Performance Analysis and
Re-Engineering of
ExplorViz’s Collaboration Mode

Johannes Briick

Master’s Thesis
October 14, 2023

Software Engineering Group
Department of Computer Science
Kiel University

Advised by
Prof. Dr. Wilhelm Hasselbring
Alexander Krause-Glau, M.Sc.

Selbststindigkeitserkldarung

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erklare ich, dass die digitale Fassung dieser Arbeit, die dem Priifungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

1ii

Abstract

Modern software systems are becoming increasingly complex, necessitating advanced tools
for comprehension and effective communication among developers. ExplorViz, a Software
Visualization as a Service (SVaaS) tool, aids developers in understanding complex soft-
ware systems. ExplorViz’s Collaboration Mode enables interactive exploration of software
landscapes in multi-user sessions across various platforms, such as VR or AR. However,
the Collaboration Mode has not been tested under high user load, and the underlying
architecture is not inherently scalable.

This thesis aims to comprehensively analyze the performance of ExplorViz’s Collabora-
tion Mode and, based on the results, re-engineer it to better support multi-user sessions
with high interaction. To achieve this, we define a benchmark to competitively evaluate our
re-engineering effort.

The benchmarking analysis revealed the underlying Collaboration Service and high
message traffic as primary performance bottlenecks. We have undertaken a re-engineering
effort, resulting in a system that enables horizontal scaling, reliable WebSocket connections,
and efficient platform-specific messaging to minimize network traffic. Evaluation of the
re-engineered system demonstrated high responsiveness and effective resource utilization.
Horizontal scaling allows for a successive increase in capacity. However, scalability is
somewhat impeded due to the high overhead for server coordination.

Contents

1 Introduction 1
1.1 Motivation 1

1.2 Document Structure Lo 1

2 Goals 3
2.1 G1: Design of a Performance Benchmark for ExplorViz’s Collaboration Mode 3
2.2 G2: Performance Analysis of ExplorViz’s Collaboration Mode 3
2.3 G3: Re-Engineering of the CollaborationMode 3
24 G4: Performance Analysis of the Re-Engineered Collaboration Mode 4

3 Foundations and Technologies 5
3.1 Performance and Scalability L oL 5
3.2 Benchmarking of Software Systems 5
3.3 The WebSocket Protocol 6
331 SocketIO 6

3.4 The Publish/Subscribe Pattern 7
341 Redis 7

3.5 Nest]S. . . . o e e e e e 8
36 Kubernetes 9
37 ExplorViz. 10
371 Architecture 10

3.72 The CollaborationMode 11

4 Design of a Performance Benchmark for ExplorViz’s Collaboration Mode 13
41 Methodology 13
42 General Framework Lo o 13
421 Infrastructure 14

422 TestData. 14

423 Workload 14

424 TestPlan 16

43 Backend 17
431 ExperimentalSetup 17

432 Metrics e 18

43.3 Measurement Methods 19

44 Frontend e 20
441 ExperimentalSetup 20

vii

viii

Contents

442 Metrics e
443 Measurement Methods
45 Threadsto Validity
451 UsageProfile
452 UserPopulation
453 Instrumentation.
454 Resource Limitations
Performance Analysis of ExplorViz’s Collaboration Mode
51 Preparation e
52 Results e
521 Backend
522 Frontend
53 DiscuSSion e e e e

Re-Engineering of ExplorViz’s Collaboration Mode

6.1 Methodology
6.2 Reverse Engineering L.
6.2.1 Components and Responsibilities
6.2.2 Implementation Overview
6.3 Requirement Engineering
6.3.1 Functional Requirements
6.3.2 Non-Functional Requirements
6.4 Re-Design
6.41 Communication Pattern
642 Components.
643 Consistency Model
6.44 Messaging Optimization.
6.5 Re-Implementation
6.5.1 Frameworks
6.5.2 ApplicationLogic. oL
6.5.3 Platform-specific Messaging
6.5.4 WebSocket Client Migration.
6.55 RedisIntegration
6.56 LoadBalancing

6.6 Testing

Performance Analysis of the Re-Engineered Collaboration Mode

71 Preparation e
72 Results e e e e
721 Backend e
722 Frontend

25
25
26
26
30
31

7.3 Discussion .

8 Discussion

9 Related Work

Contents

10 Conclusions and Future Work

10.1 Conclusions
10.2 Future Work

Bibliography

65

69

73
73
73

75

ix

Chapter 1

Introduction

1.1 Motivation

The complexity of modern software systems is on the rise. Software visualization plays a
critical role in understanding these complex systems. Additionally, effective communication
among developers is a fundamental aspect of program comprehension [Maalej et al. 2014].
The research tool ExplorViz! aids developers in comprehending software systems by offering
Software Visualization as a Service (SVaaS) [Hasselbring et al. 2020]. ExplorViz’s Collaboration
Mode allows users to interactively explore software landscapes in multi-user sessions across
various platforms, such as Virtual Reality (VR) or Augmented Reality (AR), regardless of
location [Krause-Glau et al. 2022a]. A user study has affirmed that ExplorViz is both
enjoyable and useful for program comprehension [Krause-Glau et al. 2022a].

From a technical perspective, ExplorViz adopts a cloud-native microservice architecture,
enabling horizontal scaling of multiple services [Krause-Glau and Hasselbring 2022]. How-
ever, the Collaboration Mode has not undergone testing under high user load. Furthermore,
the underlying Collaboration Service, responsible for synchronizing clients in a multi-user
session, is not inherently scalability.

This thesis aims to conduct a thorough performance analysis of ExplorViz’s Collabora-
tion Mode and, based on the results, re-engineer the Collaboration Mode to enhance its
support for multi-user sessions with extensive interaction.

1.2 Document Structure

The thesis is structured as follows. Firstly, we present the thesis goals in Chapter 2. In
Chapter 3, we elaborate on the foundations and relevant technologies for our work. In
Chapter 4, we define a benchmark to evaluate the performance of ExplorViz’s Collaboration
Mode, and subsequently apply it to the current system in Chapter 5. Based on these results,
we undertake the re-engineering of the Collaboration Mode in Chapter 6 and analyze the
performance of the re-engineered system in Chapter 7. Following this, we discuss our
work’s results in Chapter 8. Finally, we present related research in Chapter 9 and conclude
the thesis in Chapter 10.

1ht’rps: / /explorviz.dev/

Chapter 2

Goals

In the following, we present the goals of the thesis.

2.1 G1: Design of a Performance Benchmark for ExplorViz’s
Collaboration Mode

The objective of this benchmark is to assess the Collaboration Mode’s capability to facilitate
multi-user sessions with high user interaction. The systems under examination are the back-
end, specifically the Collaboration Service, and the frontend, denoted by the corresponding
source code of ExplorViz’s Frontend which is responsible for collaboration. The benchmark
should define the test environment, suitable test scenarios, and performance metrics.

2.2 G2: Performance Analysis of ExplorViz’s Collaboration
Mode

We will apply the benchmark outlined in G1 to the previous Collaboration Mode imple-
mentation. Further, we will conduct an analysis to identify the causes of performance
limitations and explore potential areas for improvement.

2.3 G3: Re-Engineering of the Collaboration Mode

The goal of the re-engineering process is to enhance the performance of the Collaboration
Mode under high communication loads while maintaining its existing functionality. To
achieve this, we will redesign the backend to enable horizontal scalability without com-
promising the reliability of client connections. In order to improve the performance of the
frontend, we will pursue an explorative approach based on our findings in G2.

2. Goals

2.4 G4: Performance Analysis of the Re-Engineered Collab-
oration Mode

We will conduct a subsequent performance analysis for the re-engineered system. Therefore,
we will reuse the benchmark established in G1 and, furthermore, successively scale out
the backend by additional service instances. The results will be compared to the previous
outcome of G2 in order to evaluate our measures in G3.

Chapter 3

Foundations and Technologies

In this chapter, we clarify the foundations and technologies on which the thesis is based.

3.1 Performance and Scalability

Smith and Williams [Smith and Williams 2002] define software performance as any character-
istic of a software system that can be measured by "sitting at the computer with a stopwatch
in your hand", which means that performance objectives usually refer to timeliness. Further,
their definition determines responsiveness, which can be measured by response time or
throughput, and scalability as main aspects of performance.

Scalability refers to the ability of a software system to meet its performance objectives as
the demand increases, e.g. in case of a growing user population, by adding more resources
to the system [Kounev et al. 2020]. The two dimensions of scalability are vertical scaling
and horizontal scaling. Vertical scaling intends to scale a software system by providing
more resources to a single node in the system, e.g. a more powerful CPU. Horizontal
scaling introduces additional nodes and distributes the load between them [Kounev et al.
2020].

In the thesis, we will analyze and, moreover, improve the performance and scalability
of ExplorViz’s Collaboration Mode.

3.2 Benchmarking of Software Systems

Benchmarking in the context of software systems involves the assessment of a software sys-
tem using a standard tool, known as a benchmark, to competitively evaluate and compare
methods, techniques, or systems based on specific characteristics such as performance,
dependability, or security [v. Kistowski et al. 2015].

The ACM SIGSOFT Empirical Standards for Software Engineering' provide a standard
that describe the process of benchmarking as follows. Either the choice of an existing
benchmark must be justified or a new one must be created, specifying the quality to be
benchmarked, quality metrics, and measurement methods. Additionally, the experimental
setup and workload or usage profile details should be described in sufficient detail to

1ht’rps: / /acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking

3. Foundations and Technologies

support independent replication [Hasselbring 2021]. The benchmark should allow different
configurations of the system under test to compete without artificial limitations and should
assess stability or reliability using sufficient experiment repetitions and execution duration.
Finally, construct validity of the benchmark, ensuring it measures what it is intended to
measure, should be discussed.

In this work, we will benchmark the performance of ExplorViz Collaboration Mode.

3.3 The WebSocket Protocol

The WebSocket protocol is a bi-directional communication protocol, which allows both
server and client to send messages in a persistent connection. In order for two nodes to
communicate, they introduce a WebSocket via a HTTP handshake and channel messages
via a single TCP connection. By this means, WebSockets are especially suitable for real-time
applications, e.g. instant messaging or gaming. An alternative for using WebSockets is
HTTP polling, in which a client regularly sends requests to a HTTP server in order to
receive data. However, WebSockets are much more efficient for implementing real-time
applications [Liu and Sun 2012].

3.3.1 Socket.IO

Socket.IO? is a client server library for implementing WebSocket connections. Socket.IO
introduces initially uses HITP polling as transport protocoll in order to reduce the start
time. Then, a built-in upgrade mechanism tries to establish a WebSocket connection. In the
presence of proxies or firewalls, Socket.IO provides a fallback to HTTP polling. Network
faults are handled by a re-connection automatism or a disconnection detection, which
utilizes a hearbeat mechanism.

] Server
client A
r— - - - - - —==== a

client B

socket €
cl?ev\'t C

Figure 3.1. Socket.IO’s room concept®.

2https: / /socket.io/
3https: / /socket.io/docs/v3/rooms/

3.4. The Publish/Subscribe Pattern

Furthermore, the library has cross-platform support and integrates separation of con-
cerns by distributing connections between custom namespaces and rooms. A room is a
server-only concept, which allows servers to broadcast messages to a subset of clients (see
Figure 3.1). Sockets can join and leave rooms arbitrarily.

In our work, we will re-implement the ExplorViz’s Collaboration Mode using Socket.IO
in order to provide reliable connections in a scaled environment.

3.4 The Publish/Subscribe Pattern

The Publish/Subscribe pattern is a communication paradigm widely used in distributed
computing to facilitate efficient information exchange among various system components
[Eugster et al. 2003]. The core principle involves publishers which produce messages or
events and subscribers which express interest in specific types of messages and receive
relevant notifications (see Figure 3.2).

Publisher 1 \

Subscriber 1

Publish/Subscribe

Publisher .. Topic

Subscriber ..

\ Subscriber N

Figure 3.2. The Publish/Subscribe model [Curry 2004].

Publisher N

The messages are not transmitted directly but make a detour via a message bus.
Therefore, Publish/Subscribe represents an alternative to straightforward point-to-point
messaging [Curry 2004]. The decoupling between publishers and subscribers can be
observed in three dimensions [Eugster et al. 2003]. Firstly, the nodes are decoupled in time
since they do not need to handle the communication at the same time. The publisher can
produce a message even if the subscriber is not active. Secondly, the nodes are decoupled
in space. Publisher and subscriber do not need to know each other since all messages are
transmitted indirectly via the message bus. Finally, there is a synchronization decoupling
since the nodes are not blocked while exchanging messages. Instead, subscribers can
execute concurrent tasks until they are notified.

3.4.1 Redis

Redis*, which stands for Remote Dictionary Server, is an open-source, in-memory data
structure store [Macedo and Oliveira 2011]. The core concept of Redis revolves around its

4ht’rps: / /redis.io/

3. Foundations and Technologies

key-value storage paradigm. Data is organized and stored in a key-value format where
each key is a unique identifier associated with a corresponding value. These values can
range from strings to complex data structures, providing flexibility in data representation
and manipulation. Redis has built-in support for the Publish/Subscribe pattern [Macedo
and Oliveira 2011]. Producers can publish messages to named channels while consumers
can subscribe to messages that match a specific pattern to receive relevant updates. There
are no conflicts between the Redis keyspace and channel names as they belong to different
features.

Redis is a NoSQL database. NoSQL databases provide temporary, highly dynamic data,
and stand in contrast to SQL databases, which focus on predictable, relational data [Macedo
and Oliveira 2011]. The main advantages of NoSQL are reading and writing quickly, the
ability to expand, and low cost [Han et al. 2011]. Han et al. [2011] provide a classification of
Redis with regards to the CAP theorem in comparison to other NoSQL systems. The CAP
theorem was founded by Eric Brewer and introduces the idea of a fundamental tradeoff
between consistency, availability and partition tolerance in distributed systems [Gilbert and
Lynch 2012]. Han et al. [2011] conclude that Redis is primarily concerned about consistency
and partition tolerance, i.e., it works well in a high-scaled environment and ensures that all
nodes have the same view of the data. However, there are other NoSQL approaches which
come with a less restricted availability.

Finally, the Redis server keeps the datastore in-memory, i.e., the data is in volatile
memory and not persisted on the disk. This allows reads and writes to be performed with
extremely fast response times regardless of workloads [Kabakus and Kara 2017].

In the thesis, we choose Redis to implement the Publish/Subscribe pattern for inter-
server communication.

3.5 Nest]S

Nest]S® is a server-side application framework for building scalable, maintainable, and
efficient web applications in Node.js. The foundational principle of NestJS revolves around
a modular, component-based architecture. It encourages developers to organize their
applications into distinct modules, each responsible for a specific feature or functionality.

External communication interfaces are provided by controllers or gateways. Controllers
in Nest]S are responsible for handling incoming HTTP requests and orchestrating the
application’s response. Each controller is associated with a specific route and defines
various endpoints. Controllers use decorators to define routes, request handling logic, and
invoke appropriate services to process and manage data. However, gateways act as an
abstraction layer for handling communication with external systems, APIs, or WebSocket
connections. They provide a unified way to interact with external services, hiding the
complexity of integration. Gateways in Nest]S are platform-diagnostic and, particularly,
compatible with any WebSocket standard.

5https: / /nestjs.com/

3.6. Kubernetes

Components are integrated with the application by declaring providers (see Figure 3.3).

Value Component Factory

Component Component

Controller

Figure 3.3. Dependency injection in Nest]S°.

Providers abstract the underlying implementation details to other components, promot-
ing modularity and reusability. Through dependency injection, NestJS injects providers into
controllers, services, or other providers. They can invoke providers to delegate complex
tasks. Dependencies can be nested manifoldly and are resolved by the Nest]S runtime
system.

In our work, we will re-implement the Collaboration Service based on the Nest]S
framework.

3.6 Kubernetes

Kubernetes” is a widely adopted container orchestration platform designed to automate,
manage, and scale the deployment and operation of containerized applications within a
distributed environment [Hightower et al. 2017].

The basic building blocks of applications are pods. Pods encapsulate one or more
containers sharing a common network and storage. Containers within a pod work together
and can communicate seamlessly. Kubernetes allows the definition of resource limits for
pods, specifying the maximum amount of CPU and memory that a Pod or container can
use. Resource limits are crucial for maintaining resource fairness and preventing any single
pod from monopolizing the available resources within the cluster.

Pivotal components in managing and enabling communication within a Kubernetes
cluster are services and ingress controllers. Services act as an abstraction layer over a group
of pods, providing a discoverable endpoint for clients within the Kubernetes cluster. An

6ht’rps: / /docs.nestjs.com/providers
7https: / /kubernetes.io/de/

3. Foundations and Technologies

ingress controller in Kubernetes manages network traffic which enters or passes through
the cluster. It facilitates access to services and allows routing based on defined rules for
optimizing application accessibility, e.g., load balancing or URL-based routing.

In the thesis, we will deploy ExplorViz inside a Kubernetes cluster to conduct a
performance analysis.

3.7 ExplorViz

ExplorViz is a scientific software visualization tool which supports program comprehension
of software systems [Hasselbring et al. 2020]. It allows users to explore software landscapes,
which utilize a 3D city metaphor (see Figure 3.4), via various platforms, i.e., on-screen or
Extended Reality (XR) [Krause-Glau et al. 2022b]. The visualization provides static aspects,
i.e., the structure of the respective system, as well as dynamic aspects, e.g. communication
between components at runtime.

Communication Information

@ 60(100%)
e 4

2 Oncsperwequestriter 5 Person
Q getLasmiame
P 30 50%)

2 OncePerRequestfier > Person
=] satLastName
< 2(3%)

2 Oncspersquestriter 3 Person
=] s iName
27(a8%)

2 OncePerRequestriter 5 Person

Figure 3.4. ExplorViz’s application visualization [Krause-Glau and Hasselbring 2022]

3.7.1 Architecture

ExplorViz is built on a microservice architecture (see Figure 3.5). The Adapter Service is
responsible for collecting and validating data from incoming monitoring sources. Analyzing
the monitoring data and creating a software landscape model are the tasks of the Structure
Service and the Dynamic Service (see 3.5-D). To render the visualization in a web browser,
ExplorViz’s Frontend (see 3.5-E) utilizes WebGL8. User interactions related to the landscape
model are processed by the User Service (see 3.5-F), which then forwards events related to
the software landscape to the respective analysis service.

8htitps: / /www.khronos.org/api/webgl

10

3.7. ExplorViz

‘Communication Flow legend Software legend
Viz data stream Data source stream Database operation
B bata Prototype [DBMS
Collaboration events Analysis stream Token event source (S
Analysis st Token event,
Monitoring Analysis Visualization
Server p— &g LTXwas par—
()~ Runtime -, .- created by >
Appiication | (A) ihformation with!) psery, . Zﬁgte”d
{___Dynamic colliector| | attached token
| T T | A Propagate LTevents
(3 Structural == Simeture for : !/ o
‘ Application | Data Structure : . | :
Service : etort
{___ Dynamic collector / (Gurrent / Historical) R l . Frontends rur
~ p - onclients
. o \E) - Glient
. Adapter r . } User | JnitlTevent O Frontend || > 5
Service | J Service ; Webserver| | iFrontend
A R .
Server } 4 g Dynamics for . e.g. UserY 4
) C yrom . deleted LT U . .
Code —~ Structural v/ %V”ﬂ'“‘c - . .
repository | [B information with - Dynamic erviee (Current / Historical) . . °
- ‘Structure collector] | attached token - Data KA ALY LAz / Collaboration - Collaboration
i / Propagate LT events Service - Events
Propagaté LT events : £
%W o y - : G ¢ p Glient
‘ Cllob c / A : /ooy > Frontend
__Dyn. / Struct coll. highlighted entity. s
....................... z
Structural /

Runtime
information with
attached token

Figure 3.5. Conceptual design of ExplorViz [Krause-Glau and Hasselbring 2022]

The Frontend is an Ember.js° application and utilizes Three.js'* for rendering purposes.

3.7.2 The Collaboration Mode

The Collaboration Mode allows multiple users to interactively explore a shared software
landscape within the same virtual room [Krause-Glau et al. 2022a]. Apart from direct
interaction with the software landscape, various features facilitate user-to-user interaction.
For example, users can highlight interesting objects or attach technical insights in the
form of pop-ups within the virtual room. A multi-user session is initiated when one
user shares the current software landscape, and this landscape is synchronized via the
Collaboration Service (see 3.5-G). Consequently, shared sessions are both location and
platform independent.

Communication between clients and the Collaboration Service is enabled through
WebSockets. The objective of the Collaboration Service is twofold: to validate user actions,
such as opening a component of the software landscape, and to broadcast events to other
clients to synchronize the scene’s state, such as the position of individual users. Thus, the
Collaboration Service acts as a single source of truth, managing a model of landscape and
room relevant data. Clients also maintain a local replica of this data model to render the
scene in the browser.

The Collaboration Service is implemented using the Quarkus'' framework. The frontend

“https:/ /emberjs.com/
1Uht’cps: / /threejs.org/
11ht’rps: //quarkus.io/

11

3. Foundations and Technologies

component is integrated with ExplorViz’s Frontend as an Ember.js add-on.
In this thesis, we will re-engineer the Collaboration Mode to improve its performance.

12

Chapter 4

Design of a Performance Benchmark for
ExplorViz’s Collaboration Mode

In this chapter, we want to define a benchmark to measure the performance of ExplorViz
Collaboration Mode.

4.1 Methodology

Since there is no existing standard benchmark which investigates the performance or any
other relevant attribute of the Collaboration Mode, we must define a completely new one.
Therefore, we consult the benchmarking standard ACM SIGSOFT Empirical Standards for
Software Engineering [Hasselbring 2021].

The quality to be benchmarked is the performance of the Collaboration Mode to
provide multi-user sessions with high interaction. The performance should be determined
by conducting a load test with a high number of simulated users, which follow a certain
usage profile as well as a stress test by ramping up the number of users [Menascé 2002].

However, the system under test is decomposed into two applications, the frontend and
backend part, which are based on different runtime environments and fulfill different re-
sponsibilities. Therefore, we will organize the benchmark into two phases. In the first phase,
we will benchmark the performance of the backend. The second phase will investigate the
performance of the frontend.

In the following sections, we concretize the essential attributes of the benchmark.
Firstly, we will provide the general framework of the performance test, which applies to
both phases. Subsequently, we describe individual aspects for the backend as well as the
frontend analysis, i.e., the experimental setup, metrics, and measurement methods. Finally,
we discuss the construct validity of the benchmark.

4.2 General Framework

In the following, we describe the general framework of the performance test, i.e., the
infrastructure, the workload, the test data, and the test plan.

13

4. Design of a Performance Benchmark for ExplorViz’s Collaboration Mode

4.2.1 Infrastructure

The system under test should be deployed in a containerized environment for the test to be
representable and repeatable. Therefore, we will use the Kubernetes framework to easily
scale individual deployments and allocate hardware resources based on our needs.

Furthermore, the performance test should be conducted on sufficiently powerful hard-
ware. For this thesis, we use the cluster of the Software Engineering Group at Kiel University.
The system specifications are displayed in Table 4.1.

Table 4.1. System specifications of the Kubernetes cluster at Kiel University’.

Type Specification

5x Kubernetes Master/N- | CPU: 2x Intel Xeon Gold

odes 6130 (2.1 GHz, 16 Cores)
Ram: 384 GB
Kubernetes v1.23

Storage 120TB TrueNAS

Cloud Network 10GBase-T

Intelligent PDU 2x Rack PDU Raritan PX3-
5190CR

4.2.2 Test Data

ExplorViz is a software visualization tool, which allows users to observe a 3-dimensional
model of a monitored software system and to interact with it to gain a deeper understanding.
The 3-dimensionaly landscape visualization of ExplorViz is generally built from landscape
and trace data, that was retrieved from a static and dynamic analysis of a provided software
system. For the performance test, a representable landscape model must be provided, on
which the simulated users can operate. For this, we will reuse the distributed version of the
PetClinic Sample Application?, which has already been applied to benchmarking software
visualization tools for program comprehension [Krause-Glau and Hasselbring 2022].

4.2.3 Workload

In the following we present the theoretical usage profiles as well as our technical approach
for generating user load.

1https: / /www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel
Zhttps:/ / github.com/spring-projects/spring-petclinic

14

4.2. General Framework

Usage Profiles

In ExplorViz’s Collaboration Mode, multiple users are joined in a virtual room observing
the same landscape model. All interactions which manipulate the virtual scene are syn-
chronized between the users. To define a usage profile, we derive a representative user
interaction scenario from the set of features that comes with the application. In Algorithm 1,
we provide the Browser Usage Profile, which represents a user which experiences ExplorViz
in a web browser.

Algorithm 1 Browser Usage Profile

1: repeat

2: Highlight a component that initially catches their attention
Detach a pop-up menu to present further information to all users
Open a component to observe lower-level aspects of the application
Ping to a component for other users to localize it
Close a component to observe high-level aspects of the application
Close a pop-up menu to clean the virtual scene

To simulate a longer user session, the scenario should be executed very often, e.g., 50
times. Additionally, there should be a delay between all actions of a scenario, which at least
exceeds the minimal human reaction time to visual stimuli, i.e., above 200 milliseconds
[Abbasi-Kesbi et al. 2017].

Furthermore, the Collaboration Mode of ExplorViz provides cross-platform support, i.e.,
all interactions with the landscape model are also available using VR or AR. Moreover, both
XR perspectives extend the collaborative features of the browser perspective by visualizing
an avatar of every XR user in the virtual scene. For this, every XR user’s relative position
is synchronized any time the physical position has changed. Therefore, we define the XR
Usage Profile (see Algorithm 2) to cover the previously described feature as well.

Algorithm 2 XR Usage Profile
1: do in parallel

2: task

3: Run Browser Usage Profile
4 task

5: repeat

6: Change position.

From a technical perspective, the user updates the position regularly with a short delay,
which nearly correlates with the average frame rate of the application, e.g., less than 50
milliseconds [Liu et al. 2023].

Finally, we define two user populations which represent different multi-user sessions:

15

4. Design of a Performance Benchmark for ExplorViz’s Collaboration Mode

> Browser Population: 100% of the users follow the Browser Usage Profile.
> Cross-Platform Population: 50% of the users follow the XR Usage Profile, the other 50%
follow the Browser Usage Profile.

The absolute number of users is not constant but should be varied during the execution
of the performance test to ramp-up the workload. Furthermore, we differentiate between
browser-only and cross-platform sessions since we assume a higher workload in the cross-
platform session due to the high frequency of positional updates. However, we do not
investigate a session with XR users only since both VR and AR are extensions to the default
browser visualization and ExplorViz is designed to bring those different platforms together.

Load Generator

We produce the load by implementing a custom Load Generator. The Load Generator creates
a new virtual room and, thereafter, establishes several WebSocket connections with the
Collaboration Service. Each WebSocket client represents one end user and sends messages
based on the previously defined usage profiles. Every test run has a constant number
of client connections, but we ramp up the load successively by increasing the number
of clients in following test runs. We present the test variables which are decisive for the
generated workload in the following:

V1: The number of browser users per room.
V2: The number of XR users per room.

V3: The number of repeated scenarios.

V4: The duration between user actions.

V5: The duration between XR position updates.

Additionally, we can increase the load by deploying multiple instances of the Load
Generator, where each instance creates an individual virtual room. This way, the test load
can be scaled in two dimensions, i.e., the number of rooms as well as the number of users
per room.

4.2.4 Test Plan

Since the Collaboration Mode has never been tested with a high number of users and we
have no previous performance insights, the load test will follow an explorative approach.
We will start with a small number of users and ramp it up while observing the performance
metrics. In case the metrics reach a certain threshold, the application runs into an error
state, or the metrics does not change at all for multiple iterations, we will stop to increase
the load. The thresholds for stopping the execution are metric-specific and will be defined
later. We will scale the load generator up to more instances, i.e., virtual rooms, in the same
manner.

16

X3 ONUT s W -

4.3. Backend

The performance test should follow the same explorative pattern for each component,
i.e., backend and frontend, and each user population, i.e., browser and XR. The complete
test plan is structured as follows:

Phase 1: Performance test of the backend.

(a) Simulate the Browser Population.
(b) Simulate the Cross-Platform Population.

Phase 2: Performance test of the frontend.

(a) Simulate the Browser Population.
(b) Simulate the Cross-Platform Population.

4.3 Backend

In the following, we present the aspects which are specific for benchmarking the perfor-
mance of the backend.

4.3.1 Experimental Setup

The backend of the Collaboration Mode is represented by the Collaboration Service. Thus,
the Collaboration Service as well as the Load Generator must be deployed (see Figure 4.1).
The Load Generator can be scaled to multiple instances, i.e., Kubernetes pods. Each instance
creates a room and, subsequently, establishes various client connections via WebSocket.
The physical resources which are provided to the Collaboration Service, i.e., CPU and
memory, should be constant for all test iterations in order for the runtime behavior to be
repeatable. In Kubernetes, this can be done by setting the upper bound and the lower
bound of available resources for a specific container to the same value (see Listing 4.1).

Listing 4.1. Examplary resource configuration of Kubernetes deployment.

apiVersion: apps/vl
kind: Deployment
containers:
resources:
limits:
cpu: 1
memory: 2Gi
requests:
cpu: 1

memory: 2Gi

This way, the container will not be scaled vertically by the Kubernetes framework
even during high load peaks. However, the container of the Load Generator must not

17

4. Design of a Performance Benchmark for ExplorViz’s Collaboration Mode

utilize its resource limits at any time. Otherwise, it may lead to a performance bottleneck
while the system under test is not even at its limits. We can ensure the container to have
enough physical resources by omitting the upper limit and setting the requested resources
very high. Furthermore, the actual resource utilization of the Load Generator should be
monitored during the performance test to prevent distortion of the results.

Cluster

WebSocket

Load Generator Collaboration Service

Figure 4.1. Deployment of the backend performance test.

4.3.2 Metrics

Since the backend is mainly responsible for handling and exchanging client messages,
responsiveness is a suitable indicator for performance. From a high-level perspective, there
are two types of client messages, Request Messages and Synchronization Message.

Request Messages are triggered by user actions that need server-sided validation, e.g.,
closing an object that may already be used by another user. The backend handles the
request and sends a response back to the requesting client. We define the Response Time
(RT) of Request Messages as follows:

RT (i) = Jlrequest (1) + Tprocessing (l) + Tresponse (1) 4.1)
Where:

> i is the message.

> Trequest(i) denotes the time taken to send request i to the backend.

> Tprocessmg(i) represents the time taken by the backend to handle request i.

> Tresponse(i) signifies the time taken to send the response to request i back to the client.
However, Synchronization Messages are status updates, that needs to be shared with
all clients in a room, e.g., highlighting a component of the landscape. Status updates
are triggered by user actions that need no further validation. The backend integrates the
update with its local data model and broadcasts the status message to all clients in the

18

4.3. Backend

room except the client that has sent the message. We define the Mean Round Trip Time
(MRTT) of Synchronization Messages in one room as follows:
ZVCGC\{S} Tforwarding (i/ C)

NG *2

MRTT(i) = sending(i) + Tupdating(i) +
Where:

> i represents the message that was sent by the client.

> s is the sending client.

> C is the set of connected clients without the sending client.

> Tsending (i) denotes the time taken to send synchronization message i to the backend.
> Tupdaﬁng(i) represents the time taken by the backend to update the model based on
message i.

Ttorwarding (i, ¢) signifies the time taken to forward message i to client c.

v

In summary, the MRTT quantifies the average time it takes for a Synchronization
Message to be delivered.

The RT as well as the MRTT should be kept low enough so that the user interaction
is not significantly interrupted. For this, we will follow the guidelines of response time
limits by [Nielsen 1994]. They identify 0.1 seconds as the limit for users to feel that they
are directly manipulating objects in the user interface. Thus, we define the Service Level
Objectives (SLO), which also represent the termination criteria of the performance test (see
Table 4.2).

Table 4.2. SLO definition for the Collaboration Service.

Type of Measure SLO Requirement

RT The average RT for all Request Mes-
sages during one execution will be
lower than 0.1 seconds.

MRTT The average RT for all Synchroniza-
tion Messages during one execution
will be lower than 0.1 seconds.

Furthermore, the CPU and memory utilization of the Collaboration Service should be
monitored to identify resource limitations. Additionally, we count the number of messages
which are received and sent by the Collaboration Service.

4.3.3 Measurement Methods

The RT of Request Messages can be determined by measuring the difference between the
timestamp in which a request is sent and the timestamp in which a corresponding response
is received by the Load Generator. However, WebSocket messages are bidirectional and,
therefore, responses do not inherently refer to a specific request message. However, we can

19

N U= WD

4. Design of a Performance Benchmark for ExplorViz’s Collaboration Mode

take over the same mechanism which the frontend uses to match request and response
pairs by providing a nonce, i.e., a unique identifier, to every request message.

For the MRTT we instrument the backend code by adding a unique message identifier
to Synchronization Messages, as well, so that the Load Generator recognizes forwarded
messages. We measure the time between sending a status message and receiving the
corresponding forwarded message for every client. After that, we aggregate the MRTT for
every outgoing Synchronization Message.

In the Kubernetes environment we can retrieve the resource utilization of a container
from the control group of the Linux kernel [Gao et al. 2019].

44 Frontend

The second test phase is concerned with the frontend of the Collaboration Mode and is
described in the following.

4.4.1 Experimental Setup

The frontend of the Collaboration Mode was implemented in form of an Ember.js add-on
on top of ExplorViz’s Frontend. Thus, we must deploy the full ExplorViz Frontend, which
again depends on ExplorViz’s backend analysis services. These microservices serve user and
landscape data for the frontend to authenticate the user and render the 3d-landscape model.
However, we can replace the functionality of the microservices by the Demo Supplier?, which
is a minimal provider of relevant datasets. The replacement will not affect the performance
results since we exclusively focus on the behavior of the collaborative features, which do
not rely on the microservices. The complete setup is visualized in Figure 4.2.

Additionally, the experimental setup of the backend test is reused. Finally, we must
deploy the Client, which accesses ExplorViz’s Frontend in a web browser and enters the
virtual room that has been created by the Load Generator before. Since the performance
test should be fully automatized, we provide a script which uses the Taiko* framework to
establish the browser session (see Listing 4.2).

Listing 4.2. Browser automation with Taiko.

(async () => {
await openBrowser({ headless: true });
await goto(FRONTEND_URL);
await click(button({ class: ’'button-svg-with-hover’ }, toRightOf(’Room’)));

nao;

Shttps:/ / github.com/ExplorViz/deployment
4https: / /taiko.dev/

20

4.4. Frontend

Cluster

HTTP HTTP
Demo Supplier ExplorViz Frontend Client

WebSocket

Y

WebSocket
Load Generator [« »|Collaboration Service

Figure 4.2. Deployment of the frontend performance test.

The Load Generator again simulates user load, which leads to incoming messages
in the Client’s browser. However, we use only one instance of the Load Generator since
the monitored client can only be connected to one room at a time. As we did in the
backend configuration, we provide constant physical resources to the Client container for
the performance test to be repeatable.

4.4.2 Metrics

The goal of the frontend analysis is to measure the performance of those frontend function-
alities that refer to user collaboration. The process which renders the 3-dimensional scene,
for example, is part of the code base of ExplorViz’s Frontend but no feature of the Collabo-
ration Mode. Additionally, I/O operations are handled by the core of ExplorViz’s Frontend
and are also out of scope. However, the frontend of the Collaboration Mode manages the
collaborative session, handles WebSocket messages, and updates the client-local model of
the scene. Thus, we define the Exectution Time (ET) of received Synchronization Messages
as follows:

ET(i) = TSupdated(i) - TSreceived(i) (4.3)
Where:

> i represents the message.

> Tsupdated(i) denotes the timestamp in which the client-local model is updated (but not
necessarily rendered) based on message i.

&> TSeceived (i) is the timestamp in which message i was received.

Again, we provide a suitable SLO definition (see Table 4.3).

21

4. Design of a Performance Benchmark for ExplorViz’s Collaboration Mode

Table 4.3. SLO definition for the frontend.

Type of Measure SLO Requirement

ET The average ET for all received Syn-
chronization Messages during one ex-
ecution will be lower than 0.1 seconds.

Futhermore, the CPU and memory utilization of the client instance should be collected.
Finally, we count the number of Synchronization Messages that are received by the client.

4.4.3 Measurement Methods

To measure the ET of messages, we instrument the code of ExplorViz’s Frontend as follows.
For each WebSocket message we log a timestamp in the moment the message is received.
Additionally, we log a timestamp after all message-specific event listeners have terminated.
The difference of the previous values leads to the ET. However, the code is executed in
the headless web browser. Therefore, the relevant logs must be retrieved from the browser
console, which can also be done with Taiko.

4.5 Threads to Validity

In the following sections, we discuss internal or external factors which concern the construct
validity of the benchmark.

4.5.1 Usage Profile

ExplorViz provides various features and allows the user a lot of room for maneuver.
Therefore, it is a very complex task to predict the behavior of a real-world user. However,
we identified two categories of user interactions, i.e., requests and status updates, each
of which follows a specific computational pattern. The previously defined usage profiles
include various representative actions for both categories.

4.5.2 User Population

Since ExplorViz has cross-platform support, a real-word user base may be very diverse
with regards to the chosen device. Moreover, different devices enable alternative features.
Even though we cannot cover all distributions of devices, we define two user populations
which differentiate between the used technologies. This duality should provide insights
into potential performance differences.

22

4.5. Threads to Validity

4.5.3 Instrumentation

The frontend and backend code must be instrumented for measurement reasons. On the
one hand, WebSocket messages are extended by a unique identifier. On the other hand,
various events must be monitored and logged. However, the additional execution time
of those necessities should be minimal as they are attributed to basic I/O operations.
Therefore, we do not expect a noticeable impact on the performance metrics.

4.5.4 Resource Limitations

As previously stated, the CPU and memory of the respective system under test is limited.
However, in production environment the Collaboration Service may be scaled vertically to
a higher resource capacity. Additionally, the client’s computer may be equipped with more
computing power than we decide for the benchmark. Thus, the performance results may
be weaker than in a real-word scenario. Nevertheless, the resources must be bounded to
enable a competitive analysis.

23

Chapter 5

Performance Analysis of ExplorViz’s
Collaboration Mode

In this chapter, we present the performance analysis of ExplorViz’s Collaboration Mode.
We begin by demonstrating the preparation for the performance test. Following that, we
present the results. Lastly, we engage in a discussion of the results and evaluate them with
regard to our goals.

5.1 Preparation

The objective of the performance analysis is twofold, to establish a basis for evaluating
future development activities and to gain insights into potential performance bottlenecks.
Therefore, we execute the benchmark as defined in Chapter 4. The system under test is the
current Collaboration Service and ExplorViz’s Frontend [Briick 2023].

To generate representative results, it is essential to limit the resources of the containers
that encapsulate the respective system under test. During the backend test, we must
restrict the resources as strongly as possible, as we aim to retain the option to investigate
the horizontal scalability of the Collaboration Service. However, the resources must be
sufficient for the backend to simulate a realistic runtime behavior. The configuration details
are presented in Table 5.1 using Kubernetes notation.

Table 5.1. Resource configuration of the Collaboration Service’s container.

Type of Resource Value
CPU 1
Memory 2Gi

For the performance test of the frontend, we need to constrain the Client’s container.
The Client is responsible for executing ExplorViz’s Frontend, including the 3D animation
of the landscape in its local web browser. We have determined the necessary resources for
this task through exploratory means. The resulting configuration is outlined in Table 5.2.

In Table 5.3, we showcase the final configuration of the test variables, their values being
determined based on the considerations in Chapter 4.

25

5. Performance Analysis of ExplorViz’s Collaboration Mode

Table 5.2. Resource configuration of the Client’s container.

Type of Resource Value
CPU 12
Memory 4Gi

Table 5.3. Test configuration.

Variable Value

V3: The number of repeated scenarios | 50

V4: The duration between user actions | 500 milliseconds
V4: The duration between XR position | 50 milliseconds
updates

Throughout the test execution, we vary the number of users per room (i.e., test variables
V1 and V2) for each user population in an exploratory manner. Additionally, during the
backend test, we scale the Load Generator to simulate one, two, four, and eight rooms. This
allows us to investigate the runtime behavior of the Collaboration Service in managing
multiple rooms simultaneously.

5.2 Results

In this section, we present the results of the benchmark execution [Briick 2023]. Firstly,
we showcase the results of the backend test for the two distinct user populations, i.e.,
the Browser Population and the Cross-Platform Population. Following this, we offer the
performance results of the frontend setup for both user populations.

5.2.1 Backend

The results of the backend performance test with the Browser Population are depicted in
Figure 5.1.

Each diagram corresponds to a different metric and presents curves for room counts of
one, two, four, and eight. Specifically, each graph of a function represents a mapping from
the number of connected clients to the metric-specific value space. For clarity, we offer the
average value of each metric over one test iteration. For instance, each function value of the
RT metric is an aggregation of all RTs of Request Messages for one test execution with a
constant number of clients and rooms.

Furthermore, we provide the SLO’s threshold for both the RT and MRTT to visualize
SLO violations. If the function values are situated below the black-colored curve, the SLO
requirement is met. If the graph of the function exceeds the curve, the metric surpasses
the SLO’s threshold and, consequently, does not meet the requirement. Once the SLO is

26

RT [ms]

CPU [%]

Messages

500
Rooms:
o 1
400 |- —o— 2
4
300 8
200 / N
100 |- N
./_%J oo
o (-
| | | | | |
0 10 20 30 40 50 60
Users/Room
(a) Response time.
100 T T T
Rooms:
o 1
80 |- o 2
4
60 -eo— 8
40 | N
20 B
ol il
| | | | | |
0 10 20 30 40 50 60
Users per room
(c) CPU utilization.
10*
5F ‘ Rooms:
o 1
4 o 2
4
8
3 | —0—
ol il
1 / l
ol il
| | | | | |
0 10 20 30 40 50 60

Users/Room

(e) Number of messages received by server.

MRTT [ms]

Memory [%]

Messages

500

400

300

200

100

100

80

60

40

20

0.8

0.6

0.4

0.2

5.2. Results

Rooms:
—e— 1
[—e— 2
4
L / —eo— 8
x/lj{// o
| | | | | |
0 10 20 30 40 50 60
Users/Room
(b) Mean round trip time.
‘ ‘ ‘ ‘ ‘ Rooms:
—o— 1
= —o— 2
4
o 8
| | | | | |
0 10 20 30 40 50 60
Users per room
(d) Memory utilization.
-10°
il Rooms:
—eo— 1
= —o— 2
4
L —o— 8
| | | | | |
0 10 20 30 40 50 60
Users/Room

(f) Number of messages sent by server.

Figure 5.1. Backend performance results for the Browser Population.

27

5. Performance Analysis of ExplorViz’s Collaboration Mode

not met for at least one metric, the termination criterion is fulfilled, and the graph of the
function is interrupted.

The minimal service time of the Collaboration Service is represented by two clients,
as at least two users are required to simulate collaboration, triggering Synchronization
Messages. It consistently remains below 20 milliseconds for all room counts and both RT
and MRTT. Similarly, the minimal resource utilization is typically below 20%, except for
eight rooms, where the values of CPU and memory usage are significantly higher.

Furthermore, the RT and MRTT exhibit very similar behavior as they both progressively
increase with a growing workload. The increase is even more pronounced when the
backend serves multiple rooms simultaneously. For all room counts, we eventually reach
the SLO’s threshold. While a single room can accommodate up to 30 active users, eight
rooms can only be managed if each room holds around 10 users. In general, the metrics
do not grow linearly with the number of clients. The gap between 30 and 40 users in one
room is considerably larger than the gap between 20 and 30 users.

The resource utilization increases with intensified workload. While memory utilization
never exceeds half of its limit, CPU utilization increases significantly. However, the CPU is
not fully occupied even when the RT or MRTT exceeds the SLO’s threshold by a significant
margin.

Finally, we examine the number of transmitted messages. The number of messages
received by the server grows linearly with the number of users. The increase of the functions
directly depends on the number of rooms. However, the functions of messages sent by the
Collaboration Service display a stronger growth and are not linear at all.

The results of the Cross-Platform Population are visualized in Figure 5.2.

The diagrams follow a structure similar to the previous visualization of the Browser
Population. However, the x-axis does not pertain to homogeneous user groups. Instead,
the user count aggregates both browser and XR users. For example, the value 30 on
the x-axis signifies 15 browser users and 15 XR users, as defined by the Cross-Platform
Population. Therefore, the minimal service time is represented by the RT and MRTT while
the Collaboration Service hosts two client sessions, each with a different device.

Overall, all metrics exhibit a strong tendency to increase as the number of users or
rooms grows. Additionally, the RT and MRTT violate the SLO requirement very quickly. It
appears that the backend can handle 10 interacting users, but only if they represent the
only room. The graphs that pertain to multiple rooms increase drastically with a growing
interaction per room.

The CPU utilization reaches values around 80% for many workload configurations. The
memory never occupies more than 60% of the limit. However, the initial utilization with
the minimal user count of two increases with a higher number of rooms.

Finally, the number of transmitted messages follows the pattern of the other metrics.
In the case where the server provides eight rooms in parallel, the message count grows
significantly stronger than for other configurations.

28

RT [ms]

CPU [%]

Messages

500
Rooms:
o 1
400 - —— 2
4
300 |- —o— 8
200 |- 5
100 - i 1
Z// o
0 [-
| | | | | |
0 5 10 15 20 25 30
Users/Room
(a) Response time.
100 T T T
Rooms:
o 1
80 - p o 2
4
601 -eo— 8
40 - *
20 - f
O 7\ | | | | | i
0 5 10 15 20 25 30
Users per room
(c) CPU utilization.
10°
‘ Rooms
30 —— 1
o 2
4
ol -eo— 8
1 |- .
o %/. |
| | | | | |
0 5 10 15 20 25 30

Users/Room

(e) Number of messages received by server.

MRTT [ms]

Memory [%]

Messages

500

400

300

200

100

100

80

60

40

20

1.5

0.5

5.2. Results

Users/Room

(f) Number of messages sent by server.

Figure 5.2. Backend performance results for the Cross-Platform Population.

29

Rooms:
—eo— 1
—e— 2
4
/ .
b‘/ SLO
| | | | | |
0 10 15 20 25 30
Users/Room
(b) Mean round trip time.
‘ ‘ ‘ ‘ ‘ Rooms:
—o— 1
r o 2
4
B o 8
L ! ! ! ! ! il
0 5 10 15 20 25 30
Users per room
(d) Memory utilization.
-10°
Rooms:
—— 1
—— 2
4
o 8
| | | | |
0 5 10 15 20 25 30

5. Performance Analysis of ExplorViz’s Collaboration Mode

5.2.2 Frontend

The results of the frontend test are illustrated in Figure 5.3. These diagrams depict the
runtime behavior of two distinct populations: the Browser Population and the Cross-
Platform Population, distinguished by color. Additionally, the curves for the metrics ET,
CPU utilization, and memory utilization represent the averages of all values for each
configuration. Furthermore, it is important to note that we employ a single Load Generator
instance for all iterations, since the Client instance responsible for running ExplorViz’s
Frontend in the browser is assigned to a specific room, and is not associated with clients
from other rooms.

5 10°
Population: 8 Population: .
—e— Browser —e— Browser
4 | —e— Cross-Platform N —e— Cross-Platform
6 = .
= 30 : 8
2 z
= g 4 |
Mool i s
1 . 20 |
0 m P e e S
0 50 100 150 200 0 50 100 150 200
Users Users
(a) Execution time. (b) Number of messages received by client.
100 T T 100 - T T
Population:
—o— Browser
80 |- a 80 | —e— Cross-Platform B
— s S
= 60 |- 8 g 60 [8
g 40 | 8 % 40 - f
=
20 Population: - 20| i
—e— Browser ——o ¢ b b v
0 —e— Cross-Platform ‘ ‘ ‘ oL ‘ ‘ ‘ ‘
0 50 100 150 200 0 50 100 150 200
Users Users
(c) CPU utilization. (d) Memory utilization.

Figure 5.3. Frontend performance results.

In general, the function values of ET, CPU, and memory exhibit minimal variation,

30

5.3. Discussion

and high workloads do not substantially impact these metrics. The average ET consis-
tently remains below 1 millisecond. Notably, the handling of messages from XR users is
exceptionally swift, with execution time changes occurring on a microsecond scale.

Resource utilization does increase when handling 200 users compared to two users.
However, this growth is relatively small, and there appears to be a consistently high,
constant resource usage overall, with CPU utilization consistently exceeding 60% and
memory utilization ranging between 10% and 20%.

Nevertheless, the graphs tracking the number of received messages exhibit different
behaviors concerning user population. While both populations show a linear growth
in message counts, the Cross-Platform Population’s function experiences a considerably
steeper incline.

Finally, we terminated the test after reaching 200 users. This decision was made because
the metrics remained relatively stable across multiple iterations, and the load generator is
not designed for vertical scaling to significantly increase the load in one room.

5.3 Discussion

Based on the results, the Collaboration Mode supports multi-user sessions with up to 30
browser users within a single room. However, performance degrades noticeably if the user
count exceeds 30, potentially hindering real-time interaction. Even a slight adjustment to
the SLO’s threshold would still breach these standards, as both RT and MRTT escalate
significantly with higher workloads.

In a cross-platform environment, the backend effectively synchronizes sessions for
a maximum of 10 diverse users. In contrast, the frontend seamlessly handles 200 users
without performance degradation. Consequently, we contend that the backend poses a
bottleneck for overall performance, particularly with larger room sizes.

Additionally, while the backend can manage multiple rooms with interacting browser
users concurrently, the maximum room capacity diminishes notably as the number of
rooms increases. In the context of the Cross-Platform Population, the Collaboration Service
struggles to efficiently handle multiple rooms.

Analysis of hardware resource metrics demonstrates a direct correlation between re-
source utilization and client workload. Specifically, the CPU experiences high activity
during periods of intense user interaction. As a result, we hypothesize that redistributing
the workload across additional physical resources could potentially enhance performance
metrics. However, it is important to note that the CPU is not consistently operating at
full capacity in configurations where the SLO requirement is not met. Consequently, we
conclude that other factors, such as network issues, suboptimal multithreading, or blocking
operations, are contributing to performance limitations.

In summary, the minimal service time (i.e., the RT and MRTT for two users) complies
with the SLO in every configuration and is significantly shorter than the specified threshold.
The message exchange via the Collaboration Service appears suitable for fast client synchro-

31

5. Performance Analysis of ExplorViz’s Collaboration Mode

nization. However, as the number of client connections increases, performance experiences
a significant decline. To comprehend this growth, we investigate the number of transmitted
messages. For every Request Message sent by a client to the backend, the server responds
with exactly one unicast message. However, in the case of a Synchronization Message, the
server broadcasts the message to all other connected users in the same room. Consequently,
adding one more user to a room leads to one more sender, triggering broadcast messages,
and one more receiver for each broadcast from other clients. Mathematically, the number
of Synchronization Messages transmitted by the server in one room is represented by the
following function:

f(n,m) =msn=(n—1) (5.1)
Where:

> n is the number of users in the room.
> m denotes the number of Synchronization Messages sent by each user (assumed to be
constant for all users).

Thus, the message count grows quadratically with the number of users. This growth
of messages has an even more pronounced impact on a cross-platform population, as the
number of triggered Synchronization Messages is higher. This leads us to hypothesize
that broadcasting Synchronization Messages constitutes a performance bottleneck. Reduc-
ing the number of outgoing messages on the server side could potentially enhance the
Collaboration Mode’s ability to serve larger room sizes.

Furthermore, the results of the frontend test demonstrate a consistent effort in processing
collaborative sessions for various room sizes. We conclude that rendering the 3-dimensional
software landscape in the browser demands a significant amount of scripting time and
resources. However, WebSocket messages from the Collaboration Service are processed
very efficiently and do not impact performance as strongly as we initially assumed.

32

Chapter 6

Re-Engineering of ExplorViz’s
Collaboration Mode

In this chapter, we present the re-engineering process of the Collaboration Mode in Ex-
plorViz.

6.1 Methodology

The goal of the re-engineering is to enhance the performance of the Collaboration Mode,
facilitating multi-user sessions with extensive user interaction. We will adhere to the
software re-engineering framework outlined by Majthoub et al. [2018] to ensure a reliable
and structured re-engineering process. This framework outlines five key phases: Reverse
Engineering, Requirements Engineering, Re-Design, Re-Implementation, and Testing.

To begin, we will conduct a thorough reverse engineering analysis of the components
and features of the previous Collaboration Mode. Following this, we will define the re-
engineering system’s requirements in alignment with our objective. Subsequently, we will
proceed to design, implement, and conduct testing on the Collaboration Mode. However,
it is important to note that the Testing phase primarily focuses on verifying the system’s
correctness, while performance testing will be addressed in the Chapter 7.

In general, we will employ the Big Bang approach [Majthoub et al. 2018], wherein the
entire system is replaced. This approach is necessary as the Collaboration Service is not
inherently scalable, as discussed in detail in the subsequent section.

6.2 Reverse Engineering

To re-engineer the current Collaboration Mode, we consult the work from Bader [2022]
and review the codebase of the project!. Initially, we model the primary components of the
Collaboration Mode and describe their functionality. Afterward, we proceed to address the
implementation.

1ht’rps: / / github.com/ExplorViz/ collaboration-service

33

6. Re-Engineering of ExplorViz’s Collaboration Mode

6.2.1 Components and Responsibilities

The main components of the existing Collaboration Mode are visualized in Figure 6.1.

Room Management

T <<component>> g
Collaboration
Room Management
<<component>>
Room Resource gl f <<com_ponent>> {I
Ticket
Ticket Managment
<<component>> f <<component>>
C() Room E @ ID Generation gl
Room Updates ID Generation
<<component>> <<component>>
WebSocket El @ Transaction El
6 User Transaction
\'[) Session Synchronization
|-

|-

é) Session Synchronization

Figure 6.1. Main components of the reverse engineered Collaboration Mode.

The core responsibilities of the Collaboration Mode include room management, client
synchronization, and mutual exclusion. In the subsequent sections, we will detail these
responsibilities in relation to the main components.

Room Management

Every collaborative session is linked to a specific room. Each room operates independently,
entirely separate from others, and every client’s session is tied to exactly one room. Clients
have the option to access a list of rooms, create a new room, or join an existing room
through the Room Resource component. During the creation of a room, a new room model
is initialized via the Room component. This room model encompasses data regarding the
virtual scene, including the state and position of landscape components and users.

34

6.2. Reverse Engineering

When a client wishes to join a room, they obtain a ticket from the Ticket component.
This ticket acts as an association between the user and the room, permitting the respective
user to join the room within a specific timeframe. Subsequently, the client establishes a
connection with the WebSocket component and redeems the ticket.

Client Synchronization

All room events are updated within the Room component and then propagated to the
respective clients. These room events can encompass various types of information, such
as status updates, for instance, when a user leaves the room, or collaborative user actions,
such as when a user highlights a component. Each user action was previously transmitted
to the WebSocket component by the client, leading to an update of the Room component.
The room model serves as the single source of truth, enabling new users to initialize their
scene and allowing other users to validate their own actions. Each element within the
underlying data model is associated with a unique ID for every user to distinguish it. In
most cases, these IDs must be generated dynamically at runtime using the ID Generation
component, including IDs for new users or newly opened applications.

Mutual Exclusion

In general, two types of collaborative user actions are observed. On one hand, a user can
initiate a collaborative event, such as highlighting a landscape component. These events
trigger local model updates and are then propagated through the network. On the other
hand, certain user actions require validation by the Collaboration Service, necessitating
mutual exclusion among the clients. The primary focus of these actions is on the function-
ality of grabbing objects: XR users can grab most of the objects within the room, enabling
them to reposition these objects.

For clarity, mutual exclusion refers to the challenge in concurrent systems of serializing
concurrent access to shared resources, ensuring that actions performed on these shared
resources are atomic [Singhal 1989]. In our specific use case, these shared resources are
represented by grabbable objects. Interactions with grabbable objects must be atomic,
implying that if any XR user has already grabbed an object, no other user is permitted to
grab, move, or manipulate that particular object.

The serialization of user actions is managed by the Transaction component, which
maintains the state of all objects and restricts access for other clients when these objects are
in use.

6.2.2 Implementation Overview

The current state of the Collaboration Mode is integrated within ExplorViz’s microservice
architecture, as depicted in Figure 3.5. It incorporates the Collaboration Service as an
additional component to the existing services. Communication between clients and the

35

6. Re-Engineering of ExplorViz’s Collaboration Mode

Collaboration Service is facilitated through an extension of ExplorViz’s Frontend. This
frontend extension accesses rooms via HTTP requests to the Collaboration Service’s API
and exchanges room updates using the WebSocket protocol. The implementation is realized
through an Ember.js add-on.

Update messages are encapsulated in JSON format [Pezoa et al. 2016] and are identi-
fiable by each party through an event description. Browser users can send only a subset
of the messages that XR users can send, as XR users possess additional features such as
visualizing user avatars. However, all clients receive the same set of messages, even if
certain features associated with the messages are not supported.

The Collaboration Service operates as a Quarkus application. It manages all data in-
memory, without utilizing a persistence layer to store data in a database. Furthermore,
the Collaboration Service does not support horizontal scalability, as it lacks inter-server
communication. Consequently, attempting to scale out to multiple instances would result
in independent deployments, unable to effectively manage the same rooms collectively.

6.3 Requirement Engineering

Bourque and Fairley [2014] identify two categories of system requirements, functional and
non-functional requirements. We will present our requirements of both categories in the
following sections.

6.3.1 Functional Requirements

From a functional perspective, the re-engineered system should aim to retain the same
set of user features offered by the current Collaboration Mode. Drawing insights from the
documentation provided by Bader [2022], we outline the following user stories to serve as a
guide for development:

US1: As a user I want to view a list of all active collaborative sessions.
US2: As a user I want to create a room to share my current session with other users.
US3: As a user I want to join rooms to explore landscapes collaboratively.
US4: As a user I want to highlight components to color them for all users.
US5: As a user I want to open components/applications to gain a lower-level view for all
users.
US6: As an XR user I want to visualize avatars of all XR users.
US7: As a user I want to share pop-ups to provide detailed information to all users.
US8: As a user I want to switch the timestamp of the landscape synchronously with all
users.
US9: As a user I want to share my heatmap configuration with all users.
US10: As a user I want to ping to a component to show them to all users.
US11: As a user I want to close components/applications to gain a higher-level view for all
users.

36

6.3. Requirement Engineering

US12: As a user I want to close pop-ups to clean the virtual room for all users.
US13: As an XR user I want to grab objects to move them in the virtual room for all XR
users.

However, the user stories are very high-level and lack specifics regarding the user inter-
face. We will bridge this gap by referencing the existing code base during the development
process.

6.3.2 Non-Functional Requirements

In the following section, we present the non-functional requirements addressing interoper-
ability, performance, scalability, reliability, and maintainability.

Interoperability

The re-engineered Collaboration Mode should seamlessly integrate into the current mi-
croservice architecture of ExplorViz. To achieve this, we will develop a Collaboration
Service that fulfills all identified tasks in the reverse engineering process: room managment,
client synchronization, and mutual exclusion. We are also bound by technical constraints
from ExplorViz’s Frontend. On one hand, the frontend part of the Collaboration Mode
needs to integrate with the core frontend. On the other hand, it must align with the external
interface of the Collaboration Service.

Performance

Our primary objective is to enhance the performance of the Collaboration Mode. We have
already conducted a performance analysis of the current implementation, identifying
limitations and performance bottlenecks. Our aim is to push these boundaries and resolve
the identified bottlenecks. However, we have not set specific quantifiable performance goals.
Instead, we aspire to create a performance-efficient system that delivers stable performance
even under high user interaction, leading us to the next requirement.

Scalability

To meet our performance requirements, especially during high user load, we aim to design
the system to be horizontally scalable. In contrast to the current system, the re-engineered
Collaboration Service should distribute the client load from multi-user sessions across
multiple instances.

Reliability

Ensuring a reliable connection between clients and the Collaboration Service is vital, even
in a scaled environment.

37

6. Re-Engineering of ExplorViz’s Collaboration Mode

Maintainability

ExplorViz operates as an agile project, incrementally developed by students and researchers
[Zirkelbach et al. 2018]. Consequently, all software artifacts must be well-structured and eas-
ily comprehensible. Moreover, the architecture should be sustainable and readily extensible
to accommodate additional features.

6.4 Re-Design

In the following section, we will redesign ExplorViz’s Collaboration Mode in accordance
with the requirements previously defined.

6.4.1 Communication Pattern

To meet the scalability requirement, we must address two key challenges: inter-server
communication and load balancing.

In terms of inter-server communication, there are three primary reasons for the service
instances to communicate. Firstly, the Collaboration Service maintains in-memory model
data of the virtual scene. When multiple instances are deployed, each instance’s model data
must be complete to ensure correct service, and data replicas must remain consistent to
prevent ambiguity. Hence, all model updates must be communicated between the instances.
The second reason is that clients within the same room might be connected to different
service instances. Consequently, collaborative user events must be exchanged between the
instances to propagate these events across the network. The final reason relates to mutual
exclusion. In the absence of a single decision-maker, the instances must agree on the order
of atomic events.

The second challenge revolves around load balancing. Distributing the client load
across service instances is crucial to fully utilize additional resources. However, WebSockets
require a stable connection between two endpoints and cannot be balanced easily between
different service instances on demand.

From an abstract perspective, Alexeev et al. [2019] address a similar problem in the
context of browser-based grid computing with WebSocket workers. They suggest using the
Publish/Subscribe pattern for inter-server communication. This pattern has the advantage
that servers do not need to know each other and do not block each other for message
exchange [Curry 2004]. Moreover, Publish/Subscribe serves as a viable substitute for direct
messaging, enhancing reliability by mitigating the potential for message loss [Ganaputra
and Pardamean 2015].

Furthermore, Alexeev et al. [2019] introduce sticky load balancing, wherein every
message from the same client is always forwarded to the exact same server instance,
ensuring intelligent load distribution during WebSocket connection establishment.

Based on these considerations, we present our intended server architecture in Figure 6.2.

38

6.4. Re-Design

Client 0 Collaboration
WebSocket 0 Service 0

WebSocket O /y Pulish/Receive

\ & WebSooket 1
Client 1 WebSocket 1
Load Balancer
Datastore
: hw Publish/Receive

/ WebSocket N -
WebSocket N CoIIabprat[on
Service N

Figure 6.2. Communication pattern of the scalable Collaboration Mode

Client N

The architecture implements the Publish/Subscribe pattern, wherein each instance can
publish and subscribe to events. There is no direct communication between clients. All
published events are stored in a central datastore and delivered to the subscribed instances.
Additionally, we provide a load balancer. New client connections are distributed among
the server instances, while established WebSocket connections remain sticky. Thus, the load
balancer doesn’t balance the number of messages among the servers, but it balances the
number of clients. This way, each server is responsible for a specific set of clients.

The communication pattern operates as follows. Assuming Client 0, Client 1, and Client
N (refer to Figure 6.2) are all in the same room, and Client 0 triggers an update, e.g., moving
its position in the virtual scene, both Client 1 and Client N need to be informed. Since
Client 0 is connected to Collaboration Service 0, it is the only server that knows about the
update. Client 1 can be informed directly as it is also connected to Collaboration Service
0. However, Client N is connected to Collaboration Service N. Therefore, Collaboration
Service 0 must publish an event, which is subscribed to by Collaboration Service N. Finally,
Collaboration Service N receives the event, updates its own model, and informs Client N.

6.4.2 Components

In general, we will retain all the components that constitute the previous Collaboration
Mode (see Figure 6.1). This approach enables us to seamlessly integrate the basic function-
ality into our new architecture. However, we will introduce several components primarily
responsible for inter-server communication and adjust the dependencies between persistent
components accordingly.

The main components of the redesigned Collaboration Mode are visualized in Figure 6.3.

All inter-server communication is managed by the PubSub component, serving as an
interface for other components to push or fetch data from the shared datastore. Communi-
cation events are triggered or processed by various components based on the context of
the respective event, such as the Publisher, Subscriber, Ticket, Transaction, or ID Generation
component. We distribute these responsibilities among these components to ensure that

39

6. Re-Engineering of ExplorViz’s Collaboration Mode

? Room Management

—1
T

<<component>> E
Collaboration

Room Management

<<component>> E
Room Resource

<<component>> El

@ Ticket

Publish

Ticket Managment

<<component>> . :
Publisher El Publish/Subscribe

©—<<co:sgz‘ent>> El <<component>> €|
PubSub

Room Updates

ID Generation

‘ <<component>> El

<<component>>
WebSocket E' @
ID Generation
‘ N <<component>> El
M Subscriber
9 ©
Broadcast Datastore
<<component>>]
Q) @ Transaction El
Session Synchronization
User Transaction
— 1
[LI

é) Session Synchronization /L

Datastore

Figure 6.3. Main components of the re-designed Collaboration Mode. The new elements with respect
to Figure 6.1 are colored blue.

the application logic remains modular and easily understandable. Moreover, this approach
helps prevent a circular dependency between the WebSocket and the PubSub component,
which could result from bidirectional communication flow. Such a circular dependency
is considered an antipattern due to its adverse impact on maintainability [Oyetoyan et al.
2015].

In the following section, we detail how these components handle the core responsi-
bilities of the Collaboration Mode identified during reverse engineering, namely room
management, client synchronization, and mutual exclusion.

40

6.4. Re-Design

Room Management

When a client wishes to create a new room, the Room Resource component publishes the
initialization data via the Publisher to the other server instances. The Subscriber receives
the data and creates a local room data model. If the client retrieves a list of existing rooms
from any server instance, the newly created room should be part of that list. When a client
joins a room, a ticket is obtained from the Ticket component, automatically triggering the
publication of the Ticket. If the client establishes a WebSocket connection to any server in
the next step, the Ticket is redeemed, meaning it is validated by looking up the ticket in
the shared datastore.

Client Synchronization

All room events are initially published in the shared datastore via the Publisher. Subse-
quently, these events are received by the Subscriber component for the server to process the
event within its local subnetwork. The Subscriber updates the local model using the Room
component and prompts the WebSocket component to forward the event to the subset of
connected clients. If a user event expands the model by introducing a new unit, the event
is enriched with a unique ID before being published to the datastore. This ensures that
all model replicas have the same ID. As we must generate a unique ID on any server, we
utilize the datastore for this purpose. The ID Generation component generates IDs locally,
ensuring they are human-readable since certain IDs appear in the UL It also keeps track of
already assigned IDs in the shared datastore.

Mutual Exclusion

In the case of a user event that requires mutual exclusion, the Transaction component
secures the relevant resources by publishing a corresponding notice in the datastore.
Conversely, the Transaction component can query the datastore to check for previously
blocked objects, identifying them using their unique IDs, and reject a user request if
the requested object is already in use. For the later implementation, it is crucial that the
permission process remains entirely transactional and is not at risk of a race condition.

6.4.3 Consistency Model

In general, we implement eventual consistency, meaning that individual servers may retain
data that lags behind, but in the absence of updates, all instances eventually converge to
the same state [Vogels 2009]. We chose this relaxed consistency model primarily due to
our need for high availability. Given that high performance is a core requirement, we must
minimize both network traffic and the blocking time of server instances. We contribute to
the accuracy of data replicas by implementing connection protocols that incorporate TCP
retransmission. Additionally, we handle atomic actions in a distributed manner to ensure
that conflicting events are resolved consistently across all servers.

41

6. Re-Engineering of ExplorViz’s Collaboration Mode

On the client side, we ensure read-your-writes consistency [Vogels 2009]. Every update
resulting from a user action is initially executed locally on the client-side model and is then
forwarded to the connected server instance. Therefore, every user always sees the result of
previous actions. However, inconsistencies between individual users in a session may be
perceived if the forwarded update experiences delays either between a client and a server
or between servers. This risk materializes if the response times of the concerned nodes
become excessively high. Thus, minimizing this risk aligns with our objective of providing
high performance by keeping RT and MRTT low.

6.4.4 Messaging Optimization

Finally, we will optimize the WebSocket traffic. In the previous chapter, it was highlighted
that performance strongly correlates with the number of messages in the network. An
increasing number of client connections results in a significant rise in outgoing messages on
the server-side. XR users in particular trigger a flurry of messages due to regular position
updates. Consequently, we aim to minimize the negative performance impact of XR clients
by selectively transmitting XR-related messages only to XR users. Practically, we will imple-
ment platform-specific messaging. While this approach contradicts the platform abstraction
as intended by Bader [2022], we aim to maintain platform-independent messaging as the
default case and introduce special cases for optimization.

6.5 Re-Implementation

In the following, we delve into a detailed description of the implementation of the re-
designed Collaboration Mode. We begin by presenting the programming frameworks.
Subsequently, we explain how we implement the application logic. Following that, we
optimize the network traffic by introducing platform-specific messaging. The final sections
address implementation details regarding the integration of Socket.IO and Redis, as well
as load balancing.

6.5.1 Frameworks

On the backend side of the Collaboration Mode, we completely reimplement the function-
ality by replacing the current code artifacts of the Collaboration Service with an entirely
new code base.

We choose Nest]S as the core framework for the Collaboration Service. Nest]S offers
high scalability [Pham 2020], aligning well with our requirements. Moreover, NestJS
provides a robust architecture while being highly opinionated [Pham 2020], meaning the
framework inherently guides developers towards Nest]S-specific best practices. One of
these best practices is integrating a service layer with dependency injection, which supports
extensibility, testability, and reusability [Yang et al. 2008]. Furthermore, projects that utilize

42

6.5. Re-Implementation

dependency injection tend to exhibit lower coupling between modules [Razina and Janzen
2007]. Additionally, Nest]S is based on Node.js?, which is known for its high throughput and
scalability of web applications due to its event-driven architecture and asynchronous, non-
blocking I/O operations [Tilkov and Vinoski 2010]. The primary programming language for
the source code is TypeScript [Bierman et al. 2014], aligning with the codebase of ExplorViz’s
Frontend. TypeScript’s type system aims to establish a foundation for maintainability.

For client-server communication, we will once again employ the WebSocket protocol.
However, we manage the WebSocket connections using the Socket.IO framework. Socket.IO
inherently supports room-specific broadcasting by default, aligning well with the room
concept of the Collaboration Mode. Additionally, Socket.IO’s disconnection detection and
reconnection automatism sustain the reliability of the client-server communication.

Finally, we utilize Redis as a remote datastore for inter-server communication. Redis
not only aligns with the Publish/Subscribe pattern but also provides high performance
for operations and good memory efficiency, even when compared to other in-memory
databases [Kabakus and Kara 2017].

On the frontend side, we maintain the current code base and adapt it to meet our new
requirements. In particular, we do not alter the manipulation of the frontend-local model
due to user actions, as this approach proved to be highly efficient. However, we need to
migrate the WebSocket implementation to the Socket.IO framework, similar to what we do
on the backend.

6.5.2 Application Logic

In the following, we explain how we implement the application logic. However, we do not
delve into every user story individually, as the abstract logic for those is already outlined in
[Bader 2022]. Furthermore, we do not showcase the evolution of the frontend and backend
separately. Instead, we focus on how we implement the logic of the core responsibilities
and the main components in a scaled environment.

Room Management

Room management encompasses the creation, joining, and fetching of rooms. In the
following, we consider a scenario where an arbitrary client intends to create a new room
and then join it (see Figure 6.4).

At first, the frontend sends an HTTP request to the provided API of the Collaboration
Service, facilitated by the AppController class, which handles endpoints for creating, joining,
and fetching rooms. The HTTP payload contains all the necessary information to initialize
the landscape on the client-side. Prior to room creation, the AppController must assign
a new unique room ID for all nodes to identify the room. Therefore, the AppController
calls the injected IdGenerationService. For clarity, we present the ID generation process in a
separate diagram (see Figure 6.5).

2ht’rps: //nodejs.org/en

43

6. Re-Engineering of ExplorViz’s Collaboration Mode

: Client : AppController 8 : RoomService : PublisherService 8 : TicketService : Redis
Websocket Subscriber
T T Gateway T T Service T T
| 1: POST Jroom | | ; ! | ! !
! I I } I I
2: publish(:CreateRoomMessage) ! | ! !
! p | 3: "create_room" ! |
f 2 I | : - I I
| : t
Ke——————= Fo——————— e I l
l | [l 5: "create_room"
| | '
! | 6: createRoom() |
| L I | |
! 7: I I
8: "3 e e Tt I I
________ : I | I I
L | | | |
I } I I } I I
|
9: POST room/3/lobby | : X : | : :
- | | 10: drawTicket() | | | |
t T T t B 11: SET
| | | |
: I I : 12:
| 13: | < ______
s Ticket | kf——m————— e e N (.
_14: Ticket | T | | r T
L ! I I ! [I
[: I I : I I
15: "connect" | : : | : :
]
I I I : I I
! ! 16: redeemTicket() | ! !
| | I »! | |
| | | i 17: GET |
| | |
! ! | : 18: :Ticket
: JI_ 19: :Ticket [) *CHp
I A [e Tttt I
: 20: addUser()_ | : | | :
I I ! I I
I ” 21: I } I I
- - | | |
I I : I I
| | | | |
| 22: publish(:RoomStatusMessage) | : | |
I : : ! I I
l Ll l 23: "user_connected" l
.
I } I ! I
| | | [| |
| | | | | |
i
l | l l | 24: "user_connected
| : 25: sendBroadcast() |' T
I ! | I
| | | d\ | |
| | | | |
I I I : I I
| T | | | | |
| | | | | | |

Figure 6.4. A client creates a new room and joins it.

The IdGenerationService generates the ID from the Redis datastore, which is utilized
here as a shared key-value storage. The key, representing the location of the next ID value,
is hardcoded identically for all instances. Initially, the IdGeneration Service initializes the
storage if it has not already been declared, using the transactional Redis function SETNX
to ensure that the value is not null before usage. In the next step, the current value is both
incremented and fetched using the transactional Redis function INCR, ensuring the value
is not read again by another process.

With the room ID set to "3", a new CreateRoomMessage is published, encapsulating
the event of room creation with all necessary information, including the room’s ID (see

44

6.5. Re-Implementation

: AppController : IdGenerationService : Redis
I I I
| | |
| 1: nextld() | . . |
"l 2: SETNX("unique_id",0) |
3:
< _______________
4: INCR("unique_id")
5: "3
6:"3 K ———

Figure 6.5. Distributed generation of a unique ID via Redis’s key-value storage.

Figure 6.4). When the SubscriberService class receives the message, it creates the room by
initializing a new local model via the RoomService class. The RoomService is responsible for
managing and modifying all server-local room models and represents the Room component
(see Figure 6.3).

If the client wishes to join the previously created room, the corresponding HTTP
request triggers the ticketing process. The TicketService generates a new Ticket, including
a ticket ID, a user ID, and an expiration date. The ticket ID is obtained not from the
IdGenerationService, but from a UUID module, ensuring the ID is unguessable by clients
[Leach et al. 2005]. Subsequently, the ticket is stored in the key-value storage of Redis. Using
the ticket ID, the client can authenticate itself when establishing a WebSocket connection.
The Socket.IO server is integrated with the WebsocketGateway class, which realizes the
WebSocket component (see Figure 6.3). It verifies the validity of the provided ticket ID by
looking it up in the key-value storage. If the ticket is valid and not expired, the connection is
established successfully. In the next step, a user model is created locally, and the WebSocket
session is registered in Socket.IO’s room "room-3," taking the session into account for
room-specific broadcasts. Additionally, a RoomStatusMessage is published, informing other
nodes about the new client connection.

In summary, the distributed room management, including the API as facilitated by the
AppController, covers the user stories US1 to US3.

Client Synchronization

Client Synchronization refers to synchronization messages triggered by basic user actions.
In the following, we consider a scenario where a user with the ID "2" in the room with the
ID "3" has just highlighted a component with the ID "30", which belongs to the application
with the ID "5" (see Figure 6.6).

In this case, the Socket.JO client triggers an update message to the Socket.IO server.
The context of the message is determined by the Socket.IO server through channel naming,
i.e., the message is transmitted via a virtual channel whose name describes the category of

45

6. Re-Engineering of ExplorViz’s Collaboration Mode

User1: User 2 : : : RoomService : PublisherService : : Redis

Client Client WebSocket Subscriber

T Gateway Service
I

| I
[' |
[|
1: "highlighting_update" |

' |
2: publish(:RoomForwardMessage) 1

: 3: "highlighting_update"
4: + l

|
5: "highlighting_update"
1]

——F
I
|
|
|
|
I

\

l |
| |
| |
| |
| |
: | 7:
| |
| |
| |
| |
|
|
I

9: "highlighting_update" J

|

|

|

|

|

|

|

I |

8: sendBroadcast(:ForwardedMessage) |
} } |

|

|

|

|

|

|

| .

B

————

T
|
|
|

Figure 6.6. A client highlights a component.

the message. In this particular instance, the channel is named "highlighting-update". The
WebsocketGateway implements a channel-specific handler method. However, it does not
directly modify the server-local model, but publishes the message via the PublisherService.
Published synchronization messages are encapsulated in a RoomForwardMessage, including
the room and user IDs.

Analogously to Socket.IO, Redis provides channels to differentiate message streams.
The SubscriberService class listens to the respective channel and implements a handler
method. This handler method updates the server-local model of room "3", marking the
component with ID "30" in application "5" as highlighted by user "2". It then broadcasts
the synchronization message to all connected clients in room "3" by encapsulating it in a
ForwardedMessage with the user’s ID. The broadcast can easily be initiated by transmitting
the message to Socket.IO’s room with identifier "room-3". In case the server has an active
connection to user "2", the broadcast excludes the respective connection, as user "2" is the
creator of the event and has already processed it locally.

The event of highlighting was provided as an example for client synchronization.
The user stories US4 to US10 are implemented similarly. However, they use different
communication channels and result in diverse model updates.

Mutual Exclusion

Mutual exclusion is necessary when a user attempts an action that requires validation for
atomic processing. For instance, consider the scenario where user "2" in room "3" intends

46

6.5. Re-Implementation

to grab the object with the ID "45" to move its position (see Figure 6.7).

User 2 : : WebsocketGateway : LockService : Redis
Client

|
|
1: "object_grabbed" I

|
|
|
k 2: lockGrabbableObject("45")
»
|‘ 3: ACQUIRE("grabbable-object-45")
|

6: "object_grabbed_response"

Figure 6.7. A client grabs an object.

Firstly, a request message is transmitted via the "object_grabbed" channel. The Websock-
etGateway then calls the LockService to block object “45”. The LockService represents the
Transaction component (see Figure 6.3) and is responsible for resource locking, i.e., single-
user blocking of virtual objects [Hastings 1990]. However, in a decentralized architecture,
all instances must reach a consensus regarding the blocking user. Therefore, we imple-
ment a distributed lock mechanism [Hastings 1990] with Redlock3. Redlock is a distributed
lock manager that can lock resources using the Redis environment. Redlock’s algorithm
attempts to acquire a lock for a unique resource and resolves conflicts based on timeliness.
The LockService initiates the locking process with a configurable timeout and retry count
to keep the blocking time low. The locked resource is the ID of the grabbed object, i.e., “45”.
Subsequently, all user actions concerning object “45” will be attributed to user “2”. The
lock is maintained indefinitely until the user releases object “45” or disconnects. In the
event of an unexpected disconnection, Socket.IO recognizes the absence of user “2” as well.
Thus, the mechanism is fail-safe in terms of client nodes.

Closing objects in the virtual room, i.e., components, applications, or menus, must also
be handled atomically since they may already be grabbed by another user. Therefore, user
stories US11 to US13 must all be implemented in a similar manner.

In summary, the Redis instance serves various purposes. On one hand, it acts as a
distributed event stream for room events, i.e., RoomStatusMessages, and user actions, i.e.,
RoomForwardMessages. On the other hand, it acts as a key-value storage for tickets and
unique IDs. Finally, it acts as a single point of truth for distributed locks.

6.5.3 Platform-specific Messaging

As stated in the re-design of the Collaboration Mode, we aim to minimize the flood of
XR-related messages. To achieve this, we register two distinct Socket.IO broadcasting rooms
for each virtual room: the default room “room-<ID>" and the XR room “room-<ID>-xr".

3ht’rps: / /redis.com/glossary/redlock/

47

6. Re-Engineering of ExplorViz’s Collaboration Mode

The default room encompasses all device categories, namely browsers, VR, and AR clients.
On the other hand, the XR room includes only the subset of users using XR devices.
Consequently, regular XR positional updates, which may be triggered more than 20 times
per second for every XR user, are sent only to those clients that actually process the
information.

However, the server is not aware of the platforms its clients are using. To address this,
we incorporate a platform registration process. The platform type can be determined by
the frontend application by querying the current visualization mode and encoded in a
simple string notation, such as “browser”, “ar”, or “vr”. Initially, the platform type is
determined and transmitted to the server when establishing the WebSocket connection. In
case the client switches the visualization mode during runtime, we integrate a listener in
the frontend that promptly informs the server via a WebSocket message. In general, the
platform differentiation can be easily extended for further optimizations.

6.5.4 WebSocket Client Migration

Socket.IO is the framework of our choice for managing bidirectional WebSocket mes-
sages between the client and the Collaboration Service. Consequently, we structure the
Collaboration Service around a Socket.IO server, making use of all Socket.JO-specific fea-
tures. However, the previous frontend utilized the standard WebSocket Web API, which
is not compatible with Socket.IO. Thus, we need to migrate the frontend’s WebSocket
implementation to Socket.IO’s client interface.

The former frontend provided WebSocket messaging to other application components
through an injectable Ember.js service known as WebSocketService. We intend to retain the
WebSocketService while modifying the implementation, as explained below.

The updated WebSocketService implementation encapsulates a nullable Socket.IO client,
allowing WebSocket I/O operations to function independently of the specific WebSocket
standard being used. This approach ensures the WebSocket implementation’s flexibility
and replaceability. The Socket.IO client is nullable because the WebSocket connection is
established only when the user joins a multi-user session. If a WebSocket connection is
absent, the WebSocketService remains available but does not transmit any messages.

Upon a user’s intention to join a collaborative room, the Socket.IO client is initialized,
as illustrated in Listing 6.1. During an active connection, the Socket.IO client manages
incoming server messages in the following manner.

Response messages, serving as reactions to previous server requests, trigger optional
callback functions dynamically registered by various application components. The identifi-
cation of request and response pairs is facilitated through unique nonces.

On the other hand, forwarded messages, prompted by updates from remote clients,
prompt the WebSocketService to trigger an event corresponding to the name of the receiving
Socket.IO channel. This event-driven approach decouples the reception of updates from
their subsequent processing, enabling smoother coordination between different processes.

48

6.5. Re-Implementation

Listing 6.1. Initializing a WebSocket connection on client-side.

1|private currentSocket: Socket|null = null;

2

3lasync initSocket(ticketId: string, mode: VisualizationMode, userName: string) {
4 this.currentSocketUrl = this.getSocketUrl();

5 this.currentSocket = io(this.currentSocketUrl, {
6 query: {

7 "ticketId": ticketId,

8 "userName": userName,

9 "mode": mode

10)

11

12 FORWARDED_EVENTS. forEach(event => {

13 this.currentSocket?.on(event, message => {

14 this.trigger(event, message);

15 });

16 3

17

18 RESPONSE_EVENTS. forEach(event => {

19 this.currentSocket?.on(event, message => {
20 const handler = this.responseHandlers.get(message.nonce);
21 if (handler) handler(message.response);
22 3
23 1)
24
250 3

6.5.5 Redis Integration

In this section, we’ll provide a detailed overview of the technical integration of Redis.

When deploying the Collaboration Mode, it’s essential to ensure a fully functional Redis
instance. This includes having a datastore that effectively manages reads and writes of
key-value pairs while handling message subscriptions. In a Cloud environment, this can be
achieved by running the official Docker* image of Redis [link to Redis Docker image].

To integrate Redis with our application, we refer to the conceptual implementation of
the PubSub component (see Figure 6.3). Although we’ve simplified the discussion until
now, technically, we use the nestjs-redis® module. This widely-used Node.js module acts
as an adapter, connecting the Nest]JS application to a remote Redis datastore. The setup

4ht’rps: / /www.docker.com/
Shttps:/ /www.npmjs.com/package/@liaoliaots /nestjs-redis

49

O 0NN U1 WIN -

10

Q= WO N -

6. Re-Engineering of ExplorViz’s Collaboration Mode

for this adapter is performed in our main module, with configurations being provided
externally (see Listing 6.2).

Listing 6.2. Integration of Redis with the NestJS application.

@Module({
imports: [
RedisModule. forRoot ({

config: {
host: process.env.REDIS_HOST,
port: parselInt(process.env.REDIS PORT),
password: process.env.REDIS_PASSWORD

}

b

]

This setup allows us to declare an application-wide injectable RedisService, offering
interfaces for executing Redis operations on a specific instance. The RedisService can be
effortlessly injected and utilized within any class declaration, as demonstrated in Listing 6.3.

Listing 6.3. Injection of the RedisService.

private readonly redis: Redis;

constructor(private readonly redisService: RedisService) {
this.redis = this.redisService.getClient().duplicate();

}

Providing separate Redis clients to each consumer class allows for high concurrency,
isolation, and individualized configuration.

6.5.6 Load Balancing

We have already emphasized in our design process that message load distribution cannot
be arbitrary but rather sticky with respect to client nodes. This means that while different
clients may transmit messages to several server nodes, each client is bound to exactly
one instance. Consequently, the load must be distributed during WebSocket connection
establishment. For instance, we can achieve this using a Round Robin algorithm, where
incoming requests alternate between the provided server instances following a fixed order.
Additionally, we need to control the stickiness of HTTP requests due to the dynamic nature
of Socket.]O. For example, Socket.IO provides a fallback from WebSocket to HTTP polling
to reduce startup time or in case of firewalls.

However, the implementation of the load balancer heavily depends on the environment
in which ExplorViz is deployed. Since we are conducting our performance analysis in a

50

O 0 N OUl b WN =

6.6. Testing

cloud environment based on the Kubernetes framework, we present a solution using a
Kubernetes Ingress Controller. Ingress Controllers are API objects that manage access to
services based on rules. There are various implementations, but we use the Traefik Ingress
Controller® as the basis for our load balancer.

In order for the load balancer to identify clients, cookie-based routing is a common
approach [Chin et al. 2010]. The ingress controller achieves this by providing an identifier
in the initial server response that references the server instance fulfilling a client’s first
request (see Listing 6.4). Subsequent requests which have the cookie with the name
"collaboration-cookie" set to that specific identifier will automatically be forwarded to the
exact same server instance. Thus, the frontend must manage this cookie accordingly to
ensure that requests reach the correct server.

Listing 6.4. Configuraton of the Traefik Ingress Controller for sticky load balancing.

apiVersion: vl
kind: Service

metadata:
name: collaboration-service
annotations:
traefik .ingress.kubernetes.io/service.sticky.cookie: "true"
traefik .ingress.kubernetes.io/service.sticky.cookie.name: collaboration-cookie
traefik .ingress.kubernetes.io/service.sticky.cookie.secure: "true"

6.6 Testing

We conclude the re-engineering process by conducting comprehensive testing of the re-
implemented Collaboration Mode. This testing process has two primary objectives. Firstly,
we must ensure that the functional requirements are correctly fulfilled. Secondly, we
evaluate the performance with regard to our goals. This section is dedicated to assessing
the functional correctness of the application, while Chapter 7 focuses on evaluating the
performance characteristics.

The Collaboration Mode’s functionality is delivered by both the frontend and backend
application. However, the frontend component is seamlessly integrated into ExplorViz’s
Frontend, which has its own established test strategy encompassing acceptance, integration,
and unit tests. As the re-engineering process does not impact the functional attributes of
the frontend, we consider the existing tests as a quality gate for the frontend migration.

In contrast, the backend of the Collaboration Mode has undergone a complete re-
implementation. It operates within a different runtime environment and offers a distinct
external interface compared to the previous system. Consequently, we must design suitable
automated tests to validate the functionality of the Collaboration Service.

6ht’rps: / /doc.traefik.io/traefik /providers /kubernetes-ingress /

51

6. Re-Engineering of ExplorViz’s Collaboration Mode

During the requirement engineering process, we identified a set of user stories sum-
marizing the abstract functionality of the Collaboration Mode. These user stories serve as
our guiding framework for designing the tests. Since user stories encapsulate functionality
from a user’s perspective, we adopt an end-to-end testing approach to transform these
stories into automated tests. End-to-end testing involves verifying the functionality of the
fully integrated software system from the end-user’s viewpoint [Bai et al. 2001]. In our
context, we narrow the scope to focus on the backend and interpret network requests as
user actions. Nevertheless, our end-to-end tests encompass the fully integrated backend,
abstracting from internal dependencies. This approach ensures that the end-to-end tests
can be conducted in production-like environments and at different scaling levels.

We use Jest” as our testing framework, allowing us to define independent test cases
and make precise assertions. In general, we define two test suites: one for testing room
management via the corresponding API, and another for testing client synchronization via
WebSockets. The latter also covers edge cases related to mutual exclusion.

7https://jestjs.io/

52

Chapter 7

Performance Analysis of the
Re-Engineered Collaboration Mode

In this chapter, we delve into the performance analysis of the re-engineered Collaboration
Mode. Initially, we outline the steps taken to conduct this performance analysis. Subse-
quently, we showcase the results. Based on these findings, we proceed to evaluate the
overall performance.

7.1 Preparation

Our long-term goal is to improve the performance of the Collaboration Mode. Until now, we
have analyzed the performance of the previous Collaboration Mode. Our next step involves
conducting a performance analysis of the re-engineered Collaboration Mode to evaluate
the outcomes of the re-engineering process. For the sake of comparability, we execute the
benchmark as defined in Chapter 4 and employ the same configuration as in Chapter 5.
However, the re-engineered Collaboration Mode operates on a distinct system architecture.
Consequently, we need to slightly adapt the experimental setup of the performance test to
align with the altered requirements while ensuring benchmark comparability.

The refined experimental backend setup for the benchmark execution is outlined in
Figure 7.1. A fundamental feature of the re-engineered Collaboration Mode is its ability
to scale horizontally. Therefore, we introduce the sticky Load Balancer, as explained in
Chapter 6, between the Load Generator and the Collaboration Service deployment. During
runtime, this Load Balancer evenly distributes incoming traffic among a configurable
number of Collaboration Service replicas. Additionally, we incorporate a Redis instance
within the cluster to manage inter-server communication. The resource limitations, as
defined in Chapter 5, also apply to the re-engineered Collaboration Service. However, when
scaling the deployment out, each replica is endowed with these resources.

The experimental setup for the frontend performance test must also be adjusted, as the
execution of the frontend depends on the Collaboration Service. Consequently, we substitute
the backend components in the frontend setup with the corresponding components from
Figure 7.1. Once again, only one instance of the Load Generator is deployed. Furthermore,
the Collaboration Service is provided by a single replica since the frontend test exclusively
examines frontend-specific metrics and only requires the backend to forward workload to

53

7. Performance Analysis of the Re-Engineered Collaboration Mode

Cluster

Load Balancer

WebSocket WebSocket

ll Load Generator

|| Collaboration Service
L

RESP

A
Redis

Figure 7.1. Deployment of the performance test with re-engineered backend.

the frontend instance.

The backend performance test is divided in two parts. Firstly, we execute the benchmark
with a single instance of the Collaboration Service, following the approach in the previous
benchmark execution. This ensures that the results remain comparable, as we maintain
consistent resource limits and only alter the internal behavior of the Collaboration Mode.
The second part of the backend analysis explores system scalability. Thus, we successively
increase the number of replicas while monitoring the performance metrics of each instance.
Manifestly, deploying multiple instances leads to higher resource allocation and conse-
quently changes the prerequisites of the benchmark execution compared to Chapter 5.
However, each instance individually meets the resource requirements and thus provides
comparable insights.

7.2 Results

In this section, we present the results of both the backend and frontend performance
analyses [Briick 2023].

7.2.1 Backend

The first subsection presents the results of the performance benchmarking with a single
backend instance for both user populations: the Browser Population and the Cross-Platform
Population. Following this, the performance is analyzed for various scaling configurations.

Unscaled

The performance results for the Browser Population are depicted in Figure 7.2.

54

CPU [%] RT [ms]

Messages

-

500

400

100

80

60

40

20

1.5

0.5

Rooms

o 1

[- 2

4

L —o— 8
L o il

._M 7O

| | | |
0 50 100 150 200
Users/Room

(a) Response time.

T

Rooms:

L —o— 1

—o— 2

4

| | | | \+ 8

0 50 100 150 200
Users/Room
(c) CPU utilization.
10°

= ‘ Rooms:

—o— 1
—e— 2

o 8

|
50 100
Users/Room

1
150 200

ol

(e) Number of messages received by server.

MRTT [ms]

Memory [%]

Messages

500

400

300

200

100

100

80

60

40

20

1.5

0.5

7.2. Results

Rooms:
—eo— 1
[—e— 2
4
L —o— 8
| oS
M oo
| | | |
0 50 100 150 200
Users/Room
(b) Mean round trip time.
‘ ‘ ‘ ‘ Rooms:
—o— 1
[o 2
4
L —eo— 8
i | | | | 1
0 50 100 150 200
Users/Room
(d) Memory utilization.
107
‘ | Rooms:
| —o— 1
-—o— 2
4
L —— 8
| | | |
0 50 100 150 200
Users/Room

(f) Number of messages sent by server.

Figure 7.2. Performance results of the re-engineered backend for the Browser Population.

55

7. Performance Analysis of the Re-Engineered Collaboration Mode

The diagrams follow the structure introduced in Chapter 5. The minimal service time,
denoted as RT and MRTT for a minimum of two users, remains consistently low across
all room counts, never exceeding 5 milliseconds. This pattern is mirrored in the resource
utilization as well. Under minimal workload per room, the resource utilization for both
CPU and memory remains below 5%.

In general, RT and MRTT exhibit similar behavior. When the backend serves only one
room at a time, both function graphs have a very gentle slope. Even when synchronizing
140 browser users simultaneously, the responsiveness remains solid, with RT and MRTT
staying below 40 milliseconds. It is only when the user count reaches a minimum of 160 that
the metrics suddenly spike, with MRTT exceeding the SLO’s threshold by 30%. Moreover,
the backend efficiently handles multiple rooms in parallel. Specifically, two parallel rooms
maintain very high responsiveness until a maximum of 120 users per room. However,
assuming four rooms simultaneously, the maximum users per room drops to 80. Likewise,
for eight rooms, the maximum users per room falls to 60.

The CPU and memory utilization result in substantially different diagrams. While both
metrics show a monotonic increase, the function values have significantly different value
ranges. Memory utilization consistently remains below 20%, while CPU usage hits its limit
in certain configurations. For instance, configurations with four rooms, each with 100 users,
or eight rooms, each with 80 users, require nearly 100% of CPU time.

Lastly, the metrics related to message traffic depict strictly monotonically increasing
curves, quickly reaching high values. The server can handle a maximum of 144,000 received
messages during the test period, leading to 8,544,000 messages sent.

The results of synchronizing the Cross-Platform Population are visualized in Figure 7.3.

In cross-platform sessions as well, the Collaboration Service demonstrates high respon-
siveness across various room and user counts. The maximum number of clients that can
be served in a single room is approximately 100. Even when providing two rooms in
parallel, 60 users experience satisfactory responsiveness. However, with an increased user
count of 80 users for each of two rooms, the SLO’s threshold is slightly exceeded by 18%
in RT. Scaling the number of parallel rooms consequently results in a performance dip.
Nonetheless, both RT and MRTT meet the SLO requirement for up to 20 users in eight
rooms.

The CPU metric exhibits steep curves for all room counts. While the minimum number
of users per room utilizes at most 15% of the CPU capacity, the maximum configuration
leads to almost 100% utilization for every room count. However, memory utilization
remains consistently low even during load peaks.

The number of transmitted messages dramatically increases with higher workload. For
example, when eight parallel rooms are filled with 20 users each, the Collaboration Service
receives 624,000 messages and sends over 3,000,000 messages. Despite this, the backend
maintains stable responsiveness. Message loads exceeding these numbers eventually lead
to SLO violations.

56

RT [ms]

CPU [%]

Messages

500

400

100

80

60

40

20

0.5

Rooms:
o 1
- 2

4

-eo— 8

| [/

Users/Room

i / SLO
| | | |
0 50 100 150
Users/Room
(a) Response time.
T
Rooms:
| o 1
o 2
4
L | | | | | | \+ 8
0 20 40 60 80 100 120 140 160
Users/Room
(¢) CPU utilization.
-10°
‘ | Rooms:
—e— 1
—o— 2
| 4
e 8
| | | | | | | |
0 20 40 60 80 100 120 140 160

(e) Number of messages received by server.

MRTT [ms]

Memory [%]

Messages

500

400

300

200

100

100

80

60

40

20

1.5

0.5

72. R

esults

Rooms:
—eo— 1
I —o— 2
4
L —o— 8
i / SLO
| | | |
0 50 100 150
Users/Room
(b) Mean round trip time.
T T T T T T T Rooms:
—o— 1
[o 2
4
L —eo— 8
i | | | | | | | | 1
0 20 40 60 80 100 120 140 160
Users/Room
(d) Memory utilization.
107
T
| Rooms:
—o— 1
—o— 2
4
| | \+ 8

Users/Room

1 1 1 1 1
0 20 40 60 80 100 120 140 160

(f) Number of messages sent by server.

Figure 7.3. Performance results of the re-engineered backend for the Cross-Platform Population.

57

7. Performance Analysis of the Re-Engineered Collaboration Mode

Scaled

In this section, we present the performance results of the Collaboration Service while
scaling it out to two, four, and eight parallel instances.
The results of simulating the Browser Population are illustrated in Figure 7.4.

500
Replicas:
o 1
400 o 2 b
4
. 300| 8 g
7]
£
E 200 |- 8
100 [[] / -
i '/./.H SLO
O [.
| | |
0 50 100 150 200 250 300
Users/Room
(a) One room.
500 - T] \
Replicas: ‘
—eo— 1
400| o 2)
4
__ 300 8 8
2]
é ’
E 200 - ‘ *
100 - i ‘ 8
’ ’ SLO
.
0 - .
| | | |
0 50 100 150 200
Users/Room

(c) Four rooms.

RT [ms]

RT [ms]

500

400

300

200

100

500

400

300

200

100

Users/Room

(d) Eight rooms.

Figure 7.4. Response Time of the scaled backend for the Browser Population.

The diagrams adopt a different structure than the previous ones. Firstly, we do not
visualize all metrics to maintain clarity and understanding. Instead, we prioritize the RT
metric, representing the responsiveness of the Collaboration Service and user satisfaction
concerning the corresponding SLO requirement. Additionally, the RT and MRTT exhibit
very similar behavior and correlate regarding SLO violations. The function values of the
RT are averaged based on the individual RTs of each Request Message. Furthermore, the

58

Replicas:
—o— 1
o 2 B
4
o 8 B
/ SLO
L —o B
| | | | |
0 50 100 150 200 250
Users/Room
(b) Two rooms.
Replicas: ‘ ‘
—eo— 1
-—o— 2 N
4
e 8 -
A// SLO
| | | | | | |
0 20 40 60 80 100 120

7.2. Results

diagrams are distinguished by the room counts, where each curve in a diagram represents
a different number of parallel backend instances. This structure was chosen to highlight the
runtime behavior at various scales. Lastly, we include curves for the unscaled Collaboration

Service for comparison.

500
Replicas:
—o— 1
400 o 2 b
4
. 300| e 8 g
0
£
E 200 |- / e
100 |- ol
j/ SLO
O - —&— -
| | | |
0 50 100 150 200
Users/Room
(a) One room.
500 - T
Replicas:
—eo— 1
400| o 2)
4
__300|—— 8 8
2]
£
E 200 8
100 - *
S 7 SLO
0 — o i
| | | | | |
0 20 40 60 80 100

Users/Room

(c) Four rooms.

RT [ms]

RT [ms]

500

400

300

200

100

500

400

300

200

100

Replicas:
o 1
—o— 2 B
4
—— 8 8
L 2 - il
; j / SLO
| | | | | | | |
0 20 40 60 80 100 120 140
Users/Room
(b) Two rooms.
Replicas: ‘ ‘ /
o 1 /
—e— 2 |
4
-eo— 8 B
f SLO
| | | | |
0 20 40 60 80
Users/Room

(d) Eight rooms.

Figure 7.5. Response Time of the scaled backend for the Cross-Platform Population.

While serving a single room, the backend effectively manages high user numbers
across all scaling levels. Additionally, the function values are quite consistent for various
configurations, mostly staying below 20 milliseconds. However, the maximum number of
users that can be synchronized with high responsiveness differs among the scaling levels.
While a single instance can serve 140 users, eight replicas can handle up to 240 users in
parallel. However, the difference between one and two instances is not significant, as the

59

7. Performance Analysis of the Re-Engineered Collaboration Mode

latter reaches its maximum at 180 users.

For two rooms, a similar behavior is observed. However, the curves already show an
increase for smaller user counts. A single instance can effectively serve 120 users per room
without violating the SLO requirement, while eight parallel instances reach their maximum
at 220 users. For higher room counts, such as four or eight rooms simultaneously, the
performance evolves differently. Nonetheless, the maximum number of users monotonously
increases with the scaling level. However, providing two or four replicas leads to the same
maximum in both room counts. Additionally, most curves exhibit a steep slope precisely
when the RT is about to exceed the SLO’s threshold, indicating a significant SLO violation.

The results of the Cross-Platform Population are depicted in Figure 7.5.

In general, a similar pattern is observed as in the results of the Browser Population.
However, the overall maximum number of users that can be synchronized is smaller. For
small workloads per room, the RTs of the different scaling levels do not differ significantly.
Again, the maxima monotonously increase with the number of server instances. However,
in many configurations, a higher scaling level does not result in a higher maximum user
count, even though the overall responsiveness is slightly better—i.e., the respective RT is
marginally smaller. For instance, in a single room scenario, the SLO is violated above a
user count of 100, regardless of the scaling level—be it one, two, or four. When considering
a higher room count, such as eight rooms, scaling to two, four, or eight replicas makes no
substantial difference, as the SLO cannot be fulfilled above a maximum of 40 for all these
scaling levels.

7.2.2 Frontend

The results of the frontend performance test are presented in Figure 7.6. As in Chapter 5,
we terminated the benchmark execution after reaching 280 users since the metrics remained
unchanged. Additionally, the structure of the diagrams mirrors that of Chapter 5, with
each curve representing one of the two user populations.

Overall, it is evident that the performance of both user populations behaves similarly.
The ETs of received messages differ only on a microsecond scale between the populations.
Additionally, the resource utilization shows minimal differences—less than 4% for the CPU
and less than 2% for the memory. Moreover, the number of received messages is identical
for both the Browser Population and the Cross-Platform Population.

The ET remains relatively consistent across different configurations. For all workloads
ranging from 2 to 280 users, the ET is very fast, consistently staying below 1 millisecond.

The CPU utilization is relatively high even for minimal workloads, consistently exceed-
ing 64%. However, there is no noticeable increase observed with a growing user count, and
the CPU utilization never exceeds 77%. The variance in memory utilization is even smaller,
with memory occupancy hovering around 15% throughout.

Lastly, the message count displays a linear increase with the growing user load, reaching
a value of 56,000 received messages for the highest configuration of 280 users.

60

ET [ms]

CPU [%]

Population:
—o— Browser
—eo— Cross-Platform 5

e N

100 T T T

20 Population: B

| | |
0 50 100 150 200 250 300
Users/Room

(a) Execution time.

W

—e— Browser
—e— Cross-Platform

| |
0 50 100 150 200 250 300
Users/Room

(c) CPU utilization.

7.2. Results

-104

Population:
—e— Browser
—e— Cross-Platform

Messages

0 | | | | | |
0 50 100 150 200 250 300

Users/Room

(b) Number of messages received by client.

100 - T T T
Population:
e Browser
80 | —e— Cross-Platform a
g 60 - *
o
£
9 40 *
b
20 |- R
oo —9 0o o ——°—9
O | | | |

| | |
0 50 100 150 200 250 300
Users/Room

(d) Memory utilization.

Figure 7.6. Performance results of the re-engineered frontend.

61

7. Performance Analysis of the Re-Engineered Collaboration Mode

7.3 Discussion

The previous results demonstrate that the Collaboration Mode offers high responsiveness
across various configurations. The unscaled deployment of the Collaboration Service
effectively serves up to 140 browser users without any performance degradation. Within
this capacity, WebSocket events are processed and transmitted rapidly. In cross-platform
scenarios, up to 100 users can be synchronized in a single room. For even higher user
counts, there is a gradual decrease in responsiveness when the SLO is violated. However,
service availability remains generally stable even during peak loads.

Furthermore, the backend is well-suited to support multiple rooms with high interaction
in parallel. It handles eight rooms with 60 browser users or 20 cross-platform users very
effectively. However, in cases of high room counts or many XR users, the backend tends to
experience abrupt performance degradation. This may be attributed to the intense message
traffic. While the number of messages received by the backend grows linearly with the
number of users, the count of sent messages increases quadratically.

The frontend of the Collaboration Mode easily supports 280 users, regardless of the
platform distribution. Specifically, the frontend is platform-independent, as it only receives
browser-specific messages, as evidenced by the congruency of population-specific message
counts.

The evolution of resource utilization shows that the Collaboration Service efficiently
utilizes CPU resources, as responsiveness usually does not degrade when the CPU is not
fully occupied.

Furthermore, scaling out the Collaboration Service improves its overall behavior. Higher
scaling levels do not significantly improve responsiveness for small user sessions. However,
having multiple instances in parallel generally does not worsen responsiveness, demonstrat-
ing the effective and rapid handling of inter-server communication via Publish/Subscribe.
The most significant improvement in the Collaboration Mode with a scaled backend is the
increased capacity. By scaling out to eight replicas, the backend can progressively serve up
to 280 browser users or 140 cross-platform users in a single room.

Finally, we analyze the effectiveness of horizontal scaling [Henning and Hasselbring
2021]. Although a comprehensive scalability analysis is beyond the scope of this thesis, our
objective is to gain a rudimentary understanding of the system’s general ability to scale.
Therefore, we plot the maximum user capacity of individual scaling levels for one room
in Figure 7.7. It provides two diagrams for both populations under test. Each diagram
visualizes the linear trend estimation as well as the ideal scalability graph, which is derived
linearly from the capacity of the unscaled deployment.

In general, there is an eventual increase with growing scaling level. However, the effect
of adding a single replica to the deployment is not substantial, and the capacity does not
grow linearly. Based on the linear trend estimation, the browser scenario shows an increase
of capacity by approximately 10%, while the cross-platform scenario exhibits an increase of
around 6% for every additional replica.

However, the user count does not directly indicate the actual workload during execution.

62

7.3. Discussion

1,200

—— Linear ’ 800 —— Linear o
—e— Result —e— Result
1,000 | — Trend I —— Trend
800 | 600 | i
o i)
2 600 2 40| |
400 |
/// 200 - ///N |
0 I I I I 0 I I I I
0 2 4 6 8 0 2 4 6 8
Replicas Replicas
(a) Browser Population. (b) Cross-Platform Population.

Figure 7.7. Maximum number of users within the SLO requirement for different scaling levels.

The metrics reveal a linear correlation between the user count and the number of received
messages on the server-side. Still, the number of messages sent by the server grows
quadratically with the user count. Therefore, we visualize the capacity in terms of actual
network load due to transmitted WebSocket messages in Figure 7.8. The diagrams follow
the same structure as the previous one but visualize the corresponding message count on
the y-axis.

107 108
5| Linear b 1| Linear n
—e— Result —e— Result
4|— Trend | 0.8|— Trend i
g 2}
g 3 a & 0.6 =
© o
@ ?
]]
= 2 i = 04 :
1 N 0.2 b
0 ! ! ! ! 0 ! ! ! !
0 2 4 6 8 0 2 4 6 8
Replicas Replicas
(a) Browser Population. (b) Cross-Platform Population.

Figure 7.8. Maximum number of transmitted messages within the SLO requirement for different
scaling levels.

63

7. Performance Analysis of the Re-Engineered Collaboration Mode

The scalability is not nearly linear, but it can be observed as a stepwise growth in
the browser-based scenario. The Cross-Platform Population requires higher scaling levels
until a significant growth in capacity is noticeable. The increase in capacity by adding
one server replica is approximately 26% for the Browser Population and 14% for the
Cross-Platform Population. Thus, scaling the Collaboration Service out is not as efficient
as initially assumed, which may be attributed to the overhead from intense inter-server
communication.

The varying scalability results of the two user populations may be attributed to the
higher message traffic in cross-platform scenarios. Similarly, an increased number of
simultaneous rooms dramatically increases message load, resulting in weaker performance
even in a scaled environment. However, in our simulated environment, we distributed the
users of each room equally based on the Round-Robin policy of the Load Balancer. A more
intelligent distribution of connections, keeping users of the same room together, may allow
the scaled infrastructure to be utilized more effectively.

64

Chapter 8

Discussion

In this chapter, we present and analyze our findings in order to evaluate our primary
objective: enhancing the performance of ExplorViz’s Collaboration Mode to facilitate multi-
user sessions with high interaction. Our strategy involved re-engineering the Collaboration
Mode based on a performance analysis. To assess the efficacy of our approach, we conducted
two competitive benchmark executions, one for the previous system and another for the re-
engineered system. Our intent is to compare the outcomes and evaluate the re-engineering
effort in light of our defined goal.

500 T - 500 -
e Previous —o— Previous
—e— Re-engineered (1 replica) —e— Re-engineered (1 replica)
400 - Re-engineered (8 replicas) 400 |- Re-engineered (8 replicas)
300 |- a 300 |-
) i
£ £
= &

200 |- a 200 - /
100

10y ”JU“N//. SLOi 1 J o /'7/ SLO

0r o —
L L L L L L
0 50 100 150 200 250 300 0 50 100 150 200
Users Users
(a) Browser Population in one room. (b) Cross-Platform Population in one room.

Figure 8.1. Response time comparison between the previous and the re-engineered Collaboration
Mode.

A crucial performance aspect is responsiveness, gauged through the metrics RT and
MRTT. In Figure 8.1, we compare the responsiveness of the re-engineered system with that
of the previous system, using RT as a benchmark as both RT and MRTT showed similar
results in each respective analysis. The figure depicts two graphs representing different
user populations. Both graphs display the resulting RT for increasing user counts in a
single room, illustrating curves for different versions and scaling levels of the Collaboration
Mode: the inherently unscalable previous system, the scalable re-engineered system with
one replica, and the re-engineered system with eight replicas.

65

8. Discussion

Evidently, the performance has improved significantly. For smaller user counts, the re-
sponsiveness remains low for both versions. However, the re-engineered system showcases
a significantly higher maximum user capacity that can be served with high responsive-
ness. While the previous system capably handles a maximum of 30 browser users, the
re-engineered system effortlessly accommodates over triple that amount. For the cross-
platform users a similar improvement can be observed. Moreover, the re-engineered system
can effectively handle multiple rooms in parallel, while the previous system was quickly
overstrained by simultaneous session. We conclude that the modular application architec-
ture of the Collaboration Service based on Nest]S and Socke.tIO constitutes an effective
approach for developing performant and efficient real-time applications. This conclusion
is substantiated by the efficient utilization of the CPU in the re-engineered system, while
the previous system’s performance drops despite the CPU being far from its limits. This
observation suggests that the re-engineered backend encounters fewer issues related to
blocking operations and thread stagnation.

Furthermore, our enhancements enable the Collaboration Mode to be horizontally
scaled by implementing inter-server communication with Redis. The performance results
indicate a noticeable increase in user capacity with the addition of multiple replicas, all
while maintaining an instantaneous user experience. Even at high scaling levels, respon-
siveness remains uncompromised, showcasing the rapid handling of Publish/Subscribe
communication. Although the efficiency of scalability is not optimal, with approximately
25% improvement of message capacity upon adding one replica, successive addition of
replicas progressively increases capacity. We conclude that distributing clients among mul-
tiple replicas is a suitable approach to balance the overall application load in the presence
of WebSocket connections.

Moreover, the re-engineering effort significantly contributed to system reliability. We
introduced automatic disconnection detection with Socket.1IO, coupled with cleanup mecha-
nisms based on this detection. These mechanisms ensure fail-safety in the face of client-node
errors. Additionally, Socket.IO allows the Collaboration Mode to handle connections even
in environments that restrict WebSockets, providing a fallback to HTTP polling. To support
this even in a scaled infrastructure, we presented an approach for sticky load balancing, en-
suring stable connections through cookie-based routing. The high responsiveness observed
in our results indicates that the overhead associated with reliability is minimal.

During the re-engineering process, we made efforts to reduce WebSocket message traffic,
given our detection of a correlation between the number of messages and responsiveness.
To achieve this, we implemented platform-specific messaging. The results of this effort are
visualized in Figure 8.2, which presents message counts for different room sizes gathered
during performance analysis, distinguishing between messages sent by the backend and
those received by the frontend. Although we lacked the precise message count for the
previous backend across various user configurations, we approximated the count based on
our knowledge gained through reverse engineering message generation.

Both diagrams demonstrate a reduction in the number of transmitted messages due to

66

-107 -10°

e Previous ‘ 8|—e— Previous ‘ 7
- - - Previous (approximated) —eo—Re-engineered
—o— Re-engineered)/
17 / . 6)
2 24 |
v G.)
= 05} 4 =
2 - -
e o —
0 : of o ° :
L L L L L L L L L L
0 20 40 60 80 0 50 100 150 200
Users Users
(a) Number of messages sent by server. (b) Number of messages received by client.

Figure 8.2. Comparison of WebSocket message traffic between the previous and the re-engineered
Collaboration Mode.

the re-engineering. The number of sent messages still exhibits quadratic growth concerning
the user count, though at a slower rate. This has a noticeable impact on the previously
mentioned responsiveness results. The frontend of a browser user is now completely
independent of XR users, resulting in significantly lower message traffic per browser user.
However, the effect on responsiveness is negligible as WebSocket messages are processed
very quickly on client-side.

67

Chapter 9

Related Work

In this chapter, we present topics related to this thesis, focusing on the scientific discussion
and investigations, as well as concrete tools and architectures dealing with collaboration at
a high scale. We will discuss selected works in the following sections.

Mouton et al. [2011] provides an insightful overview of trends concerning collaborative
visualization tools. They identify browser-based rendering with WebGL and WebSocket
communication as established solutions. Additionally, they advocate minimizing message
traffic between nodes while shifting computational effort to the clients. From an abstract
perspective, ExplorViz aligns with these trends. It implements WebGL and WebSocket
communication. Furthermore, user actions are primarily processed in the client’s browser,
with only collaborative events exchanged between client nodes.

Marion and Jomier [2012] present an architecture based on WebGL and WebSocket
using the example of the Visible Patient project!, an online laboratory for 3D modeling
of medical images. The designed system allows geographically distributed experts to
collaboratively explore medical data by real-time synchronization of client instances. A
significant difference in ExplorViz’s collaboration approach is that the Visible Patient
architecture introduces only one master node, which can manipulate the visualization data,
while all other clients are only spectators, receiving visualization updates from the master
(see Figure 9.1). Thus, most of the network traffic is one-directional.

Furthermore, Marion and Jomier [2012] benchmark the performance of the system to
compare WebSocket messaging using Socket.IO to HTTP-polling with AJAX [El Moussaoui
and Zeppenfeld 2010]. The results show that AJAX has a 3-times higher latency for
data updates. Finally, they identify a performance limitation regarding the size of the
dataset, as the medical model has to be propagated to all connected clients during the
collaborative session. We do not face this issue in ExplorViz since the landscape data is
initially fetched from the respective backend services, and the WebSocket session only
exchanges collaborative user events.

Grasberger et al. [2013] discuss a data-efficient approach for collaborative modeling
of 3D sketches. They use WebSocket connections for exchanging collaboration events and
the BlobTree paradigm, a representation method used in computer graphics that allows
for the creation and manipulation of complex shapes in a compact and efficient manner
[Nishino et al. 1999], for minimizing data traffic. Similarly to our work, Grasberger et al.

1ht’rps: //www.visiblepatient.com/en/

69

9. Related Work

i @ 0 0

Master Master's browser Nodels server Specistors Spectator
: | browser :

I

| Open Visuslization() -

Getcumrent

I

|

I

I

|

|

I

I scene state()
1 [_ _______
I

|

|

I

|

|

L

!
|
I
|
I
!
I
I
I
I
I
| Render scene()
!

1

Move camera()
-

I
|
! \

Render scena() |
L ‘ ‘
! \

|

|

|

Send scene state()

Brosdcast scene state()

Render scene(

|
I
I
|
|
!
|
!
!
|
!
|
|
ne()
|
!

= =n

Figure 9.1. Communication pattern of Visible Patient [Marion and Jomier 2012].

[2013] identified the central WebSocket server as the main performance bottleneck for fast
client synchronization. However, they resolve the bottleneck by introducing a server-less
architecture, a significant contrast to our architecture, where we address performance issues
through horizontal scaling. As stated by Grasberger et al. [2013], the server-less approach
presents some challenges. For instance, conflicting user actions, such as altering an object
that has already been deleted, must be resolved among clients, as there is no single point of
truth. They resolve such conflicts by implementing optimistic timestamp ordering [Kung and
Robinson 1981], allowing user actions without prior validation and undoing them in case
of a preceding conflicting event. Therefore, every user action is equipped with a timestamp
based on Lamport clocks, which are a concept of logical time that allows a partial ordering of
timestamps [Lamport 1978]. In ExplorViz’ Collaboration Mode, we resolve conflicting user
events, such as grabbing and closing an object simultaneously, pessimistically through prior
server validation. In a scaled environment, we use distributed locks to ensure consensus
between multiple servers.

The work of Alexeev et al. [2019] faces the challenge regarding horizontal scaling of
WebSocket servers in the context of large-scale, browser-based grid computing. Grid comput-
ing is a computing paradigm that involves coordinating a large number of heterogeneous
computers to solve complex computational problems in a distributed manner [Fedak 2015].
In the work of Alexeev et al. [2019], the clients act as workers for computational tasks, and
the servers are responsible for distributing the problem-solving tasks among the clients.
As we do in this thesis, they implement the Publish/Subscribe pattern based on Redis for
effective inter-server communication and use WebSocket for client connections. However,

70

there are some differences compared to our approach. To distribute the load among the
servers, they balance sticky client connections via an intelligent Orchestrator service (see
Figure 9.2), which assigns clients to server instances based on the individual client’s behav-
ior profile, e.g., life-term or maximum traffic expectation, and server monitoring, e.g., CPU
or RAM utilization.

J ;L 1. Connection

[1 behaviour hint

Client

L

11. Direct WebSacket connection

Orchestrator

1. "Best fit" endpoint (Server 2)
server slate

reports

Server M

Figure 9.2. Intelligent load balancing through Orchestrator service [Alexeev et al. 2019].

Additionally, to handle the high data traffic between the servers, they scale Redis out to
multiple instances. However, the work does not provide performance insights into running
the architecture in production.

71

Chapter 10

Conclusions and Future Work

In this chapter, we provide a summary of the thesis and propose ideas for future work.

10.1 Conclusions

The primary objective of this thesis was to enhance the performance of ExplorViz’s Collab-
oration Mode, particularly in facilitating multi-user sessions with extensive interaction. To
evaluate the performance of the previous Collaboration Mode, we defined a representative
performance benchmark and applied it to the respective system. The benchmarking analy-
sis revealed the Collaboration Service and the substantial message overhead as the main
bottlenecks for performance, while underscoring the robustness of the frontend.

In response, we conducted a comprehensive re-engineering of the Collaboration Mode.
The resulting system enables horizontal scaling through inter-server communication via
Publish/Subscribe and provides reliable WebSocket connections with disconnection detec-
tion and sticky load distribution. Additionally, we introduced platform-specific messaging
to minimize overall network traffic.

Conducting a second competitive benchmarking analysis with the re-engineered system
demonstrated high responsiveness and effective resource utilization for different user
populations and multiple rooms in parallel. Furthermore, we significantly increased the
maximum capacity of users capable of experiencing high responsiveness simultaneously
by more than threefold using the same resources. Scaling the Collaboration Service out
allows for a successive increase in capacity. However, the scalability is somewhat impeded
due to the high overhead for server coordination, adding one additional replica increased
the processable message capacity by approximately 26%.

10.2 Future Work

In the future, a more in-depth scalability analysis of the Collaboration Service could provide
valuable insights on improving the efficiency of horizontal scaling. Benchmarking strategies
to reduce the overhead of coordinating multiple server instances could be a promising
approach. For instance, implementing timestamp ordering, as demonstrated by Grasberger
et al. [2013], or adopting a more relaxed consistency model, where not every server instance
needs to replicate the entire application data, might be viable alternatives.

73

10. Conclusions and Future Work

In our thesis, we introduced sticky load balancing based on the Round Robin algorithm.
However, a more sophisticated load balancer, such as the Orchestrator proposed by Alexeev
et al. [2019], could route the traffic based on the utilization of individual server instances
or distribute client messages room-wise to keep clients from the same room together on a
server. Furthermore, horizontally scaling the Redis datastore could enhance inter-server
communication speed [Alexeev et al. 2019].

Additionally, for future work, it would be beneficial to test the architecture in various
scenarios that align with the practical use of ExplorViz. For instance, running ExplorViz
with geographically distributed users may impact message transmission latency and should
be considered in the evaluation.

74

Bibliography

[Abbasi-Kesbi et al. 2017] R. Abbasi-Kesbi, H. Memarzadeh-Tehran, and M. J. Deen.
Technique to estimate human reaction time based on visual perception. Healthcare
Technology Letters 4 (2017), pages 73-77. (Cited on page 15)

[Alexeev et al. 2019] V. Alexeev, P. Domashnev, T. Lavrukhina, and O. Nazarkin. The
Design Principles of Intelligent Load Balancing for Scalable WebSocket Services Used
with Grid Computing. Procedia Computer Science 150 (2019). Proceedings of the 13th
International Symposium “Intelligent Systems 2018” (INTELS’18), 22-24 October, 2018,
St. Petersburg, Russia, pages 61-68. (Cited on pages 38, 70, 71, 74)

[Bader 2022] M. Bader. Design and Implementation of Collaborative Software Visualization
for Program Comprehension. Master’s thesis. Kiel University, June 2022. (Cited on
pages 33, 36, 42, 43)

[Bai et al. 2001] X. Bai, W. T. Tsai, T. Shen, B. Li, and R. A. Paul. Distributed end-to-end
testing management. Proceedings Fifth IEEE International Enterprise Distributed Object
Computing Conference (2001), pages 140-151. (Cited on page 52)

[Bierman et al. 2014] G. Bierman, M. Abadi, and M. Torgersen. Understanding typescript.
In: European Conference on Object-Oriented Programming. Springer. 2014, pages 257-281.
(Cited on page 43)

[Bourque and Fairley 2014] P. Bourque and R. E. Fairley, editors. SWEBOK: Guide to the
Software Engineering Body of Knowledge. Version 3.0. Los Alamitos, CA: IEEE Computer
Society, 2014. (Cited on page 36)

[Briick 2023] J. Briick. Supplementary package for thesis: Performance Analysis and Re-
Engineering of ExplorViz’s Collaboration Mode. Oct. 2023. URL: https://doi.org/10.5281/
zenodo.8435907. (Cited on pages 25, 26, 54)

[Chin et al. 2010] M. L. Chin, C. E. Tan, and M. I. Bandan. Efficient load balancing for
bursty demand in web based application services via domain name services. In: 8th
Asia-Pacific Symposium on Information and Telecommunication Technologies. 2010, pages 1-4.
(Cited on page 51)

[Curry 2004] E. Curry. “Message-Oriented Middleware”. In: Middleware for Communications.
Edited by Q. H. Mahmoud. Chichester, England: John Wiley and Sons, 2004. Chapter 1,
pages 1-28. (Cited on pages 7, 38)

[El Moussaoui and Zeppenfeld 2010] H. El Moussaoui and K. Zeppenfeld. AJAX: Geschichte,
Technologie, Zukunft. Informatik im Fokus. Heidelberg: Springer, 2010. (Cited on page 69)

75

https://doi.org/10.5281/zenodo.8435907
https://doi.org/10.5281/zenodo.8435907

Bibliography

[Eugster et al. 2003] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Comput. Surv. 35.2 (June 2003), pages 114-131.
(Cited on page 7)

[Fedak 2015] G. Fedak. Contributions to Desktop Grid Computing : From High Throughput
Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures. 2015.
(Cited on page 70)

[Ganaputra and Pardamean 2015] J. Ganaputra and B. Pardamean. Asynchronous Pub-
lish/Subscribe Architecture over WebSocket for Building Real-time Web Applications.
Internetworking Indonesia Journal 7 (Dec. 2015). (Cited on page 38)

[Gao et al. 2019] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang. Houdini’s Escape:
Breaking the Resource Rein of Linux Control Groups. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS "19. London, United
Kingdom: Association for Computing Machinery, 2019, pages 1073-1086. (Cited on
page 20)

[Gilbert and Lynch 2012] S. Gilbert and N. Lynch. Perspectives on the CAP Theorem.
Computer 45.2 (Feb. 2012), pages 30-36. (Cited on page 8)

[Grasberger et al. 2013] H. Grasberger, P. Shirazian, B. Wyvill, and S. Greenberg. A
Data-Efficient Collaborative Modelling Method Using Websockets and the BlobTree
for over-the Air Networks. In: Proceedings of the 18th International Conference on 3D Web
Technology. Web3D “13. San Sebastian, Spain: Association for Computing Machinery,
2013, pages 29-37. (Cited on pages 69, 70, 73)

[Han et al. 2011] J. Han, H. E, G. Le, and J. Du. Survey on NoSQL database. In: 2011 6th
International Conference on Pervasive Computing and Applications. 2011, pages 363-366.
(Cited on page 8)

[Hasselbring 2021] W. Hasselbring. Benchmarking as Empirical Standard in Software
Engineering Research. In: Evaluation and Assessment in Software Engineering. EASE
2021. Trondheim, Norway: Association for Computing Machinery, 2021, pages 365-372.
(Cited on pages 6, 13)

[Hasselbring et al. 2020] W. Hasselbring, A. Krause, and C. Zirkelbach. ExplorViz: Research
on software visualization, comprehension and collaboration. Software Impacts 6 (2020).
(Cited on pages 1, 10)

[Hastings 1990] A. Hastings. Distributed lock management in a transaction processing
environment. In: Proceedings Ninth Symposium on Reliable Distributed Systems. 1990,
pages 22-31. (Cited on page 47)

[Henning and Hasselbring 2021] S. Henning and W. Hasselbring. Theodolite: Scalability

Benchmarking of Distributed Stream Processing Engines in Microservice Architectures.
Big Data Research 25 (2021), page 100209. (Cited on page 62)

[Hightower et al. 2017] K. Hightower, B. Burns, and J. Beda. Kubernetes: Up and Running
Dive into the Future of Infrastructure. 1st. O'Reilly Media, Inc., 2017. (Cited on page 9)

76

Bibliography

[Kabakus and Kara 2017] A. T. Kabakus and R. Kara. A performance evaluation of in-
memory databases. Journal of King Saud University - Computer and Information Sciences
29.4 (2017), pages 520-525. (Cited on pages 8, 43)

[Kounev et al. 2020] S. Kounev, K.-D. Lange, and J. von Kistowski. Systems Benchmarking.
For Scientists and Engineers. 1st edition. Springer International Publishing, 2020. (Cited
on page 5)

[Krause-Glau et al. 2022a] A. Krause-Glau, M. Bader, and W. Hasselbring. Collaborative
Software Visualization for Program Comprehension. In: 2022 Working Conference on
Software Visualization (VISSOFT). Limassol, Cyprus, 2022, pages 75-86. (Cited on
pages 1, 11)

[Krause-Glau et al. 2022b] A. Krause-Glau, M. Hansen, and W. Hasselbring. Collaborative
program comprehension via software visualization in extended reality. Information and
Software Technology 151 (2022), page 107007. (Cited on page 10)

[Krause-Glau and Hasselbring 2022] A. Krause-Glau and W. Hasselbring. Scalable Col-
laborative Software Visualization as a Service: Short Industry and Experience Paper.
In: 2022 IEEE International Conference on Cloud Engineering (IC2E). 2022, pages 182-187.
(Cited on pages 1, 10, 11, 14)

[Kung and Robinson 1981] H. T. Kung and J. T. Robinson. On Optimistic Methods for
Concurrency Control. ACM Trans. Database Syst. 6.2 (June 1981), pages 213-226. (Cited
on page 70)

[Lamport 1978] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21.7 (July 1978), pages 558-565. (Cited on page 70)

[Leach et al. 2005] P. J. Leach, R. Salz, and M. H. Mealling. A Universally Unique IDentifier
(UUID) URN Namespace. REC 4122. July 2005. (Cited on page 45)

[Liu and Sun 2012] Q. Liu and X. Sun. Research of Web Real-Time Communication
Based on Web Socket. Int’l |. of Communications, Network and System Sciences 5 (2012),
pages 797-801. (Cited on page 6)

[Liu et al. 2023] S. Liu, A. Kuwahara, J. J. Scovell, and M. Claypool. The Effects of Frame
Rate Variation on Game Player Quality of Experience. In: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. CHI '23. Hamburg, Germany:
Association for Computing Machinery, 2023. (Cited on page 15)

[Maalej et al. 2014] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the Comprehension
of Program Comprehension. ACM Trans. Softw. Eng. Methodol. 23.4 (Sept. 2014). (Cited
on page 1)

[Macedo and Oliveira 2011] T. Macedo and F. Oliveira. Redis Cookbook: Practical Techniques
for Fast Data Manipulation. O’Reilly Media, Inc., 2011. (Cited on pages 7, 8)

[Majthoub et al. 2018] M. Majthoub, M. H. Qutqui, and Y. Odeh. Software Re-engineering;:
An Overview. 2018 8th International Conference on Computer Science and Information
Technology (CSIT) (2018), pages 266-270. (Cited on page 33)

77

Bibliography

[Marion and Jomier 2012] C. Marion and J. Jomier. Real-Time Collaborative Scientific
WebGL Visualization with WebSocket. In: Proceedings of the 17th International Conference
on 3D Web Technology. Web3D "12. Los Angeles, California: Association for Computing
Machinery, 2012, pages 47-50. (Cited on pages 69, 70)

[Menascé 2002] D. A. Menascé. Load Testing of Web Sites. IEEE Internet Computing 6.4
(July 2002), pages 70-74. (Cited on page 13)

[Mouton et al. 2011] C. Mouton, K. Sons, and I. Grimstead. Collaborative Visualization:
Current Systems and Future Trends. In: Proceedings of the 16th International Conference on
3D Web Technology. Web3D ’11. Paris, France: Association for Computing Machinery,
2011, pages 101-110. (Cited on page 69)

[Nielsen 1994] J. Nielsen. Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994. (Cited on page 19)

[Nishino et al. 1999] H. Nishino, K. Utsumiya, K. Korida, A. Sakamoto, and K. Yoshida.
A Method for Sharing Interactive Deformations in Collaborative 3D Modeling. In:
Proceedings of the ACM Symposium on Virtual Reality Software and Technology. VRST "99.
London, United Kingdom: Association for Computing Machinery, 1999, pages 116-123.
(Cited on page 69)

[Oyetoyan et al. 2015] T. D. Oyetoyan, J.-R. Falleri, J. Dietrich, and K. Jezek. Circular
dependencies and change-proneness: An empirical study. 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER) (2015), pages 241-
250. (Cited on page 40)

[Pezoa et al. 2016] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoc¢. Foundations
of JSON schema. In: Proceedings of the 25th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee. 2016, pages 263-273.
(Cited on page 36)

[Pham 2020] A. D. Pham. Developing Back-End of a Web Application with Nest]S
Framework: Case Study of Integrify Oy’s Student Management System. Bachelor’s
Thesis. Lab Universtiy of Applied Sciences LTD, Autumn 2020, page 46. (Cited on
page 42)

[Razina and Janzen 2007] E. Razina and D. Janzen. Effects of Dependency Injection on
Maintainability. In: Proceedings of the 11th IASTED International Conference on Software
Engineering and Applications. SEA '07. Cambridge, Massachusetts: ACTA Press, 2007,
pages 7-12. (Cited on page 43)

[Singhal 1989] M. Singhal. A heuristically-aided algorithm for mutual exclusion in
distributed systems. IEEE Transactions on Computers 38.5 (1989), pages 651-662. (Cited
on page 35)

[Smith and Williams 2002] C. Smith and L. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison Wesley Longman Publishing Co.,
Inc., 2002. (Cited on page 5)

78

Bibliography

[Tilkov and Vinoski 2010] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to Build
High-Performance Network Programs. IEEE Internet Computing 14 (2010), pages 80-83.
(Cited on page 43)

[V. Kistowski et al. 2015] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange,]. L. Henning,
and P. Cao. How to Build a Benchmark. In: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering. ICPE “15. Austin, Texas, USA: Association for
Computing Machinery, 2015, pages 333-336. (Cited on page 5)

[Vogels 2009] W. Vogels. Eventually Consistent. Commun. ACM 52.1 (Jan. 2009), pages 40—44.
(Cited on pages 41, 42)

[Yang et al. 2008] H. Y. Yang, E. D. Tempero, and H. Melton. An empirical study into use of
dependency injection in java. In: 19th Australian Software Engineering Conference (ASWEC
2008), March 25-28, 2008, Perth, Australia. IEEE Computer Society, 2008, pages 239-247.
(Cited on page 42)

[Zirkelbach et al. 2018] C. Zirkelbach, A. Krause, and W. Hasselbring. On the Modernization
of ExplorViz towards a Microservice Architecture. In: Software Engineering. 2018. (Cited
on page 38)

79

	Introduction
	Motivation
	Document Structure

	Goals
	G1: Design of a Performance Benchmark for ExplorViz's Collaboration Mode
	G2: Performance Analysis of ExplorViz's Collaboration Mode
	G3: Re-Engineering of the Collaboration Mode
	G4: Performance Analysis of the Re-Engineered Collaboration Mode

	Foundations and Technologies
	Performance and Scalability
	Benchmarking of Software Systems
	The WebSocket Protocol
	Socket.IO

	The Publish/Subscribe Pattern
	Redis

	NestJS
	Kubernetes
	ExplorViz
	Architecture
	The Collaboration Mode

	Design of a Performance Benchmark for ExplorViz's Collaboration Mode
	Methodology
	General Framework
	Infrastructure
	Test Data
	Workload
	Test Plan

	Backend
	Experimental Setup
	Metrics
	Measurement Methods

	Frontend
	Experimental Setup
	Metrics
	Measurement Methods

	Threads to Validity
	Usage Profile
	User Population
	Instrumentation
	Resource Limitations

	Performance Analysis of ExplorViz's Collaboration Mode
	Preparation
	Results
	Backend
	Frontend

	Discussion

	Re-Engineering of ExplorViz's Collaboration Mode
	Methodology
	Reverse Engineering
	Components and Responsibilities
	Implementation Overview

	Requirement Engineering
	Functional Requirements
	Non-Functional Requirements

	Re-Design
	Communication Pattern
	Components
	Consistency Model
	Messaging Optimization

	Re-Implementation
	Frameworks
	Application Logic
	Platform-specific Messaging
	WebSocket Client Migration
	Redis Integration
	Load Balancing

	Testing

	Performance Analysis of the Re-Engineered Collaboration Mode
	Preparation
	Results
	Backend
	Frontend

	Discussion

	Discussion
	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

