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Introduction  

Data provided here includes supplemental figures as referenced in the main text and the 

references listed in the supplementary material. Additional supplemental tables are 

uploaded into a single, separate Excel file. These include all individual raw data analyses 

for each type of data collected for the study as well as the analytical error for any 

secondary standard materials.  

Figure S1. Cathodoluminesence (CL) and back-scattered electron (BSE) images of zircon 

grains presented in Fig. 10. 
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Figure S2. Chondrite-normalized (McDonough & Sun, 1995) bulk rock rare earth 

element (REE) concentrations for the two U1570 dacitic samples, compared with the 

average composition for the upper and lower continental crust (Rudnick & Gao, 2003), 

with the range of concentrations in Unit B2 for ODP 642E (yellow area, Meyer et al., 

2009a) and concentrations in calc-alkaline volcanic rocks from the Northern Pannonian 

Basin in Spain (gray symbols; Harangi et al., 2001). 
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Figure S3. SEM-EDS maps of garnets from sample U1570A-26R2-4 showing the diversity 

of inclusions: ilmenite (blue), apatite (purple), zircon (bright pink), pyrite (yellow), and 

melt (dark gray). The scale bar is the same for all maps. 

Figure S4. FeO (wt%) and MnO (wt%) profiles across garnet grains. Grain centers are 

represented by 0 μm red lines. Error bars represent the analytical uncertainty, 0.004 wt% 

and 0.03 wt%, respectively. 
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Figure S5. (A) Feldspar ternary classification diagram. Plotted are the alkali feldspar and 

plagioclase grains analyzed in the dacite samples from boreholes U1570A (red squares) 

and U1570D (blue squares) and plagioclase from 642E dacite (grey circles; Parson et al., 

1989). Data are compared with plagioclase from El Hoyazo (asterisks; Hiwatashi et al., 

2021) separated in three groups based on their texture: Resorbed and patchy (light grey), 

oscillatory zoning (dark grey) and homogeneous (black). (B) Chondrite-normalized 

(McDonough & Sun, 1995) feldspar REE concentrations. Plotted are plagioclase (black) 

and alkali feldspars (gray) from our samples.   
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Figure S6. (A) SEM-BSE images of garnet grains analyzed by LA-ICP-MS. Garnets are 

numbered (from #1 to #7) according to how they are referred to in the text.  Analysis 

locations are represented by colored squares; values on colored squares are the 

corresponding HREE slopes (i.e., LuN/GdN, chondrite-normalized ratio). Values in black 

circles are the Y (ppm) concentrations at the same location. Garnets #1, #2, #4 and #6 

are all from the same sample (U1570A-26R2-4), while garnet #7 is from a sample near 

the base of the dacitic unit (U1570A-27R1-10). (B) Chondrite-normalized (McDonough & 

Sun, 1995) garnet REE concentration for each individual analysis performed on each of 

the seven garnets; colors correspond to those used in (A). 
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Figure S7. (A) Kernel density estimate (KDE) plot for the calculated spot ages of zircon 

grains in population #2 as defined by Fig. 10. (B) Calculated spot ages for young 

radiogenic, concordant analyses (population #1). The 54.6 Ma line represents the 

weighted mean for these analyses. 
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Figure S8. Pseudosections calculated with MAGEMin (Riel et al., 2022) from the sample U1570-26R2-51-54 bulk rock composition of 

the dacite with 3wt % and 5 wt% H2O contents. Colored fields ranging from blue to yellow represent an increasing number of phases 

in an assemblage; the dark orange field (H) represents the one that reproduced the observed assemblage in natural samples. Color 

code and abbreviations are the same as in Figure 6 in the main text. 
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Figure S9. (A) Chondrite-normalized (McDonough & Sun, 1995) zircon REE 

concentration diagrams. (B) Eu anomalies (Eu/Eu*) vs. 238U/206Pb ratio for zircon analyses. 

(C) Shape coefficients l0 and l1 for each analyzed zircon calculated using BLambdaR 

online software (Anenburg and Williams, 2022). Analyses for which La is below the limit 

of detection are excluded. Calculations were set up excluding Ce and Eu and without 

including tetrads in fitting. On each panel, populations #1 (including zircons used for the 

weighted average) and #2 are as defined in Fig. 10. 
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Table S1. Composition, reproducibility and accuracy of the secondary standards during 

LA-ICP-MS and LASS analytical sessions. 

Table S2. Dacite bulk concentrations. 

Table S3. Major element oxide concentrations for individual analyses on major phases in 

the dacite. 

Table S4. Trace element concentrations for individual analyses on major phases in the 

dacite. 

Table S5. Carbon and nitrogen concentrations for sediments near the dacite. 

Table S6. Hg concentration data for sediments near the dacite. 

Table S7. Petrochronology data on zircons. 
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