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Table S1. Sorbents used for optimisation of extraction of explosives from aqueous samples.  

Sorbent 

name 

Brand Material Particle and 

Pore size 

References 

EASY Chromabond Polar polystyrene divinylbenzene 

with a weak anion exchanger (WAX) 

80 µm, 50 Å 1 

ENV Bond Elut Polystyrene-Divinylbenzene polymer  125 µm, 450 

Å 

2 

HLB Waters 

Oasis 

Hydrophilic modified styrene 

polymer 

50-70 μm,  

80 Å 

3–5 

HR-

XAW 

Chromabond Hydrophobic polystyrene 

divinylbenzene with secondary and 

tertiary ammonium modification, 

weak mixed-mode anion exchanger 

(WAX) 

85 µm, 

55–65 Å 

not yet 

reported for 

extraction of 

explosives 

HR-X Chromabond Hydrophobic  polystyrene 

divinylbenzene copolymer 

45 µm, 

55–60 Å 

not yet 

reported for 

extraction of 

explosives 

Porapak 

R 

Supelco vinylpyrrolidone 150 µm, 

na 

6,7 

Porapak 

RDX 

Sep-Pak 

Waters 

Polydivinylbenzene- 

vinylpyrrolidone 

125-150 µm, 

200 Å 

2,8–10 
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Figure S1. Continuous flow setup for extraction and elution of munition compounds from water 

samples. (A) The sample is pumped over one column (C1) packed with resin using an HPLC 

pump to extract munition compounds. (B) Analytes adsorbed on the resin are eluted from C1 

with acetonitrile and directed to the mass spectrometer using a second HPLC pump by switching 

the 6-port valve to the “inject” position. 

 



5 

 

 

Figure S2. Comparison of extraction efficiency of TNT and RDX loaded on 7 different resins at 

variable flow rates and concentrations. Error bars represent the standard deviation of 3 replicates. 
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Figure S3. Schematics of the valve and columns configuration used to test resins extraction 

capacity. Columns: C1 to C3, size 10 x 2.1 mm I.D. and C4, size 50 x 2.1 mm I.D. 
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Figure S4. Mass spectrometer analysis scans of munition compounds (DNB, ADNT, TNT and 

RDX) loaded on and eluted from Bond Elut ENV and Porapak RDX resins packed into 4 

columns (C1 to C3, size 10 x 2.1 mm I.D. and C4 size, 50 x 2.1 mm I.D.). The scans from the 

two resins are overlapped for graphical purposes. 
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Figure S5. Processing procedure for MS and UV data. Chromatogram of 50 ng of mixed 

munition compounds (RDX, DNB, ADNT, hTNT and TNT) diluted in 500 ml of natural 

seawater from Kiel fjord (Germany). 
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Figure S6. Calibration runs (overlapped) and regression lines of munition compounds (hTNT, 

ADNT, TNT, RDX and DNB) determined by MS spectrometry and UV detection (DNB only). 

Determination of optimal HPLC columns and conditions 

In the current work, HPLC columns were tested based on literature reports (Table S2). The 

HPLC column in the Gledhill method 11 has a small diameter and pore size, resulting in high 

backpressures that exceed the ExPloTect system capabilities. As a result, the column test list was 

limited to columns operating at typical HPLC conditions (<400 bar, non-UHPLC). All columns 

except the Diol column are reverse-phase, whereas the Diol column is normal-phase. The Diol 
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column was tested to evaluate if normal-phase separation would be preferable given the 

preceding SPE conditions. 

Table S2. HPLC column specifications reported in the literature for separation of nitroaromatic 

and nitramine explosives. 

Column type Dimensions Particle size  Reference 

C18 250 x 4.6 mm 5 µm 12 

 
150 x 4.6 mm 5 µm 13 

 
Various 5 µm 14 

 
150 x 4 mm 5 µm 15 

 
150 x 2.1 mm 3 µm 16 

 
250 x 4.6 mm 

5 µm 17 

    
C8 150 x 3.9 mm n.r. 18 

   

19 

 
150 x 4 mm 5 µm 15 

    
CN 250 x 4.6 mm 5 µm 12 

 
Various 5 µm 14 

 
250 x 4.6 mm 5 µm 17 

    
Diol 150 x 4.6 mm 3 µm 13 

n.r.: not reported 
  

The performance of the four chosen columns was tested using a biocompatible ultra-high 

performance liquid chromatographic system (UHPLC, Ultimate 3000, ThermoFisher) consisting 

of dual high pressure pumps, a column oven, and an ultraviolet (UV) -visible diode array 

detector. A high resolution quadrapole/Orbitrap mass spectrometer (HESI-MS, Q Exactive, 
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ThermoFisher) was used for detection. The UHPLC-HESI-MS was controlled with Xcalibur and 

Chromeleon software. 

Tests focused on an isocratic method using acetonitrile (ACN) instead of MeOH to match the 

effluent of the SPE module. Separation of the target analytes (mixed analytical standard; EPA 

8330b, Restek, Germany) was tested by varying the concentration of the ACN mobile phase and 

the column temperature. Chromatograms were obtained for separation of the target munition 

compounds, TNT (trinitrotoluene), ADNT (2- and 4- amino-dinitrotoluene), RDX (Royal 

Demolition Explosive), and DNB (dinitrobenzene). Mobile phase solvent concentration and 

column temperature control the speed at which the various analyte peaks travel through the 

column. The objective was to identify a column that provides excellent peak separation within 

the target time (10 min). 

To test the required mass resolution for detection of the target compounds, a sample of Baltic 

Sea water was spiked with the target compounds and preconcentrated using the ExPloTect SPE 

method. This provided a matrix-matched sample containing the natural organic matter that can 

interfere with MS detection. This sample was analyzed according to the developed HPLC 

method, with detection on the high mass resolution Orbitrap mass spectrometer. The mass 

resolution was varied virtually in the Xcalibur software to test the effect on detection of the 

target compound and interference by non-target natural organic matter. 

HPLC column separation of target analytes 

Chromatograms for the C18, C8, and CN columns are shown in Figs. S7-S9. Initial tests with the 

Diol column gave unsatisfactory results, and further testing of that column was abandoned. For 
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all the columns, increasing ACN concentration and temperature increased the elution time on the 

column. For brevity, only the ACN concentration effect is shown here. This effect was most 

marked for C18, which showed a decrease in elution time from 23 minutes at 30% ACN to less 

than 8 minutes at 60% ACN (Figure S7). 

  

Figure S7. Chromatograms for the C18 column. Peak intensities are normalized to minimize 

sensitivity differences. Time on the abcissa covers approximately 25 minutes. RDX is shown in 

black, DNB in red, ADNT in blue, and TNT in green. Increasing ACN concentration is shown in 

panels from top to bottom: 30, 40, 50, and 60% ACN. 

In contrast, the CN column showed target compound elution in less than 15 min for all tested 

concentrations (Figure S9).  

At the 30% ACN concentration, the C18 and C8 columns showed separation of the two ADNT 

isomers, but this was markedly reduced in the C18 column at 40% ACN compared with the C8 
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column. The CN column showed no separation of the two isomers at any of the tested 

concentrations. 

Although the CN column showed the fastest overall elution times, peak separation was poor. The 

target analytes eluted only in the second half of the chromatography, and increasing temperature 

and ACN concentration resulted in poor peak separation (Figure S9). Thus, the CN column was 

judged inappropriate for meeting the target chromatography duration.  

The C18 column showed excellent separation at the lowest ACN concentration, but very slow 

elution (Figure S7). To meet the target chromatography time, higher ACN concentrations would 

be required but would result in poor peak separation. 

The C8 column showed the best balance of peak separation and speed (Figure S8). At 

approximately 40% ACN, all target compounds eluted within 10 minutes, with sharp peaks and 

good separation of even the ADNT isomers. The C8 column was therefore chosen as the best 

option for the ExPloTect system. 
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Figure S8. Chromatograms for the C8 column. Symbols as in Fig. S7 

 

Figure S9. Chromatograms for the CN column. Symbols as in Fig. S7. 
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Table S3. Dissolved TNT concentrations in near-bottom water during cruise AL567. Note that station positions 

are only reported to two decimal places due to restrictions on reporting munitions-related data. 

Station_ID Date_time Latitude (deg) Longitude (deg) Depth (m) TNT (ng/L) 

AL567_11-1 19/10/2021 11:13 54.48 10.36 19 2.9 

AL567_12-1 19/10/2021 11:45 54.47 10.35 15 51.5 

AL567_13-4 19/10/2021 13:01 54.47 10.33 15 5.1 

AL567_14-4 19/10/2021 13:23 54.47 10.32 17 6.6 

AL567_15-2 19/10/2021 13:40 54.47 10.3 19 3.9 

AL567_17-2 19/10/2021 14:04 54.48 10.33 19 8.4 

AL567_18-2 19/10/2021 14:34 54.49 10.33 20 1.3 

AL567_22-1 19/10/2021 18:27 54.46 10.33 13 26.6 

AL567_23-1 19/10/2021 18:48 54.46 10.33 12 21.5 
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AL567_24-1 19/10/2021 19:01 54.46 10.33 11 9.5 

AL567_25-1 19/10/2021 19:19 54.46 10.32 8 3.0 

AL567_26-1 19/10/2021 19:41 54.46 10.3 11 8.6 

AL567_27-1 19/10/2021 20:11 54.46 10.35 11 34.3 

AL567_28-1 19/10/2021 20:54 54.47 10.45 15 2.1 

AL567_29-1 19/10/2021 21:44 54.39 10.56 14 2.2 

AL567_30-1 19/10/2021 22:18 54.38 10.65 12 4.0 

AL567_31-1 19/10/2021 22:47 54.39 10.71 18 4.2 

AL567_32-1 19/10/2021 23:19 54.42 10.78 12 1.0 

AL567_33-1 20/10/2021 00:16 54.5 10.88 12 4.7 

AL567_34-1 20/10/2021 01:00 54.56 10.97 13 2.0 
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AL567_35-1 20/10/2021 01:35 54.59 11.02 23 2.8 

AL567_36-1 20/10/2021 02:38 54.57 11.23 29 8.1 

AL567_37-1 20/10/2021 03:37 54.49 11.4 28 5.4 

AL567_38-1 20/10/2021 04:05 54.46 11.36 19 7.1 

AL567_39-1 20/10/2021 04:39 54.39 11.37 22 9.6 

AL567_40-1 20/10/2021 05:34 54.32 11.31 21 2.7 

AL567_41-1 20/10/2021 06:16 54.25 11.25 21 10.3 

AL567_42-1 20/10/2021 06:50 54.2 11.22 20 5.0 

AL567_43-1 20/10/2021 07:27 54.14 11.16 22 5.9 

AL567_44-1 20/10/2021 08:06 54.12 11.05 15 0.9 

AL567_57-1 21/10/2021 11:31 54.05 10.86 21 0.6 
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AL567_58-1 21/10/2021 12:01 54.07 10.91 22 1.1 

AL567_59-1 21/10/2021 12:22 54.08 10.95 22 1.8 

AL567_60-1 21/10/2021 12:45 54.11 10.99 22 0.7 

AL567_64-1 22/10/2021 09:57 54.09 11.01 22 2.2 

AL567_65-2 22/10/2021 10:24 54.07 11.03 22 0.8 

AL567_70-1 23/10/2021 09:35 54.07 11.03 23 2.9 

AL567_71-1 23/10/2021 10:03 54.05 11.04 24 4.6 

AL567_72-1 23/10/2021 10:26 54.05 11 23 1.2 

AL567_80-1 23/10/2021 16:48 54.04 10.8 17 4.1 

AL567_88-1 24/10/2021 17:42 54.01 10.81 14 2.1 

AL567_89-1 24/10/2021 18:30 54.02 10.88 20 1.4 
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AL567_104-1 25/10/2021 18:28 54.01 10.94 21 4.9 

AL567_105-1 25/10/2021 19:35 54.03 10.92 13 1.6 

AL567_106-1 25/10/2021 20:22 54.04 10.98 23 5.5 

AL567_107-1 25/10/2021 21:02 54.02 11.01 23 2.4 

AL567_108-1 25/10/2021 21:54 54.03 11.06 17 6.6 

AL567_121-1 26/10/2021 23:25 54.04 11.14 25 3.6 

AL567_122-1 27/10/2021 00:09 54.06 11.23 20 4.5 

AL567_123-1 27/10/2021 00:56 54.1 11.37 16 5.6 

AL567_124-1 27/10/2021 01:38 54.16 11.5 21 2.8 

AL567_125-2 27/10/2021 02:31 54.24 11.59 25 2.4 

AL567_140-1 27/10/2021 18:15 54.25 11.74 25 3.4 
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AL567_141-1 27/10/2021 19:21 54.26 11.99 17 3.6 

AL567_142-1 27/10/2021 20:03 54.28 12.08 18 3.3 

AL567_143-1 27/10/2021 20:51 54.34 12.15 18 1.8 

AL567_144-1 27/10/2021 21:23 54.39 12.11 21 4.4 

AL567_145-1 27/10/2021 22:07 54.37 11.97 17 1.2 

AL567_146-1 27/10/2021 22:56 54.36 11.8 23 4.0 

AL567_147-1 27/10/2021 23:57 54.41 11.59 25 2.3 

AL567_148-1 28/10/2021 00:41 54.46 11.49 26 2.3 

AL567_149-1 28/10/2021 01:50 54.54 11.34 29 2.9 

AL567_150-1 28/10/2021 02:48 54.59 11.15 28 3.0 

AL567_151-1 28/10/2021 04:02 54.58 10.87 20 1.8 
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AL567_152-1 28/10/2021 04:36 54.56 10.77 23 1.7 

AL567_153-1 28/10/2021 05:09 54.53 10.68 23 3.6 

AL567_154-1 28/10/2021 05:41 54.53 10.59 16 1.9 

AL567_155-1 28/10/2021 06:18 54.51 10.47 16 4.0 

AL567_156-1 28/10/2021 06:59 54.47 10.35 15 4.2 

AL567_157-1 28/10/2021 07:12 54.46 10.35 12 5.9 

AL567_158-1 28/10/2021 07:26 54.46 10.33 11 5.5 

AL567_159-1 28/10/2021 07:43 54.46 10.33 12 2.0 

AL567_160-1 28/10/2021 08:05 54.46 10.32 9 15.3 

AL567_161-1 28/10/2021 08:21 54.47 10.32 18 35.3 

AL567_162-1 28/10/2021 09:06 54.55 10.4 18 2.2 
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AL567_163-1 28/10/2021 09:38 54.6 10.31 16 1.7 

AL567_164-1 28/10/2021 10:18 54.65 10.22 20 2.8 

AL567_165-1 28/10/2021 10:52 54.71 10.15 25 1.2 

AL567_166-1 28/10/2021 11:33 54.77 10.03 28 2.8 

AL567_167-1 28/10/2021 12:07 54.82 9.94 26 2.4 

AL567_168-1 28/10/2021 12:48 54.82 9.82 24 1.5 

 


