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Executive summary  
This report presents the results of Task 7.3 on “Development of BGC-Argo data quality validation based on 
an integrative multiplatform approach”. Observing changes in ocean conditions on the spatiotemporal scales 
necessary to constrain carbon uptake is a challenge. Defined as an Essential Ocean Variable (EOV) by the 
Global Ocean Observing System (GOOS, e.g., Tanhua et al., 2019), pH is relevant to assess numerous crucial 
questions regarding the oceanic evolution in response to the current global changes. However, the large 
spatiotemporal variability of this carbonate system parameter requires sustained observations to decipher 
trends and punctual events. Within this scope, numerous pH sensors suitable for deployments both on 
autonomous observing tools and fixed stations have been developed. Nevertheless, as interpreting changes 
relies on accurate data, and because offsets or drifts in pH data might appear in response to changes in the 
sensor k0 constant, a consistent and rigorous correction procedure to quality-control and process the data 
has been implemented. This report presents the application of this method to pH data acquired by BGC-Argo 
floats launched in the Tropical Atlantic area. 

Disclaimer: This document represents the situation at the time of data evaluation and writing of the report 
which is primarily based on data from 2021/2022. As pH-equipped BGC-Argo floats and ASVs are still in 
operation or have to be reprocessed, more data is coming in and the database is growing daily. This will allow 
us to improve the statistics of our analyses and hence the robustness of the results. Therefore, the results 
presented here are based on the status quo and are not necessarily the final word on these matters. We 
therefore point out that further analyses will and need to be carried out. A more detailed and integrative 
assessment on the quality enhancement of carbon fluxes based on Argo-pH data acquired in the tropical 
Atlantic will be provided in EuroSea deliverable D7.61, to be submitted in 2023. Moreover, the results shown 
in this deliverable will be presented and discussed to that the scientific community during the next BGC-Argo 
community workshop in January 2023. 
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1. Introduction 

1.1. Chemistry of Marine Carbon Dioxide System 
A series of chemical equilibria govern the dissolution of CO2 in the ocean and the marine CO2 system resulting 
from its reaction with water. The different chemical species (i.e., CO2(aq), H2CO3, HCO3

-, CO3
2-) are connected 

together through the corresponding equilibrium reactions and define the oceanic carbonate system. 
Unfortunately, individual species of the carbonate system cannot be measured directly. There are four 
parameters (i.e., total alkalinity (TA), fugacity/partial pressure of CO2 in gas phase in chemical equilibrium 
with seawater (fCO2/pCO2), total hydrogen ion concentration (pH), and total dissolved inorganic carbon 
(DIC)) that can be measured at high accuracy to completely describe (together with ancillary information) the 
CO2 system in seawater (Dickson et al., 2007). A complete description of the marine CO2 system can be 
obtained in theory, based on only two of the four measurable carbon parameters, together with the 
equilibrium constant, temperature, pressure and salinity (Dickson et al., 2007). 

1.2. Marine Carbon Dioxide System Parameter way of measurements 
To observe properties of the marine CO2 system, numerous oceanographic cruises (e.g., PIRATA cruises; Foltz 
et al. 2019) or fixed stations measurements (buoy, moorings) have been conducted, including in the Tropical 
Atlantic area. However, these historical sampling strategies cannot properly capture the dynamic 
spatiotemporal variability of the carbonate system parameters and have “observational gaps” (Tanhua et al., 
2019) that have to be filled.  

Autonomous platforms such as moorings, profiling floats, underwater gliders, or autonomous surface 
vehicles have the potential to revolutionize marine biogeochemistry. One particular topic of interest is the 
possibility to observe properties of the marine CO2 system which would allow quantification of the air-sea 
flux of CO2 and monitoring of temporal changes in the ocean’s inorganic carbon pool. To achieve this goal, 
suitable sensors for autonomous pCO2 and pH measurements have been developed, and their deployments 
on autonomous surface vehicles have been developed (Martz et al., 2015), making autonomous in situ 
measurements more accessible to the community. Hereafter, this report will focus on data acquired by 
autonomous pH sensors and the procedure to correct these data. 

1.3. Autonomous seawater pH measurements: why and how?  
Defined as an Essential Ocean Variable (EOV) by the Global Ocean Observing System (GOOS2), pH can be 
used, among others parameters, to determine oceanic changes in response to anthropogenic impacts and 
particularly the oceanic acidification. Nevertheless, while pH is depicted as a master variable in marine 
chemistry, its measurements do not allow direct quantification of derived phenomena such as air-sea CO2 
exchanges. Moreover, it should also be pointed out that numerous tools have been developed to overcome 
data limitations that can happen in certain areas (ship-time limitations, high cost, human resources, weather 
conditions). Thus, in the absence of data, a reasonable work-around is to predict TA using algorithms that 
employ variables such as temperature, salinity, pressure and O2 together with position in space and time 
which are also measured on floats. The alkalinity estimation produced by the LIR (the Locally Interpolated 
Regression method; Carter et al., 2018) tool, which uses data from the Global Ocean Data Analysis Project 
(GLODAPv2) data set (Olsen et al., 2016), is one of these options. In addition to the LIR algorithmic method, 
neural-network based methods such as the CANYON neural networks (the Carbonate system and Nutrient 
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concentration from hYdrological properties and Oxygen method; Sauzède et al., 2017), and its revised version 
the CANYON-B approach (Bittig et al., 2018) can be considered to estimate these quantities. Generally, TA 
predictions have uncertainties ranging between 6 µmol kg-1 and ca. 10 µmol kg-1 (e.g., Bittig et al., 2018; 
Williams et al., 2017). As the data coverage of the GLODAPv2 data product is not uniform in space and time 
(seasonal cycle), the robustness of TA algorithms based on it (or other data products) is not uniform either. 
Therefore, regional and/or seasonal biases that may compromise the accuracy of DIC and pCO2 calculated 
from measured pH and predicted TA are to be expected. 

The principle of measurement for seawater pH values obtained by autonomous platforms (such as BGC-Argo 
floats or gliders) is based on the Ion Sensitive Field Effect Transistor (IFSET) pH sensor, developed by 
Honeywell Durafet®, which produces highly precise and stable pH measurements in seawater, with a 
precision better than 0.005 pH units (Martz et al., 2010). Nevertheless, as this sensor is not pressure tolerant, 
since 2010, significant engineering has been put into these Durafet-based pH sensors to overcome this issue. 
Thus, based on the Honeywell Durafet IFSET sensor technology, on BGC-Argo floats, two types of pH sensors 
are implemented: the Deep Sea DURAFET (Johnson et al., 2016), deployed on Apex floats, and the SBE Float 
Deep SeaFET built by Sea-Bird Scientific. Typically installed on the head of the float, the core of these sensors 
is an IFSET that responds to proton activity and an Ag/AgCl reference electrode that responds to chloride ion 
activity (Johnson et al., 2016). pH is derived proportionally from the voltage between the ISFET and the 
reference electrode (Bittig et al., 2019). For SBE pH sensors, the accuracy ranges from ± 0.05 pH units 
(manufacturer statement) to ± 0.005 pH units after data adjustment (Johnson et al., 2018). Moreover, it can 
be noted that significant efforts are underway to also advance optode technology for pH. While earlier 
versions of the pH optode had significant issues with, for example, drift and response time, recent advances 
(e.g., AquapHOx platform with pH optode, PyroScience GmbH, Aachen, Germany) are promising, which may 
warrant dedicated field testing.  

In the framework of the EuroSea project, task 7.3 aims to develop indicators for carbon flux observations in 
this region based on the improvement of existing components and on the deployment of new observing 
tools. Thus, this task considers the use of, among other autonomous tools such as moored buoys and 
autonomous surface vehicles, BioGeoChemical- (BGC) Argo floats for the acquisition of high-quality carbon 
measurements at a regional scale. In the Eastern Tropical North Atlantic region, a total of 5 pH/O2 Provor 
floats from the NKE instrumentation manufacturer have been purchased and deployed in 2021 (Fig. 1). 
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Figure 1. Trajectories of the five EUROSEA pH-equipped BGC-Argo floats. Dotted points show the last locations as of October 17th, 
2022. Floats were deployed between March 12th 2021 and April 3rd, 2021. 

2. Strategies and tools to correct pH data 
The key to this autonomous platform expansion is the quality of the datasets which relies on sensor pre-
deployment rigorous calibration and post-deployment consistent data qualification that can be used globally 
(Johnson et al., 2018). Indeed, interpreting changes relies on accurate data. For Argo floats, operational 
procedures for physical data (temperature, salinity, pressure) qualification have been established, from real-
time checks to delayed-mode adjustment (Schmechtig et al., 2016; Wong et al., 2022). Indeed, float-pH 
sensors, like other autonomous sensors such as oxygen optodes, are subject to drift over time. Consequently, 
numerous delayed-mode assessments for in situ chemical sensors measuring pH have been suggested, but 
having consistent and traceable correction methods is still challenging. In the remainder of this report, 
corrective procedures detailed in Johnson et al. (2018) will be presented and applied to our dataset. 

2.1. General procedure for float-pH data correction 
Inside each float equipped with a pH sensor, an internal sensor algorithm converts the measured potential 
into pH on the total proton scale using laboratory-based calibration coefficients. Thus, pH sensors are 
calibrated in the laboratory using spectrophotometric measurements and are directly related to the 
laboratory calibration method. Sensors pressure and temperature coefficients, needed to compute the in 
situ pH, are also determined in the laboratory as described in Johnson et al. (2016).  

Firstly, the float-measured pH undergoes simple automatic Real-Time (RT) Quality-Control (QC) checks that 
flag as outlier (bad) pH data which do not fall in the range of 7.5 to 8.5. Nonetheless, to be usable as research-
quality pH data, an additional adjustment has to be applied to real-time adjusted data. The additional 
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adjustments that are applied to RT data after human verification convert them into the Delayed-Mode (DM) 
data. Two specific corrections can be observed:  

- The offset correction: This correction corrects the significant (generally negative) offset observed 
with float-based pH measurements. This necessary adjustment relies on an external reference that 
is used to calculate at-depth (typically around 1500 dbars) offset between measured and estimated 
reference data. Then, this at-depth anomaly is then applied as a uniform offset correction throughout 
the water column, based on evidence that drifts and offsets are constant throughout an entire profile 
(Johnson et al., 2013, 2018). The adjustments necessary to match the sensor pH to the reference 
results are made by adding a constant offset to the reference potential of the sensor, rather than to 
pH, directly, because sensor drift results from a reference potential change (Johnson et al., 2016).  

- The drift correction: This correction removes the temporal drift observed in the pH data as it emerges 
from the evolution of the offset correction over a float’s lifetime. 

 

Recently, in the framework of the Southern Ocean Carbon and Climate Observations and Modelling project 
(SOCCOM; Russell et al., 2014), a methodology has been developed for BGC-Argo floats to correct nitrate, 
pH, and oxygen values from sensor drifts, gains, and offsets in delayed-mode. Two Matlab tools named SAGE 
(SOCCOM Assessment and Graphical Evaluation) and SAGEO2 have also been created as user interfaces to 
correct and validate the data. In this procedure, detailed in Maurer et al. (2021), the difference between a 
selected field of reference and the measured values is first calculated at a depth below 1000 m, where 
spatiotemporal variability of oceanic components is minimal. Then, for each segment, determined by a cost 
function, a linear least-square fit is determined, and the modelled correction, computing offsets and slopes, 
is applied as an offset to the reference potential k0 of the pH sensor (Johnson et al., 2016). Here, machine 
learning methods (the CANYON method and its revised version CANYON-B) and algorithmic (e.g., the LIR 
method or the Multiple Linear Regression equations; Carter et al., 2018; Williams et al., 2016) methods are 
used as the reference data mandatory to correct the pH datasets. As all of these prediction methods require 
oxygen as an input variable for computing predicted pH, oxygen must first be corrected (Johnson et al., 2018) 
as oxygen optodes are known to suffer from storage drift (Johnson et al., 2015). SAGEO2 must therefore be 
used to correct float-oxygen data before any float-pH data correction. In our case, O2 from the 5 EUROSEA 
pH-equipped Argo floats was adjusted following Argo procedures and the adjustments are available in Near-
Real Time. 

2.2. Independent estimates of pH data accuracy 
In addition to the correction of float-pH, further steps are needed to independently estimate pH data 
accuracy and, if needed, apply additional corrections. In the frame of the EuroSea project, numerous tools, 
platforms, and cruises have been deployed and carried out, allowing us to do crossovers comparisons. 

2.2.1. CTD cast at float deployment 
At the time and place of the five floats deployments, CTD casts with discrete water sampling have been 
performed. For marine carbon dioxide system description, samples for dissolved inorganic carbon and total 
alkalinity were collected during the PIRATA-FR31 cruise in compliance with the corresponding standard 
procedure (SOP 1) defined in the “Guide to Best Practices for Ocean CO2 Measurements” (Dickson et al., 
2007). Measurements of DIC and TA were performed simultaneously by potentiometric acid titration using a 
closed cell following the methods described by Edmond (1970) and Dickson and Goyet (1994). Analyses were 
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performed at the National Facility for Analysis of Carbonate System parameters (SNAPO-CO2, LOCEAN, 
Sorbonne University - CNRS, France). The average accuracy of DIC and TA analysis (estimated from repeat 
measurements of Certified Reference Material provided by Prof. Dickson’s laboratory from the Scripps 
institution of Oceanography, UC San Diego, USA) was 3.0 and 3.5 µmol kg-1, respectively. Then, to allow 
comparison against float-pH data, seawater carbonate parameters, including in situ pH on the total scale, 
were derived from DIC and TA with the software program CO2SYS-MATLAB (van Heuven et al., 2011). Note 
that the estimated uncertainty associated with pH derived from DIC and TA computed with CO2SYS (Orr et 
al., 2018; van Heuven et al., 2011) is 0.0088 pH units. 

Table 1. Crossovers between the first profile from pH-equipped BGC-Argo floats and CTD rosette hydrocasts with carbonate 
parameters sampling in the Eastern Tropical North Atlantic region during the PIRATA-FR31 cruise. The pH difference is the mean 
absolute difference ± standard deviation at the matchup depths. 

WMO# 
Reference 

hydrocast from 
PIRATA-FR31 

Distance 
difference (km) 

Date 
difference 

(days) 

pH difference at 
deployment 

before adjustment 

pH difference at 
deployment 

after adjustment 

6903874 00049 4.722 0.25 0.0576±0.0572 0.0361±0.0245 

6903875 00020 4.397 0.76 4±2.9005 4±2.9005 

6903876 00070 1.824 0.28 0.0201±0.0179 0.0200±0.0180 

6903877 00070 2.835 0.28 0.0118±0.0307 0.0192±0.0219 

6903878 00020 5.635 0.76 0.0559±0.0442 0.0113±0.0352 

 

For float 6903875, the pH difference at deployment is large as the pH sensor malfunctioned from the start. 
For the other BGC-Argo floats, the average difference over the entire water column at deployment is of 
0.0364 pH units. There is no systematic bias of under- or overestimation from the pH sensor.  

2.2.2. Matchup between CTD cast with water sampling and float profiles during float’s life 
In situ pH data are generally considered as reference data. Nevertheless, under normal circumstances, it 
would be critical to obtain specific crossovers between CTD casts and floats profiling during a float’s lifetime 
without impact field work schedule. In the Eastern Tropical North Atlantic region, successful crossovers have 
been achieved between data acquisition platforms and pH measurements done during the PIRATA-FR32 
cruise3 that sampled, for the first time, pH onboard. These successful matchups happened thanks to the 
cooperation of the PIRATA team onboard the cruise and in a joint effort with Euro-Argo ERIC and EuroSea 
BGC-Argo floats. 

By changing the floats’ sampling frequency, onboard pH sampling and analysis close to Argo floats profiles 
was achieved (Fig. 2, Table 2). The Argo profiles were 1-4 days before or after the PIRATA-FR stations (Argo 
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cycles 58 on March 22nd, 2022 vs. stations st037c01 and st038c01 on March 23rd, 2022 and March 24th, 2022; 
Argo cycle 57 for float 6903877 on March 12th, 2022 vs station st008c01 on March 08th, 2022). Table 1 details 
the values of the different variables used for the comparison. The physical parameters show that relatively 
similar water masses were sampled by both observing platforms with differences mainly due to location. 
Furthermore, the mean absolute difference over the entire water column between the raw pH from the BGC-
Argo floats and the in situ reference data is of 0.0622 pH units. This difference is twice as large as the MAD 
at deployment, confirming the need for correction procedures. In these comparisons, pH from the Argo floats 
varies between 7.6031 and 8.0173 whereas onboard pH spans from 7.7151 to 8.0101. However, for the 
matchup around March 22nd, 2022 (first row of Fig. 8), BGC-Argo floats only profiled down to 1000 dbar 
whereas the in situ stations sampled down to 2000 dbar.  

 

 

Figure 2. Map of the Argo profiles from floats 6903876 and 6903877 and PIRATA-FR32 stations used for the matchup around March 
23rd, 2022. Grey and light-grey dots represent Argo profiles and coloured  dots (blue for 6903876 and green and purple for 

6903877) are the profiles closest in date to the cruise stations. Orange, pink, and brown stars correspond to the PIRATA-FR32 
stations with onboard pH measurements on March 23rd, 2022. Note that the pink star is almost superimposed on the brown star, its 

size has been reduced to improve visibility. 

Table 2. Mean values of temperature, salinity, dissolved oxygen and pH measurements made by the BGC-Argo floats on the profiles 
selected for the comparison, the corresponding shipborne data and the difference. SD stands for Standard Deviation. Dissolved oxygen 
and pH were adjusted following BGC-Argo quality control procedures. 

  Float±SD Shipborne 
± SD 

Mean absolute 
difference 

± SD 

Date 
difference 

(days) 

Distance 
difference 

(km) 

6903876 cycle Temperature 15.76±7.63 13.63±9.07 0.60±0.80 1.7 245.3 
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  Float±SD Shipborne 
± SD 

Mean absolute 
difference 

± SD 

Date 
difference 

(days) 

Distance 
difference 

(km) 

58 vs PIRATA-
FR32 station 

37 

Salinity 35.17±0.49 35.25±0.54 0.18±0.30 

O2 141.67±35.97 153.02±51.36 8.91±7.97 

pH 7.7518±0.0996 7.8730±0.1012 0.1330±0.0259 

6903876 cycle 
58 vs PIRATA-
FR32 station 

38 

Temperature 15.76±7.63 13.75±9.28 0.98±1.28 

2.1 129.3 

Salinity 35.17±0.49 35.23±0.63 0.20±0.20 

O2 141.67±35.97 155.79±53.14 13.74±8.68 

pH 7.7518±0.0996 7.8797±0.1098 0.1411±0.0327 

6903877 cycle 
58 vs PIRATA-
FR32 station 

37 

Temperature 15.87±7.42 13.63±9.07 0.57±0.46 

1.7 39.8 

Salinity 35.36±0.49 35.25±0.54 0.07±0.08 

O2 143.44±38.24 153.02±51.36 10.32±9.12 

pH 7.8892±0.1054 7.8730±0.1012 0.0210±0.0079 

6903877 cycle 
58 vs PIRATA-
FR32 station 

38 

Temperature 15.87±7.42 13.75±9.28 0.78±0.21 

2.1 187 

Salinity 35.36±0.49 35.23±0.63 0.17±0.22 

O2 143.44±38.24 155.79±53.14 9.57±7.50 

pH 7.8892±0.1054 7.8797±0.1098 0.0201±0.0144 

6903877 cycle 
57 vs PIRATA-

FR32 
station08 

Temperature 14.88±8.02 12.94±8.97 0.66±0.61 

4 102.2 Salinity 35.25±0.49 35.27±0.62 0.11±0.10 

O2 148.27±46.20 164.03±46.51 12.77±7.94 
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  Float±SD Shipborne 
± SD 

Mean absolute 
difference 

± SD 

Date 
difference 

(days) 

Distance 
difference 

(km) 

pH 7.8859±0.1006 7.8915±0.0963 0.0257±0.0193 

 

2.2.3. Crossovers between other platforms and floats 
A Saildrone (SD) platform equipped with an ASVCO2 system (PMEL, NOAA) has been deployed in the EuroSea 
mission operating area and recorded data between September 18th, 2021 and March 8th, 2022. While this 
autonomous uncrewed surface ocean vehicle was not equipped with a pH sensor, it can be used for 
comparison with BGC-Argo floats as pCO2 calculated data can be indirectly obtained from surface float-pH 
measurements and neural network TA. Thanks to the high degree of coordination between the SD team, 
Euro-Argo and Principal Investigators within this EuroSea task, an intercomparison experiment has been 
successfully conducted. By changing the Argo floats’ cycling frequency (to daily profiles), profiles from 2 pH-
equipped BGC-Argo floats (WMOs 6903876 & 6903877) were collected on November 15th and 16th 2021 while 
the Saildrone was circumnavigating around their estimated next ascent profile location (Fig. 3). Therefore, at 
the location and time of the crossover between the BGC-Argo floats and the Saildrone, pCO2 was computed 
using adjusted Argo pH and TA computed using the ESPER (Empirical Seawater Property Estimation Routines; 
Carter et al., 2021) neural-network based method (specifically using the mixed version, which combines MLR 
and neural network outputs). Figure 3 indicates locations at which crossovers between these platforms were 
done.  
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Figure 3. Map of the Saildrone daily measurements (dots) with the Argo profiles (squares) from floats 6903876 and 6903877 used 
for the matchup around November 16th, 2021. The encased figure on the lower right indicates the location of the focused map in 

relation to the entire Saildrone mission. The corresponding SD data is mapped according to time. The green triangles correspond to 
the SOOP data used for the matchup. 

Furthermore, the France-Brazil SOOP (Ship of Opportunity Program; Goni et al., 2010) line makes underway 
carbonate chemistry measurements on the cargo ship Cap San Lorenz. The France-Brazil line began 
measuring sea surface pCO2 in July 2014, and LOCEAN/IPSL in France is the responsible institution for this 
effort, with Dr. Nathalie Lefèvre as PI. pCO2 surface measurements are performed between Le Havre, France 
and Santos, Brazil (Watson et al., 2018). The route crossed the Saildrone trajectory, therefore, it can also be 
used as a comparison platform (green triangles in Figure 3). The SOOP data were matched to Saildrone 
measurements within 10 km (6.82 ± 2.37 km apart). They are however 65 days apart (65.70 ± 0.26 days apart) 
from the SD measurements. For comparison purposes, they have been represented at the time of the 
corresponding SD measurements in Figure 9  to compare at the same location.  

3. Application and results acquired in the EuroSea studied region 

3.1. Float array 
In the framework of the EuroSea project, the emerging BGC-Argo float network has been strengthened in the 
Eastern Tropical North Atlantic region where a total of 5 pH/O2 floats from the NKE instrumentation 
manufacturer have been purchased and deployed (Fig. 1, Table 3). These five BGC-Argo, deployed during the 
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PIRATA-FR31 cruise between March and April 2021, are still profiling. They are programmed with a 10-day 
cycle, 1000 dbar parking depth and profile from their parking depth with a monthly 2000 dbar profile. 

Table 3. Status and deployment information of the BGC-Argo floats with pH and O2 sensors deployed in the Eastern Tropical North 
Atlantic region as part of the EuroSea project. 

WMO# Float 
Type 

Deployment 
Time 

(dd/mm/yy
yy) 

Number of 
cycles (as of 

Oct. 18th 
2022) 

Status SEAFET 
pH 

sensor 
SN 

First 
profile 

maximum 
depth (db) 

Sampling 
plan 

6903874 Provor / 
NKE 

28/03/2021 71 Active 10745 

1000 

1000 dbar 
profile 

every 10 
days 

 
Monthly 

2000 dbar 
profile 

6903875 Provor / 
NKE 

12/03/2021 68 Active, pH 
sensor failure 

10746 

6903876 Provor / 
NKE 

03/04/2021 78 Active, pH 
drift then pH 
sensor failure 
from cycle 60 

10754 

6903877 Provor / 
NKE 

03/04/2021 78 Active 10743 

6903878 Provor / 
NKE 

12/03/2021 68 Active, pH 
drift 

10699 

 

Unfortunately, the deployed floats suffered from an unusual number of manufacturer-related technical 
issues or failures of the pH sensor itself. Out of those 5 floats, 2 pH sensors experienced drift while two had 
complete pH sensor failure. For float 6903875 in sensor failure, pH values were aberrant from the 1st cycle 
onwards (values up to 12). This behaviour might be related to a problem with the reference electrode which 
was reported to have occurred over the serial number range 10000 to 11117 (Communication Ken Johnson, 
AST-23 meeting, April 2022) and caused the affected pH sensor to measure wrong pH data relatively shortly 
after deployment. The pH sensor was therefore turned off after cycle 25 to save battery power. After drifting 
almost since its deployment, a second float’s pH sensor has been remotely turned off because of sensor 
failure (6903876, cycle 60 onwards) as of September 2022. This has severely compromised the amount of 
usable pH data. In the end, only a little more than half of the floats will be useful. Currently, only one floats’ 
pH sensor is drifting (6903878), but this is correctible in Delayed Mode. Furthermore, as floats 6903876 & 
6903877 remained close in space, we can compare their pH during adjustment procedures. In the following, 
we will illustrate how float-pH data can be corrected in this area and lessons learned from this multi-platform 
deployment strategy followed in the studied region.  

3.2. Major offset correction 
Uncorrected float-pH showed a significant offset to the pH from reference profiles, with float-pH data being 
every time lower and on all profiles. The correction applied in the studied area was carried out using the 
SAGE GUI software developed at MBARI (see section 2.1). In this code, reference data can be calculated 
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according to numerous methods (see section 2.1). Hereafter, only the two distinct methods LIR and 
CANYON-B have been used to calculate reference data as the set of multiple linear regression models 
proposed by Williams et al. (2016) has been developed to estimate water column pH in the Southern Ocean. 
The results of the calculation variants are shown for an example profile in Figure 4. In the following we will 
briefly explain the choices made to correct float-pH data using this tool. 

 

Figure 4. Example float profile (WMO 6903877, cycle 19). Shown are raw pH data (yellow dots), pH corrected by SAGE against 
CANYON-B (purple dots), pH corrected by SAGE against CANYON-B itself modified according to the adjustment proposed by Carter et 
al. (2021) (green dots) and pH corrected by SAGE against LIR (cyan dots) superimposed on the GLODAPv2 data corresponding to the 
studied area (gray dots). Note that the purple and green lines coincide in the plot as the two corrections agree to within 0.0011 pH 

units. 

Reference methods used in the pH data adjustment 

In SAGE, in this oceanic region, two distinct reference methods can be employed: the LIR pH regression 
(LIPHR) method or the CANYON-B method. The LIPHR algorithm uses regression coefficients determined on 
a 5° latitude and longitude grid box with 33 different depth surfaces determined using multiple linear 
regression models trained with GLODAPv2 (Olsen et al., 2016). For float-pH data correction, latitude, 
longitude, depth, salinity, temperature, and dissolved oxygen are used as predator variables in the SAGE 
software (LIR regression #7). The uncertainty estimated for pH measurements between 1000 meters and 
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2000 meters, i.e., the approximate depth range at which pH sensors are corrected, is 0.001 (± 0.006) pH units 
(bias ± RMSE; Carter et al., 2018).  

The neural network Bayesian approach, CANYON-B, is a mapping performed in a Bayesian network informed 
by an ensemble of model components at each stage rather than fixed values. In their publication, Bittig et al. 
(2018) compare the CANYON-B and LIRPH performances for, among others, the pH against the post-
GLODAPv2 validation dataset, and showed global RMSE's for this revised form of the CANYON-B approach 
and the LIR method equal to 0.013 pH units and 0.016 pH units, respectively. Using the SOCCOM array, 
Maurer et al. (2021) calculated CANYON-B and LIRPH pH estimates and observed a larger uncertainty toward 
the surface than at 1500 meters depth, with mean differences (CANYON-B pH minus LIPHR pH data) of -0.025 
and -0.001 pH units, respectively. This surface discrepancy can be explained by the difficulty for algorithms 
to represent well seasonal variability changes and air-sea gas exchanges. 

In addition, a final note should be made regarding the LIR methods that also have the limitation that they are 
unable to capture changes in the relationships between the estimated properties and predictor properties 
(Carter et al., 2018). Indeed, as the LIR method relies on measurements made over a large time span, oceanic 
pH changes due to increasing atmospheric carbon dioxide concentrations and /or in areas with strong 
regional differences in the degree of water mass ventilation and anthropogenic carbon storage are 
oftentimes under-described by it. While an optional ocean acidification adjustment can be added to the LIR 
algorithm, this is a static adjustment that does not account for regional differences.  

Finally, as stated by Maurer et al. (2021), an independent way to determine which model to use is to use the 
Bayesian Information Criteria (BIC; Chen and Chen, 2008), provided by the SAGE software, which is a 
statistical criterion providing a measure of the model performance: the model with the lowest BIC value is, 
generally, preferred. In our case, BIC values were always lower for the CANYON-B method in comparison with 
the LIR method (data not shown). For all of these reasons, CANYON-B has been chosen as the reference 
method to correct float-pH data in this oceanic region.  

Reference-pH data adjustment 

Over time, changes in ocean pH measurement practices have occurred, leading to a variety of ways to 
measure and calculate pH. In consequence, heterogeneities in pH data compilations used to train algorithms 
methods are observed. To overcome this issue, Carter et al. (2018) applied a range of corrections and created 
the most consistent pH data product presently available. Using this dataset for training (containing pH in line 
with “purified spectrophotometric pH”), the pH data product in CANYON-B was then adjusted to be in line 
with pH calculations from TA and DIC (Bittig et al., 2018, Carter et al., 2018). In consequence, pH estimates 
generated by this method are in line with calculated-pH.  

In the SAGE software, an optional CANYON-B pH data adjustment can be applied to bring estimates into 
alignment with spectrophotometrically pH measurements made using purified dye following Carter et al. 
(2018, Equation 1). Even if there are still some unresolved issues in homogenising and correcting different 
pH data observation techniques (Bittig et al., 2018), we have decided to keep this reference-pH data 
adjustment to correct float pH data as recommended by Carter et al. (2018) and Johnson et al. (2018). In 
addition, as pH sensors are calibrated in the laboratory using spectrophotometric measurements with 
purified dyes, sensor measurements should be directly related to the laboratory calibration method. This 
assessment is reinforced by the recent work from Takeshita et al. (2020) which described measurements 
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made with purified dyes consistent with measurements made by sensors that have been shown to have the 
expected Nernstian4 (Bergveld, 2003) response to pH changes.  

At-depth correction 

In the literature, corrections of float-pH data implied the comparison of raw float data to select reference 
fields at depths around 1500 m (1480 - 1520 m) where spatial and temporal variability in ocean chemistry is 
supposed to be minimal (e.g., Maurer et al., 2021). Then, the correction determined at depth is applied to 
the entire profile. Nonetheless, for the float-pH correction of the five BGC Argo floats launched in this oceanic 
region, this reference pressure depth couldn’t be used as that depth hasn’t been reached for all cycles limiting 
the number of points available for comparison (Fig. 5, Table 3). To overcome this issue, a pressure range of 
900 - 940 dbar has been used to correct pH data. It has to be noted that, even if the parking depth has 
changed for some floats, and thus that a deeper reference pressure depth could have been used, the same 
depth range has been kept for the entire float array and over their entire deployment time to homogenise 
the correction method.  

 

Figure 5. Vertical temperature profiles acquired by the float WMO 6903874 as a function of time. It has to be noted that the same 
sampling frequency has been used for the 5 floats deployed in this area. 

In order to estimate the impact of this reference depth choice on the correction, float-pH data measured by 
float WMO 7901001 (COMFORT project, Pr. Körtzinger) were corrected using both the “initial” reference 
                                                           
4 Nernst equation describes the potential of an electrochemical cell as a function of concentrations of ions taking part 
in the reaction. When operated in the constant current mode, the voltage between the reference electrode and source 
of the ISFET sensor will exhibit a near Nernstian response if the buffer capacity on the insulator over the gate is high 
enough. 
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pressure depth (i.e., 1480-1520 dbar) and the “modified” reference pressure depth (i.e., 900-940 dbar). For 
evaluation, the time period where profiles down to 2000 metres started to occur (cycle 33) has been used 
(Fig. 6). Whatever the reference method used to correct float-pH data (i.e., LIR or CANYON-B), the observed 
differences between float-pH data corrected using the 900-940 db pressure range minus float-pH data 
corrected using the 1480-1520 dbar pressure range are rather stable and constant over time, with a mean 
difference value higher with the LIR reference method. Nevertheless, considering an average of differences 
between both depths for the CANYON-B method of 0.00087 pH units (Fig. 6A), we can conclude that the use 
of this “modified” reference pressure depth is acceptable and does not induce a considerable impact on 
corrected float-pH data. Indeed, the comparison of the mean difference between raw and corrected (using 
CANYON-B) float-pH data according to the two reference pressure depths reveals a difference of ca. 0.0008 
pH units between both depths (Fig. 6B).  

 

Figure 6. (A) Differences between float-pH data (from cycles 33 to 45) corrected using the 900-940 db pressure range minus float-pH 
data corrected using the 1480-1520 db pressure range, for each corrective method (LIR or CANYON-B), (B) Differences between raw 

float-pH data (from cycles 33 to 45) minus float-pH data corrected using the CANYON-B method and both the 900-940 and 1480-
1520 db pressure ranges. 

Sensor drifting adjustment 

Conceptually, the pH correction has to be done by adjusting the sensor reference potential (k0) as that is the 
one drifting over time (Johnson et al., 2016). By normalising the adjustment along the profile to the 
temperature at which the adjustment was derived, the modelled correction is applied as an offset to the 
reference potential (k0) in SAGE. To agree with the reference pressure depth used to correct float-pH data, 
and as the reference pressure depth of 1500 dbar hasn’t been reached during some cycles for all of the floats 
present in this area, it should be noted that the same depth (ca. 900 dbar) has been used to obtain at-depth 
temperature reference and then calculate the offset. To follow this modification, the file entitled 
“apply_GUIQC_corr_GLT.m” has been slightly modified. Nevertheless, as stated by Maurer et al. (2021) and 
implemented in Johnson et al. (2018), results are nearly identical when the correction is directly applied to 
the pH rather than to k0. 
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3.3. Comparison with profiles at deployment 
There is a mean offset of 0.0216 pH units (Figure 7) between reference casts at the deployment site and the 
Argo’s adjusted first pH profiles over the water column. There seems to be a good agreement in near surface 
waters that are highly variable. As stated earlier, float-pH data is systematically lower than the in situ values, 
especially deeper than 300 m. In the case of float 6903875, the sensor malfunctioned from the first profile 
(Figure 7B) explaining the abnormal values around 12 plotted in red in Figure 7B. 

The larger offset at depth might be due to the fact that the correction was done at 900-940 m due to the 
maximum profile depth of 1000m of the BGC-Argo float. A study by Williams et al., (2017) revealed a pH-
dependent discrepancy between spectrophotometrically measured pH using purified meta-cresol purple 
(pHspec) and pH calculated from DIC and TA (pHcalc) from full water column hydrographic data with 
discrepancies ranging from -0.018 to 0.014 in the Southern Ocean. This discrepancy was also present when 
the analysis was extended to the GLODAPV2 data set (Lauvset et al., 2016), confirming that this is a global 
phenomenon (Carter et al., 2018).  As they highlighted this has numerous implications for the study of the 
marine carbonate system, and especially for calibration protocols to adjust and quality control pH from 
sensors mounted on BGC-Argo profiling floats. Based on this finding, Takeshita et al., (2020) conducted a 
series of lab-based experiments to assess the magnitude of pH-dependent errors for spectrophotometric pH 
measurements in seawater. First, they showed that the cause of the pH-dependent discrepancy is probably 
caused by a combination of biases in our understanding of the marine inorganic carbon system, such as the 
presence of an additional acid/base species contributing to TA and not accounted for. Second, another source 
of error could come from the spectrophotometric measurements itself through a problem in wavelength 
accuracy, spectral resolution, dye purity or even dye perturbation calculations (DeGrandpre et al., 2014). 
Lastly, they also highlighted the potential impacts of light-absorbing impurities in the dye used in the 
analyses. Therefore, their overall difference between pHspec and pHcalc was 0.003, which is an order of 
magnitude lower than our average post-adjustment error of 0.0216. However, it is close to the range 
reported by Williams et al., (2017). Therefore, while not being perfect adjustments, we feel confident that 
our methods are consistent and coherent with other pH-adjustments on these platforms in the 
oceanographic community. 

3.4. Crossovers between CTD casts with water sampling and float profiles 
Furthermore, other comparisons can be done between the different data acquisition platforms. In March 
2022, the PIRATA-FR32 cruise sampled, for the first time, in situ pH onboard. A detailed description of the 
crossover strategy followed could be find in the EuroSea deliverable D7.15. Figure 10 presents the 
temperature, salinity, O2 and adjusted pH measured by the floats during these cycles and the corresponding 
measurements from PIRATA-FR32 stations. Table 4 details the values of the different variables used for the 
comparison. The physical parameters show that relatively similar water masses were sampled by both 
observing platforms with greater differences in surface waters, mainly due to location. Furthermore, there is 
a good agreement between the corrected pH from the Argo floats and the in situ reference data. The mean 
absolute difference is 0.026 over the water column. In these comparisons, pH from the Argo floats varies 
between 7.67 and 8.06 whereas onboard pH spans from 7.72 to 8.01. However, for the matchup around 
March 22nd, 2022 (first row of Fig. 10), only profiled down to 1 000 dbar whereas the in situ stations sampled 
down to 2000 dbar. 

                                                           
5 https://doi.org/10.3289/eurosea_d7.1  

https://doi.org/10.3289/eurosea_d7.1


 
 
 
 

17 
 

 

Figure 7. Adjusted first pH profile from Argo floats (blue) and pH recomputed from TA and DIC (orange) sampled near the Argo’s location during PIRATA-FR31 cruise. Note that the pH sensor from 
float 6903875 malfunctioned from the first profile, hence its being presented in red. In the bottom left corner of each panel are the mean absolute difference at the comparison depths, and the 

difference in space and time (as detailed in Table 1).
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Figure 8. Profiles of temperature, salinity, dissolved oxygen and corrected in situ pH from Argo floats cycles and stations from the 
PIRATA-FR32 cruise. 
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3.5. Comparison between surface ocean carbon data and float 
Figure 9 presents the comparison between the Argo derived pCO2 and the Saildrone’s pCO2 time series, 
together with seawater pCO2 measurements from the France-Brazil SOOP line. Even though two months 
apart (see section 2.2.3), the SOOP data is in the range of the SD data and their error. The BGC-Argo derived 
pCO2 matches the Saildrone’s values. There was a high variability in a relatively small-time frame in the 
Saildrone’s pCO2 and this is also reproduced in the BGC-Argo measurements. This might be due to the sharp 
decrease in temperature at that time (loss of 1°C in SST in a few days). Note that the estimated uncertainty 
associated with the pCO2 derived from BGC-Argo float’s pH together with neural-network based TA (ESPER; 
Carter al, 2021) computed with CO2SYS (van Heuven et al., 2011) is 12 µatm (as shown with the purple error 
bars). 

 

Figure 9. Saildrone seawater pCO2 time series (blue) with error (grey), SOOP data (green) and pCO2 derived from BGC-Argo float’s 
pH and neural-network based TA (purple) with error. 

Therefore, while pCO2 can be derived from Argo float data, reliable high-quality surface ocean carbon data, 
such as SOOP or Saildrone remains essential and provides data with a spatio-temporal resolution like no 
other. Furthermore, the high propagation of uncertainties is to be considered. 

3.6. Ways to go forward with sensor failures? 
Nowadays, machine learning methods such as neural networks are being used more and more for 
oceanographic applications to virtually densify the limited number of measurements that can be done by 
autonomous platforms. Some of them are implemented in the SAGE GUI software to correct pH, such as 
CANYON-B (Bittig et al., 2018). Others more recent like ESPER (Carter et al., 2021) are not implemented yet. 
However, all of these methods allow for the prediction of carbonate system variables with a given accuracy, 
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relying only on temperature, salinity, O2 together with the position in time and space. The correction of pH 
from Argo floats is an essential step and can, in some cases, lead to large amounts of high-quality pH data 
reaching accuracies of 0.005 (Johnson et al, 2018, SOCCOM floats). Furthermore, the objective in 
OneArgo/GO-BGC is to have (add detailed objective for pH accuracy but also for coverage). Therefore, on top 
of correcting pH, we can also rely on these neural network methods to derive additional carbonate system 
variables, namely pH, requiring only one biogeochemical sensor: O2. And in cases such as ours, where pH 
sensors do fail, we can predict pH and fill the gaps left by bad sensors. 

Building on the comparisons shown in Figure 8, BGC-Argo float 6903876’s sensor drifted between cycles 1 
and 60 (Figure 10B). At cycle 58, the raw pH profile (in grey in Figure 10C) had a MAD of 0.1330 and 0.1411 
with reference stations 37 and 38 from PIRATA-FR32 over the water column. After adjustment, the MAD was 
reduced to around 0.0290 (blue profile in Figure 10C). Comparing this corrected pH and the in situ pH from 
the reference stations with neural-network based estimates (ESPER, in purple), they are in agreement within 
the range of the neural network predicted error (purple shadowed area). Therefore, this is a confirmation 
that, while not replacing precious in situ data, neural networks provide pH estimates and errors coherent 
with adjusted pH data from the floats. 

For example, for floats 6903875 (all cycles) and 6903876 (cycle>60) that went into complete sensor failure, 
Figure 11 highlights the inexploitability of the sensor pH. However, by applying the ESPER neural network 
method (Carter et al, 2021) on temperature, salinity and O2 from the profiling floats, we can derive “predicted 
pH” (Fig. 11B and D). This virtual dataset of pH comes with a given error (shown in the purple shaded area) 
but can help augment our datasets and go beyond sensor failures. 

Finally, it should also be mentioned that several modelling products exist for pH and/or carbonate system 
parameters. They are gridded products and their resolution is often limited to surface monthly 1° grids. For 
example, the MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008 product from Chau et al., (2022) 
provides surface pH estimates with a pH uncertainty of 0.0348. Second, the OceanSODA-ETHZ product from 
Gregor and Gruber (2021) has a pH uncertainty of 0.023. While these products exist, we feel that in order for 
BGC-Argo data to be used to validate or calibrate models, 1) the data must absolutely have gone through 
quality control procedures and adjustments and 2) the error associated with the correction must be taken 
into account by the modelers. 
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Figure 10. (A) BGC-Argo float 6903876’s O2 (blue), reference Winkler measurements from stations 37 (orange) and 38 (brown) of cruise PIRATA-FR32. (B) Scatter plots of raw pH from BGC-Argo 

float 6903876 (cycle ≤ 60) according to cycle number showing sensor drift. (C) BGC-Argo float 6903876 cycle 58’s raw pH (grey), adjusted pH (blue), pH from reference stations 37 (orange) and 38 
(brown) from PIRATA-FR32, together with ESPER-derived pH (purple with predictor error in shadowed area).
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Figure 11. (A) BGC-Argo float 6903875’s pH and neural-network based TA (purple) with error. (B) Zoom of panel (A). (C) BGC-Argo float 6903876 cycle 61 onwards’s pH and neural-network based 

TA (purple) with error. (D) Zoom of panel (C).
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Recommendations 
Although the results and observations presented in this report only represent a limited number of floats, few 
crossovers and a relatively small regional domain, final conclusions and suggestions can already be drawn 
and summarised as: 

● The first profile: 1st profile at 2000 dbar 

From high-quality co-located and synchronous in situ DIC and TA observations realized over the entire 
water column, pH data have been calculated at relatively high quality to serve as a direct comparison 
for BGC-Argo floats at the deployment location (see section 3.3). Results of these direct comparisons 
point at significant differences and issues with pH data quality, at least under the first hundred meters 
of the water column. Accuracy assessments based on crossovers point at mean differences in excess 
of ca. 0.02 pH units, which correspond to about 20 μatm uncertainty in p/fCO2. While this observed 
difference has been previously reported in the literature and can be explained by some factors, the 
robustness of the conclusions to be drawn from our comparison is limited given the reduced profile 
depth associated with the first profiles. We, therefore propose Argo floats to have a systematic first 
deep profile at 2000 dbar to better understand and, if needed, correct this at-depth the observed 
variability. Better constraining and understanding these differences are particularly important in the 
context of converting surface ocean pH into pCO2 for the purpose of calculating the air-sea CO2 flux.  

● The sampling plan: More frequent 2000 dbar profiles 

Based on the comparison between calculated pH data (from in situ DIC and AT data) and corrected 
float-pH data (see section 3.4 and Table 2), results found for each float indicate that float pH may be 
biased by up to several hundredths of a pH unit at depth. In fact, two of the five floats show a virtually 
identical ca. 0.02 pH units mean bias, i.e., float-pH is systematically higher on overage by this amount 
when compared to in situ calculated pH data. These early findings, therefore, warrant further and 
more sophisticated analyses to better constrain float pH at depth and highlight the need to 
implement the sampling plan with more frequent profiles reaching 200 dbars to cover the entire 
water column. With regards to these observations, these differences may mean that the established 
at-depth correction (ca. 900 dbars) used does not seem to yield adequate pH accuracy at depth. This 
uncertainty may partly be incurred by the complication of finding a reliable at-depth reference with 
the initial sampling strategy.  

● The float correction procedure 

To correct float-pH data, the established at-depth correction currently used relies on the difference 
between float-based pH measurements and a selected field of reference calculated at a depth below 
ca. 1500 meters, where spatiotemporal variability of oceanic components is assumed to be minimal. 
In this study, because of the parking depth associated with the first profiles, an at-depth reference 
pressure of around 900 dbars has been used. In this region, we point out that the choice of the 
reference depth (900 vs. 1500 dbar) changed the pH correction in a negligible way as the resulting 
uncertainty is on the order of a few thousand of pH units (0.0008 pH units), which is tolerable. By 
also modifying the at-depth temperature used to mimic the k0 sensor drift, this pressure range can 
be used for float datasets. Nevertheless, the choice of reference depth may have a noticeable impact 
on corrected float-pH data in some oceanic regions as for example in the peculiar subpolar North 
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Atlantic area where complex water masses meet during deep convection events and where deep 
penetrations of anthropogenic CO2 occur. In consequence, we suggest keeping, at least, this original 
at-depth reference to correct float-pH data and overcome the uncertainty resulting from this 
reference pressure depth. In consequence, the sampling plan should be adjusted to allow a float-pH 
correction with this pressure range, and this from the first profiles on. Without that, a potentially 
very significant uncertainty associated with the resulting accuracy of fully corrected delayed mode 
pH data could be observed.  

● Ancillary data 

The general philosophy for float-pH correction employs empirical algorithms, such as the CANYON-B 
method, requiring in situ oxygen measurements (together with other ancillary data such as 
temperature and salinity measurements) as an input variable to then derive the predicted pH. 
Therefore, the use of these correction tools cannot be done without high-quality oxygen data, and 
consequently meticulous O2 delayed-mode quality control (DMQC) procedures. As the robustness 
and accuracy of the corrected float-pH datasets depend on these oxygen values, we warn about a 
continuous attention to the quality of O2 values and their passing through DMQC procedures.  

● Crossovers and matchups 

When a BGC-Argo float is deployed and then acquires data at-sea, it is desirable to establish further 
measurements to independently estimate pH data accuracy and ideally also to apply corrections. In 
the context of float data quality control, measurements that can be considered as necessary are CTD 
casts with discrete water sampling performed at the time and place of the float deployment. This 
would require an established reference method – in this case for discrete pH measurements – which 
itself can be traced back to an external reference. Indeed, while DIC and TA discrete samples are 
calibrated against certified CRMs, an inevitable error is associated with the pH calculated from DIC 
and TA measurements. Thus, if possible, discrete in situ pH measurements should be done over the 
entire water column. Then, with the help of the oceanographic campaign leaders, and potentially by 
changing the floats’ sampling frequency, this study highlights the crucial need to develop integrated 
observation systems to obtain specific crossovers between CTD casts and floats profiling during the 
floats’s lifetimes without impact on the field work schedule.  

● Sampling the ocean 

While autonomous platforms such as BGC-Argo floats are useful tools to observe the ocean and 
circumvent many issues encountered with historical classical sampling strategies (low spatio-
temporal resolution, high human resources request, weather dependency), it should also be pointed 
out that oceanographic cruises and data acquired through classical observing systems (including 
SOOP-line) remain the reference tool to obtain high-quality data to then compare datasets from 
autonomous platforms. Float-pH correction methods rely on empirical algorithms, themselves 
trained using a hydrography database (GLODAPv2; Olsen et al., 2016). Nevertheless, as the data 
coverage of the GLODAPv2 data product is far from perfect, both in terms of spatial and annual 
variability (seasonal cycle) the robustness algorithms based on it are globally not uniform and 
regional and/or seasonal biases are therefore to be expected. Moreover, the comparison between 
corrected float-pH data and in situ discrete pH (calculated and/or measured) data is a robust tool to 
achieve an independent quality control and perhaps correction of float-pH data. In consequence, this 
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study underlines the major interest in maintaining and continuing oceanographic campaigns and 
other classic sampling methods in order to feed the databases but also to compare and correct the 
data acquired by autonomous platforms such as floats.  

● The reference method 

In SAGE, numerous tools and methods can be used as reference models to adjust and correct float-
pH data. Recently, a new reference algorithm named ESPER (Carter et al., 2021) has been developed 
and provides, at intermediate-depths, pH estimations with biases ranging between -0.001 and -0.002 
pH units (depending on the input variables) using the Mixed method. Indeed, as proposed by Bittig 
et al. (2018), averaging the estimates from the LIR and CANYON-B methods seems to improve the 
global average prediction statistics. Regarding this global average ESPER performance which is as-
good or better than older algorithms, we think it would be wise to implement this reference 
algorithm into SAGE in the future. 

Conclusions 
This deliverable describes the successful float-pH data correction strategy followed in the Eastern Tropical 
North Atlantic region in response to the growing and crucial need for accurate and precise float-pH data to 
better constrain ocean acidification and derive oceanic carbon data and their variability regarding current 
climate change. To correct float-pH data, the established and generally used at-depth correction presented 
in the SAGE tool has been used. By modifying some parameters such as the reference pressure depth or the 
temperature at-depth used to correct data, we have been able to correct pH from the 5 BGC-Argo floats 
launched in the studied region. Moreover, this study points out that, while deep profiles always have to be 
preferred, the choice of the reference depth changes the pH correction in a negligible way in this region as 
the resulting uncertainty is on the order of a few thousand of pH units (0.0008 pH units), which is tolerable. 
An independent quality assessment of corrected float-based pH data has been done with comparisons 
against in situ calculated pH data. These crossovers were carried out in a synergistically combined effort 
between numerous institutions and scientists.  

Besides highlighting the indubitable need to carry out reference data sampling strategies based on classical 
ways of sampling (e.g., vessel-based hydrographic surveys, SOOP lines, autonomous high-quality pCO2 sensor 
measurements on drones or moorings), these comparisons reveal overall differences of approx. 0.02 pH 
units, which correspond to about 20 μatm uncertainty in p/fCO2, i.e., two times higher than the limit for 
inclusion into the SOCAT database. Thus, this study illustrates the several ongoing challenges regarding the 
QC procedure for float-based pH measurements and questions the purpose of this data correction process. 
Indeed, depending on whether the correction applied is to compare and correct the pH-sensor data to pH 
values spectrophotometrically measured, or to correct float-pH data to subsequently derive the parameters 
of the carbonate system, the final statement on the accepted accuracy may be different due to the present 
incomplete internal consistency in CO2 estimations. 

Moreover, while this result is in agreement with the literature, the robustness of the conclusions to be drawn 
is also limited given the reduced number of best-performing pH sensors and hence a much smaller amount 
of highest-quality data. This warrant continued attention to the quality of float-based pH in the ocean. 
Indeed, this study suffered tremendously from manufacturing-related problems. Particularly, the recent 
serious problems with the pH sensors’ reference electrodes are likely to greatly reduce sensor lifetimes and 
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increase the variability of the drift characteristics. This points to an urgent need to improve manufacturing 
quality and encourages further work on alternative pH sensors, both in terms of manufacturers as well as in 
terms of sensor principles. 

This deliverable also proposes, based on this regional focus but also limited dataset, some suggestions that 
the scientific community may explore in a systematic way to harmonise both the way of measuring but also 
correcting float-pH data. The joint drafting of reference guides, such as Standard Operating Procedures or 
Best Practices, by the entire community of users of these tools, could help to answer these questions. This 
report further illustrates the noticeable uncertainty and lack of additional reference points to compare and 
possibly correct float-based pH datasets.  

Data availability statement 
Fully processed and finalised surface pCO2 data will be submitted in 2023 to the Surface Ocean CO2 Atlas 
(SOCAT) for community-based quality control and final ingestion into global carbon synthesis products and 
assessments. Argo data are available at http://doi.org/10.17882/42182#96550 or at 
ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis. These data were collected and made freely available by the 
International Argo Program and the national programs that contribute to it (https://argo.ucsd.edu, 
https://www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. Atmospheric 
data recorded at the CVAO station are available at 
https://catalogue.ceda.ac.uk/uuid/81693aad69409100b1b9a247b9ae75d5. Data from the french PIRATA 
cruises are available on the SEANOE website (https://www.seanoe.org). 
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