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From Digital Twins to Digital Twin Prototypes:
Concepts, Formalization, and Applications
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Abstract—The transformation to Industry 4.0 also transforms the processes of how we develop intelligent manufacturing production
systems. To advance the software development of these new (embedded) software systems, digital twins may be employed. However,
there is no consensual definition of what a digital twin is. In this paper, we give an overview of the current state of the digital twin
concept and formalize the digital twin concept using the Object-Z notation. This formalization includes the concepts of physical twins,
digital models, digital templates, digital threads, digital shadows, digital twins, and digital twin prototypes. The relationships between all
these concepts are visualized as UML class diagrams.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of complex embedded
software systems. This approach enable engineers to test embedded software systems in a virtual context, without the need of a
connection to a physical object. In continuous integration / continuous deployment pipelines such digital twin prototypes can be used
for automated integration testing and, thus, allow for an agile verification and validation process.
In this paper, we demonstrate and report on how to apply and implement a digital twin by the example of two real-world field studies
(ocean observation systems and smart farming). For independent replication and extension of our approach by other researchers, we
provide a lab study published open source on GitHub.

Index Terms—CPS, Embedded Software Systems, Digital Twin Prototypes, Automated Testing, Continuous Integration
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1 INTRODUCTION

For cyber-physical-systems, the Industrial Internet of Things
(IIOT), and Industry 4.0 applications, the embedded soft-
ware is an increasingly crucial asset. With increasing re-
quirements and hence, increasing complexity, new chal-
lenges arise for manufacturers and in particular, for the
engineers of these systems. While in large software com-
panies, software development is often done by distributed
teams of engineers [1], this is usually different for small and
medium-sized enterprises (SME) that develop embedded
systems [2]. Especially, in SMEs, embedded software still
is often developed by the same engineers who also develop
the electronics and/or mechanical parts [3].

However, with the demand for context-aware, au-
tonomous, and adaptive robotic systems [4], more advanced
software engineering methods have to be adopted by the
embedded software community. Consequently, the way
these systems are developed has to advance. In future
development workflows, the embedded software systems
will be the center-piece of IIoT applications. To achieve this,
the community has to move from expert-centric tools [4] to
modular systems, whereby domain experts are enabled to
contribute parts of the system.

A survey among 2,000 decision makers about trends and
challenges in software engineering found that quality is per-
ceived in the software industry as the single most relevant
premise to survive [5]. Yet, organizations struggle to achieve
software quality along with cost and efficiency [6]. During
the development of embedded (software) systems, at some
point, thorough and reliable tests are necessary to verify

and validate the whole system [7]. A common way to test
the control algorithms of an embedded software system is
Hardware-in-the-Loop (HIL) testing. An example for HIL
testing at large scale is Airbus with creating iron birds
of their aircraft, containing the corresponding electronics,
hydraulics and flight controls [8]. However, many SMEs
cannot afford such redundant hardware just for the purpose
of testing software. Hence, test automation is among the
most popular topics for testing embedded software [9]. Still,
automatic quality assurance is a challenge in this context,
since hardware is in the loop.

Many different simulation tools were proposed, devel-
oped, and sold, with the promise to reduce costs and time
needed for verification and validation. Yet, none of these
tools is able to combine all aspects of modern machines
during all steps of the production life-cycle, due to the
complexity of systems and the high amount of data be-
ing processed. Thus, multidisciplinary simulation concepts
are increasingly important with regard to scalable and
highly modular production environments enabled by cyber-
physical systems [10]. Alongside HIL testing, manufactures
implemented different automated testing strategies with In-
the-Loop simulations to reduce costs, e.g., Software-in-the-
Loop (SIL), Model-in-the-Loop (MIL), and Processor-in-the-
Loop (PIL) simulations [11].

One promising technique to enhance the overall software
quality of embedded systems, is the Digital Twin concept.
We start with a discussion of related work in Section 2.
As there is no common understanding around the concept,
we then dissect the different parts of a digital twin in and
formally specify the concepts with the Object-Z notation.
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Afterwards, the application of digital twins in different
industrial contexts are presented to illustrate the approach.

2 RELATED WORK

Digital twins are not only a growing topic in academia
but also in the industry, especially in manufacturing [12].
However, there is still no consensual definition of a Digital
Twin, as we explain in Section 2.1. Most of the research
conducted to find a general definition of a digital twin, are
literature reviews [13]–[16] investigating where digital twins
are used, which components are part of it, and which level
of integration with the CPS exists. In particular, Kritzinger,
Karner, Traar, et al. [16] contributed with their literature
review to a consensual understanding about which subsys-
tems are part of a digital twin. They consider the digital
model, the digital shadow, and the digital twin as three
separate levels of integration in the overall concept of digital
twins. In this paper, we extend this work by providing a
formalization for all these categories.

With regard to mathematical approaches to formalize the
concept of digital twins, there is a lack in research papers.
Nevertheless, we discuss two approaches [17], [18] that use
semi-formal approaches to define the relationships between
the different components of a digital twin in Section 2.2.

2.1 The Evolution of the Digital Twin Concept
An innovative method for testing and monitoring embed-
ded systems was used for space missions, dating back
to the early Apollo missions conducted by the National
Aeronautics and Space Administration (NASA). Here, the
“Twin” concept was initially employed during the Apollo
missions in the late 1960s as a safety precaution. If a system
on the spacecraft failed during the mission, engineers had
no access to the capsule. A failure to fix problems in a timely
manner could be catastrophic for the space mission. At the
time, computational power was insufficient for complex
simulations, so NASA engineers came up with the idea
of building at least two identical space capsules. One was
used for the mission while the other remained on Earth,
serving as the “Twin” for simulation purposes. Changes to
the system were first tested on the Twin before astronauts
received instructions. This approach required both capsules
to be maintained exactly the same, including replacing parts
on the Twin even if it was not used during a mission. NASA
had planned to transfer this approach to the Space Shuttle
program, but abandoned the idea due to the high costs.

Half a century later, with advancements in computa-
tional power and improved simulations, the NASA’s Twin
concept has evolved into a digital twin. However, there
was a second research threads that contributed to the con-
cept. The second thread originated from the manufacturing
industry and dates back to 2002, when Grieves [19] first
pitched for the formation of a Product Lifecycle Manage-
ment (PLM) center at the University of Michigan. The
presentation slide, as depicted in Figure 1, had the title
“Conceptual Ideal for PLM” [20] and sketched the idea of
a digital twin and named it “Mirrored Spaces Model” back
than [19].

Grieves envisioned with the Mirrored Spaces Model al-
ready three crucial components of digital twins: the physical

Fig. 1: A Digital Twin by Grieves and Vickers [20] consists
of the real space (left side), the virtual space (right side), and
the link for data flow from real space to virtual space. The
opposite direction is done manually by using information to
enhance processes (Source: [20]).

space, the virtual space, and the data link between the
physical and virtual spaces. Later, in 2016, Grieves and
Vickers [20] defined the digital twin as stated in Definition 1:

Definition 1 (Digital twin by Grieves and Vickers
[20] (2016)). The Digital Twin is a set of virtual in-
formation constructs that fully describes a potential
or actual physical manufactured product from the
micro atomic level to the macro geometrical level. At
its optimum, any information that could be obtained
from inspecting a physical manufactured product
can be obtained from its Digital Twin. Digital Twins
are of two types: Digital Twin Prototype (DTP) and
Digital Twin Instance (DTI). Digital twin’s are oper-
ated on in a Digital Twin Environment (DTE).

Definition 1 considered the digital twin to be a collection
of technologies and distinguished between two types: the
Digital Twin Prototype (DTP) and the Digital Twin Instance
(DTI). The Digital Twin Prototype is a set of blueprints,
etc., used to construct or maintain the physical twin. The
Digital Twin Instance is the specific instance created after
the physical twin has been manufactured and is linked to it
throughout its lifecycle. Although the vision by Grieves and
Vickers [20] reflected solutions that are possible today, the
technology available in 2002 only allowed for a rudimentary
implementation of what a digital twin is known today.
Digital twins were seen as a new paradigm for designing,
manufacturing, and servicing products [12]. However, the
meaning of digital twin may vary depending on the sector
they are utilized in [12].

After their introduction, digital twins experienced a hype
phase until around the year 2006. The first hype of digital
twins was driven by high hopes in the industry. However,
the technology did not live up to the hype, and digital twins
became a buzzword in marketing departments rather than a
fully realized concept. Newman [21] observed and criticized
something similar with regard to microservice architectures.
Saracco and Henz [12] emphasize that the industry drove
the development of digital twins, while academia ignored
it. The revival of interest in digital twins in 2016 was thanks
to the maturity of IIoT and CPS technologies, and academia
also joined the bandwagon. Digital twins reached the peak
of the Gartner Hype Cycle of emerging technologies in 2018
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[22]. Furthermore, an increased number in research papers
and special issues published by journals can be registered
after 2016.

It was between 2006 and 2016 when Piascik, Vickers,
Lowry, et al. [23], and Glaessgen and Stargel [24] proposed
their vision for a digital twin for NASA [19]. Piascik, Vickers,
Lowry, et al. [23] used the term digital twin in their tech-
nology roadmap for NASA. However, they described the
digital twin concept, but did not define digital twins. The
better known digital twin definition was by Glaessgen and
Stargel [24] for next generation fighter aircraft and NASA
vehicles shown in Definition 2:

Definition 2 (Digital twin by Glaessgen and Stargel
[24] (NASA) (2012)). A Digital Twin is an integrated
multiphysics, multiscale, probabilistic simulation of
an as-built vehicle or system that uses the best avail-
able physical models, sensor updates, fleet history,
etc., to mirror the life of its corresponding flying
twin. The Digital Twin is ultra-realistic and may
consider one or more important and interdependent
vehicle systems, including airframe, propulsion and
energy storage, life support, avionics, thermal pro-
tection, etc.

They tailored their vision for the specific use case of
spacecraft, satellites, and space exploration, where simula-
tions play a crucial role due to the high cost of hardware
and human resources. These simulations are used both in
the development phase, which indicates at least a MiL
approach, and to monitor the systems during missions. To
detect anomalies during flight, they also included a channel
for sending sensor data from the physical twins to their
corresponding digital twins. Loading this data into the
simulation with a realistic model supersedes the NASA’s
Twin approach from the Apollo missions. This is similar to
the data link shown in Figure 1, only with far advanced
technology and tools. A demonstration of their implemen-
tation can be seen in the Perseverance Rover that landed on
Mars in 2021 [25].

In parallel to the definition by NASA, Garetti, Rosa, and
Terzi [26] defined digital twins for manufacturing as shown
in Definition 3:

Definition 3 (Digital twin by NASA [26] (2012)). The
digital twin consists of a virtual representation of a
production system that is able to run on different
simulation disciplines that is characterized by the
synchronization between the virtual and real system,
thanks to sensed data and connected smart devices,
mathematical models and real time data elaboration.
The topical role within Industry 4.0 manufacturing
systems is to exploit these features to forecast and
optimize the behaviour of the production system at
each life cycle phase in real time.

When the attention on digital twins research rekindled,
academia proposed multiple definitions for the concept [13].
These definitions were influenced by the realistic simulation
approach put forth by NASA. Rosen, Wichert, Lo, et al. [15]

linked the digital twin concept to the Industry 4.0 strategy of
the German Platform Industry 4.0 [27]. They illustrated how
simulations evolved over time, from mechanics in the 1960s
to simulation-based system design and finally to digital
twins since 2015. They also highlighted that modularity,
autonomy, and connectivity are crucial requirements for
digital twins, among other factors.

The definitions provided by Grieves and Vickers [20]
and NASA only included an automated connection from
the physical twin to its digital twin. Trauer, Schweigert-
Recksiek, Engel, et al. [28] conducted an industrial case
study to analyze how the industry perceived and defined
digital twins between 2002 and 2019. They traced the evolu-
tion of digital twins and presented Definition 4 as a result.

Definition 4 (Digital twin by Trauer,
Schweigert-Recksiek, Engel, et al. [28] (2020)).
A Digital Twin is a virtual dynamic representation
of a physical system, which is connected to it over
the entire life cycle for bidirectional data exchange.

We present Definition 4 here, because of the inclusion of
the bidirectional data exchange from digital twin to physical
twin. This bidirectional interaction allows remote control and
operation of the physical twin, as well as new opportunities
for collaboration between physical twin and digital twin.
This poses a challenge for engineers to either develop the
software independently for each twin, violating the prin-
ciple of realistic replication, or to use tools like Docker to
containerize the physical twin’s software for use as a digital
twin.

Depending on the research field, the industry, and use
cases, the term digital twin is often used synonymous
with concepts like Digital Model, Digital Shadow, and Digital
Thread [13], [16]. Kritzinger, Karner, Traar, et al. [16] con-
ducted a categorical literature review and analyzed research
papers with regard of the proposed concept and how it
deviates from a common understanding of the essential
parts of digital twins. They classify three subcategories of
a digital twin by their level of integration with the physical
twin: (i) digital model, (ii) digital shadow, and (iii) digital
twin. The differences are depicted in Figure 2.

• Figure 2a shows the digital model. There is no auto-
mated connection between the physical object and
the digital model. No automated data exchange is
realized. State changes in the physical object do not
immediately affect the digital model and vice versa.

• If there is an automated one-way data flow from the
physical object to the digital object (see Figure 2b),
then this is a digital shadow. A change in state of the
physical object leads to a change of state in the digital
shadow, but not vice versa.

• Figure 2c shows a fully integrated digital twin. The
data flows are automated between the physical twin
and the digital twin in both directions. In such a
configuration, the digital twin might also act as a
controlling instance of the physical twin. A change in
state of the physical twin directly leads to a change
in state of the digital twin and vice versa.
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Fig. 2: Subcategories of digital twins by their level of integration with the physical twins (Source: [16]).

With the increasing importance of digital twins, the
International Organization for Standardization (ISO) also
published the ISO 23247 series, defining a framework to
support the creation of digital twins of observable manufac-
turing elements, including personnel, equipment, materials,
manufacturing processes, facilities, environment, products,
and supporting documents [29].

Definition 5 (Digital twin by International Organiza-
tion for Standardization [29] (2021)). A digital twin
assists with detecting anomalies in manufacturing
processes to achieve functional objectives such as
real-time control, predictive maintenance, in-process
adaptation, Big Data analytics, and machine learn-
ing. A digital twin monitors its observable manu-
facturing element by constantly updating relevant
operational and environmental data. The visibility
into process and execution enabled by a digital twin
enhances manufacturing operation and business co-
operation

One aspect of ISO 23247 that immediately catches the eye
is the absence of mentioning of bidirectional communica-
tion. The focus is on the monitoring aspect of a digital twin.
According to the definition by Kritzinger, Karner, Traar, et
al. [16], ISO 23247 only describes a digital shadow [29].

Since 2018, IIoT platforms transitioned from basic data

hubs to digital twin (DT) platforms. Lehner, Pfeiffer, Tinsel,
et al. [30] evaluated the digital twin platforms provided
by Amazon Web Services (AWS), Microsoft Azure, and
the Eclipse ecosystem and showed that they fulfill many
requirements, yet not all key requirements. Features like
bidirectional synchronization between physical and digital
twins require additional coding, and automation protocols
are not covered yet. According to the categorization of the
integration level of digital twins [16], these platforms only
help to establish a so-called digital shadow [16]. Modern
simulation tools such as AutoDesk, aPriori, or Ansys, are
using IIoT platforms to feed the simulation with data and
enable the integration of automation protocols. Often they
are promoted with the promise of a digital twin. However,
similar to the cloud providers, these tools also just help
to establish a digital shadow. The simulation of a physical
twin (PT) still does not cover the entire embedded software
system that runs on the digital twin and also lacks the ability
of proper bidirectional synchronization between digital twin
and digital twin.

2.2 Conceptual Models to Define Digital Twins

The presented research projects and papers leave plenty of
space for interpretation of the digital twin concept. This is
one reason, why there are so many definitions of digital
twins.

Fig. 3: Semi-formal description of the relationships between physical twin, digital twin, their connections, and environments
as described by Yue, Arcaini, and Ali [17].
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Yue, Arcaini, and Ali [17] present a semi-formal ap-
proach using UML class diagrams to define the physical
twin, digital twin and their relationships by the example of
an automated warehouse system (AWS). Figure 3 depicts
the relationships. Physical twin and digital twin exchange
data via the PT-To-DT-Connection and DT-To-PT-Connection.
A state change in one twin, triggers the change of the state
of its counterpart.

Furthermore, they payed attention to two aspects, which
are often not considered explicitly: fidelity and the twinning
rate. Fidelity considers the accuracy and the level of abstrac-
tion of the digital twin and the twinning rate is the interval
physical twin and digital twin synchronize their states.

However, the semi-formal approach by Yue, Arcaini,
and Ali [17] has its flaws. Although they considered the
digital model as part of the digital twin, it is not explicitly
mentioned in the general overview in Figure 3. Moreover,
the digital shadow was ignored completely.

Becker, Bibow, Dalibor, et al. [18] present in their concep-
tual model of digital shadows for CPS in a simlar approach
using also UML class diagrams to show the relationships,
but solely for the digital shadow. The focus of the digital
shadow is on single assets and their information flow from
the physical twin to the digital shadow. They also emphasize
that an asset’s corresponding model is part of the digital
shadow and models can be of different natures/types.

A formal mathematical approach, yet very abstract, of
the relationships between physical twins, digital shadow,
and digital twin was presented by Lv, Lv, and Fridenfalk
[31]. A limitation in their approach is that it still offers a lot
of space for interpretation and the mathematical notation is
peculiar.

In this paper, we extend and merge the relationship
diagrams of Yue, Arcaini, and Ali [17] and Becker, Bibow,
Dalibor, et al. [18] by also including the digital model and
digital shadow to give a full overview of the Digital Twin
concept. In addition, we present the formalization of a digi-
tal twin software architecture using the Object-Z notation.

2.3 Continuous Twinning
In the development phase of CPS, HIL testing still is the
common approach. The pressure to reduce costs [6] led to
many different approaches to switch from HIL to SIL. To
date, for most industrial applications, sensors and actuators
are connected via input/output ports to programmable
logic controllers (PLCs). Although new wireless communi-
cation technologies and more powerful and efficient single-
board computers open up the embedded community for
cheaper and faster development processes, the predomi-
nance of PLCs will hold for years. It is quite common to
use PLCs in a HIL setup, where the PLC is connected
to a simulation [32]. Engineers can program the PLC and
the simulation delivers the virtual context with simulated
sensors/actuators to the PLC. As still only one engineer can
work on a HIL system at the same time, SIL approaches
become more and more popular to enable the collaboration
between engineers. Lyu, Atmojo, and Vyatkin [32] demon-
strated that a software PLC in a SIL context can be realized
with Docker and other tools.

Quality assurance of embedded systems is regulated
with standards and norms to ensure robust testing and to

prevent malfunctions that might pose a risk to the safety of
individuals who work with or use these systems [2]. The
aviation industry is renowned for its strict and stringent
testing procedures, contributing to the fact that aircraft are
the safest mode of transportation, statistically. This was not
the case half a century ago, as standards and procedures
have evolved through various experimentation with differ-
ent testing strategies.

The digital twin prototype approach presented in this
paper, enables engineers to produce the first minimum
viable product (MVP) with the first implemented device
driver and emulator. Thanks to the publish-subscribe ar-
chitecture, all additional nodes and emulators can be de-
veloped and added iteratively. Putting all modules in a
source code management system allows all developers to
use the digital twin prototype and enhance the entire system
incrementally, without the need to connect to the hardware
of the digital twin. As a bonus, this also enables automated
SIL testing in continuous integration/continuous delivery
(CI/CD) pipelines.

By following CI/CD workflows the development of em-
bedded software systems becomes an agile and incremental
process. Beginning with a prototype of a device driver for
a single piece of hardware, to entire production plants, to
smart factories, agile software development is enabled. This
does not only improve the software quality and shorten
release cycles, it also allows additional stakeholders to par-
ticipate in a feedback loop in the development process from
the first MVP. Adjusting software requirements or fixing
design flaws can be done during development. With this
method, digital twins evolve continuously in small incre-
mental steps, rather than in major releases. Nakagawa, An-
tonino, Schnicke, et al. [33] envision and call this approach
Continuous Twinning.

3 THE DIGITAL TWIN CONCEPT - A FORMALIZA-
TION

As Grieves [34] elaborates, there is a flaw in the catego-
rization of the digital twin definition by Kritzinger, Karner,
Traar, et al. [16]. Stating that digital twins have three sub-
categories, where a digital twin is a subcategory of itself,
leads to endless recursion. Furthermore, this increases the
confusion around what a digital twin is and what it is not.
However, we do not share the recommendation to ignore
the difference between a digital shadow and a digital twin
with Grieves [34]. To enhance clarity around the concepts
and relationships between physical twins, digital models,
digital shadows, digital threads, digital twin prototypes,
digital templates, and digital twins, we formally specify
the Digital Twin concept as follows. We propose, similar
to Hasselbring [35], a three-level interleaving of formality in
the specification:

1) informal prose explanation and illustrations with
examples;

2) semi-formal object-oriented modeling with the
UML;

3) rigorous formal specification with Object-Z.

Object-Z [36] is a formal specification notation used to
describe the behavior of software systems. It extends the
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Z notation [37] and enables the incorporation of object-
oriented concepts, such as classes, objects, inheritance, and
polymorphism, into specifications. Additionally, Object-Z
allows for the specification of operations that can be per-
formed on objects, along with constraints on attribute val-
ues and relationships between objects, all expressed in a
mathematical notation. The following specification has been
checked using a type checker provided by the Community
Z Tools Project [38].

The formal specification is exemplified through an em-
bedded software system comprising a sensor, an actuator
which also serves as a data transmitter, and an embedded
control system connected to both. This control system man-
ages data and command exchange between these compo-
nents. All example components are very basic and are only
meant to demonstrate the core ideas. A real system would
be more complex, including more third-party dependencies,
tools, and frameworks.

3.1 The Physical Twin
The digital twin concept starts with the physical twin.

Definition 6 (Physical Twin). A physical twin is a
real-world physical System-of-Systems or product.
It comprises sensing or actuation capabilities driven
by embedded software.

Figure 4 illustrates the deployment diagram of our
simple embedded system. In this example, the sensor is
connected via an RS232 interface to the controller, and the
transmitter is connected via Ethernet. All data collected
from the sensor is processed by the controller logic and
subsequently sent to an external source via the transmitter.
Commands to modify the sensor’s behavior are received
by the transmitter and forwarded to the sensor through the
control logic.

Consider both devices as black boxes that maintain a list
of accepted commands, a method for executing tasks based
on the commands and returning a result, and functions for
sending and receiving data. Additionally, a device driver
holds a corresponding list of commands that can be sent
to the devices. The lists on the device and the device
driver are identical, and the device driver handles command
transmission and response reception.

The UML class diagram in Figure 5 depicts the various
classes forming the embedded control system. To align

with the clean code principles, abstract classes Device and
DeviceDriver are introduced first. Sensors and actuators are
considered as devices and thus inherit from Device, as de-
picted on the left side of Figure 5. All devices are connected
to the embedded control system.

The crucial elements of embedded software systems are
the connections between the control systems and the sen-
sors/actuators. In this example, the connections are estab-
lished using different PROTOCOL types (TCP or RS232) to
facilitate communication between Device and DeviceDriver.

Specifically, SensorDriver inherits from DeviceDriver and
employs an RS232Connection to establish a connection with
a Sensor. Similarly, Transmitter and TransmitterDriver (which
also inherits from DeviceDriver) establish a connection using
TCPConnection. While a Device is treated as an external com-
ponent running on the device, a corresponding DeviceDriver
is an integral part of the embedded control system.

A Device consists of two main components: a Connection
object and a set of accepted commands (commandList). The
Connection object manages data exchange between a Device
and a DeviceDriver. The ExecuteCommand function represents
the execution of a task after a command has been sent
to the Device. It expects a COMMAND object sent by the
DeviceDriver and returns a RESPONSE object. The Send
and Receive functions utilize the corresponding functions
provided by the contained Connection.

To facilitate the exchange of data from a sensor to an-
other process, such as the control logic, EventHandler objects
are introduced. It can be assumed that these EventHandler
objects are implemented in a manner similar to the Ob-
server pattern, which also encompasses publish/subscribe
architectures.

In this setup, all events received from the Sensor are
emitted to all listeners through a Producer, and processes
receive these events by including a Consumer.

3.1.1 Object-Z Formalization

The specification of this simple embedded system follows a
bottom-up approach. The deployment diagram, as depicted
in Figure 4, can be defined using the Object-Z notation. To
achieve this, some basic type definitions are introduced:

[PROTOCOL,EVENT]

PROTOCOL represents the communication protocols uti-
lized between the devices and the control system, while

Sensor A

Sensor
Component

Embedded Control System

Sensor A
Driver

Transmitter
Driver

Data Transmitter

Transmitter
Component

Control
Logic

RS232 Ethernet

Physical Twin

Fig. 4: The deployment diagram of an embedded system comprising a sensor, a data transmitter and the embedded control
system both are connected to. The sensor is connected via RS232 and the transmitter via transmitter via Ethernet.
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1

DATA

MEASUREMENT COMMANDSTATUS

Response

PROTOCOL
<< abstract >>

Sensor Transmitter

Sensor
Driver

Transmitter
Driver

DeviceDriver
<< abstract >>

1

1
TCPConnection

RS232Connection

EventHandler

Producer Consumer

uses

sends

awaits

awaits

sends

connects via

connects via

sends sendsreceives receives
exchanges

receives

sends

CommandList

holds

BEHAVIOR
executes triggers

Fig. 5: UML class diagram of a physical twin.

EVENT is the type employed for data exchange between
processes.

Basic type definitions introduce new types in Z and
Object-Z. Such internal structure is considered irrelevant for
the specification. In this particular specification, any details
that are not architecturally relevant are abstracted this way.

The various PROTOCOL types used in the schema ar-
chitecture are subsequently defined through an axiomatic
definition. In this context, TCP and RS232 are established as
values of type PROTOCOL:

TCP,RS232 : PROTOCOL

Up until this point, only basic types have been intro-
duced. However, as Object-Z is object-oriented, objects are
also created. In this context, the parent class is denoted as
DATA, and it will later be specialized through inheritance
into classes specific to the various data types:

DATA

data : seq{0, 1}

Communication between devices is represented as a
sequence of bits. Given that standard data types such as
integers, floats, or strings are irrelevant for the specification,
only a bit representation is utilized.

As both a device and its corresponding device driver ex-
change either RESPONSE or COMMAND, the correspond-
ing schemas inherit from the DATA class. In this context,
RESPONSE can represent either MEASUREMENT or STA-
TUS:

COMMAND
DATA

STATUS
DATA

MEASUREMENT
DATA

RESPONSE
MEASUREMENT
STATUS

Once the data types have been formalized, the various
components and their connections can be configured. Ini-
tially, the abstract Connection class can be defined as follows:

Connection
↾(INIT,Read,Write)

type : PROTOCOL
dataStream : seq DATA

INIT

dataStream = ⟨⟩

Write
∆(dataStream)
value? : DATA

dataStream′ = dataStream ⌢ ⟨value?⟩

Read
∆(dataStream)
value! : DATA

dataStream = ⟨value!⟩⌢ dataStream′
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The symbol ? denotes input parameters and !
denotes outputs [36].

A Connection possesses a type and manages bit sequences,
represented as a stream (dataStream). The Write function
appends bit sequences to the stream, while the Read function
extracts them by reading bits from it.

The specific implementations, RS232Connection and TCP-
Connection, are named after the types they set for the Con-
nection object from which they inherit:

RS232Connection
Connection

type = RS232

TCPConnection
Connection

type = TCP

A Device comprises a Connection object and a set of
accepted commands (commandList). The Connection object is
responsible for managing data exchange between a Device
and a DeviceDriver. The ExecuteCommand function represents
the execution of a task following the transmission of a
command to the Device. It expects a COMMAND object sent
by the DeviceDriver and returns a RESPONSE object. The
Read and Write functions make use of the corresponding
functions provided by the contained Connection:

Device
↾(INIT, Send,Receive, commandList)

connection : ↓Connection©
commandList : PCOMMAND

connection ̸∈ Connection
#commandList > 0

The symbol ↓ denotes the union of Connection
with all sub-types. Connection is abstract, thus
the Connection has to be sub-type that imple-
ments it.
The symbol © denotes object containment [36].

INIT

connection.INIT

ExecuteCommand
command? : COMMAND
result! : ↓DATA

command? ∈ commandList

Send =̂ connection.Write
Receive =̂ connection.Read o

9 ExecuteCommand
o
9Send

The symbol o
9 denotes a sequential composi-

tion.

Similar to the Device class, the DeviceDriver class also
contains a Connection object, a set of commands, a set of
known behaviors, and a function that maps a behavior to
the corresponding command that can be sent to the Device:

DeviceDriver
↾(INIT, Send,Receive, commandList, emitter,
consumer)

connection : ↓Connection©
commandList : PCOMMAND
emitter : Producer©
consumer : Consumer©

connection ̸∈ Connection

INIT

connection.INIT ∧ consumer.INIT

Send =̂ consumer.Consume o
9 connection.Write

Receive =̂ connection.Read o
9 emitter.Emit

Assume for this example that the DeviceDriver fully
implements all interactions with the Device and hence, the
commandList for both instances is equal. The Receive and Send
functions in this class also utilize the Connection’s Read and
Write functions. Any further implementations beyond this
scope are not relevant to our specification.

Data exchange between different processes, such as the
DeviceDriver and the ControlLogic, occurs through Even-
tHandlers:

EventHandler
↾(event)

event : EVENT

Each EventHandler registers for a specific EVENT, which
can represent, for example, a simple response from the
Device. In this example, the EventHandler is an abstract class,
and Producer and Consumer are the specific implementations.
Assuming both register for the same EVENT, like “NEW-
DATA,” a Producer can emit new events, and the Consumer
receives and handles all incoming events. It is important to
note that this relationship is not one-to-one but rather one-
to-many, allowing for an indefinite number of Consumers to
listen to the same Producer.

The main function of a Producer is the Emit function that
is called with a passed DATA object and then all Consumers
are notified:

Producer
↾(INIT, event,Emit)
EventHandler

Emit
occuredEvent? : ↓DATA
eventToEmit! : ↓DATA

eventToEmit! = occuredEvent?

A Consumer registers via the Observe to an EVENT and
only listens to the emitted events and handles them in
a queue. The Consume function returns always the first
element in the queue:
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Consumer
↾(INIT, event, queue,Observe,Consume)
EventHandler

queue : P ↓DATA

INIT

queue = ∅

Observe
∆(queue)
item? : ↓DATA

queue′ = queue ∪ {item?}

Consume
∆(queue)
item! : ↓DATA

#queue > 0
item! ∈ queue
queue′ = queue \ {item!}

After introducing the basic classes, the logic of the
embedded control system can be defined. The DeviceDriver
manages all communication between the control system and
the Device, with communication being established through
the Connection class. In this scenario, assume this De-
viceDriver is straightforward and serves as a relay between
the control logic and the device.

The Consumer handles all incoming DATA from the con-
trol logic and forwards them to the device. When responses
are received from the device, the emitter forwards these
responses to all listeners.

In Object-Z, the symbol ∥ represents a sequential execu-
tion. Therefore, the Send function first receives an incoming
event by invoking consumer.Consume, and only afterwards,
that call’s result is received, it is passed to the Connection,
which then sends the command to the device. Conversely,
incoming responses from the device are received from the
connection using connection.Read and subsequently emitted
to all listeners through emitter.Emit.

Now that the abstract classes for Device, Connection,
and DeviceDriver have been established, we can proceed to
define the concrete classes for the sensor, named Sensor, and
its corresponding device driver, SensorDriver, as depicted
in Figure 3a. In this particular example, Sensor and Sensor-
Driver are interconnected using an RS232Connection.

The outcome of an executed command is categorized as a
RESPONSE, which can represent either a MEASUREMENT
or a STATUS object. The remaining functions within these
specific classes remain consistent with those in the abstract
parent classes Device and DeviceDriver:

Sensor
↾(INIT, Send,Receive, commandList)
Device

connection : RS232Connection©

ExecuteCommand
command? : COMMAND
result! : RESPONSE

command? ∈ commandList

A SensorDriver inherits the EventHandlers from its parent
class:

SensorDriver
↾(INIT, Send,Receive, commandList)
DeviceDriver

connection : RS232Connection©

In this example, all incoming commands are dispatched
by the control logic, consumed by the driver, and subse-
quently forwarded to the sensor via the connection. Vice
versa, all responses from the sensor are emitted as events
by the corresponding producer and can be listened to by all
consumers.

The essence of this specification lies in the communi-
cation between a device and its device driver, which is
captured by the Communication schema. In this instance, the
device is a Sensor, and the driver is a SensorDriver. Both the
device and the driver share the same commandsList and are
connected through an RS232Connection.

In Object-Z, the symbol “∥” signifies the execution of
functions in parallel [36]. Therefore, ReadFromDevice illus-
trates the Sensor sending data while the corresponding Sen-
sorDriver reads it. Conversely, ReadFromDriver represents the
reverse scenario, with communication from the SensorDriver
to the Sensor:

Communication

device : Sensor
driver : SensorDriver

∀ x : device.commandList
• x ∈ driver.commandList

∀ x : driver.commandList
• x ∈ device.commandList

ReadFromDevice =̂ device.Send ∥ driver.Receive
ReadFromDriver =̂ driver.Send ∥ device.Receive

The Transmitter class is akin to the Sensor class in many ways.
It handles incoming commands and provides responses
in return. However, since the Transmitter is an actuator, it
does not return measurements but instead sends data using
another communication protocol, such as LoRaWAN. It is
important to note that this communication differs from the
Communication schema described earlier. Additionally, the
Connection object solely represents the connection between
the Device and DeviceDriver and does not pertain to the
communication between two transmitters:
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Transmitter
↾(INIT, Send,Receive, commandList)
Device

connection : TCPConnection©

ExecuteCommand
command? : COMMAND
result! : RESPONSE

command? ∈ commandList

Similar to the SensorDriver, the TransmitterDriver repre-
sents only a data relay between device and control logic:

TransmitterDriver
↾(INIT, Send,Receive, commandList)
DeviceDriver

connection : TCPConnection©

The details of the control system are not within the
scope of this specification. The control logic for an embed-
ded system is often some form of a state machine. State
machines fully automate a system, but do not adapt to
new or changed processes on the fly. Modern Industry 4.0
application incorporate autonomous behavior, extracted or
learned from gathered data and thus, include architectures
different from state machines. Furthermore, the orchestra-
tion of processes, including different commands to different
sensor and actuators, can be quite complex. However, for
this example, the only function of the ControlLogic class is
to execute the commands received from the transmitter and
return the responses from the sensor:

ControlLogic

sensor : Consumer©
transmitter : Consumer©
response : Producer©
command : Producer©
period : Z
dataLog : P ↓DATA

INIT

period = 0
dataLog = ∅
sensor.INIT ∧ transmitter.INIT

SetPeriod
∆(period)
newPeriod? : Z

period′ = newPeriod?

LogData
∆(dataLog)
newSensorData? : ↓DATA

period > 0
dataLog′ = dataLog ∪ {newSensorData?}

sendCmd =̂ o
9data : transmitter.queue

• transmitter.Consume o
9 SetPeriod

o
9command.Emit ∥ LogData

sendRsp =̂ o
9data : sensor.queue

• sensor.Consume o
9 response.Emit

∥ LogData

The incoming commands contain the value that sets
the sample rate of the sensor. To configure the period, the
function sendCmd processes events sequentially from the
transmitter queue. For each event, the SetPeriod function is
called to set the sample rate. The newly configured period
is then sent as a command to the sensor, which adjusts its
sample rate accordingly. This message exchange is logged
in a list called dataLog.

Assume the commands from the transmitter only in-
clude a period for the sensor’s sample rate. To configure the
period, the function sendCmd processes events sequentially
from the transmitter queue. For each event, the ChangeBe-
havior executes SetPeriod to internally set the sample rate
and newly configured period is then sent as a command to
the sensor, which adjusts its sample rate accordingly. This
message exchange is logged in a list called dataLog.

All events originating from the sensor are handled by
sendRsp and are sent to the transmitter without any alter-
ations. Once again, the message exchange is recorded in the
data list through the LogData command.

With all required classes defined, the schema of the
EmbeddedControlSystem from Figure 4 can be defined:

EmbeddedControlSystem

sensorDriver : DeviceDriver©
transmitterDriver : DeviceDriver©
controlLogic : ControlLogic©

And finally, the union of the devices and the schema Embed-
dedControlSystem forms the Physical Twin:

PhysicalTwin

sensor : Device©
transmitter : Device©
ecs : EmbeddedControlSystem©

3.2 The Digital Model
Modeling and simulation are powerful methods utilized
in various fields to evaluate complex systems, processes,
and knowledge. They empower researchers, engineers, and
decision-makers to examine real-world phenomena within
controlled and virtual environments. This, in turn, enables
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them to make informed decisions and gain insights into the
system under investigation. At the core of modeling lies the
concept of mathematical modeling, which plays a pivotal
role in formally capturing the essence of the system.

Mathematical models are representations of real-world
systems employing mathematical equations, relationships,
and logical structures. They provide a means to describe
and quantify the behavior of a system. While mathematical
models are not confined to any specific domain, in this
work, we concentrate on their application in the engineering
domain.

Before the advent of computers, the construction of
machines was primarily carried out on drawing boards.
This paradigm shifted with the introduction of computer-
aided designs (CAD), enabling the creation of 2D and 3D
models that could be easily shared and replicated with
others. Over the past decades, advancements in tooling
and computational power have facilitated the substitution
of real prototypes with virtual prototypes. This transition
has significantly reduced design cycles and lowered design
costs. When components of a system are governed by math-
ematical relationships, virtual prototypes can be rigorously
tested in simulations across a wide range of conditions. This
allows for the evaluation of potential design weaknesses,
providing immediate feedback on design decisions.

The Digital Model serves as a central component of a
digital twin. However, most definitions merely mention
digital models, assuming that researchers share a common
understanding of what a model entails. This often leads to
the assumption that a CAD model constitutes the entirety of
a digital model, while a simulation is considered something
more than a digital model, despite both being forms of
mathematical models. Hence, we define a digital model as
follows:

Definition 7 (Digital Model). A digital model de-
scribes an object, a process, or a complex aggrega-
tion. The description is either a mathematical or a
computer-aided design (CAD).

This definition encompasses various aspects of digital
modeling, including the use of CAD as the foundational
model for system design, its utilization within simulation
tools involving complex processes, and even purely mathe-
matical models.

3.2.1 Introducing the State Machine Example
Although the physical twin is defined as including (au-
tonomous) behaviors instead of a state machine, this exam-
ple could also be implemented as a state machine, where
one can model its different states as follows:

M = (Q,
∑

, δ, q0, F) (1)

A state machine M can be represented by a 5-tuple M,
which consists of a finite set of states Q, a finite set of input
symbols known as the alphabet

∑
, a transition function

delta defined as δ : Q ×
∑

→ Q, an initial or starting state
q0 ∈ Q, and a set of accept states F ⊆ Q. The creation
of state machines, often done using tools like LabView,
remains a common approach employed by engineers for

programming machines. This practice falls within the scope
of the provided definition of a digital model.

The state machine of the embedded control system can
be defined as follows:

• Q = {STANDBY,ACTIVE,OFF}
• q0 = STANDBY
•

∑
= Z

• δ : Q ×
∑

→ Q

The corresponding UML state diagram is presented in Fig-
ure 6. Upon initiation, the initial state is STANDBY, with the
corresponding period value for the sensor’s sampler rate set
to 0, indicating that no samples are taken at this point. If a
command with a value x ∈

∑
, where x > 0, is issued, the

state machine transitions to the ACTIVE state. Conversely, if
a command with a value x = 0 is received, the state reverts
to STANDBY. For values of x < 0, the state of the system
changes to OFF.

ActiveStandBy

period > 0

period = 0

period < 0

Embedded Control System

period < 0

period > 0

Fig. 6: A state machine of the embedded control system
formalized for the physical twin.

State

operations

+execute()

StandBy Active

Command

operations

StateMachine
Model

+processEvent(newEvent: Command)

+ currentState: State
+ period: Float

Fig. 7: UML class diagram for the state machine.

3.2.2 Object-Z Formalization

This state machine can also be specified in Object-Z. First,
the class diagram is displayed in Figure 7. STATE is the
parent class:

STATE
↾(execute)

execute

The execute method will be internally overwritten by
the child states. For this example, the specific code that is
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executed is irrelevant. The states the state machine can be in
are defined as subclasses:

ACTIVE
STATE

OFF
STATE

STANDBY
STATE

The EventStateMachine encapsulates the logic responsible
for state changes upon receiving COMMAND events and
maintains both a STATE (state is also the variable) and
a period, which is a number. Initially, the period is set to
0, corresponding to the initial state set as STANDBY. The
ProcessEvent function is responsible for modifying the state
of the state machine in response to incoming events.

EventStateMachine
↾(INIT,ProcessEvent, state)

state : ↓STATE
period : Z

INIT

period = 0

ProcessEvent
∆(state)
newEvent? : COMMAND
newState! : ↓STATE

state′ = newState!

It is important to note that, at this stage, the
EventStateMachine has no connection to the physical twin.
All modifications and updates are made manually, and there
is no automatic synchronization between the digital model
and physical twin. The schema for the digital model than
includes the state machine:

DigitalModel
↾(INIT,ProcessEvent)

stateMachine : EventStateMachine©

INIT

stateMachine.INIT

ProcessEvent =̂ stateMachine.ProcessEvent

3.3 The Digital Template
In their initial definition of digital twins, Grieves and Vick-
ers [20] view the digital twin as a collection of information
necessary for constructing and monitoring the physical ob-
ject. Specifically, the digital twin prototype can be regarded
as a virtualized set of blueprints, bills of materials, technical
manuals, and similar documentation. When combined with
the digital model, which can be used to extract all the infor-
mation needed for creating blueprints and bills of materials,

it can indeed be employed to construct and maintain the
physical twin

However, this approach does not completely virtualize
the physical twin, as later demonstrated by the example of
the OSI Model in Figure 17 on Page 19. Thus, the early
interpretation of this definition does not fully realize a
digital twin of a physical twin.

To encompass all available materials for constructing
and maintaining the physical twin, including the software
running the physical twin and the digital model, these
components can be bundled together into a comprehensive
package. We refer to this bundle as the Digital Template.

Definition 8 (Digital Template). A digital template
serves as a framework that can be tailored or popu-
lated with specific information to generate the phys-
ical twin. It encompasses the software operating the
physical twin, its digital model, and all the essential
information needed for constructing and sustaining
the physical twin, such as blueprints, bills of materi-
als, technical manuals, and similar documentation.

Grieves and Vickers [20] initially defined digital template
as a digital twin prototype. However, in Grieves [39], they
expanded upon their definition of a digital twin prototype.
Their digital twin prototype is all the products that can be
made, including all their variants. They take shape over
time, from an idea to a first manufactured article [39]. We
still consider that early versions of their digital twin proto-
type are only a digital template. However, fully developed,
they could also include the digital twin prototype definition
presented later in this work.

3.3.1 Object-Z Formalization
The UML class diagram of a digital template is depicted in
Figure 8. The digital template includes all documents that
either describe the physical twin or are required to build it.
Furthermore, it includes the digital model the real system
is derived from and the software that operates the physical
twin later. For an Object-Z formalization, the general class
Document is defined:

Document

Specific types inherit from the Document class:

BluePrint
Document

TechnicalManual
Document

BillOfMaterials
Document

Generic
Document

The schema for the digital template includes all the doc-
uments, the embedded control software and the digital
model:

DigitalTemplate

documents : PDocument
ecs : EmbeddedControlSystem
digitalModel : DigitalModel
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Digital Template
Document

1..*
contains

Digital Model

Physical Twin

contains

1..*
used to build

models

describe

Embedded Control Software

operates

contains

Blue Print

Technical Manual

Bill of Materials

Generic

Fig. 8: Digital Template

3.4 The Digital Thread

With the development of CPS, machines began interacting
with servers tasked with monitoring and controlling them.
This paradigm also applies to digital twins. In this context,
the communication channel facilitating such interaction is
referred to as a digital thread. Taking inspiration from Leiva
[40], we define the digital thread as follows:

Definition 9 (Digital Thread). The digital thread
refers to the communication framework that allows
a connected data flow and integrated view of the
physical twin’s data and operations throughout its
life-cycle.

Data accumulated from physical objects can only be
preserved if these objects possess an interface for storing
the generated data. Similar to the general digital twin
definitions, there is, currently, no universally accepted and
standardized solution for digital threads, given their diverse
applications across various domains.

Furthermore, it is crucial to understand that the digi-
tal thread encompasses more than just the communication
protocol. It also involves applications and functionalities
that assist in tasks such as monitoring, analysis, planning,
and execution. These applications have the capacity to in-
corporate and share knowledge derived from the digital
template and the gathered data preserving the physical
twin’s evolution through time [41].

3.4.1 Object-Z Formalization
The UML class diagram for a digital thread between the
previously formalized physical twin and a digital twin,
which will be defined later in this paper, is illustrated in

Figure 9. The DigitalThread exists of a PTtoDTConnection
that sends measurement and status messages (see the RE-
SPONSES Object-Z class) and the DTtoPTConnection, which
sends commands to the physical twin. To send data, a Trans-
mitterDriver is used to to establish a Connection. Notice that
this connection is not between a DeviceDriver and a Device,
but between two transmitters, e.g. using the LoRaWAN
protocol. Both connection types gather data from processes
(DigitalThreadProcess). In general, these processes can be
different in each digital thread. Referencing our example
again, the ControlLogic represents a PTDigitalThreadProcess,
since it forwards all sensor message to the transmitter, which
then can transmit the data to the digital twin. On the digital
twin’s side, the DTDigitalThreadProcesses can include many
different kinds of processes. However, there are is at least
one process that is included: the process that decides which
command is sent to the physical twin to adjust its sample
rate. Since the digital thread is meant to show the evolution
of the physical twin over its life-cycle, all the gathered data
has to be stored in some form of a database. Hence the
database is a DigitalThreadProcess that is part of the digital
thread.

Formalizing this with Object-Z, we first define the Digi-
talThreadProcess:

DigitalThreadProcess

knowledge : PDATA

A DigitalThreadProcess has a set of DATA that can be shared
with the corresponding twin counterpart. PTDigitalThread-

Digital Thread

PTtoDTConnection

DTtoPTConnection

DigitalThreadProcessTransmitterDriver

Data

sends responses
via

sends commands
via

exchanges

enables access to
knowledge

gathers PT data via

gathers /
produces

gathers commands to
adjust PT behavior

1..*

1..*

1

1

1

1

1..*

DTDigitalThreadProcess

DTDigitalThreadProcess

Connection

connects
via

1

Fig. 9: Class diagram of a digital thread.
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Process and DTDigitalThreadProcess are derived classes:

PTDigitalThreadProcess
DigitalThreadProcess

DTDigitalThreadProcess
DigitalThreadProcess

This data is sent via the Connection in the PTtoDTConnec-
tion, which is defined as follows:

PTtoDTConnection

connection : TransmitterDriver©
collectFrom : PPTDigitalThreadProcess

The counterpart is the DTtoPTConnection:

DTtoPTConnection

connection : TransmitterDriver©
collectFrom : PDTDigitalThreadProcess

Both classes form the DigitalThread:

DigitalThread

ptData : PTtoDTConnection
dtData : DTtoPTConnection

3.4.2 The MAPE-K Reference Model
To illustrate this concept more concretely, we demonstrate
in the following section how the digital thread can serve as
the connection between different phases within the MAPE-
K (Monitor-Analyze-Plan-Execute over a shared Knowl-
edge) reference model, as depicted in Figure 10. MAPE-
K extends IBM’s MAPE framework, with “K” signifying
“Knowledge.” The MAPE-K reference model provides a
framework for automation of processes and the control loop
for managing and optimizing computer systems. The differ-
ent stages, Monitor, Analyze, Plan, and Execute represent a
specific stage or function within an autonomic computing
system:

Plan

User

Computer System

Knowledge

Analyze

Monitor Execute

Plan

Legend

User Interaction

Data Exchange

Data Flow

Fig. 10: MAPE-K reference model for cyber-physical system.

• Monitor: This is the first stage of the framework. In
this phase, the system continuously collects data and

monitors its own performance and the surrounding
environment. This can involve data from various
sensors, actuators, or monitoring tools that gather
information about the system’s behavior, resource
utilization, and external conditions.

• Analyze: To gain insights into the system’s behavior
and performance, the data collected through moni-
toring, gets analyzed. The goal is to identify patterns,
anomalies, and potential issues and hence, to under-
stand the current state of the system.

• Plan: Based on the analysis of the system’s current
state, the system formulates a plan for actions to be
taken. This plan may involve adjustments, optimiza-
tions, or corrective measures aimed at improving
system performance, resource allocation, or other
relevant parameters.

• Execute: In the last phase, the system carries out the
actions defined in the planning stage. These actions
can be automatic or semi-automatic, depending on
the level of autonomy and control designed into the
system. The system implements the planned changes
to achieve the desired state.

• Knowledge: This component is critical for learning
and adaptation. It involves maintaining a reposi-
tory of historical data, models, policies, and best
practices. The system uses this knowledge to make
more informed decisions in subsequent iterations of
the MAPE-K loop. Over time, the system becomes
better at self-optimization and self-management by
learning from its past experiences.

These stages are executed sequentially one after another
and all have permanent access to the Knowledge about
the system. The realization of the data flow between the
different stages is part of the Digital Thread. Also, appli-
cations around the different stages, which are, for instance,
connected via APIs, are also part of the Digital Thread, if
they provide better insight for the corresponding physical
twin to the user.

3.5 The Digital Shadow

To fully harness the potential of the digital thread, a process
situated at either end of the digital thread must consolidate
all the disparate elements into a platform that users can
utilize to gain insights into the current state of the physical
twin. In the context of the Digital twin concept, this role
is fulfilled by the digital shadow. The digital shadow is
defined as follows:

Definition 10 (Digital Shadow). A digital shadow
is the sum of all the data that are gathered by
an embedded system from sensing, processing, or
actuating. The connection from a physical twin to
its digital shadow is automated. Changes on the
physical twin are reflected to the digital shadow
automatically. Vice versa, the digital shadow does
not change the state of the physical twin.

The configuration of the digital shadow for the physical
twin, as specified previously, is illustrated in Figure 11. It is
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Data

Embedded Control System

Transmitter
Driver

Data Transmitter

Transmitter
Component

Ethernet

External Control System Server

Transmitter
Driver

Data Transmitter

Transmitter
Component

Ethernet

MAPE-K
Components

Physical Twin Digital ShadowPhysical Twin

Fig. 11: The digital shadow is deployed separately from the physical twin. The automated communication is unidirectional
from the physical twin to the digital shadow. Status changes and all other data is sent by the physical twin and received by
the digital shadow via transmitters. The digital shadow can reuse the transmitter driver from the physical twin. The logic
inside the digital shadow is based on the MAPE-K model.

important to note that some parts of the physical twin are
not depicted in the figure. The digital shadow operates on a
server that establishes a network connection to the physical
twin, either through a cable or wireless. In this example,
assume a wireless connection between the physical twin and
its digital shadow. As the UML class diagram in Figure 13
shows, many classes from the physical twin can be reused.
The transmitter uses the same device driver as the physical
twin, the event handlers are equal, and also the message
types can be reused. Only the classes for the Monitor and
Analyze stages of the MAPE-K model are new. A direct
association between the two classes is not required, as they
exchange data via an Observer pattern using the event
handlers. Software package to enhance these two classes,
are ignored in this example.

For data retrieval, the digital shadow employs a con-
nected transmitter. To facilitate transmitter operation, the
physical twin’s transmitter device driver can be repurposed.
All data is then transmitted from the driver to the MAPE-
K components. It is worth mentioning that MAPE-K is not
an obligatory component of the digital shadow; it is used
only for distinguishing representations between CPS, digital
shadows, and a digital twin.

Since machines controlled by external comput-
ers/servers already exist in the form of CPS, it is essential
to clarify the distinction between a digital shadow and a
CPS. As illustrated in Figure 12, the digital model holds
the same level of importance as Knowledge. However, a
CPS does not necessarily have to include a model of the
connected machine, and even if it does, this model may not
always be up-to-date. In contrast, for a digital shadow, this
scenario is different. In the monitoring stage, all received
data automatically updates the digital model.

Another distinction is that a CPS can be used to directly
operate the physical object. In contrast, a digital shadow’s
sole purpose is to monitor the physical twin and provide
data for analysis, enabling insight into the received data.
Consequently, the Planning and Execution stages of the
MAPE-K model are not inherent components of the digital
shadow. While they can be incorporated, the automated
change of state in the physical object is not a function of
the digital shadow.

Plan

User

Physical Twin

Knowledge

Analyze

Monitor

Digital Model

Legend

User Interaction

Data Exchange

Data Flow

Digital Shadow

Fig. 12: A digital shadow realized with the MAPE-K refer-
ence model. The Plan and Execution stages are not included,
since there is also no data exchange from the Execution stage
to the physical twin.

3.5.1 Object-Z Formalization
The UML class diagram in Figure 13 is reduced to the
two new classes for the Monitor and Analyze stages. All
other classes and relationships are identical to the UML
class diagram of the physical twin in Figure 5 on Page 7.
A direct association between the classes is not required, as
they exchange data via an Observer pattern using the event
handlers. Software packages to enhance these two classes,
are again ignored in this example.

A digital shadow specification with Object-Z can be done
as follows. The Transmitter and its operation are managed
by the corresponding TransmitterDriver, both of which can
be reused from the Object-Z formalization provided for the
physical twin earlier. Additionally, all exchanged messages
and the EventHandler can also be reused. What remains to be
specified is the Monitor and Analyze stage of the MAPE-K
reference model. The monitoring class Monitor is a DTDigi-
talThreadProcess and comprises two separate consumers: one
for statuses and another for measurements:

Monitor
↾(INIT)
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DATA

Transmitter
Driver

DeviceDriver
<< abstract >>

EventHandler

Producer Consumer

Monitor Analyze

Fig. 13: Reduced UML class diagram of the digital shadow.
The MAPE-K stages Monitor and Analyze are included, all
other classes and relationships are identical to the UML class
diagram of the physical twin in Figure 5 on Page 7.

DTDigitalThreadProcess

statuses : Consumer©
measurements : Consumer©
emitter : Producer©
digitalModel : DigitalModel

INIT

statuses.INIT ∧ measurements.INIT

handleState =̂ o
9status : statuses.queue

• statuses.Consume
o
9digitalModel.ProcessEvent o

9 emitter.Emit
handleMeasurements =̂ o

9data : measurements.queue
• measurements.Consume o

9 emitter.Emit

Any status changes occurring in the physical twin are
emitted as STATUS events, while all measurements are
emitted as MEASUREMENT events. An emitter-producer
is responsible for transmitting all consumed events to any
registered listener. The most crucial component here is the
digitalModel, which is an object of the previously specified
EventStateMachine.

All status changes are handled by the handleState func-
tion, which reads all STATUS messages from the queue
and forwards them to the digital model (state machine)
for event processing. Subsequently, the result of the state
machine’s operation is emitted to all registered listeners.
Since measurements do not impact the state machine’s state,
they are individually read from the queue via the handleMea-
surements function and immediately relayed to all registered
listeners. One such listener could be a database (part of the
Knowledge state) responsible for storing all data.

It is worth noting that the digitalModel could also be a
separate process that registers as a listener and consumes

the STATUS messages. In this example, the direct reference
in the Monitor class was used for better demonstration
purposes.

The Analyze stage is also a DTDigitalThreadProcess and
can be a (semi-)automated stage of the MAPE-K model
in the context of the digital shadow. In this particular
example, the Analyze stage serves a singular purpose, which
is to verify whether the received state from the physical
twin aligns with the state of the digital model or not. The
outcomes of this comparison can then be emitted to all
registered listeners. One potential listener could be a service
responsible for notifying a user if any disparities in states
are detected. Nonetheless, independent from the MAPE-K
model, the analysis from the monitored events could also be
done manually by a user, since no further stage is following:

Analyze
↾(INIT)
DTDigitalThreadProcess

consumer : Consumer©
emitter : Producer©
digitalModel : DigitalModel

INIT

consumer.INIT

CheckStatuses
ptState? : STATUS
equal! : B

compare =̂ o
9message : consumer.queue

• consumer.Consume o
9 CheckStatuses

o
9emitter.Emit

With these processes, the DigitalShadow schema can be
defined. Since the MAPE-K example is only used for a better
visualization of the concept, we use a more generic schema
definition for the digital shadow:

DigitalShadow

digitalModel : DigitalModel©
DThreadProcesses : PDTDigitalThreadProcess
DTtoPTConnection : DTtoPTConnection©

Please notice that no data is sent from the digital shadow
to the physical twin. The DTtoPTConnection solely receives
data from the physical twin.

3.6 The Digital Twin

After defining and specifying the digital thread and digital
shadow, the subsequent step is to comprehensively define
the digital twin. The digital twin expands upon the digital
shadow by enabling automatic synchronization of all alter-
ations made to the digital model with the corresponding
physical twin. This means that any changes made to the
physical twin are mirrored in the digital twin, and vice
versa. Ultimately, the digital twin evolves into a complete
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replica of the physical twin. To formulate this definition, we
draw upon the digital twin definitions put forth by Saracco
[41] and Trauer, Schweigert-Recksiek, Engel, et al. [28]:

Definition 11 (Digital Twin). A digital twin is a
digital model of a real entity, the physical twin. It is
both a digital shadow reflecting the status/operation
of its physical twin, and a digital thread, recording
the evolution of the physical twin over time. The
digital twin is connected to the physical twin over
the entire life cycle for automated bidirectional data
exchange, i.e. changes made to the digital twin lead
to adapted behavior of the physical twin and vice-
versa.

Plan

User

Physical Twin

Knowledge

Analyze

Monitor

Digital Model

Execute

Plan

Legend

User Interaction

Data Exchange

Data Flow

Digital Twin

Fig. 14: A digital twin realized with the MAPE-K reference
model. The status change of the digital model and the
corresponding data exchange from the Execution stage to
the physical twin is fully automated.

Extending the system utilized in this example results in
the addition of an extra communication channel from the
digital twin to the physical twin, as illustrated in Figure 15.
In the previously shown Figure 11, the digital shadow only
facilitates communication from the physical twin to the
digital shadow. Now, all modifications within the digital
model are also transmitted from the digital twin to the
physical twin.

Moreover, the MAPE-K model must be adapted to ac-
commodate the digital twin, as depicted in Figure 14. The
Monitor and Analyze stages in this new model are identical
to those in the digital shadow, as shown in Figure 14.
The Plan stage takes the analysis results and formulates an
execution scenario for the Execution stage if changes to the
physical twin are necessary. The key distinction from the
original MAPE-K reference model lies in the digital twin,
where the Execution stage interacts with the digital model.
Only if a positive result is returned, the command is sent
to the physical twin. Consequently, the digital model serves
as the final control instance, and all incoming and outgoing
changes are verified against the digital model.

EventHandler

Producer Consumer

Monitor Analyze Plan Execute

Fig. 16: UML class diagram of the digital twin, including
only the MAPE-K relevant classes Monitor, Analyze, Plan,
Execute, and the EventHandlers used for data exchange. All
other classes are identical to the UML class diagram of the
digital shadow in Figure 13.

3.6.1 Object-Z Formalization

The Object-Z formalization of the digital twin can be built
upon the digital shadow, incorporating two additional
stages of MAPE-K as mentioned previously. First, the Plan
class is introduced:

Embedded Control System

Transmitter
Driver

Data Transmitter

Transmitter
Component

Commands

Data

Ethernet

External Control System Server

Transmitter
Driver

Data Transmitter

Transmitter
Component

Ethernet

MAPE-K
Components

Digital TwinPhysical Twin

Fig. 15: The digital twin extends the digital shadow in a way, that the communication between physical twin and digital
twin is bidirectional. Additional to communication from the physical twin to the digital twin, all changes in the digital
twin are automatically sent to the physical twin.
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Plan
↾(INIT)
DTDigitalThreadProcess

consumer : Consumer©
emitter : Producer©
digitalModel : DigitalModel

INIT

consumer.INIT

Planning
data? : ↓DATA
result! : COMMAND

plan =̂ o
9message : consumer.queue
• consumer.Consume o

9 Planning
o
9emitter.Emit

This class is also a DTDigitalThreadProcess and includes a
Consumer component to receive data from the Analyze stage.
All results generated during the planning stage are emitted
via the Producer emitter. Similar to the other stages, the Plan
stage has direct access to the digitalModel. However, in this
example, no specific access details are provided.

The primary objective of this stage is to formulate a
plan outlining which part of the physical twin’s software
needs modification and how those modifications should
be implemented. This task is executed through the plan
function. All incoming data is consumed and subsequently
passed to the Planning function. The resulting plan is then
emitted to all registered listeners.

The last DTDigitalThreadProcess is the Execute class,
which is kept straightforward as well. It receives all plans
from the previous stage through the execute function. The
commands are validated against the digitalModel, and the
outcome is sent to the physical twin. The transmitter pro-
ducer emits the command as an event to the Transmitter-
Driver, which subsequently consumes this command and
transmits it to the physical twin:

Execute
↾(INIT)
DTDigitalThreadProcess

plans : Consumer©
transmitter : Producer©
digitalModel : DigitalModel

INIT

plans.INIT

ChangeState
command? : COMMAND
newState! : ↓STATE

execute =̂ o
9plan : plans.queue • plans.Consume

o
9ChangeState o

9 transmitter.Emit

Please note that the concrete implementation of the
digital model in this context is not critical. The digital
model could exist as a separate process that receives events
through consumers and provides responses via producers.
Alternatively, it could collect all events from the Execute
stage and independently transmit the results to the transmit-
ter. There are numerous ways to realize this concept; how-
ever, the fundamental idea remains constant: changes to the
digital model automatically trigger changes in the state of
the physical twin, without requiring any user intervention.

Similar to the digital shadow, we again define a generic
schema DigitalTwin without the MAPE-K processes:

DigitalTwin

digitalModel : DigitalModel©
DThreadProcesses : PDTDigitalThreadProcess
DTtoPTConnection : DTtoPTConnection©

The schemes DigitalShadow and DigitalTwin look similar in
this Object-Z formalization. The main difference is that the
digital twin can send state changes automatically to the
physical twin.

3.7 The Digital Twin Prototype
Today’s existing modeling and simulation tools can rapidly
create a digital twin of a single component or process, and
publish/subscribe architectures allow all messages between
processes to be captured and sent to a database or an IoT
platform. However, complex Industry 4.0 applications re-
quire the integration of multiple sensors and actuators into
a larger system, posing a challenge with no simple solution
yet. The embedded community still uses various industrial
interfaces and communication protocols such as ProfiBus,
ProfiNet, ModBus, CANOpen, OPC-UA, or MQTT, to name
a few. Some are proprietary, making integration difficult, for
instance, ProfiBus and ProfiNet.

Robust software testing for communication protocols is
challenging due to the difficulty of emulating or simulating
them. Software engineers frequently use mock-up functions
in unit tests to avoid the expensive networking exchange of
data between processes, allowing them to obtain expected
values. However, even robust unit testing with comprehen-
sive edge case coverage is insufficient. Therefore, some ap-
proaches use simulation tools that replace the communica-
tion protocols between hardware components with software
interfaces. For Industry 4.0 applications, both approaches
are inadequate, as insufficient testing can jeopardize the
safety of human operators. Despite this, simulation tools are
crucial for the development of Industry 4.0 applications as
a source of data for sensors and actuators.

The software part of the connection can be formalized
as shown in the Communication schema. The physical part,
however, where the data is sent between Device and De-
viceDriver cannot be replaced in the same way. Hence, the
approach still involves real hardware in the development
loop. During development and testing, the Connection object
is the central piece. Without a counterpart, no command is
executed, and no data is exchanged. Thus, engineers always
require the hardware connected to the embedded software
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system they develop and test. Replacing the Connection
with a software mockup to circumvent HIL would result
in a different Connection object than used by the original
SensorDriver. Thus, the configuration during development
would differ from the real counter part it is deployed on
later. Furthermore, not all communication protocols used in
industry are properly mockable. This can be demonstrated
by the example of ModBus and OPC-UA applications on the
OSI-Model shown in Figure 17. Unlike Ethernet-based com-
munication protocols that implement and cover all layers
of the OSI-Model, communication protocols based on serial
connections, such as ModBus or CANOpen, are placed on
the model’s 7th layer, the Application Layer. No additional
host layers exist. Sending/receiving data is handled imme-
diately by the Data Link and Physical Layers. This means
that the physical hardware handles the necessary actions
required for data exchange. Mocking these layers is difficult.
On the other hand, communication protocols based on TCP,
such as OPC-UA, can easily be mocked by opening a socket
on the TCP layer and connecting another device to it. For
serial protocols, this is not true. On connection, the driver
tries to establish a connection to another device via RS232.
As no device is connected, this would fail, and a connection
error would be thrown.

Replacing the entire physical twin during development
and testing, which includes the hardware interfaces, leads
to a fully virtual representation of the physical twin and
engineers do not necessarily need the hardware anymore
for development. This is the main difference to the digital
twin prototype definitions by Grieves and Vickers [20] and
Grieves [39]. We define the digital twin prototype as follows:

Definition 12 (Digital Twin Prototype). A Digital
Twin Prototype (DTP) is the software prototype of a
physical twin. The configurations are equal, yet the
connected sensors/actuators are emulated. To simu-
late the behavior of the physical twin, the emulators
use existing recordings of sensors and actuators.
For continuous integration testing, the DTP can be
connected to its corresponding digital twin, without
the availability of the physical twin.

3.7.1 Object-Z Formalization

To reduce the dependency of the embedded software system
on the hardware during development and testing, com-
munication protocols such as RS232 need to stay on the
host layers of the OSI-Model without the need of changing
the original connection properties of a device driver. This
circumvents the layers that include the hardware. However,
rerouting the connection disconnects the device and its
driver. The rerouting only works if another process exists
at the other end of the connection. So far, there is none.
That is why not only the connection has to be emulated, but
also the device. To begin, the emulated connection is defined
first. The Object-Z formalization for EmulatedConnection is as
follows:
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Fig. 17: RS232 applications and communication can be visu-
alized on the OSI layered model. The application on Layer 7
is directly connected to the RS232 API and driver (Layer 2)
that uses the physical connection (Layer 1) to transmit data
to other RS232 interfaces.

EmulatedConnection
↾(INIT,Read, Send,EmulateWrite,EmulateRead)
Connection

originalProtocol : ↓Connection

originalProtocol ̸∈ Connection

INIT

type = TCP

EmulateWrite
data? : ↓DATA
forwardData! : ↓DATA

forwardData! = data?

EmulateRead
data? : ↓DATA
forwardData! : ↓DATA

forwardData! = data?

The EmulatedConnection object inherits from the abstract
Connection class, and thus has all its properties and func-
tions. This is shown on the OSI-Model in Figure 17. The safe
way to stay in the host layers is to route all other commu-
nication protocols to TCP and from there again back to the
original protocol. Hence, the EmulatedConnection does not
replace the connection objects of Device and DeviceDriver.
Instead, it is an independent additional connection that
provides interfaces for a device emulator and a device driver
to connect to with their original protocols. The Emulated-
Connection then uses TCP and forwards all incoming data
via the function EmulateRead and all outgoing data via the
function EmulateWrite between the emulated device and
device driver.

How can this be realized without reconfiguring the de-
vice or device driver? Simply by using tools such as socat
(SOcket CAT) [42]. Socat is a command-line utility that al-
lows for bidirectional data transfer between two endpoints,
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typically over a network or through pipes. It is similar to the
more well-known tool netcat, but with support for multiple
connection types and protocols (TCP, UDP, SSL, PTY, etc.).
With two virtual serial ports (client and server) via socat
for the emulator and the device driver, a connection can be
established without the need to change the configuration. In
the background, socat forwards the data between the ports
via a TCP connection.

A device emulator for a sensor could be like the one
shown in Figure 18. Similar to the real sensor, the Sen-
sorEmulator inherits all properties and functions from the
generic Device class. There is only one difference; instead of
executing a command and responding with the real result,
the emulator uses virtual context for the response. Virtual
context can be a list of previously recorded data from the
real device or context provided by a simulation. In this
example, we assume that the virtual context is previously
recorded data with the real device. Formalizing the em-
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Fig. 18: UML component diagrams for sensor and emu-
lator components. The real SensorComponent in (a) can
be replaced by an EmulatedSensorComponent (b) and the
SensorDriver (c) cannot distinguish whether it is connect to
the real sensor in (a) or the emulated on in (b).

ulated device and connection with Object-Z requires the
definition of another data subtype first. Since the sensor
responds to commands with a RESPONSE type, a subtype
of RESPONSE named RECORDING can be defined:

RECORDING
RESPONSE

The abstract class Emulator inherits all properties and func-
tions from the abstract class Device, and SensorEmulator
inherits from Emulator:

Emulator
Device

Although it may seem more obvious to inherit from Sen-
sor, the emulator cannot inherit its properties and functions
from there. Most devices are a black box for the developer,
and vendors only provide a technical manual and support
to interact with the device. Thus, an emulator only mimics
the behavior of the real counterpart and provides its API
with corresponding return values. However, this is enough
to replace the real device with the emulator for development

and testing. A developer is mostly interested in the connec-
tion and data exchange part, not the internal behavior of
a connected device. Due to abstraction reasons, the Sensor
object in this example was very simple. That is why the
SensorEmulator can also inherit all properties from Emulator
and change the ExecuteCommand function to always return
RESPONSE objects from the virtualContext set:

SensorEmulator
Emulator

virtualContext : PRECORDING

ExecuteCommand
∆(virtualContext)
command? : COMMAND
result! : RECORDING

command? ∈ commandList
result! ∈ virtualContext
virtualContext′ = virtualContext \ {result!}

The SensorDriver remains as it is and does not need any
changes. The communication between an emulator and the
SensorDriver can be specified as follows using EmulatedCom-
munication:

EmulatedCommunication

emulator : SensorEmulator
driver : SensorDriver
connection : EmulatedConnection

∀ x : emulator.commandList
• x ∈ driver.commandList

∀ x : driver.commandList
• x ∈ emulator.commandList

ToDrv =̂ emulator.Send o
9 connection.EmulateWrite

∥ connection.EmulateRead o
9 driver.Read

ToDev =̂ driver.Send o
9 connection.EmulateWrite

∥ connection.EmulateRead o
9 emulator.Read

The EmulatedCommunication object now includes an addi-
tional Connection object in the form of EmulatedConnection.
The communication from the emulator to the device driver,
labeled as ToDrv is now a composition of the connections
from the device to the EmulatedConnection. From there, the
data is sent to the device driver, where the EmulatedConnec-
tion receives it and forwards it to the connection defined by
the device driver. The EmulatedConnection is not part of ei-
ther the device/emulator or the device driver. Therefore, in
this example, the SensorDriver cannot differentiate between
whether it is connected to a real device or an emulator,
which is the goal of our approach.

3.8 Summary of the Digital Twin Concept
The relationships between the different concepts are illus-
trated in the UML diagram in Figure 19. We extended the
semi-formal approaches by Yue, Arcaini, and Ali [17] and
Becker, Bibow, Dalibor, et al. [18] for the digital twin the
digital shadow. A Physical Twin performs actions using real
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Devices in a Physical Environment. The Physical Environment
is not a real class, but the real world context in which the
Device operates. Changing behaviors lead to changes in the
current state of the physical twin. Hence, the physical twin
updates its state and sends the change of state via the Digital
Thread, which was named Twinning in Yue, Arcaini, and Ali
[17], to the Digital Shadow. Different to the formalization
by Yue, Arcaini, and Ali [17], the physical twin is not
directly connected to the digital twin, but via the Digital
Shadow, which is included by the digital twin. In our Object-
Z formalization of the digital shadow and digital twin, we
illustrated the difference utilizing the MAPE-K model and
showed that the digital shadow does not send any data
to the physical twin. All state changes are received by the
digital shadow, which then changes the Digital Model. Only
the Digital Twin updates state changes similar to the change
of state of the Physical Twin. Instead of physical processes,
the digital twin uses the Digital Model, which operates in a
Virtual Environment, to change the physical twins state. Dur-
ing the development phase, the Digital Twin Prototype can
replace the physical twin. A digital twin prototype executes
commands on Emulated Hardware in a Virtual Environment.
The Virtual Environment should mirror the real world, which
can be realized via a Simulation. To describe and construct
the Physical Twin its Digital Template can be used, since it
includes the Digital Model and the Embedded Control Software.

The special feature of the digital twin prototype is that it
is operated by the same Embedded Control System as the phys-
ical twin. This software does not even recognize, whether

physical hardware or emulated hardware is used. Notice
that the Digital Model used by the digital twin prototype
is a different instance than the Digital Model updated by
the Digital Shadow. Advanced Digital TWins can use the
Digital Twin Prototype to evaluate “what-if” questions in
more realistic scenarios that include the full software stack.

4 APPLICATION OF THIS CONCEPT

In the following, two projects are presented, where the
previous definitions and methods were already applied in
real life contexts.

4.1 Field Experiment with Underwater Ocean Observa-
tion Systems
The digital twin prototype approach was developed for a
network of ocean observation systems and tested during
the research cruise AL547 with RV ALKOR (October 20-
31, 2020) of the Helmholtz Future Project ARCHES (Au-
tonomous Robotic Networks to Help Modern Societies)
[43]. In ARCHES, with a consortium of partners from
AWI (Alfred-Wegener-Institute Helmholtz Centre for Polar
and Marine Research), DLR (German Aerospace Center),
KIT (Karlsruhe Institute of Technology), and the GEOMAR
(Helmholtz Centre for Ocean Research Kiel), several digital
twin prototypes for ocean observation systems were de-
veloped. The major aim of this project was to implement
robotic sensing networks, which are able to autonomously
respond to changes in the environment by adopting its
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measurement strategy, in both space and in the deep sea.
A field report on employing digital twin prototypes in this
context is published by Barbie, Pech, Hasselbring, et al. [43].

Five digital twin prototypes of ocean observation sys-
tems constructed at AWI and GEOMAR were developed.
They vary in construction, payload, and configuration. The
distance between AWI and GEOMAR are a few hundred
kilometers. Hence, the digital twin prototypes were used
to develop the software, without a permanent connection
to the physical ocean observation systems. The microser-
vices were implemented with ROS and encapsulated in
Docker. How the different digital twin prototypes of the
ocean observation systems were developed, was describe
by Barbie, Hasselbring, Pech, et al. [44]. A special feature in
this project was that the digital twin prototypes were used
as digital twins of the physical twins underwater. The fully
virtualized embedded software systems showed the state
of the physical twins. This way, no extra software to run a
digital twin was required.

Furthermore, with digital twin prototypes it was possi-
ble to develop and test scenarios before the mission took
place. Automated testing is implemented through CI/CD in
Gitlab. During the mission, all exchanged messages on the
digital twin and digital twin were recorded and can now be
used to increase the quality of the CI/CD pipelines.

4.2 Case Study with Smart Farming Applications
As the digitalization of agricultural processes promotes the
use of digital twins for various use cases [45], we also report
on a case study that experimented with the digital twin
prototype approach for a smart farming application.

The smart farming project SilageControl with a consor-
tium of the Silolytics GmbH (project lead), Blunk GmbH,
and Kiel University used digital twins to adopt the digital
twin prototype approach for development and maintenance.
The major goal of SilageControl is to improve the process of
silage making, i.e. the fermentation of grass or corn in silage
heaps. In order to avoid mold formation, the harvested
crop is compacted by heavyweight tractors. As displayed
in Figure 20, these tractors are equipped with a sensor bar,
which includes GPS sensors, an inertial measurement unit
(IMU), and a LiDAR. In combination, the sensors enable
the continuous and accurate representation of the tractor’s
position / orientation and the shape and volume of the
silage heap.

Since silage making is season dependent, the digital twin
prototype approach is used to improve the sensor platform
independent from the current season. The first field exper-
iments were conducted from May to October 2022. During
this period, sensor data was be recorded to further improve
the accuracy of physical models and create scenarios for
automated testing of future features. Thereby, data gathered
by the digital twin improves the digital twin/digital twin
prototype and vice versa. A case study with more details
about this project was published by Barbie, Hasselbring, and
Hansen [46].

5 CONCLUSION AND FUTURE WORK

Digital twins find applications across all layers in Industry
4.0 scenarios [44]. However, there exists confusion in the

(a) Sensor bar in lab environment

(b) Sensor bar mounted on a tractor

Fig. 20: Sensor bar which monitors the process of silage
making.

definitions of digital models, digital shadows, digital twins,
and digital twin prototypes. While many studies attempt
to list and categorize these differences, a formal description
has been lacking. Therefore, in our Digital Twin concept,
we formally specified the various components, ranging from
the physical twin to the digital twin, culminating in a fully
virtualized digital twin prototype capable of substituting
the physical twin during development. To underscore the
distinctions among these different facets of the digital twin
from a software engineering standpoint, we provide an
Object-Z formalization for each component.

We extended the digital twin concept by the Digital Tem-
plate. A digital template describes the physical twin and is
used to build it. It includes the physical twin’s Digital Model,
describing documents, and the Embedded Control Software.

We have provided real-world application examples to
illustrate the practical context. A proof of concept for the
formal specifications was demonstrated in a demonstration
mission showcasing the viability of digital twins in ocean
observation systems [43]. Moreover, we offered insight into
how this approach could be employed in the SilageControl
smart farming project, which aims to enhance the silage-
making process through the development of a sensing plat-
form [46].

The usage of digital twin prototypes transforms the way
how embedded software systems are developed. By starting
with the emulation of hardware sensor by sensor, actuator
by actuator, and communication protocol by communication
protocol, the development of embedded software systems
becomes an iterative process. Furthermore, the integration
of a fully operational digital twin prototype heralds a
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shift towards collaborative efforts between engineers and
domain experts, regardless of their physical location or
connection to the hardware.

Besides reducing the time that is needed for testing by
switching from HIL to SIL testing with digital twin pro-
totypes, this approach also avoids expenses for redundant
hardware and paves the way for more efficient development
workflows that are otherwise difficult to implement for
embedded software systems. Digital twins become a key
enabler for fully automated integration testing of embed-
ded software systems in CI/CD pipelines. While building,
testing, and releasing of software is possible for embedded
software just like in other fields of software engineering,
integration testing with hardware interaction is expensive,
due to the HIL testing, and is often done manually. Thus,
the integration tests are a bottleneck in the verification and
validation activities and, hence, the release of new soft-
ware. Anyway, with proper integration testing, developers
increase the robustness of the embedded software systems.
This may even embrace Industrial DevOps methods in the
embedded field [3].

In summary, digital twins have the potential to enhance
the quality of embedded software systems, concurrently
reducing costs and accelerating development speed. These
benefits align with the challenges cited by both Ebert [6] and
Ozkaya [5]], who identified the challenges to achieve quality
while managing costs and efficiency.

Nevertheless, the digital twin community still has a lot
of home work to do. The lack of a consensual definition of
digital twins leads to a lot of room for interpretation what
a digital twin is. Instead of introducing abstract approaches
that are described using an attached case study, researchers
should focus more on formal approaches to demonstrate
and distinguish different approaches. This still may leads to
many different digital twin definitions, but at least the com-
munity is able to consolidate similar approaches and has
a starting point to discuss differences, flaws, or benefits of
different approaches. With the introduction of virtualization
tools such as Docker and open platforms such as GitHub,
the distribution of code and tools to replicate results of a
research study or experiment with an approach became easy
and has no costs attached.

The validation of research results and the reproducibility
of experiments are integral aspects of good scientific practice
[47]. However, replicating the conducted field experiments
from our ARCHES demonstration mission or the SilageCon-
trol case study using similar hardware can be quite expen-
sive. To facilitate independent replication of the digital twin
prototype approach by engineers and other researchers, we
have developed a digital twin prototype using cost-effective
hardware, specifically a PiCar-X by SunFounder [48]. This
digital twin prototype is based on the ARCHES Digital Twin
Framework [49] and is publicly available on GitHub [50].
More comprehensive details about the PiCar-X digital twin
prototype will be presented in a separate publication.
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