐴𝐴 𝒎𝒎 =

((∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒑𝒑

(𝑘𝑘)
𝑛𝑛

)
;
1

2
⋅ 𝟏𝟏𝑟𝑟

)

19:     Set 𝐴𝐴 𝒛𝒛 =
((∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒛𝒛

(𝑘𝑘)
𝑛𝑛

)
; 𝟎𝟎𝑟𝑟

)

20:   Update evolution paths:
21:   𝐴𝐴 𝒑𝒑

𝝈𝝈
← (1 − 𝑐𝑐𝜎𝜎)𝒑𝒑𝝈𝝈

+

√
𝑐𝑐𝜎𝜎(2 − 𝑐𝑐𝜎𝜎)𝜇𝜇eff 𝐁𝐁𝒛𝒛𝑛𝑛

22:    𝐴𝐴 𝒑𝒑
𝒄𝒄
← (1 − 𝑐𝑐𝑐𝑐)𝒑𝒑𝒄𝒄

+

√
𝑐𝑐𝑐𝑐(2 − 𝑐𝑐𝑐𝑐)𝜇𝜇eff 𝐁𝐁𝐁𝐁𝒛𝒛𝑛𝑛

23:   Update covariances and scaling:

24:     𝐴𝐴 𝐴𝐴← 𝐴𝐴 ⋅ exp

(
𝑐𝑐𝐴𝐴

𝑑𝑑𝐴𝐴

(
‖𝒑𝒑𝝈𝝈‖

𝜒𝜒
− 1

))

25:     Set 𝐴𝐴 𝐂𝐂μ =

∑𝜇𝜇

𝑘𝑘=1
𝑤𝑤𝑘𝑘𝒚𝒚

(𝑘𝑘)
𝒚𝒚
(𝑘𝑘)𝑇𝑇 and 𝐴𝐴 𝐂𝐂𝟏𝟏 = 𝒑𝒑𝑐𝑐𝒑𝒑𝑐𝑐

𝑇𝑇

26:     C ← (1 − cμ − c1)C + c1C1 + cμCμ
27:     Derive B and D from C according to (A1)
28: end while
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B1. Modification of the Distribution

We will use the following notations, most of which were already introduced in Section 2.2: we denote by n be the 
number of non-random parameters which we want to optimize and by r the number of random parameters. We 
can restrict to the case that the first n components of the parameter vectors are the non-random parameters and 
the last r components are the random parameters. For 𝐴𝐴 𝒑𝒑 ∈ ℝ

𝑛𝑛 we write pn for the subvector 𝐴𝐴 (𝑝𝑝1, . . . , 𝑝𝑝𝑛𝑛)
𝑇𝑇
∈ ℝ

𝑛𝑛 and 
pr for the subvector 𝐴𝐴 (𝑝𝑝𝑛𝑛+1, . . . , 𝑝𝑝𝑛𝑛+𝑟𝑟)

𝑇𝑇
∈ ℝ

𝑟𝑟 . Vice versa, if a vector 𝐴𝐴 𝒑𝒑 ∈ ℝ
𝑛𝑛 and a vector 𝐴𝐴 𝒒𝒒 ∈ ℝ

𝑟𝑟 are given, then we 
denote by (p; q) the vector 𝐴𝐴 (𝑝𝑝1, . . . , 𝑝𝑝𝑛𝑛, 𝑞𝑞1, . . . , 𝑞𝑞𝑟𝑟)

𝑇𝑇
∈ ℝ

𝑛𝑛+𝑟𝑟 .

In order to incorporate the variability of a parameter pi in the procedure, we must fix both, the mean and the 
variance of the random parameter, that is,

𝑝𝑝𝑖𝑖 ∼  (0.5, 0.5) 

in our case, as we operate on [0,1] n+r. This can be done by using some suitable modification C′ of the scaled 
covariance matrix s 2C (and additionally by keeping mi = 0.5).

A natural modification is to overwrite the ith column of s 2C with 0.25 · ei and the ith row of s 2C with 𝐴𝐴 0.25 ⋅ 𝒆𝒆𝑇𝑇
𝑖𝑖
 , 

where ei is the ith unit vector. It implies that ei becomes an eigenvector of the modified covariance matrix C′ with 
eigenvalue 0.25 and, thus, that one of the principal axes of the standard deviation ellipsoid is parallel to the ith 
coordinate axis and has length 0.5.

Essentially the same result can be achieved by restricting the maintained multi-variate normal distribution to the 
set of non-random parameters, that is, 𝐴𝐴 𝐂𝐂 ∈ ℝ

𝑛𝑛×𝑛𝑛 , calculating from each sample 𝐴𝐴 𝒛𝒛 ∼  (𝟎𝟎, 𝐈𝐈) the corresponding 
vector of non-random coordinates yn = BDzn (where B and D describe the eigendecomposition of C according to 
Equation A1), and the corresponding vector of random coordinates 𝐴𝐴 𝒚𝒚𝑟𝑟 =

1

2
𝒛𝒛𝑟𝑟 . Finally, the new scaled and shifted 

sample (cf. lines 12–13 in Algorithm 2) can be defined by

𝒑𝒑 = 𝒎𝒎 +
(
𝜎𝜎𝒚𝒚𝑛𝑛; 𝒚𝒚𝑟𝑟

)
. 

B2. Modification of the Sampling and Selection Procedure

Let 𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑛𝑛+𝑟𝑟

→ ℝ be the objective function in the deterministic optimization case and 𝐴𝐴 𝐴𝐴𝑟𝑟 ⊆ ℝ
𝑟𝑟 be the subspace 

of all random components. By pdf we denote the probability density function of the random components' 
(r-dimensional) normal distribution 𝐴𝐴  (0.5 ⋅ 𝟏𝟏, 0.5 ⋅ 𝐈𝐈) . We wish to optimize the integrated objective function 

𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑛𝑛
→ ℝ defined by Equation 1:

𝐹𝐹 (𝒑𝒑) =
∫
𝒒𝒒∈𝑋𝑋𝑟𝑟

pdf(𝒒𝒒) ⋅ 𝑓𝑓 ((𝒑𝒑; 𝒒𝒒)) d𝒒𝒒. 

As reasoned in Section  2.2 we want the values of a random component i to stay independently 𝐴𝐴  (0.5, 0.5) 
distributed with regard to the μ selected samples (like it is the case with regard to all samples). For this purpose, 
we adapt the idea of mirrored sampling (Auger et al., 2011) to our situation and generate pairs of samples that 
are mirrored at the axis (hyper plane) of the random parameter(s), meaning that we sample the vectors z (k) only 
for k ∈ [μ] and set 𝐴𝐴 𝒛𝒛

(𝜇𝜇+𝑘𝑘)
∶=

(
−𝒛𝒛

(𝑘𝑘)
𝑛𝑛 ; 𝒛𝒛

(𝑘𝑘)
𝑟𝑟

)
 (cf. lines 8–9 of Algorithm 2). An example for this kind of mirrored 

sampling is sketched in panel (c) of Figure 4. From each pair of samples we select exactly one sample for the 
update of the normal distribution, namely the better one w.r.t. f.

B3. Pseude Code

We summarize R-CMA-ES as Algorithm 2. For the update formulas in lines 18–19 as well as for the calculation 
of Cμ, we assume that (by sorting) the first μ samples have been selected according to the procedure described 
above.
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Appendix C: R-CMA-ES Test-Bed
We consider an ensemble of mathematical benchmark functions on which we compare CMA-ES to R-CMA-ES. 
Similar to our real-world application, we restrict R-CMA-ES to deal with a single random component and choose 
n = 6 as problem dimension. Additionally, we use n = 10. Our test cases invoke 5 benchmark functions; one linear 
function, one bowl-shaped (“sphere”) function, one valley-shaped (“Rosenbrock”) function, and two functions 
(“Griewank” and “Rastrigin”) with many local minima. The details are listed in Table C1.

For problem dimension 6 we set the number of samples per iteration λ = 10 and pose a maximum iteration 
number of 200; for problem dimension 10 we use λ = 12 and pose an iteration limit of 300. As a second stopping 
criterion a standard deviation of at most 10 −4 must be satisfied for all parameters. Table C2 represents the results 
that we obtained by applying both, a Matlab implementation of CMA-ES (Hansen, 2012, cmaes.m, Version 3.61.
beta) and our R-CMA-ES algorithm (also implemented in Matlab).

Instance Test function Dim. Feasible domain Random Param.

Linear1
𝐴𝐴 𝐴𝐴 (𝑥𝑥) = −

𝑛𝑛∑

𝑖𝑖=1

𝑥𝑥𝑖𝑖 
6 [0, 1] 6 3

Linear2 10 [0, 1] 10 1

Sphere1 Sphere 6 [−1, 1] 6 3

Sphere2 10 [−1, 1] 10 1

Rosenbrock1 Rosenbrock 6 [−1, 3] 2 × [0.1, 0.3] × [−1, 3] 3 3

Rosenbrock2 10 [0.5, 0.8] × [−1, 3] 9 1

Griewank1 Griewank 6 [−10, 10] 6 3

Griewank2 10 [−10, 10] 10 1

Rastrigin1 Rastrigin 6 [−5.12, 5.12] 6 3

Rastrigin2 10 [−5.12, 5.12] 10 1

Table C1 
Test Problems

Instance name

CMA-ES R-CMA-ES

funct. eval. f-value F-value funct. eval. f-value F-value

Linear1 537 −6.00 −5.50 1,892 −5.94 −5.44

Linear2 1,054 −10.0 −9.50 3,524 −9.91 −9.41

Sphere1 745 0.00 0.29 1,237 0.00 0.29

Sphere2 1,214 0.00 0.29 1,796 0.00 0.29

Rosenbrock1 1,753 3.43 5.29 1,637 3.38 4.25

Rosenbrock2 3,364 6.00 12.72 3,040 6.79 8.19

Griewank1 1,390 0.05 1.06 1,906 0.02 0.94

Griewank2 1,990 0.01 1.02 3,528 0.00 1.04

Rastrigin1 1,331 6.27 22.97 1,223 4.18 21.67

Rastrigin2 2,287 18.94 33.76 2,107 6.66 24.14

Note. We used 10 optimization trials (with different random numbers) for both algorithms and each instance. In each case we 
show the mean result over all trials. The f-values and F-values have been calculated like in Table 2 but using 10,000 (instead 
of 100) values for the random parameter.

Table C2 
Results Obtained With CMA-ES and R-CMA-ES for the Test Instances of Table C1
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Eight out of our ten test instances have the property that the optimal solution to the deterministic optimization 
task does also belong to the set of optimal solutions to the optimization task with a random parameter. For exam-
ple, the all-ones vector 1 is the global optimum of the benchmark function f of the test instances Linear1 and 
Linear2, but also a solution to the problem

min𝒑𝒑∈[0,1]𝑛𝑛𝐹𝐹 (𝒑𝒑). 

Nevertheless, benchmark functions that exhibit the mentioned property serve well in proving a good convergence 
behavior of R-CMA-ES in comparison to CMA-ES, if it has similar (or even smaller) f-values and F-values. This 
is indeed the case for the eight respective test instances. The situation is different for both Rosenbrock instances. 
Here, the optimal solutions with regard to f and F differ. Indeed, CMA-ES often finds solutions that have a better 
f-value than the solutions of R-CMA-ES; but vice versa, all solutions found by R-CMA-ES have significantly 
better F-values.

For the well-shaped test instances Linear1, Linear2, Sphere1, and Sphere2, CMA-ES converged after less func-
tion evaluations than R-CMA-ES did; the factor was about 3 for the linear instances and about 1.5 for the sphere 
instances. However, R-CMA-ES required less function evaluations for both valley-shaped instances Rosenbrock1 
and Rosenbrock2 and for the jagged instances Rastrigin1 and Rastrigin2.

Data Availability Statement
The implementation of our optimization algorithm R-CMA-ES and the benchmark function test-bed in MATLAB 
as well as the C++ implementation for model calibration on HPC platforms can be found on GitHub. The 
permanent version of the code which we used for the experiments of this article is archived in a public zenodo 
repository (Sauerland, 2023). For compilation, usage, and further notes, we refer to the README contained in 
that repository.
The BGC ocean model code and the observational data we used for this study is the same as used by Kriest 
et al. (2017) and also available on (Sauerland, 2023) (in the folder “MOPS”). The basic TMM and MOPS code as 
well as required input data for forcing, geometry, and initialization of the model are available to download from 
(Khatiwala, 2018).
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