XIV 4

313-328

Chemische Untersuchungen in der Irminger See im Juni 1955

Von

Kurt Kalle

Deutsches Hydrographisches Institut Hamburg Mit 1 Zahlentafel und 28 Abbildungen im Text und auf 4 Beilagen

Im Zusammenhang mit den hydrographischen Untersuchungen in der Irminger See, welche im Juni 1955 auf dem Fischerei-Forschungsschiff "Anton Dohrn" ausgeführt wurden und deren Ergebnisse in der vorhergehenden Arbeit: "Schichtung und Zirkulation in der Irminger See im Juni 1955 von G. Dietrich (1957) niedergelegt sind, wurden auch Untersuchungen über die Verteilung chemischer Faktoren in den verschieden n Wassermassen angestellt. Das Gebiet der Irminger See ist gerade in dieser Beziehung von besonderem Interesse, weil, wie wir im einzelnen durch die Untersuchungen von G. Böhnecke, E. Hentschel und H. Wattenberg (1930) und G. Böhnecke, B. Føyn und H. Wattenberg (1931) wissen, hier die verschiedenen Wassermassen der Colfstrom-Ausläufer, des nordatlantischen Wassers und des Ostgrönlandstromes aufeinandertreffen und sich in einer großen Anzahl größerer und kleinerer Wirbel miteinander vermischen. Diese bewirken ihrerseits durch mit ihnen gekoppelten Hebungsund Senkungsbewegungen eine recht verwickelte Verschiebung der Wassermassen in vertikaler Richtung. Die große Ausdehnung des befahrenen Gebietes im Verlauf der etwa 5wöchigen Untersuchungsdauer gestattete nur, den chemischen Untersuchungen ein ganz weitmaschiges Stationsnetz zugrunde zu legen. Von den insgesamt durchgeführten 140 hydrographischen Stationen konnten daher nur 50 Stationen mit den vollen Tiefenserien che misch bearbeitet werden. Bei der Wahl der Stationen wurde so verfahren, daß der Untersuchungsraum einigermaßen gleichmäßig durch Meßpunkte aufgeteilt wurde (Abb. 17). Auf Feinheiten im Chemismus der Wasserkörper mußte daher von vornhe rein verzichtet werden. Das Hauptgewicht liegt vielmehr auf der großräumigen Verte ilung und dem chemischen Aufbau der verschiedenen Wasserkörper im Untersuchungsgebiet. Untersucht wurden: der Phosphat-Gehalt, der Gehalt an gelöstem Sauerstoff sowie die Fluoreszenz und die optische Trübung in mit dem Wasserschöpfer in verschieden n Tiefen dem Meere entnommenen Wasserproben. Der Phosphat-Gehalt wurde nach der in der Meereskunde seit langem üblichen kolorimetrischen Methode nach C. Denigès (1920) mittels Ammoniummolybdat-Schwefelsäure und Zinnchlorür (K. Kalle, 1934) an 25 ccm messenden Proben mittels des elektrischen Kolorimeters "Elko II" der Fa. C. Zeiß bestimmt. Zur Sauerstoff-Bestimmung diente die gleichfalls seit lang m übliche Winkler'sche Methode an 50 ccm Meerwasserproben (K. Kalle, 1939). Die Fluoreszenzstärke wurde an 1 ccm Meerwasserproben nach der vom Verfasser entwickelten Methode (K. Kalle, 1951) mittels des Zeiß'schen Pulfrichphotometer, gemessen, während für die optische Trübung der mit dem Farbfilter "S 72" (720 mµ) an 5 cm dicken Wasserschichten gewonnene Extinktionswert diente. Für diesen Zweck wurde wiederum das "Elko II"-Gerät benutzt, weil die Messung mit diesem

Gerät nur 20 ccm Wasser benötigt und die Meßgenauigkeit trotz der verhältnismäßig geringen Schichtdicke extrem genau durchführbar ist (Fehlergröße = $\pm 0,000 \ 2 \ E)^1$). Die Meßwerte für den Phosphat- und den Sauerstoff-Gehalt werden zusammen mit den zugehörigen Temperatur- und Salzgehaltswerten im Bulletin Hydrographique 1955 (Kopenhagen) erscheinen. Die entsprechenden Werte für die Fluoreszenzstärke und die optische Trübung sind in Zahlentafel 1 niedergelegt. An je drei Vertikalschnitten durch das Untersuchungsgebiet (A, B, C) (Abb. 1—12), deren Lage aus Abb. 17 hervorgeht, sowie an je 4 Horizontal-Schnitten in den Tiefen-Niveaus von 0 m, 200 m, 500 m und 1000 m (Abb. 13—16 und 18—28) soll versucht werden, die Verteilung der chemischen Faktoren im Untersuchungsgebiet in großen Zügen deutlich zu machen.

Die Verteilung der chemischen Eigenschaften

Beginnen wir mit der Phosphat-Verteilung als dem chemischen Hauptcharakteristikum der ozeanischen Wassermassen. Was zunächst an dem sich von Ost nach West durch den Nordost-Atlantischen Ozean hinziehenden Vertikalschnitt A (Abb. 1) auffällt, ist der den Isopyknen (G. Dietrich, 1956) gleichsinnige Anstieg der Linien gleichen Phosphat-Gehaltes im Verlauf von Station Nr. 120 im Osten bis nach Station Nr. 141 im Westen. Dies bedeutet, daß im Großen gesehen der eigentliche Golfstrom und die darunter liegenden Wassermassen an Nährstoffen besonders arm sind ($Om = \langle 0, 5 mg \rangle$ atom P/m³, 1000 m = < 1,0 mg-atom P/m³). Dieser Wert steigt im östlichen und westlichen Teil des nordatlantischen Tiefenbeckens an der Oberfläche auf über 0,5 mg-atom P/m³, in der Tiefe sogar bis auf über 1,2 mg-atom P/m³ an. Bezeichnend für die Verhältnisse in den Tiefenbecken ist weiterhin das Auftreten eines intermediären Phosphatmaximums, wie es uns von ähnlichen Untersuchungen in den offenen Meeresgebieten des Weltmeeres her eine bekannte Erscheinung ist. Das Besondersartige in dem Gebiet der Irminger See ist nur, daß auch dieses intermediäre P-Maximum entsprechend der allgemeinen ost-westlichen Hebungstendenz der Isopyknen gleichfalls von Tiefen von etwa 1200 m im Osten bei Station Nr. 132 auf etwa 300 m Tiefe im Westen bei Station Nr. 141 ansteigt. Im Bereich der grönländischen Küste findet allerdings wiederum in Parallelität zu den Isopyknen zumindest in den oberen 500 m ein Abfall der Linien gleichen Phosphatgehaltes zur Küste hin statt.

Im Gebiet der Irminger See selbst wird die Verteilung des Phosphats hauptsächlich durch zwei in der Tiefe getrennte Wassermassen maximalen P-Gehaltes charakterisiert. Dies ergibt sich deutlich bei Betrachtung der weiteren Schnittdarstellungen (Vertikalschnitt B und C) auf Abb. 5 und 9. Dabei ist das zweite Maximum in 1700 m Tiefe auf Station Nr. 195 (Abb. 5) als isolierter Ausläufer des im Süden auf Station Nr. 139 (Abb. 1) weit mächtigeren und in sich geschlossenen Wasserballens maximalen P-Gehaltes aufzufassen. Noch deutlicher läßt sich das Typische der Phosphatverteilung in der Irminger See an Hand der Horizontalschnitte verfolgen (Abb. 13-16). Im 1000-m-Niveau finden wir zunächst die beiden Wassermassen maximalen P-Gehaltes (P > 1.2 mg-atom P/m³), und zwar das eine im Norden das andere im Süden wieder. Beide sind deutlich voneinander getrennt. Im 500-m-Niveau herrscht im Prinzip die gleiche Verteilung nur mit dem einen Unterschied, daß in diesem Niveau zwischen den beiden Wasserballen über Station Nr. 195 eine schmale Verbindungsbrücke von dem südlichen zum nördlichen P-Gebiet reicht. Im 200-m-Niveau ist schließlich auf den Stationen Nr. 195, 192 und 181 nur noch der Restanteil des beiderseitigen Brückenbogens zu erkennen, soweit er sich bis in diese extreme Höhenlage hinauf erstreckt. Räumlich haben wir uns die Phosphatverteilung in der Irminger See auf Grund dieser Befunde wie zwei große seitlich im

 $^{^{\}rm 1})$ Die hier wiedergegebenen Trübungswerte in k-Einheiten entsprechen dem 1000fahen der Extinktionswerte in E-Einheiten.

Süden und Norden gelegene Sattelhälften vorzustellen, die oben durch eine verhältnismäßig schmale Sattelbrücke miteinander verbunden sind. An der Oberfläche spiegelt sich die zentrale Lage dieser Maxima-Gebiete durch das in dem gleichen Gebiet erkenntliche relative P-Maximum von über 0,5 mg-atom P/m³ zwar nur schwach aber deutlich wieder. Eine auffallende und sich besonders typisch in das vorhandene Bild der P-Verteilung einordnende Station ist Nr. 168. Sie zeichnet sich sowohl im 200-m-. 500-m- und im 1000-m-Niveau (Abb. 14—16) durch ihren minimalen P-Gehalt aus, was durch den "kaminartigen" Verlauf der Isolinien in Abb. 5 besonders eindringlich unterstrichen wird. Eine Erklärung hierfür dürfte auf Grund dieses einmaligen Befundes kaum möglich sein.

Eine weitere auffallende Erscheinung stellt die Phosphatverteilung auf Station Nr. 240 dar (Abb. 9, Schnitt C). Diese Station ist die einzige, die sich nördlich der Grönland-Island-Schwelle befindet. Der starke Fall der Isolinien läßt sich nur so deuten, daß die Wassermassen nördlich der Schwelle vor allem in der Tiefe wesentlich an Nährstoffen gegenüber den jenseits der Schwelle befindlichen Wassermassen des nordatlantischen Hauptbeckens verarmt sind. Ob allerdings dieser Befund für das gesamte Europäische Nordmeer Gültigkeit hat, läßt sich augenblicklich an Hand der Befunde auf dieser einzigen Station noch nicht mit Sicherheit erkennen.

Wenn, wie wir oben gesehen haben, die chemischen Verhältnisse in bezug auf die Phosphat-Verteilung einigermaßen klar und auf Grund des Aufbaues der Wassermassen auch deutbar sind, so ist das Bild der Verteilung des gelösten Sauerstoffes wesentlich unruhiger und in sich verwickelter. Zwar läßt sich auch hier an Hand des Verlaufes der Isolinien und ihrer Schrägstellung im Profil A und B (Abb. 2 und 6) das dem intermediären Phosphatmaximum analoge Sauerstoff-Minimum in den mittleren Tiefenhorizonten einigermaßen deutlich ableiten. Auch daß sich beide Erscheinungen nicht genau decken, sondern das Sauerstoff-Minimum in seiner Lage etwas in größere Höhen verschoben erscheint, wie wir es von den anderen chemischen Untersuchungen im Weltmeer her gewohnt sind, dürfte mit etwas gutem Willen erkennbar sein. Wie darüber hinaus aber die unruhige Tiefenverteilung des Sauerstoff-Gehaltes beispielsweise auf Station Nr. 130, 139 und 141 (Abb. 2) sowie der große Unterschied zwischen den benachbarten Stationen Nr. 180 und 181 (Abb. 10) zu erklären ist, dürfte sich zur Zeit an Hand der sowohl in horizontaler wie vertikaler Richtung verhältnismäßig weitabständigen Probenentnahme nur schwer deuten lassen. Auffallend ist jedenfalls, daß der zentrale Teil der Irminger See, der zwischen den beiden Gebieten maximalen P-Gehaltes liegt, verhältnismäßig gut durchlüftet zu sein scheint (Abb. 18-20) und daß das gleiche für das Europäische Nordmeer gilt (Abb. 10, Stat.-Nr. 240). Eine Sonderstellung von Station Nr. 168, wie es bei der Phosphatverteilung auf Abb. 5 zum Ausdruck kommt, läßt sich in bezug auf die Sauerstoffverhältnisse nicht erkennen (Abb. 6).

Betrachten wir anschließend die Hauptzüge der Fluoreszenzverteilung, soweit sie sich aus den verschiedenen Darstellungen ergibt. Auch hier ist im Schnitt A (Abb. 3) in Deckung zu dem intermediären Phosphat-Maximum ein analoges Fluoreszenz-Maximum festzustellen. Das Besondere in der Fluoreszenzverteilung liegt darüber hinaus jedoch darin, daß direkt über dem intermediären Maximum ein zwar nur schmales aber deutlich ausgeprägtes Minimumband zu erkennen ist. Schnitt B (Abb. 7) zeigt diese Erscheinung nicht mehr in der gleichen Deutlichkeit. Dagegen zeigt er Ähnlichkeit mit dem Phosphatschnitt (Abb. 5) in der Lage des beiderseits des Reykjanes-Rückens sich hinziehenden Maximum-Gebiets. Auffällig ist auch das besonders in der östlichen Hälfte zwischen Station Nr. 165 und 135 an der Oberfläche sich erstreckende Fluoreszenzmaximum (Abb. 7). Aus Schnitt C (Abb. 11) geht besonders deutlich die maximale Fluoreszenzstärke im Europäischen Nordmeer hervor, die hier ganz im Gegensatz zu den Befunden

Abb. 1. Vertikalschnitt A. Phosphat-Verteilung, mg-atom P/m³. (In den Abb. 1—12 sind die Maxima-Gebiete schwarz, die Minima-Gebiete schraffiert gezeichnet.)

Abb. 3. Vertikalschnitt A. Fluoreszenzstärke, m. Fl.

Abb. 5. Vertikalschnitt B. Phosphat-Verteilung, mg-atom P/m³.

95

197

199

SEI

Abb. 6. Vertikalschnitt B. Verteilung des gelösten Sauerstoffs, %/0 Sättigung.

Abb. 7. Vertikalschnitt B. Fluoreszenzstärke, m. Fl.

Abb. 8. Vertikalschnitt B. Verteilung der optischen Trübung, k.

Abb. 9. Vertikalschnitt C. Phosphat-Verteilung, mg-atom P/m³.

Abb. 11. Vertikalschnitt C. Fluoreszenzstärke, m. Fl.

Abb. 10. Vertikalschnitt C. Verteilung des gelösten Sauerstoffs, % Sättigung.

Abb. 12. Vertikalschnitt C. Verteilung der optischen Trübung, k.

in Schnitt A und B mit einem minimalen Gehalt im Phosphat gekoppelt ist. Die tieferen Gründe dieses abweichenden Verhaltens sind mangels eingehenderen Beobachtungsmaterials zur Zeit in ihrem Zusammenhang noch nicht deutbar. Aus den Horizontalkarten (Abb. 21–24) läßt sich im großen Überblick nur soviel sagen, als hier im Gegensatz zur Phosphatverteilung gerade die küstennahen Gebiete reich an Fluoreszenz sind, während der zentrale Teil der Irminger See eine verhältnismäßig nur geringe Fluoreszenzstärke aufweist.

Ein völlig von den bisherigen Darstellungen abweichendes Bild zeigen die Karten der Trübungsverteilung. Weder treten hier (Abb. 4) in der Tiefe gesetzmäßig verteilte Maxima- oder Minimabänder, wie wir sie vor allem im Schnitt A (Abb. 1---3) bisher kennen gelernt haben auf, noch sind sonst ausgesprochene Gesetzmäßigkeiten in der Verteilung zwischen klarem und trüberem Wasser zu erkennen. Die einzige Ausnahme ist vielleicht, daß das Oberflächenwasser im allgemeinen stärker getrübt ist, als das

320 Berichte der Deutsch. Wissenschaftl. Kommission für Meeresforschung. Neue Folge

Tiefenwasser und daß sich das Golfstromgebiet im Osten durch besonders klares Wasser auszeichnet. Betrachten wir alle drei Schnittdarstellungen in ihrer Gesamtheit (Abb. 4, 8 und 12), so können wir sagen, daß überall in der Tiefe ein gewisser Wechsel im Trübungsgrad vorhanden ist. Doch hält sich dieser in verhältnismäßig engen Grenzen, der Extinktionswerte von 0 bis 5 kaum überschreitet. In den subtropischen Gebieten des Atlantischen Ozeans wurden auf einer Fahrt mit dem Vermessungs- und Forschungsschiff "Meteor" im Jahre 1938 (K. K alle, 1939) dagegen Wassermassen in der Tiefe festgestellt, die etwa einen dreimal so starken Trübungsgrad besaßen¹). Soweit aus den Horizontal-Schnitten (Ab. 25—28) ersichtlich ist, befand sich das am stärksten getrübte Wasser an der Oberfläche östlich des Reykjanes-Rückens mit Werten über 7 K. Der Zentralteil der Irminger See zeichnet sich durch verhältnismäßig klares Wasser von der Oberfläche bis zur Tiefe aus. Dagegen zeigten die Stationen an der südlichen Grenze des Untersuchungsgebietes der Irminger See verhältnismäßig starke Trübungen über 2 K, was in guter Übereinstimmung mit der Phosphatverteilung steht.

Schrifttum

- Böhnecke, G., E. Hentschelund H. Wattenberg, 1930: Über die hydrographischen, chemischen und biologischen Verhältnisse an der Meeresoberfläche zwischen Island und Grönland. Ergebnisse einer Fahrt mit dem Vermessungs-Schiff "Meteor" im August 1929. — Ann. d. Hydrographie usw. 58, 233.
- Böhnecke, G., E. Føyn und H. Wattenberg, 1932: Beiträge zur Ozeanographie des Oberflächenwassers in der Dänemarkstraße und der Irminger See. II. Teil. — Ann. d. Hydrographie usw. 60, 314.
- D e n i g è s, G., 1920: Reaction de coloration extrêmement sensible des phosphates et des arséniates. — Compt. rend. de l'Acad. d. Sci. 171, 802.
- Dietrich, G., 1957: Schichtung und Zirkulation der Irminger See im Juni 1955. Ber. Dt. Wiss. Komm. Meeresforsch. XIV, 4.
- K alle, K., 1934: Meereskundlich-chemische Untersuchungen mit Hilfe des Zeiss'schen Pulfrich-Photometers. III. Mitt. Methodische Untersuchung der Phosphatgehalts-Bestimmung. — Ann. d. Hydrographie usw. 62, 65.
- 1939: Einige Verbesserungen zur Bestimmung des gelösten Sauerstoffs im Meerwasser. Ann. d. Hydrographie usw. 67, 267.
- 1939: Die chemischen Arbeiten auf der "Meteorfahrt", Januar bis Mai 1938. Ann. d. Hydrographie usw. 67, Beih. zum Januarheft, 23.
- 1951: Meereskundlich-chemische Untersuchungen mit Hilfe des Zeiss'schen Pulfrich-Photometers. VII. Mitt. Die Mikrobestimmung des Chlorophylls und der Eigenfluoreszenz des Meerwassers. — Dt. Hydrogr. Z. 4, 92.

m AD 120 59°10' N	Fluoreszen m. Fl. V 6º2	z. Trübung. k _{5 cm} / 29 8,5' W	m AD 122 59°28' N	Fluoreszenz m. Fl. V 7°1	z. Trübung. k 5 cm 29 .4'W
0			0	·	
10	2,1	3,5	28	4,4	1,6
21	1,6	4,1	47	1,1	3,3
31	0,9	3,6	71	1,3	0,5
41	1,1	1,6	95	1,7	0,5
52	2,5	2,2	189	1,9	0,0
62	2,3	1,1	378	2,0	0,0
72	2,1	2,2	473	1,6	0,5
82	1,7	2,2	568	1,1	0,0
93	0,9	0,6	757	0,8	2,3
103	1,4	2,1	946	0,8	0,3

Meerwassers. — Dt. Hydrogr. Z. 4, 92.

Zahlentafel 1 Chemische Untersuchungen der "Anton Dohrn"-Fahrt (Grönland-Island) Mai bis Juli 1955

¹) Die Extinktionswerte der hier mitgeteilten Trübungsmessungen beziehen sich auf eine Wasserschicht von 5 cm, die der Meteor-Untersuchungen dagegen auf eine Wasserschicht von 25 cm Länge. Die alten Zahlen sind also durch 5 zu teilen, um vergleichbare Werte zu erhalten.

K. Kalle: Chemische Untersuchungen in der Irminger-See im Juni 1955.

111

150

Zu S. 316.

K. Kalle: Chemische Untersuchungen in der Irminger-See im Juni 1955.

K. Kalle: Chemische Untersuchungen in der Irminger-See im Juni 1955.

Zu S. 316.

Abb. 24. Tiefenkarte, 1000 m. Fluoreszenzkarte, m. Fl.

Abb. 23. Tiefenkarte, 500 m. Fluoreszenzstärke, m. Fl.

K. Kalle: Chemische Untersuchungen in der Irminger-See im Juni 1955.

Zu S. 316.

Ľ.

Abb. 28. Tiefenkarte, 1000 m. Verteilung der optischen Trübung,

Abb. 27. Tiefenkarte, 500 m. Verteilung der optischen Trübung, k.

		_					
A 60	m 1 AD 125 °0 7,5' N	m. Fl. \ 8°5	k 5 cm 7 29 52' W	m AD 127 60°35' N	m. Fl. V 10°0	k 5 cm 30 0'W	
	0	0,2	7,4	0	2,5	3,0	
	31	2,0	1,4	10	0,4	1,4	
	52	0,4	1,4	20	0,2	1,4	
	77	0,5	1,1	30	0,3	3,4	£
	103	0,3	0,6	49	0,7	1,5	
	206	0,6	-0,3°)	74	0,5	2,0	
	412	0,8	-0,3	99	0,4	1,1	
	619	0,5	-0,5	124	0,2	1,1	
	825	0,6	0,8	148	0,2	1,1	
	1031	0,3	0,6				
	1237	0,3	1,4				

Band XIV. Heft 4: Kalle, Chemische	Untersuchungen d.	Irminger-See i.	uni 1955	321
------------------------------------	-------------------	-----------------	----------	-----

1. 1. A.	AD 130 V 30 60°30' N 13°00' W			AD 132 60°24' N	V 16º4	31 11'W	
	0	3.0	6.2	0	0,7	1,5	
	29	1.6	3.2	49	2,6	5,6	
	48	0.4	2.8	98	1,2	4,9	
	79	0.2	2.2	393	0,8	2,2	
	96	0.2	1.7	589	0,5	1,3	
	101	0.7	2.3	786	1,6	1,6	
	287	0.4	1.9	982	1,5	1,2	
	201	0.5	4.5	1228	1,3	1,0	
	179	0.8	2.2	1473	0,9	1,1	
	410	0,5	2.6	1964	0,6	1,1	
	670	0,5	5,6	2455	0,7	1,5	

1	AD 135 60°16' N	VI 22º00	1 'W	AD 136 60º11'N	VI 1 25°30' W				
	$\begin{array}{c} 0\\ 46\\ 93\\ 185\\ 370\\ 556\\ 741\\ 1389\\ 1852\\ 2315\end{array}$	$\begin{array}{c} 0,5\\ 2,5\\ 0,8\\ 0,6\\ 0,8\\ 0,4\\ 1,1\\ 0,7\\ 0,7\\ 0,3\\ \end{array}$	9,91,91,21,00,81,21,11,11,82,02,3	$\begin{array}{c} 0 \\ 46 \\ 93 \\ 186 \\ 372 \\ 557 \\ 743 \\ 929 \\ 1394 \\ 1858 \end{array}$	$\begin{array}{c} 0,3\\ 1,9\\ 0,3\\ 0,8\\ 0,4\\ 1,1\\ 1,0\\ 2,0\\ 0,8\\ 0,7 \end{array}$	5,2 3,8 7,8 2,7 2,2 2,1 1,7 5,0 3,1 2,1			

•) Das Auftreten negativer Werte kommt dadurch zustande, daß die Trübungsmessungen gegen doppelt-d stilliertes Wasser als "Null-Substanz" durchgeführt wurden und die optische Durchläsigk it in reinem Meerwasser bei der angewandten Wellenlänge infolge der größeren Lichtbrechung höher ist als in salzfreiem Wasser.

Meeresforschung. Neue Folge. Bd. XIV.

			The second second second second	-
m AD 138 • 60°06' N	m. Fl. k 5 cm VI 2 29"'10'W	m AD 139 60º04' N	m. Fl. k 5 cm VI 2 31°09' W	
$\begin{array}{c} 0\\ 30\\ 50\\ 100\\ 201\\ 402\\ 502\\ 603\\ 804\\ 1005\\ 1206\end{array}$		$\begin{array}{c} 0\\ 52\\ 103\\ 206\\ 412\\ 619\\ 825\\ 1031\\ 1237\\ 1443\\ 1650\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
AD 140 59°58' N	VI 3 34°45' W	AD 141 59°53' N	VI 3 38º18' W	
0 50 100 200 400 601 1401 1802 2203 2803	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0\\ 10\\ 31\\ 51\\ 77\\ 102\\ 128\\ 153\\ 205\\ 307\\ 409\\ 605\\ 806\\ 1008\\ 1210\\ 1512\\ 2016\\ 2520\\ 2772\\ 3024 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
AD 143 59°47' N	VI 4 41º35' W	AD 150 57º47' N	VI 5 43º50' W	
0 AD 144 59°45' N 0 16 27 44 53 71 89 133 178	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0\\ 48\\ 95\\ 143\\ 333\\ 809\\ 1285\\ 1761\\ 2237\\ 2475\\ 2713\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

322	Berichte der Deutsch.	Wissenschaftl.	Kommission für	Meeresforschung.	Neue Folge
-----	-----------------------	----------------	----------------	------------------	------------

m AD 151 61°25' N	m. Fl. k 5 cm VI 6 41º23' W	m AD 152 61º28' N	m. Fl. k 5 cm VI 6 41°47' W
0 17	2,6 2,7	0	1,3
25 42 62	1,8 $3,81,7$ $1,31.6$ 0.8	AD 155 61°05' N	VI 7 39°05'W
83 125 166 208 250	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0\\ 45\\ 96\\ 146\\ 195\\ 390\\ 585\\ 975\\ 1462\\ 2145\\ 2488\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AD 156 61°48' N	VI 7 38º24' W	AD 160 62"40' N	VI 8 40º20' W
$\begin{array}{c} 0\\ 52\\ 103\\ 155\\ 206\\ 412\\ 619\\ 1031\\ 1546\\ 2062\\ 2238\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0\\ 19\\ 29\\ 49\\ 58\\ 73\\ 97\\ 146\\ 170\\ 194\\ 233\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AD 161 63°19' N	VI 8 39º22' W	AD 165 62º30' N	VI 9 35°50′ W
$\begin{array}{c} 0\\ 30\\ 49\\ 99\\ 148\\ 197\\ 395\\ 592\\ 790\\ 987\\ 1234 \end{array}$	$\begin{array}{ccccccc} 0,8 & 1,8 \\ 1,4 & 1,6 \\ 1,9 & 2,0 \\ 0,8 & 0,5 \\ 0,8 & 0,8 \\ 0,9 & 0,7 \\ 0,7 & 0,5 \\ 0,8 & -0,2 \\ 1,1 & 0,5 \\ 1,2 & 0,2 \\ 0,8 & 0,1 \\ \end{array}$	$\begin{array}{c} 0\\ 51\\ 103\\ 205\\ 410\\ 616\\ 1026\\ 1539\\ 2052\\ 2360\\ 2668\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Band XIV. Heft 4: Kalle	, Chemische	Untersuchungen d.	Irminger-See i.	Juni 1955	32:
-------------------------	-------------	-------------------	-----------------	-----------	-----

m AD 168 61º33' N	m. Fl. l VI 10 31º55' W	< 5 cm	n AD 63º3	n m. Fl. 170 VI 5' N 36º	k 5 cm 11 16' W
0	14	2.5)	1.4
50	1,1	14	9	8 10	1.2
00	1,0	0.9	1	6 10	0.9
99	1,0	0,0	4	0 1,2	0,0
199	1,3	1,6	9	3 0,8	0,8
397	0,7	2,0	13	9 0,5	0,6
596	1,5	1,3	18	6 0,7	0,8
993	4,4	1,4	37	2 1,2	0,8
1490	1,2	0,3	55	7 0,7	0,3
1986	1,2	0,8	92	9 0,7	0,8
2284	1,4	0,8	116	1 0,5	0,6
2582	1,9	1,4	139	4 0,6	0,8
AD 175 64º20' N	VI 11 37º50' V	v	AD 65"0	176 8' N 3	VI 11 5•28' W
0	1.5	4.4		0 1.1	5.7
30	1,0	1,6	2	0 1.8	2,7
41	1.0	1.2	2	9 17	3.6
51	1.0	2.7	4	9 19	0.7
76	0.8	19	4	9 10	0,7
10	0,0	1,9	0	9 1,0	0,5
101	0,6	1,1	1	3 1,3	3,2
152	0,8	1,2	9	8 1,2	2,1
203	0,7	1,2	12	0,9	0,4
304	0,7	0,3	14	7 0,5	0,4
406	0,7	0,7	19	0,8	0,8
475	1,0		23	35 0,7	2,2
AD 180 64•10' N	VI 12 34°00' V	v	AD 1 64°31	81 .′N 3.	VI 13 1º58' W
0				0 0.7	1.6
49	1.6	1.5	4	17 1.3	1.5
08	2.0	0.6	(1,0	1,5
147	2,0	0,0	1	10 0.9	1,4
147	1,1	0,7	14		1,4
190	0,7	1,1	18	1,3	1,9
391	1,1	0,6	3	19 1,0	1,1
587	1,3	0,6	56	59 1,0	1,0
978	1,2	0,7	94	18 1,1	0,6
1467	0,9	0,3	14:	0,7	0,6
1956	0,7	0,2	189	0,8	0,5
2249	0,7	3,6	22'	75 0,8	0,8
AD 185	VI	13 5' W	AI) 188 97' N	VI 14
00 00 14	02 20	, ,,	00	27 1	30 00 W
0	4 7 5	3,8		0 1,8	6,6
0	4,0	~~		49 2,0	1,4
0 26	4,0 2,3	5,5			
0 26 44	4,0 2,3 2,3	5,5 0,8	15.16	73 2,2	1,6
$\begin{array}{c} 0\\ 26\\ 44\\ 52 \end{array}$	4,0 2,3 2,3 1,5	5,5 0,8 3,0	4.42	73 2,2 97 1,5	1,6 3,7
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\end{array}$	4,0 2,3 2,3 1,5 1,0	5,5 0,8 3,0 1,0	1	732,2971,5951,3	1,6 3,7 1,5
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\\ 87\end{array}$	4,0 2,3 2,3 1,5 1,0 1,5	5,5 0,8 3,0 1,0 1,0	1	73 2,2 97 1,5 95 1,3 92 1,5	1,6 3,7 1,5 0,8
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\\ 87\\ 109 \end{array}$	$\begin{array}{c} 4,0\\ 2,3\\ 2,3\\ 1,5\\ 1,0\\ 1,5\\ 1,3\end{array}$	5,5 0,8 3,0 1,0 1,0 0,1	1 2 3	73 2,2 97 1,5 95 1,3 92 1,5 90 1.8	$ \begin{array}{r} 1,6\\ 3,7\\ 1,5\\ 0,8\\ 0.8 \end{array} $
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\\ 87\\ 109\\ 131 \end{array}$	$\begin{array}{c} 4,0\\ 2,3\\ 2,3\\ 1,5\\ 1,0\\ 1,5\\ 1,3\\ 1.4\end{array}$	5,5 0,8 3,0 1,0 1,0 0,1 0,0	1 2 3 5	73 2,2 97 1,5 95 1,3 92 1,5 90 1,8 84 1.2	1,6 3,7 1,5 0,8 0,8 0,8
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\\ 87\\ 109\\ 131\\ 174 \end{array}$	$\begin{array}{c} 4,0\\ 2,3\\ 2,3\\ 1,5\\ 1,0\\ 1,5\\ 1,3\\ 1,4\\ 1.1\end{array}$	5,5 0,8 3,0 1,0 1,0 0,1 0,0 0,4	1 2 3 5 7	$\begin{array}{cccc} 73 & 2,2 \\ 97 & 1,5 \\ 95 & 1,3 \\ 92 & 1,5 \\ 90 & 1,8 \\ 84 & 1,2 \\ 79 & 1,3 \end{array}$	$ 1,6 \\ 3,7 \\ 1,5 \\ 0,8 \\ 0,8 \\ 0,6 \\ $
$\begin{array}{c} 0\\ 26\\ 44\\ 52\\ 65\\ 87\\ 109\\ 131\\ 174\\ 218\end{array}$	$\begin{array}{c} 4,0\\ 2,3\\ 2,3\\ 1,5\\ 1,0\\ 1,5\\ 1,3\\ 1,4\\ 1,1\\ 0,9\end{array}$	5,5 0,8 3,0 1,0 1,0 0,1 0,0 0,4 0,0	1 2 3 5 7	$\begin{array}{cccc} 73 & 2,2 \\ 97 & 1,5 \\ 95 & 1,3 \\ 92 & 1,5 \\ 90 & 1,8 \\ 84 & 1,2 \\ 79 & 1,3 \\ 74 & 1,4 \\ \end{array}$	$ 1,6 \\ 3,7 \\ 1,5 \\ 0,8 \\ 0,6 \\ 0,6 \\ 1,8 \\ $

324 Berichte der Deutsch. Wissenschaftl. Kommission für Meeresforschung. Neue Folge

m AD 192 64⁰00' N	m. Fl. VI 30º0	k 5 cm 15 0' W	m AD 195 61º31' N	m. Fl. V 30"	k 5 cm I 15 05' W
0	1,3	2,6	0	1,5	1.8
51	1,6	0,6	30	3.3	1.5
102	2,1	0,7	51	2.8	1.7
152	2,4	0,7	101	1.8	1.4
203	1,5	0,6	152	2.4	1.1
406	1.7	0.9	202	1.4	0.8
609	1.8	1.6	405	1.9	0.9
1015	1.3	1.1	607	1.2	1.3
1522	1.1	0.6	1012	1.0	0.8
2030	1.3	1.1	1518	1.6	0.8
2233	2,7	0,6	1822	1,6	0,7
AD 197 61°30' N	VI 27"00	16 ' W	AD 199 61°30' N	V 24º	'I 16 00' W
0	1.3	3.3	0		
30	1.6	3.6	2.7	2.0	2.2
50	1.6	2.5	46	2.5	1.9
75	1.0	0.6	91	17	0.9
100	1,0	0,0	182	1,1	0,5
151	11	0,0	364	1,0	0,0
201	1,1	0.8	546	17	0,6
201	1,2	11	798	1.7	0,6
402	1,0	1,1	910	1.5	0,6
502 602	1,2	1,1	1974	1,5	0,0
650	2,1	5,2	1456	2,2	0,6
AD 204	V 230	I 17	AD 207 63"39' N	V 25%	[18 38' W
03 57 1	20	10 10	00 00 11	1.0	4.0
0	1,4	7,7	0	1,0	4,9
19	1,6	5,3	19	1,7	3,9
29	1,7	5,2	29	1,5	3,0
38	1,5	4,1	48	1,3	2,0
48	1,1	3,3	12	1,1	1,1
57	2,3	2,3	96	1,3	1,0
72	2,2	4,1	144	1,0	1,4
96	1,7	3,7	192	1,/	1,/
120	1,2	3,5	288	1,0	1,8
144	1,7	3,3	384	1,3	1,3
167	2,3	3,2	414	1,5	5,5
AD 209	27	/I 18 "40' W	AD 210 62º33' N	V 26º	I 18 34' W
00 10 11	2.0	6.0	0	1,9	5,1
0	2,0	0.0	48	1,8	0,7
0		0,0	97	2,4	0,4
0 51	1,0	0.6		/	
0 51 101	1,3	0,6	146	1,2	0,4
0 51 101 152	1,3 1,3 1,0	0,6 0,4 0.9	146 194	1,2 1,4	0,4 0,3
0 51 101 152 202	1,3 1,3 1,0 0,9	0,6 0,4 0,9	146 194 291	$1,2 \\ 1,4 \\ 1,6$	0,4 0,3 0,4
0 51 101 152 202 304	1,3 1,3 1,0 0,9 1,7	0,6 0,4 0,9 0,9 1,0	146 194 291 388	1,2 1,4 1,6 1,6	0,4 0,3 0,4 1,0
$ \begin{array}{r} 0 \\ 51 \\ 101 \\ 152 \\ 202 \\ 304 \\ 405 \\ \end{array} $	$ 1,3 \\ 1,3 \\ 1,0 \\ 0,9 \\ 1,7 \\ 1,4 \\ . 7 $	0,6 0,4 0,9 0,9 1,0	146 194 291 388 582	1,2 1,4 1,6 1,6 1,4	$0,4 \\ 0,3 \\ 0,4 \\ 1,0 \\ 1,0$
$\begin{array}{c} 0 \\ 51 \\ 101 \\ 152 \\ 202 \\ 304 \\ 405 \\ 607 \end{array}$	$ \begin{array}{c} 1,3\\ 1,3\\ 1,0\\ 0,9\\ 1,7\\ 1,4\\ 1,7\\ 1,2 \end{array} $	0,6 0,4 0,9 0,9 1,0 1,1	146 194 291 388 582 776	$1,2 \\ 1,4 \\ 1,6 \\ 1,6 \\ 1,4 \\ 1,7$	$0,4 \\ 0,3 \\ 0,4 \\ 1,0 \\ 1,0 \\ 0,9$
$\begin{array}{c} 0\\ 51\\ 101\\ 152\\ 202\\ 304\\ 405\\ 607\\ 1012 \end{array}$	$ 1,3 \\ 1,3 \\ 1,0 \\ 0,9 \\ 1,7 \\ 1,4 \\ 1,7 \\ 1,3 \\ 1,2 $	0,6 0,4 0,9 0,9 1,0 1,1 1,1	146 194 291 388 582 776 970	$1,2 \\ 1,4 \\ 1,6 \\ 1,6 \\ 1,4 \\ 1,7 \\ 1,3$	$0,4 \\ 0,3 \\ 0,4 \\ 1,0 \\ 1,0 \\ 0,9 \\ 0,4$

Band XIV	. Heft	4:	Kalle,	Chemische	Untersuchungen	d.	Irminger-See i.	Juni	1955	325
----------	--------	----	--------	-----------	----------------	----	-----------------	------	------	-----

			 the second s	And a state of the	and the second	
m AD 216 64º05' N	m. Fl. VI 1 22º56	k 5 cm 9 'W	m AD 219 65°05' N	m. Fl. VI 25º4	k 5 cm 26 0' W	Ser. Ser
0 20 30 40 51 61 76	2,22,42,02,51,21,41,7	5,9 5,1 2,4 2,1 2,1 2,1 2,1 2,6	$\begin{array}{c} 0\\ 10\\ 20\\ 31\\ 41\\ 51\\ 81\\ 102\\ 122\\ 143 \end{array}$	$1,3 \\ 2,8 \\ 3,0 \\ 1,8 \\ 1,2 \\ 1,4 \\ 1,2 \\ 1,5 \\ 1,4 \\ 1,6 \\ 1,6 \\ 1,6 \\ 1,6 \\ 1,0 $	3,3 4,6 3,7 2,5 0,8 1,3 1,0 1,9 1,7 1,4	
AD 225 64º24' N	VI 27 28º24' W		AD 226 65°30' N	VI 27 28º26' W		
$\begin{array}{c} 0\\ 31\\ 52\\ 103\\ 206\\ 309\\ 412\\ 619\\ 825\\ 1031\\ 1224 \end{array}$	$1,3 \\ 1,8 \\ 2,6 \\ 1,6 \\ 1,5 \\ 1,5 \\ 1,5 \\ 1,4 \\ 1,5 \\ 1,5 \\ 1,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 \\ 3,5 \\ 1,8 $	5,2 2,5 1,2 0,8 1,4 1,4 1,4 0,6 1,1 0,8	$\begin{array}{c} 0\\ 26\\ 43\\ 86\\ 172\\ 258\\ 344\\ 516\\ 688\\ 774\\ 860\\ \end{array}$	$\begin{array}{c} 2,1\\ 1,0\\ 1,3\\ 1,3\\ 1,4\\ 1,2\\ 1,6\\ 1,4\\ 1,3\\ 1,7\\ \end{array}$	2,7 0,6 0,6 0,6 0,6 0,6 0,6 1,0 0,6 0,3	
AD 233 66"15' N	VI 28 26°41' W		AD 236 66°30' N	VII 1 23°20' W		
$\begin{array}{c} 0\\ 27\\ 44\\ 67\\ 90\\ 134\\ 178\\ 268\\ 357\\ 446\\ 536\end{array}$	$\begin{array}{c} 2,1\\ 1,9\\ 1,3\\ 1,2\\ 1,5\\ 1,9\\ 1,6\\ 1,5\\ 1,5\\ 1,5\\ 1,4\\ \end{array}$	1.62.21.20.60.60.60.60.60.60.60.60.60.6	0 10 20 31 41 51 61	$2,0 \\ 1,6 \\ 1,7 \\ 1,6 \\ 1,7 \\ 2,0 \\ 2,2$	3,6 4,4 3,6 2,8 2,6 1,6 1,4	
AD 238 67⁰00' N	V 23'	/II 2 /33' W	AD 240 67º34'N	23	/II 2 º53' W	
$\begin{array}{c} 0\\ 29\\ 48\\ 72\\ 96\\ 120\\ 144\\ 167\\ 191\\ 215\\ 235\\ \end{array}$	1,6 $1,9$ $1,9$ $1,3$ $1,2$ $1,8$ $1,3$ $1,4$ $1,2$ $1,3$ $5,9$	$\begin{array}{c} 3,1\\ 2,2\\ 2,7\\ 2,7\\ 1,6\\ 1,5\\ 2,0\\ 2,0\\ 1,6\\ 1,6\\ 1,6\\ \end{array}$	$\begin{array}{c} 0\\ 51\\ 102\\ 153\\ 205\\ 307\\ 409\\ 512\\ 614\\ 818\\ 921\\ \end{array}$	$1,5 \\ 1,7 \\ 1,7 \\ 1,3 \\ 1,8 \\ 1,6 \\ 1,9 \\ 1,6 \\ 1,5 \\ 1,5 \\ 1,8 \\ 1,5 \\ 1,8 \\ 1,8 \\ 1,5 \\ 1,8 $	1,62,21,41,81,11,11,91,91,91,21,01,5	

Berichte der Deutsch. Wissenschaftl. Kommission für Meeresforschung. Neue Folge

326

n	n m.	Fl. k 5 cm	é	m	m. Fl.	k 5 cm
AD	241	VII 2		AD 242	VII 5	2
67°42	2' N	24º34' W		37°55' N	24º56	W
(44 97 143 194 388 58 777 96 121 145	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.7\\ 0.8\\ 1.6\\ 1.4\\ 1.6\\ 0.8\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 1.6\end{array}$		$\begin{array}{c} 0\\ 9\\ 43\\ 85\\ 128\\ 170\\ 213\\ 256\\ 341\\ 426\\ 511 \end{array}$	3,3 3,3 3,2 2,8 2,2 2,2 2,1 1,5 1,7 1,4 1,7	$ \begin{array}{c} 1,9\\ 1,9\\ 0,8\\ 0,8\\ 1,1\\ 1,1\\ 0,8\\ 0,8\\ 2,2\\ 1,1\\ 0,8\\ \end{array} $
AD	253	VII 5	i	AD 255	VII	5
63°3	9' N	13º52' W		63°52' N	12°32′	W
5 10 20 30 41 61 83 102 112	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0\\ 27\\ 45\\ 67\\ 89\\ 178\\ 267\\ 356\\ 445\\ 534 \end{array}$	1,82,32,62,11,92,31,71,62,22,3	$\begin{array}{c} 4,9\\ 1,4\\ 1,2\\ 1,0\\ 1,1\\ 0,7\\ 0,6\\ 0,6\\ 0,6\\ 1,1 \end{array}$
AD	257	VII 5		AD 259	VII	6
64°(09' N	11º 43' W		64º30'N	10º22	'W
14 15 2 2 2 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0\\ 26\\ 51\\ 103\\ 154\\ 205\\ 256\\ 308\\ 410\\ 462\\ 466 \end{array}$	$\begin{array}{c} 3,2\\ 2,9\\ 2,7\\ 2,7\\ 1,9\\ 2,2\\ 3,0\\ 2,6\\ 2,1\\ 2,7\\ 4,2\end{array}$	2,2 2,5 2,0 2,0 0,8 0,6 0,8 0,7 0,6 0,3

Band XIV. Hett 4: Kalle, Chemische	Untersuchungen d.	Irminger-See i.	Juni 1955	32
------------------------------------	-------------------	-----------------	-----------	----

Zusammenfassung

In der vorstehenden Arbeit werden die Ergebnisse einer Forschungsfahrt mit dem Figcherei-Forschungsschiff "Anton Dohrn" von Ende Mai bis Anfang Juli 1955 in das Gebiet der Irminger See, soweit sie die chemischen Untersuchungen betreffen, mitgeteilt. Intersucht wurden der Phosphatgehalt, der gelöste Sauerstoff ferner erstmalig in der Tiefsee die Fluoreszenzstärke des Meerwassers und der Grad der optischen Trübung. Vährend sich bei den drei ersten Faktoren besonders im Hinblick auf die Verteilung der verschiedenen Maxima- und Minima-Gebiete in der Tiefsee engere Zusammenhänge erk nn n lassen, scheint die Verteilung der optischen Trübung in den tieferen Wasserschichten anderen eigenen Gesetzmäßigkeiten zu gehorchen.

Summary

The results of a research cruise, undertaken from the end of May to the beginning of July 1955 to the area of the Irminger Sea on board the fishery research ship "Anton Dohrn", are presented as far as they concern investigations in the marine chemical field. The content of phosphate, dissolved oxygen and, for the first time in the open sea, the intensity of fluorescence and the degree of turbidity distribution are determined. The most remarkable feature in the distribution of phosphates is, at first, the phosphate maximum layer at medium depths, a phenomenon well known from other oceanographic measurements. In this case, it does, however, not extend in a horizontal direction, but emerges from depths ranging from 1200 m in the East to 300 m in the West, thus, in general, following the inclination of the isopycnic lines. This corresponds well with the relatively low concentration of phosphate in the surface water of the Gulf Stream in the East and with the relatively high concentration of phosphate in the surface water of the Irminger Sea proper in the West. As a noteworthy feature, the only station situated in the Norwegian Waters reported relatively low concentration of phosphate at the surface as well as in the deep parts of its surrounding waters.

From the corresponding investigations of oxygen it can be seen that the concentration in this material undergoes far more variations and irregularities than does the distribution of phosphate. Nevertheless, the course of the oxygen minimum corresponding to the intermediate phosphate maximum can be read from the results of investigation. Of particular interest are the results obtained in measuring fluorescence which, for the first time and for the open sea, too, gives an idea of the behaviour of this chemo-biological indicator property. These measurements, at the same time, disclose a fluorescence maximum that is analogeous to the intermediate phosphate maximum or the oxygen minimum, respectively, but, in addition, is accompanied by a pronounced fluorescence minimum layer situated above the fluorescence maximum. Another interesting feature is that of a fluorescence maximum reported from the station in the Norwegian Sea, which, as mentioned above, is distinguished by an extreme phosphate minimum.

The turbidity measurements lead to results entirely different from those described before. Though in the deep sea, areas are observed distinguished by weak yet pronounced turbidity maxima and minima, nothing can be found that may support the suggestion that, a connection, according to the law of nature, may exist between turbidity and the chemical phenomena investigated before.