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Abstract

Ocean warming and species exploitation have already caused large-scale
reorganization of biological communities across the world. Accurate projec-
tions of future biodiversity change require a comprehensive understanding
of how entire communities respond to global change. We combined a time-
dynamic integrated food web modeling approach (Ecosim) with previous data
from community-level mesocosm experiments to determine the independent
and combined effects of ocean warming, ocean acidification and fisheries
exploitation on a well-managed temperate coastal ecosystem. The mesocosm
parameters enabled important physiological and behavioral responses to cli-
mate stressors to be projected for trophic levels ranging from primary pro-
ducers to top predators, including sharks. Through model simulations, we
show that under sustainable rates of fisheries exploitation, near-future
warming or ocean acidification in isolation could benefit species biomass at
higher trophic levels (e.g., mammals, birds, and demersal finfish) in their cur-
rent climate ranges, with the exception of small pelagic fishes. However, under
warming and acidification combined, biomass increases at higher trophic
levels will be lower or absent, while in the longer term reduced productivity of
prey species is unlikely to support the increased biomass at the top of the food
web. We also show that increases in exploitation will suppress any positive
effects of human-driven climate change, causing individual species biomass to
decrease at higher trophic levels. Nevertheless, total future potential biomass
of some fisheries species in temperate areas might remain high, particularly
under acidification, because unharvested opportunistic species will likely ben-
efit from decreased competition and show an increase in biomass. Ecological
indicators of species composition such as the Shannon diversity index decline
under all climate change scenarios, suggesting a trade-off between biomass
gain and functional diversity. By coupling parameters from multilevel
mesocosm food web experiments with dynamic food web models, we were
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INTRODUCTION

Marine ecosystems and resources are facing significant
challenges due to the cumulative effects of multiple
global and local stressors, including overfishing, eutro-
phication, pollution, habitat destruction, climate change,
and ocean acidification (OA) (Cheung, 2018; Halpern
et al., 2015). Hence, significant effort is needed to gener-
ate reliable projections of future changes in marine food
webs and fisheries productivity.

Most past attempts to forecast climate-driven changes
in populations of fisheries species have incorporated the
direct impact of temperature on species physiology using
deterministic food web models (Blanchard et al., 2012;
Brown et al., 2010), end-to-end biogeochemical models
(Olsen et al., 2018), and species distribution models
(Cheung et al., 2011; Peterson et al., 2002). Most of these
projections, however, are predominantly based on species
thermal niches or ecological proxies that lack consider-
ation of real-time observations from natural systems or
experimental settings. Thus, they ignore the potentially
large role of indirect (e.g., shifting predator—prey relation-
ships) and interactive drivers of change (e.g., with OA)
on model outcomes. Aside from thermal niches, the
occurrence and abundance of species are also heavily reg-
ulated by biotic interactions (Fordham et al., 2013; Mellin
et al., 2016). While modeling architectures have been
developed to improve our understanding of how multiple
drivers of global change (including warming, acidification,
and exploitation) interact and affect marine communities
(Fulton & Gorton, 2014; Kaplan et al., 2010; Koenigstein
et al., 2018), accounting for complex biotic responses to
multiple stressors in food webs has proved difficult.

The role of indirect effects of climate change
(e.g., shifting predator-prey relationships) on marine com-
munities has received less attention than direct effects,
even though they are likely to strongly shape future marine
communities (Lord et al., 2017; Nagelkerken et al., 2017).
Empirical data that enable biotic interactions to be quanti-
fied under near-future climate change scenarios is urgently
needed to better project and understand the role of direct
and indirect drivers of climate change on biological

able to simulate the generative mechanisms that drive complex responses of
temperate marine ecosystems to global change. This approach, which blends
theory with experimental data, provides new prospects for forecasting climate-
driven biodiversity change and its effects on ecosystem processes.

biodiversity change, climate change, fisheries exploitation, food web models, multiple
stressors, species interactions, trophic modeling

systems. A promising avenue is to use large-scale
mesocosm experiments to quantify the potential effect
of global warming on the strength of biotic interactions,
rates of species turnover, and composition, along with
many other key ecological processes that drive population-
and community-level responses to climate change
(Fordham, 2015; Nagelkerken et al., 2020). Although
scale, closed boundaries, simplified ecological communi-
ties, and replication can impose challenges for researchers
using mesocosm experiments, they have the potential
to quantify community-to-ecosystem-level responses to
scenarios of global warming (Sagarin et al., 2016), particu-
larly if climate change mesocosm experiments align with
regional climate projections for their study system (Korell
et al., 2020).

Previous dynamic food web simulation models have
shown that scenarios of increased temperature or acidifi-
cation, modeled in isolation, could either positively or
negatively affect future fisheries through increased pri-
mary productivity (Brown et al., 2010) or higher mortality
of invertebrates (Griffith et al., 2011; Marshall et al., 2017),
respectively. However, the cumulative effects of ocean
warming and acidification on complex natural food webs
remain largely unknown, despite both stressors being a
consequence of human-induced greenhouse gas emis-
sions, affecting marine systems in unison (Brierley &
Kingsford, 2009). Furthermore, food chain length may
alter community responses to global change in aquatic
systems, although this has hardly been studied, espe-
cially at higher trophic levels (Alsterberg et al., 2013;
Hansson et al., 2013). Species that occupy the fourth trophic
level of food chains, such as birds, mammals, or large sharks,
are therefore of particular interest. Using an experimental
mesocosm food web, Nagelkerken et al. (2020) predicted that
climate change would eventually result in bottom-heavy food
webs that will also experience collapse at the higher tro-
phic levels. A combination of climate change impacts and
overfishing may further exacerbate the decline of ocean
health and societal benefits (Sumaila & Tai, 2020).

We combined empirical data from mesocosm experi-
ments with dynamic food web models to test whether
(1) the combination of ocean warming and acidification
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was likely to exert synergistic, additive, or antagonistic
effects on food web structure and function in a temperate
coastal ecosystem and (2) whether increased exploitation
would amplify these projected responses to increased
greenhouse gas emissions. We used data from some of
our previous mesocosm experiments to integrate physiologi-
cal and behavioral responses of a wide range of organisms
to different scenarios of warming and/or acidification into
the food web model, based on observations at trophic levels
ranging from primary producers to top predators (including
sharks). Model results suggested that integrating mesocosm
experiments with dynamic food web models could provide
ecologically robust frameworks for exploring the conse-
quences of climate change on the structure and function of
future food webs and their production capacity.

MATERIALS AND METHODS

We integrated empirical data from two food-web-level
mesocosm studies into an existing food web model for
the Port Phillip Bay (PPB) temperate coastal marine
ecosystem (Victoria, Australia) (Koopman, 2005) using
Ecopath with Ecosim (EwE) (Christensen et al., 2008).
Additionally, we made substantial updates and changes
to the existing model by incorporating several additional
functional groups with higher taxonomic resolution,
including multistanza groups. EwWE applications that
account for uncertainty and are based on good data points
can improve fisheries management advice (Plaganyi &
Butterworth, 2004). PPB is regarded as a sustainably
managed ecosystem in terms of its fisheries exploitation
(Flood et al., 2014). We calibrated the PPB food web model
with fish biomass, fisheries catches and effort, and seawa-
ter temperature data (years 1990-2015) and carried out a
retrospective test to assess the quality of the model trans-
ferability (mesocosms to open water food web model) and
then simulated likely future community-level changes for
the PPB ecosystem (Figure 1). The entire methodological
approach can be explained in two steps. First, in Step A,
we presented the mesocosm study and how we estimated
the parameters from the experiments to use in the model.
Then, in Step B, we provided the details of how we used
these estimated parameters into the food web model.

Mesocosm experiments

Experimental design and seawater
manipulation

We used two of our own, previously published, species-
rich multilevel mesocosm food web experiments that

included live habitats and natural abiotic variability
(Appendix S1: Figure S1) to explore future changes in
marine food webs (mesocosm designs provided in:
Pistevos et al., 2015; Ullah et al., 2018). Due to the intrica-
cies of the food webs, housing chondrichthyans and fish
together for climate change response experiments was
impractical. Specifically, measuring the prey consump-
tion capacity of chondrichthyans in a single experiment
is challenging, considering their size, habitat, and feeding
patterns. While we combined data from two distinct
experiments, we ensured consistency in both mesocosm
studies by maintaining a uniform design with elevated
CO, and temperature, with three replicate mesocosms per
treatment combination: both mesocosm systems (1) assumed
and simulated an increase in future temperature of
approximately +2.8 °C (exposed to the climate treat-
ments for >4 months), (2) were multitrophic from pri-
mary producers (e.g., algae) through primary
consumers (e.g., amphipods) to predators (e.g., either
sharks or carnivorous fishes), (3) included a total habi-
tat volume of ~1800 L, (4) were supplied by a flow-
through of seawater from the same source ensuring
comparable nutrient levels, and (5) replicated a similar
ecosystem using the same source of water. The similar-
ity between the two mesocosm systems is critical as geo-
graphical variation and experimental contexts can alter the
effect of climate change on consumer-resource interactions
and lead to additional sources of variability (Marino
et al., 2018).

Model parameters for various functional groups, with
the exception of chondrichthyans, were derived from the
mesocosm study conducted by Ullah et al. (2018). Conse-
quently, we provide a summarized version of the experi-
mental design and seawater manipulation below.

To simulate shallow temperate coastal ecosystems
typical of PPB, 12 circular mesocosms, each containing
1800 L water, were set up in a temperature-controlled
room and ran for 4.5 months. We collected habitats and
organisms from a depth of 1-5m within 60 km of the
mesocosm facility. In each mesocosm, three primary local
habitats were replicated (two patches of each habitat per
mesocosm): rocky reef, seagrass, and open sand. Rocky
reefs comprised natural rocks collected in situ, with
attached macrophytes dominated by fucoid algae and
benthic invertebrates. We created artificial seagrass
habitats with green polypropylene ribbons attached
with epiphytes resembling the habitat of abundant local
Posidonia seagrass species. Mimicking natural seagrass
using green polypropylene ribbons is a common practice in
experimental studies (Bostrom & Mattila, 1999; Freestone
et al, 2020) because it is exceedingly challenging to
maintain seagrasses in long-term mesocosm experi-
ments. To replicate natural seagrass communities that
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FIGURE 1 Conceptual representation of how different food web parameters from mesocosm experiments can be integrated with

dynamic modeling approaches to project the state of future ecosystems. Several trophic-level groups are illustrated, for example, (1) primary

producers: phytoplankton, macroalgae, seagrass, algal turf, microphytobenthos; (2) primary consumers: gastropods, shrimps, copepods,

bivalves, polychaetes, sea urchins, sea stars, sponges, ascidians, tanaids; (3) secondary consumers: carnivorous (pelagic) fish, omnivorous

fish, carnivorous (benthic) fish; (4) tertiary consumer: scorpionfish (behavioral experiment). Organism symbols were drawn by the authors

or were courtesy (free to use) of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.

umces.edu/symbols/), and partly redrawn by the first author.

harbor existing epiphytic communities, we placed all
the artificial seagrass habitats in situ for 2 weeks to
allow for epiphytic colonization before planting them
into fine silica sand. The artificial seagrasses mimicked
Posidonia spp., which are the most dominant seagrass in
South Australian Gulfs. There was open sand habitat in
the area between and around these patches. Additionally,
0.025 m? of natural sediment collected between patches of
live seagrass was added to the open sand and sand within
seagrass patches in the mesocosm. Fish and invertebrates
were introduced into all mesocosms and distributed
evenly.

A continuous flow-through system was used to supply
each mesocosm with 2300 L day ™" of unfiltered seawater
that contained nutrients and planktonic propagules. By

using a diffuser, we created a light circular current in the
mesocosms to simulate tidal water movement in alternat-
ing directions every 6 h. Each mesocosm was equipped
with a lamp whose spectrum was close to sunlight (72.83
+ 24.78 pmoles/m?/s photon flux) and represents a local
water depth of 6 m. The control temperature in our
mesocosm experiment corresponded to 21°C, the local aver-
age summer temperature. A header tank preconditioned to
elevated pCO, levels was used for each mesocosm to
achieve the target OA (control system ACQ110 Aquatronica,
Italy). Submersible titanium heaters were used inside 60-L
bins to supply water for future warming treatments. We
monitored temperature and pH daily and measured
salinity fortnightly. We also measured total alkalinity
fortnightly via Gran titration from samples of water
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(888 Titrando, Metrohm, Switzerland). Our mesocosms
are considered autonomous systems that replicate
natural day-night fluctuations in pH. For further details
of the experimental design, seawater manipulation, and
associated output see Ullah et al. (2018).

Consumer composition in mesocosms

Our research centered on a group of highly mobile
omnivorous and carnivorous consumers that comprised
juvenile forms of six different fish species and two shrimp
species from the same genus. Initially, each mesocosm
was populated with seven to 10 specimens of each fish
type and 10 shrimps, totaling 55 individuals per
mesocosm, all between 10 and 40 mm in size. These
mesocosms underwent climate treatments for a time
span of 4.5 months. Such prolonged exposure played a
dual role: It promoted a profound acclimatization in the
consumers and also permitted both trophic and competi-
tive interactions to influence this consumer composition.
Consequently, as the consumers adapted to the unique
conditions of their environment through growth and
survival, their numbers averaged 25.1 + 4.4 (+SD) per
mesocosm at the end of the experiment (Appendix S1:
Table S1).

Species interaction under future climate change

We used data from our previously published mesocosm
experiments to estimate predator-prey interactions within
the food web models (Pistevos et al., 2015; Ullah
et al., 2018). We derived values from the mesocosm
experiments to particularly estimate the vulnerability
of prey to predators, the effective search rate of preda-
tors for their prey, and mortality for some groups as a
function of biomass.

Here, prey is classified as “vulnerable” or “invulnerable,”
with “vulnerability” determining the speed of their transi-
tion between these groups. Effective search indicates how
swiftly predators locate and consume prey, taking into
account prey handling time. We calculated the vulnera-
bility of lower trophic level (trophic level <2) species/
functional groups to their predators using data from
stomach content analysis of fishes (referred to as a direct
approach) used in the mesocosm experiments through
in situ feeding trials. Fish were first starved for 20 h
(i.e., gastric evacuation), allowed to freely feed for 4 h,
and then captured and frozen using a liquid nitrogen
Dewar (—196 °C). Stomach contents were examined
under a microscope to identify and count different prey
items at the level of individual taxa (e.g., tanaid shrimps,

annelids). Prey weight was calculated by multiplying
the average mass of each prey item by its count, and the
relative weight of different prey groups was determined
based on their contribution to the total prey weight.
This information was then assigned to individual fish
species. Finally, this diet information (consumption rate
as milligrams per 4 hours per individual) was used to
calculate the relative predation pressure on species
occupying at trophic level <2 by the species occupying a
trophic level of >2 in each of the three climate treat-
ments relative to that of the controls in the mesocosm.

The estimation of prey vulnerability through in situ
feeding trials in mesocosms is robust because feeding at
the community level incorporates the complex interplay
between morphology, physiology, behavior, population
dynamics, and predator-prey interactions (Brodeur et al.,
2017). For more details about the stomach content analysis
see Ullah et al. (2018).

We applied an indirect approach to estimate the
vulnerability of prey groups (trophic level >2) for higher-
order carnivorous trophic groups (i.e., for which omnivo-
rous and carnivorous fishes in the mesocosms acted as
their prey) under warming and acidification. The indirect
approach was based on behavioral experiments related
to the foraging behavior of omnivorous and carnivorous
fishes in the mesocosms, where degree of risk tasking
was used as a proxy for prey vulnerability to their preda-
tor (Goldenberg et al., 2018). Briefly, after 2.5 months of
exposure to the climate treatments, five species of prey fish
(Neoodax balteatus, Haletta semifasciata, Favonigobius
lateralis, Girella zebra, and Acanthaluteres vittiger) were
exposed to a fish predator (Gymnapistes marmoratus) as
part of a behavioral test. The predator was caged, and a
small container in front of the cage emitted food cues to
attract the prey fish to the general area and encourage
risk-taking behaviors.

In each mesocosm, a total of three behavioral trials
lasting 7 min each were conducted. Using video record-
ings, the position of the individual prey fishes throughout
the trial was assessed through manual tracking using the
software Solomon Coder. The field of view of the camera
was subdivided into an area distant from the food cue,
which also provided shelter habitat and the area close to
the food cue, which was unsheltered and faced the preda-
tor cage. The area close to the food cue was further
subdivided into the side directly in front of the predator
cage, where predation risk was highest and the side
farther away.

Three response variables that represent prey vulnera-
bility were derived: (1) “Prey attraction” was calculated
as the percentage of time spent in the open area close to
a food cue relative to the time spent in the entire field of
view, (2) “food search activity” was given as the number
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of position changes in the area close to a food cue relative
to the time spent in this area, and (3) “boldness” was
measured as the percentage of time spent directly in front
of a predator within the area close to a food cue relative
to the time spent in the entire area close to the food cue.
The three response variables were averaged across treat-
ments and given equal weighting to derive a composite
vulnerability index of prey to its predator, which was
then used as a forcing function in the model.

Effective search rates for Port Jackson sharks were
determined by the time taken to locate hidden prey in the
sand. Data on sharks’ hunting abilities, primarily through
olfaction under varying climate conditions, were sourced
from Pistevos et al. (2015). Briefly, sharks, after an average
36-day exposure to experimental conditions and without
prior feeding, were tested for their ability to distinguish
between two sand-filled trays. One tray had a mix of prawn
meat and fresh cockles, while the other, a control,
contained only empty cockle shells. With an average sepa-
ration of 5cm between trays, sharks’ success in locating
prey was observed for 40 min. The time each shark took to
find the hidden food was then recorded to calculate the rel-
ative effect size under different climatic conditions.

Primary producer groups, including phytoplankton,
phytobenthos, mat-forming algae, and macrophytes, were
assessed for their biomass in mesocosms. Phytoplankton
biomass (4 L/mesocosm) was estimated by filtering water
with specific fiber filters (Whatman GF/C filters of
4.7 cm diameter), while phytobenthos samples were col-
lected using benthic samplers. Biomass was measured
using chlorophyll a (chl a) and converted to wet weight
through two established conversion factors: transforming
chl a to carbon (40:1-carbon to chl a ratio) and then
carbon to wet weight (Wet weight = Carbon x 10)
(Jones, 1979). Macrophytes and mat-forming algae were
sampled from various habitats and dried (65 °C for 24—
48 h), and their dry weight was converted to wet weight
using a factor of 10. The production/biomass (P/B) ratios of
these producers were determined using community photo-
synthesis measurements and the standard average P/B
ratio for primary producer groups published for related
marine ecosystems (Bozec et al, 2004; Murray &
Parslow, 1997; Pinkerton et al., 2008; Wabnitz et al., 2010).
We then used these ratios to calculate the relative produc-
tion rate for each functional group based on in situ com-
munity photosynthesis for each mesocosm:

x —_
SabsxB; 100

aP/ X B;) X100 CM
Py = {—( /i % Bi) }/Bi,
where £/; is turnover rate calculated for group i as model
input, aP/; is the standard average turnover rate assigned
for group i, B; is the biomass of group i sampled from

each mesocosm, > ab/4; X B; is the total theoretical pro-
duction for all functional groups, CM is the community
photosynthesis measured in situ from the mesocosm, and

(aBgixBi) X100 _ oy
{ ZaP/BiXBi X 00
functional group i to total community production mea-
sured in each mesocosm. These values were later used
to calculate the difference in productivity of different
functional groups under different treatments.

} is the calculated production of

The methods for calculating the effect size as a model
input (Ecosim) for all these parameters, derived from
mesocosm data, are provided in the next section, “Food
Web Model” (“Estimation of model parameters for present
day and future scenarios”).

PPB food web model

The PPB food web model was developed using the
Ecopath food web modeling approach to create a baseline
snapshot (static model) of the ecosystem for the year
1990 and then extended to a time-dynamic (1990-2015)
simulation model (Ecosim) to quantify the flow of energy
between functional groups (Christensen et al., 2008).
We chose this hindcast simulation period based on the
available time series data. The PPB food web model has
53 functional groups. The model requires four key primary
input variables: biomass (B), P/B ratio, consumption/
biomass ratio (Q/B), and diet composition.

Differential equations were used to estimate biomass
fluxes for each species and/or functional group within
the food web using foraging arena theory (Ahrens
et al., 2012).

Following foraging arena theory, predator consump-
tion rates (Q;) are quantified using a nonlinear relation-
ship between prey and predator (Equation 1), which
assumes that only a portion of the biomass of the prey
is available to a predator. This means that the biomass
of prey i is divided between a vulnerable and a
nonvulnerable state. The vulnerability concept incorpo-
rates density dependency and expresses how far a group is
from its carrying capacity (Christensen & Walters 2004;
Christensen et al., 2008). The vulnerability parameter
(rate) can be modeled both as top-down and bottom-up
controls of the predator—prey interactions. For example,
vulnerabilities >2 describe top-down control of the
predator-prey relationship, where the predator biomass
drives the prey mortalities, while vulnerabilities <2
define bottom-up control, where the biomass of the
predator has little effect on the predation mortality of
that prey. For each predator-prey interaction, we calcu-
lated Q;; at time ¢ as
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_ ay Xy X Bi(t) X Bi(t) X f(f)
Qy(t) =~ Zj)(vijxaijijj(t) B W

where a;; is the effective search rate of predator j feeding
on prey i, B; is the biomass of the prey, B; is the predator
biomass, and v;; is the vulnerability of prey i to predator
Jj (Christensen et al., 2008). The forcing function f () was
used to account for external drivers changing through
time affecting Q;. The details of the modeling approach
are described in Appendix S1.

Simulating climate and fishing scenarios in
food web models

Climate change was incorporated into model projections
using forcing functions that temporally affect the con-
sumption and production of functional groups (Ainsworth
et al., 2011; Cornwall & Eddy, 2015) based on observations
from the mesocosm experiments. Specifically, we used the
estimated mean (across species and treatments) effects
of warming, acidification, and their combination on prey
vulnerability, food search activity (higher-level consumer),
mortality, and productivity (primary producers) of trophic
groups to alter modeled consumption (Q/B;) and production
(P/B)) rate.

The model’s initial conditions for simulations reflect
a stable exploited system, with biomass levels and level of
fishing effort focused on the year 2015. We used a burn-
in period (focused on 2015 conditions), to ensure that the
food web model was in equilibrium, and then projected
annual ecosystem change for 85 years under a set of scenar-
ios: no-climate-change (NC) (baseline), ocean warming (T),
OA, and their combination (OAT). With +2.8 °C warming
and a pCO, of 900 ppm (pH = 7.89), we simulated climate
conditions predicted for the end of this century following a
business-as-usual emission scenario (Representative
Concentration Pathway 8.5, Bopp et al., 2013). For the
PPB region specifically, a 1.9-3.8 °C increase from a
1995 baseline is forecast (Clarke et al., 2011). The aver-
age temperature in PPB in the warmest month (Febru-
ary) was 20.5 °C between 2010 and 2015, which is close
to the ambient summer temperature of 21 °C applied in
our mesocosm experiment, which in turn was based on
a 5-year data set of two local loggers (5m depth,
2010-2015, SA Water). Given the fully crossed two-
factor design and high cost per mesocosm unit, only one
emission scenario could be tested. The uncertainty in
biomass (B), production (P/B), and consumption (Q/B)
rates and ecotrophic efficiency (EE) parameters was
explored through 100 simulations, with these parameters
being randomly varied (in combination) within bounds of
a +20% coefficient of variation and thus made it possible

to examine the more influential parameters in model
predictions (Essington, 2007).

The NC scenario assumes that model parameters will
not change in the future, with model drivers, including
fishing effort, set to the last year of the historical observa-
tion data (2015). For the three climate change scenarios
(T, OA, and OAT), we incorporated direct and indirect
climate-driven changes in species interactions, the
mortality of trophic functional groups, and productivity
of primary producers in the food web.

The effects of climate change were assessed by
comparing biomasses and ecological indicators observed
under the NC scenario with that of the climate change
scenarios. As an additional driver, fisheries exploitation
has the capacity to alter how fish respond to climate on a
physiological level (Duncan et al., 2019). However, little
is known about how exploitation rates are likely to
change by the end of the century because fisheries man-
agement is generally done at decadal temporal resolutions
or finer (Fulton et al., 2018). Therefore, exploitation was
initially held constant at 2015 levels for all 21st-century
climate change scenarios. Afterward, we ran additional
scenarios to test the response of future food webs to
increased exploitation. We did this using a scenario
approach that increased exploitation by 1.5-, two-, and
five-fold compared to present-day fishing pressure for
all target species. Even though fishing pressure had
decreased and is relatively low in our model system, we
included increased fishing pressure as a stressor as fish-
eries (over)exploitation is a major issue across marine
ecosystems globally, and many of these systems will be
subjected to fishing pressure as well as climate stressors.

Estimation of model parameters for present-day
and future scenarios

Experimental data from the two mesocosms and published
field data were used to calculate the model input variables
(Appendix S1: Tables S2, S5, and S6). Food web models
that considered climate change scenarios used experimen-
tally derived vulnerability parameters, while models without
climate change scenarios used model-fitted vulnerability
parameters to simulate future food web change.

We calculated the effect sizes (mean) of the climate
change treatments relative to the present-day control for
prey vulnerability, search activity, mortality, and produc-
tivity using the absolute values. These effect sizes were
used to derive the model forcing functions for different
climate change scenarios (OA, T, and OAT). The effect
sizes for a given parameter were standardized to the base-
line scenario (no change) by dividing the response value
of each scenario by the corresponding baseline value for
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that parameter. This resulted in a consistent baseline
value of 1. We then used linear interpolation to generate
an annual time series for each of the parameters under
different climate scenarios to use as forcing functions
from 2015 to 2100. Forcing functions were used on
specific species in the model as detailed in Appendix S1:
Table S2. For instance, time series generated from the
vulnerability index of carnivorous fish were applied
(as forcing functions) to higher-trophic-level predator
groups that potentially prey on them. Similarly, time
series created from the vulnerability index of zooplank-
ton were applied to all predator groups that feed on
them. The feeding categories of the model groups can be
found in Appendix S1: Table S3.

While it is common practice in climate change ecology
to interpolate temporally between climate snapshots
(Fordham et al., 2012), doing so can potentially mask
important decadal variation (Fordham et al., 2018). We
were limited to this approach because the mesocosm
experiments were snapshots focused on the year 2100.
We used community-level groups because indicators at
the community level are reliable for detecting the effects of
perturbations on marine ecosystems (Fulton et al., 2005).

Analysis of model outputs

We pooled food web functional groups into 10 community
levels, including pelagic groups (mammals, birds, cephalo-
pods, and pelagic finfish), demersal groups (chondrichthyans
and demersal finfish), and their prey (benthic crustaceans,
invertebrates, small pelagic crustaceans, primary producers)
(Appendix S1: Table S3). We calculated effect sizes for
changes in biomass under different model scenarios
using Hedges’ g (Lakens, 2013). We calculated and com-
pared key biodiversity indicators under different model
scenarios, including the Shannon index (Shannon &
Weaver, 1963) and Kempton’s Q index (Ainsworth &
Pitcher, 2006). The Shannon diversity index captures
changes in evenness, whereas Kempton’s Q index captures
changes in both evenness and richness at the level of func-
tional groups (Appendix S1: Section S3.1).

Model validation

We evaluated the quality of input data for the PPB model
using food web diagnostics (Link, 2010), performed calibra-
tion of the time dynamic Ecosim module (see Appendix S1),
assessed model transferability using independent validation
data, and conducted both an ecosystem model skill assess-
ment (Olsen et al., 2016) and a global sensitivity analysis
(Fordham et al., 2016).

To verify that parameters from our mesocosm were
transferrable to the PPB coastal marine system, we
performed retrospective tests (Appendix S1: Section S4.2).
For this purpose, we simulated historical abundances
(1993 and 2011) using a mesocosm model and a PPB
submodel (simplified) that only included functional
groups that were in the mesocosm experiment. The PPB
submodel was developed based on field data, whereas
data for the mesocosm model were derived primarily
from mesocosm experiments. We ran hindcast simula-
tions and validated them using independent catch data
(VFA, 2016) (Appendix S1: Table S4).

To assess the skill of the PPB model (full), we used
independent observation data for two model functional
groups (Appendix S1: Table S4) and calculated six model
skill assessment metrics as has been recommended for
ecosystem model assessments (Olsen et al., 2016; Stow
et al., 2009). These model skill assessment metrics were
root mean square error (RMSE), average error (AE), average
absolute error (AAE), Pearson (P) and Spearman (S) corre-
lation, and modeling efficiency (MEF).

We determined the sensitivity of Ecopath input
parameters—biomass (B), production (P/B) and consumption
(Q/B) rates, and ecotrophic efficiency (EE)—on estimates of
change in biomass under a scenario of projected ocean
warming and acidification (OAT) and a scenario that
included a moderate level of exploitation as well as OAT.
To perform these tests, we used the built-in Monte Carlo
routine within the Ecosim module, which allows model
input parameters to be varied (Coll & Steenbeek, 2017;
Heymans et al.,, 2016). Specifically, we ran 100 Monte
Carlo simulations with B, P/B, Q/B, and EE varying ran-
domly within bounds of +20% CV. Initial and projected
future biomass for three community groups (cephalopods,
pelagic finfish, and invertebrates) representing three trophic
levels were recorded for the year 2100. We used generalized
linear models (GLMSs) to explore the relative importance
of different model input parameters on projected changes
in future biomass (Fordham et al, 2016). We did this by
calculating standardized regression coefficients (SRCs),
along with the coefficients and their confidence intervals.
Furthermore, we also showed the effects of parameter
uncertainty on model outputs for some of the major
species of the PPB model.

RESULTS

Biomass changes under future climate
change

Model simulations show that the total biomass of most
higher-trophic-level community groups (mammals, birds,
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cephalopods, chondrichthyans, and demersal finfish) is
likely to benefit from ocean warming (T) or acidification
(OA) when modeled separately (Figure 2; Appendix S1:
Figure S2). However, the combination of the two stressors
has an antagonistic effect on biomass increase. At the level
of individual species or functional groups, the positive
effects on biomass are more disparate. Some species or
functional groups declined considerably, others increased,
while only a few increased dramatically, causing an
overall large biomass increase at higher trophic levels
(Appendix S1: Figures S3 and S4).

Our models project an average increase in marine
mammal biomass of 85% by the end of the 21st century
under the combined effect of acidification and warming
(OAT) compared to NC and under current (low) levels
of fish exploitation (“no change” scenario) (Figure 2A).
Modeling acidification (OA) and warming (T) separately
resulted in even higher average increases in marine mam-
mal biomass, 254% and 213%, respectively. Cephalopod

Mammals

Birds

Cephalopods

-
-
f——

Chondrichthyes

Pelagic finfish

&
£
o

-

Demersal finfish

Community groups

Benthic crustaceans

Invertebrates

Small pelagic crustaceans

o

e

7

s

=,

& ¥
~

W -

biomass is projected to increase by 144% under OAT, while
warming and acidification in isolation likely boost biomass
by 236% and 205%, respectively. Although chondrichthyans
showed the largest increase in their biomass under
warming, this increase in biomass was affected by
parameter uncertainty. Demersal finfish and seabirds
are projected to increase their biomass the most in
response to OA (252% and 166%, respectively), with a
smaller increase under T (128% and 73%, respectively).
Pelagic finfish showed a negative response to warming
(—24%), irrespective of acidification, with small pelagic func-
tional group (mostly planktivores) showing severe depletions
(>70%) under both T and OAT (Appendix S1: Figure S3).
Conversely, model simulations show that ocean
warming, either alone or in combination with OA, is
projected to exert a negative effect on lower-trophic-level
faunal groups, with the exception of benthic crustaceans
(Figure 2A). Invertebrates (predominantly mollusks
and other invertebrates that do not possess a chitinous

Il Nc
o, % onr
[ I
OA
*5 )

Trophic Level

To o
® I
e’ 1

®

Relative biomass

e
9

a B~ WN =

QOOO

P

Primary producers E\
0

-100
A biomass (%)

100 200 300 400 500 600 700 1 2 3 4 5

In standing biomass

FIGURE 2 (A)Mean (+95% CI) relative change in biomass (A %) in year 2100 for different food web community groups under three

climate change scenarios relative to a no-climate-change (NC) scenario. OA, ocean acidification; T, ocean warming; OAT, combined ocean
acidification and warming. Functional groups of food web models are aggregated to community groups for clarity. (B) The future standing
biomass (in kilograms per square kilometer; In-transformed) estimates for each community group. The bubble size is proportional to its

biomass. Exploitation rates for all scenarios are modeled at present-day rates. Silhouettes used in this figure created by the first author.
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exoskeleton; Appendix S1: Table S6), and small pelagic
crustaceans (zooplankton) are projected to experience
biomass declines of 7%-78% and 45%-70%, respectively,
under T or OAT (Figure 2).

The standing biomass of primary producers increased
slightly under OA (8%) and T (3%) but decreased by ~26%
under OAT (Figure 2A), largely driven by a reduction of
phytoplankton, micro-phytobenthos and macro-algal
biomass (Appendix S1: Figure S4). Turf algae, in contrast,
experienced a large increase in biomass (Appendix S1:
Figure S4).

Climate change effects under different
fishing exploitation scenarios

In the absence of ocean warming and acidification,
exploitation reduced (by 1%-32%) projected biomass in
the year 2100 for most higher-order community groups

1.5-fold
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Pelagic finfish - L

Demersal finfish

Benthic crustaceans

Community groups

Invertebrates

Small pelagic crustaceans -
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under a 1.5- to two-fold increase in exploitation rate
(Figure 3). Further increases in exploitation (up to five-fold)
exacerbated this declining trend (by 41%-66%) for mammals,
birds (due to reduced prey), and chondrichthyans. Negative
effects of up to a two-fold increase in exploitation were
suppressed at higher trophic levels (except for pelagic
finfish) under modeled climate change (OA, T, and OAT),
due to greater top-down control of consumers over prey
resources (Figure 2). However, a five-fold increase in
exploitation caused the biomass of mammals and birds to
collapse under warming scenarios, whereas opportunistic
groups such as cephalopods remained abundant (T: 178%;
OAT: 144%) (Appendix S1: Figure S5). While both T and
OA scenarios positively affected higher trophic levels in
the face of medium to large increases in exploitation, their
largely negative effects on lower trophic levels (primary
producers, small pelagic crustaceans, and invertebrates)
were not decreased by increased exploitation (Figure 3;
Appendix S1: Figure S6).

100 200

0 100 200 100 200

A biomass (%)

FIGURE 3 Mean (+95% CI) change in food web biomass (A %) in year 2100 under different fishing pressure and climate scenarios.

Responses are relative to the scenario of no change in climate and fishing (NC). OA, ocean acidification; T, ocean warming; OAT, combined
ocean acidification and warming. Functional groups are aggregated into community groups for clarity. Number of “folds” equals the

magnitude of increase in fishing pressure starting in 2015.
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Under the no change in climate and fishing (NC)
scenario, the Shannon diversity index remained relatively
stable in the future under 1.5- and two-fold increases in
exploitation, while it decreased by ~4% under a five-fold
increase in exploitation (Figure 4A). In contrast, the Shannon
diversity index declined under all global change scenarios
with the largest declines projected for OAT under a five-fold
increase in exploitation (Figure 4A). The Kempton Q metric
for higher trophic levels showed a stronger decline (after year
2070) under OAT compared to the other climate change
scenarios (Figure 4B). A five-fold increase in exploitation
resulted in a steep and immediate decline in the Kempton
Q index regardless of the climate change scenario.

Model validation and sensitivity

Hindcasts of biomass from models parameterized using
mesocosm data were correlated with empirical field data

for carnivorous fish and omnivorous fish (correlation
coefficient [r] = 0.54-0.82). The food web model skill
assessment showed that models parameterized with
mesocosm data are generally as skillful at projecting
changes in biomass as models parameterized with field
data (Figure 5). Model projections for carnivorous and
omnivorous fish biomass were relatively synchronous
with independent biomass (survey) data, regardless of
whether the models were parameterized using empirical
data from the field (r = 0.73, RMSE <0.0001; r = 0.82,
RMSE = 0.007, respectively) or mesocosm data (r = 0.69,
RMSE <0.0001; r=0.82, RMSE = 0.007, respectively).
Models parameterized with either field or mesocosm data
did worse at projecting observed temporal variability in
biomass for Port Jackson shark (r = 0.12, RSME = 0.011,
r = 0.29, RSME = 0.011, respectively). Estimates of model-
ing efficiency (MEF) suggest that models for omnivorous
fish and carnivorous fish do better than random
(MEF >0). This was not the case for Port Jackson sharks
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FIGURE 4 Ecological indicators of change in community composition, showing (A) Shannon diversity index and (B) Kempton

Q index. Gray shadows represent the 95th and 5th percentiles. NC, no change in climate from present-day levels; OA, ocean acidification;

T, ocean warming; OAT, combined ocean acidification and warming; CL, current level of fishing effort. Number of “folds” equals the

magnitude of increase in fishing pressure starting in 2015.
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field (pink) and mesocosms data (green) between years 1993 and 2011. (A) Mesocosm transferability by comparison with actual standing
catch biomass (black dots). (B) Ecosystem model skill assessment: root mean squared error (RMSE), average error (AE), average absolute
error (AAE), Spearman rank (S) and Pearson (P) correlation, and modeling efficiency (MEF). Y-axis is limited to values between —0.05 and

0.80. Fish images used in this figure were created by the first author.

(Appendix S1: Figure S7). Importantly, bias (AE) in projec-
tions of biomass remained low for all functional groups for
models calibrated with field (carnivorous fish: +0.24 g;
omnivorous fish: —0.02 g; Port Jackson shark: —0.12 g) or
mesocosm data (carnivorous fish: + 0.18 g; omnivorous
fish: —0.03 g; Port Jackson shark: —0.09 g).

The global sensitivity analysis (Appendix S1: Table S7)
showed that estimates of change in biomass (years 2015 to
2100) under an OAT scenario for pelagic finfish and inver-
tebrates are most sensitive to changes in the Ecopath input
parameter B followed by PB. For cephalopods, estimates of
change in biomass were most sensitive to changes in QB,
followed by PB. The relationships remained the same
regardless of whether or not exploitation was modeled.
The effects of parameter uncertainty on outputs for
some of the important species in the PPB model showed
that generally pelagic fish species and those at the top of
the food web (such as mammals and birds) were the
most sensitive to changes in model input parameters
(Appendix S1: Figure S10).

DISCUSSION

By integrating empirical data on species’ physiological
and behavioral performance from two large-scale
mesocosm experiments into dynamic food web models
and accounting for historical exploitation rates, we
found that near future climate change (i.e., next few
decades, up until the year 2100) was likely to benefit
the biomass of some animal species at higher trophic
levels in a temperate marine ecosystem experiencing
sustainable fisheries exploitation rates, albeit at a
potential cost to biodiversity. Model results suggested
that under future scenarios of warming, the biomass of
higher-order consumers and apex predators (species of
mammals, birds, cephalopods, chondrichthyans, and
demersal finfish) is likely to increase in some temper-
ate systems compared to a no-warming scenario, due
to amplified rates of prey consumption (pelagic finfish,
invertebrates, and small pelagic crustaceans), driven in
part by increases in biomass of benthic crustaceans
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(major prey group in the system). Accordingly, the changing
structure of temperate marine food webs under climate
change appears to be shaped by altered predator-prey
dynamics, resulting from a reshuffling of predatory and
prey species abundances in response to warming, and not
just an increased bottom-up forcing as expected with OA
as a sole climate stressor (Nagelkerken et al., 2020; Sswat
et al., 2018).

Organisms at higher trophic levels are likely to increase
their top-down control over their prey, and therefore
increase in biomass, in response to temperature-driven
increases in their metabolic rates (Brown et al., 2010).
Such increased top-down control by consumers in response
to warming has been experimentally shown for a three-
trophic-level food web (Goldenberg et al., 2017; Marino
et al., 2018), but insights for more complex food chains
(e.g., four trophic levels) are lacking. A recent meta-
analysis carried out from primary producers to top preda-
tors revealed that higher trophic levels showed stronger
tolerance to climatic stressors (Hu et al., 2022). This meta-
analysis showed a positive, but nonsignificant, effect of
warming on marine species when all response variables
(on survival, growth, reproduction, development, and
calcification) were pooled. Studies, however, have also
suggested that the top trophic level and every second
level below in a food web could benefit from climate
change, whereas the levels in between will suffer
(Hansson et al., 2013). The latter study showed that in
three-trophic-level systems, phytoplankton and planktivorous
fish (i.e., every second level) benefited from climate change,
while elevated temperatures in the absence of fish increased
zooplankton abundance but adversely affected phyto-
plankton biomass. A more complex food web structure
was experimentally studied by Nagelkerken et al. (2020),
who showed that under warming combined with acidifi-
cation, biomass expanded at the base and the top of the
food web but contracted at the center. However, they
argued that this represented a transitional state over the
shorter term of climate change, with forecasts of an even-
tual food web collapse into shortened, bottom-heavy, and
top-eroded food webs over the long term (Nagelkerken
et al., 2020). Hence, our observed food web response with
a biomass expansion at the top and a gradual compression
toward the bottom likely also represents a transitionary
food web structure under near-future climate change. In
the longer term, however, a collapse at the top is likely to
ensue as diminishing lower trophic levels will be unable to
continue to support increased biomass at the top. Such
negative cascading effects in natural food webs have been
shown, for example, in tropical reef ecosystems where
simultaneous declines in algal turfs and herbivore fish
biomass have negatively impacted species at higher levels
in the food chain (Capitani et al., 2021).

Responses to climate change can be significantly
mediated by food availability. Higher metabolic rates due
to warming might be beneficial to organisms when food
is plentiful but stressful when food is scarce (Auer
et al., 2016; Zeng et al.,, 2017). In some cases, larger
mobile organisms such as teleost fishes, crustaceans, and
some mollusks, with relatively high metabolic rates, may
be better at adjusting to environmental stress in terms of
growth rates than inactive, sessile groups (e.g., echinoderms
and bivalve mollusks) that have a lower ability to regulate
their physiology (Melzner et al., 2009; Portner et al., 2005).
A recent study by Lindmark et al. (2022) suggests that
under natural feeding conditions, the growth of fish may
differ from those observed in experimental studies under
food satiation. This suggests that changes in fish growth
are caused not only by direct physiological responses to
increased temperatures but also by changes in resource
availability caused by warming.

Acidification alone is not expected to enhance top-down
control by consumers because elevated CO, tends not to
increase the metabolism of consumers (Carter et al., 2013;
Kroeker et al., 2013). Recent food web studies showed that
enhanced primary production can increase prey availability
(i.e., herbivores), which can boost the growth of their con-
sumers under acidification (Nagelkerken et al., 2017; Sswat
et al.,, 2018). This was true for all higher-order predators
in our study, although for chondrichthyans the biomass
increase was weak. Elevated CO, is known to affect the
foraging behavior (e.g., reduced prey search efficiency
and impaired odor tracking) of both juvenile and adult
chondrichthyans, which might explain the reduced
increase in biomass for this group (Dixson et al., 2015;
Pistevos et al., 2015). Because of their different physiology,
highly active predators, such as marine mammals, birds,
and nonbony animals like cephalopods, tend to be more
tolerant to increasingly acidic environmental conditions
(Melzner et al., 2009). They benefit from amplified acidifi-
cation only if increased resource availability at the bottom
of the food web is transferred up the food web.

Although warming and acidification in isolation
showed striking positive effects on the biomass of preda-
tors, their combined effect was antagonistic for many of
the top consumers in the food web and caused a decline
in the biomass of many lower-order consumers. Previous
studies showed that warming and acidification could
antagonistically affect the growth of carnivores such as
sharks by affecting prey search time (Pistevos et al., 2015)
and of herbivores by increasing the degree of unpalatable
or poor-quality food (Poore et al., 2013). Two of the major
prey groups in our model (small pelagic crustaceans and
invertebrates) experienced collapses in their biomass
under the combined effect of warming and acidification,
reducing the availability of resources for higher-level
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consumers, resulting in reduced rates of change in
consumer biomass under this scenario. Chondrichthyans,
for instance, exhibited a notable biomass reduction under
the combined impacts of warming and acidification,
primarily because of a significant decrease in their main
prey group: filter-feeding mollusks.

In contrast to other invertebrates, benthic crustaceans
sustained a biomass increase under all modeled climate
scenarios, enabling an increase in the biomass of their con-
sumers (e.g., of demersal finish, and consequently of some
higher-order predators). Benthic crustaceans (e.g., lobsters,
crabs, and shrimp) are generally considered to have a
higher tolerance to acidification than other invertebrates
(Kroeker et al., 2013) and show, in some cases, positive
responses to warming (Faulkner et al., 2014). These obser-
vations could explain their successful propagation under
scenarios of global warming.

Exploitation is a local stressor that negatively affected
the biomass of all higher-order community groups in this
study, except pelagic finfish. However, warming and
acidification negated these negative effects, boosting the
biomass of top predators at exploitation intensities equal
to or smaller than a two-fold increase. Global-scale models,
with static fishing rates, suggest that some commercial fish-
eries (ranging from crustaceans and small and large fish to
sharks) at high latitudes could experience an increase in
future catches, owing to temperature-driven shifts in species
distributional ranges (Cheung et al., 2010). However, we
here limited our findings to changes in food webs based on
current species distributions (i.e., at their climate trailing
edges). Dynamic food web approaches also project a pro-
ductivity increase in pelagic fisheries in response to the
forecast warming of oceans (Blanchard et al., 2012) and
increased yields of commercially valuable fish stocks
by 2050 under future warming (Merino et al., 2012).
However, using a mechanistic population dynamics
model, a recent study revealed that ocean temperature
had a notable negative effect on the productivity of com-
mercially and ecologically important fish families such
as codfishes and sand eels (Free et al., 2019). While
these studies modeled food web responses or fisheries
productivity through a population model, they used
relatively simplified approaches, with phytoplankton
productivity as the only primary source of energy input,
exploited species as the primary elements of the food
web, and ocean warming as a single stressor. Here,
using a more inclusive dynamic food web modeling
approach, model results suggested that opportunistic
and less-targeted groups such as cephalopods continued
to flourish in their biomass irrespective of exploitation
rates, although demersal finfish, which were the major
fishery of the system, are likely to decline at higher
fishing levels (>two-fold). Overfishing is widespread in

many oceanic regions, and a five-fold fishing increase is
unlikely, unless there is a pristine fish stocks and a high
demand for harvest. Yet, studying how well-managed or
pristine fisheries stock respond to intense stressors
is insightful. Overall, model results suggested that the
greatest effects of exploitation on some of the future
temperate marine food webs are likely to arise at the top
of the food web when overexploitation coincides with
the combined effect of warming and acidification.

Ocean warming and acidification have a much greater
negative effect on functional diversity in food webs than
overexploitation. Future ocean warming and acidification
can significantly reduce diversity (i.e., Shannon diversity)
within temperate coastal food webs, even under present-
day exploitation levels, owing to declines in the biomass
of some primary producers (macrophytes and certain
species of phytoplankton), small pelagic crustaceans,
invertebrates, and pelagic fish species. Moreover, it can
cause a reduction in evenness (Kempton Q index) for
higher-order groups in the food web. These changes in
diversity and evenness are likely to enable ecological
opportunistic species to flourish (Woodruff, 2001), such
as high-order cephalopods and lower-order “weedy” turf
algae, leading to further simplification of community
structure (Nagelkerken & Connell, 2015). Together,
global warming and fishing will likely shift the distribu-
tion of biomass within the community and reduce species
diversity of future food webs.

By combining empirical data on species response
to climate change from large mesocosms with historical
population data (from scientific surveys and fisheries
landings) in a dynamic food web model, we moved from
experimental ecology to making projections and manage-
ment recommendations to mitigate the impact of climate
change on fisheries productivity. Blending mesocosm
experiments with “real-world” ecological models has
been questioned on the grounds that they are unlikely to
attain realistic projections (Carpenter, 1996). One reason
is that experimental outcomes can be swayed by commu-
nity structure, ecological complexity, and trophic levels
considered within mesocosms. Even the most complex
mesocosm food web is likely to exhibit lower functional
redundancy than natural food webs, as evidenced by our
mesocosm and PPB model. Also, mesocosms can inadver-
tently boost weedy species growth, such as turf algae,
adding uncertainty to future ecosystem predictions, as
observed in our mesocosm experiments. While the value
of mesocosm data in enhancing ecosystem model projec-
tions are clear, it is beneficial to test parameter transferabil-
ity with simpler models before integration. We demonstrate
that the mesocosm model does a fair to good job replicating
historical biomass trends for selected groups, consistent
with the simple PPB model that is built with similar
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numbers of functional groups. We advise modelers to
adjust parameters judiciously during these retrospective
tests, given the multitude of variables available to tailor
the model.

Our modeling approach, like other modeling tech-
niques, has its own caveats. El Nifio-Southern Oscillation
(ENSO) is known to influence Australia’s marine ecosystem
through its year-to-year dynamics in climate variability
(Lough & Hobday, 2011). These fine-temporal-scale climate
dynamics could not be captured in the mesocosm experi-
ment and, therefore, the food web model. This could affect
our modeled trajectories of biomass and community
composition. To calculate the vulnerability of fish to
their consumers, all fish species were classified into two
major categories, carnivores and omnivores (feeding
guilds). Although evidence suggests that OA negatively
affects the ability of some sharks to detect or perceive
food olfactory cues, thereby reducing their feeding ability
under a changing climate (Pistevos et al., 2015), our results
for chondrichthyans should be interpreted with caution.
The somewhat poor fit of modeled projections to observed
data for Port Jackson shark is likely to reflect an oversim-
plification of the food web structure for the validation
exercise (see Appendix S1). Likewise, important and unac-
counted uncertainties in the validation data (i.e., detection
probability) could partly explain the difference between
predicted and observed patterns of temporal variability in
biomass (Guillera-Arroita, 2017). Our results for mammals
(endothermic) and birds require careful interpretation
since climate change impacts were not directly accounted
for in model parameters for these groups but rather by
changes in prey availability and trophic cascades due to a
changing climate. Furthermore, even though large mesocosms
are close representations of nature (Stewart et al., 2013), in
natural systems, food web responses to climate change are
influenced by the community structure, ecological com-
plexity, and number of trophic levels included. Despite
these limitations, our study included the best available
historical data and the most robust estimates of physiology
and behavior responses to global warming for a four-
trophic-level natural temperate benthic food web system.

The study has practical applications and offers valuable
insights into the decision-making process for marine
ecosystem management in the context of climate change.
The findings shed light on the intricate responses of marine
ecosystems to global change, emphasizing the necessity for
comprehensive and multidimensional approaches to ecosys-
tem management. For example, the study provides valuable
insights into the potential impacts of combined warming
and acidification on marine food webs where biomass at
higher trophic levels under individual stressors may
diminish or even disappear when these stressors act
together, with the potential consequence of cascading

impacts and a simplified ecosystem. Consequently, this
information underscores the importance of adopting a
holistic management approach that considers multiple
variables and potential threats, as managing these factors
in isolation is unlikely to yield positive outcomes.
Policymakers can harness this knowledge to craft conser-
vation measures considering various stressors and their
combined effects. The study also highlights the signifi-
cance of considering functional diversity and evenness
within food webs when formulating policy guidelines. It
reveals that ocean warming and acidification may have
more pronounced negative effect on functional diversity
compared to overexploitation in some ecosystems. Thus,
conservation strategies should prioritize maintaining this
diversity for stable food webs, rather than just focusing
on overall ecosystem throughput. One key advantage of
the study is its use of mesocosms to bridge theoretical
and experimental models. This method closely replicates
real-world interactions, providing a realistic and reliable
representation of natural environments within controlled
settings, enhancing the reliability and applicability of the
study’s output.

CONCLUSIONS

Here we used a novel approach to simulate the effects of
global warming, OA, and fishing on the biomass and
diversity of species in a temperate coastal ecosystem,
using experimental data on the effects of ocean warming
and OA on species interactions and physiology and
historical fisheries (survey and catch) data. By simulating
the potential magnitude and direction of biomass
changes for different functional groups, we showed that
the structure and function of some future temperate
marine food webs under warming and acidification could
be altered by predator-prey dynamics at the top of the
food web rather than changes from the bottom up.
Consumers at higher trophic levels are likely to benefit in
the near future from ocean warming and acidification in
some temperate systems, albeit at a potential cost to func-
tional diversity. These potential benefits will be reduced
or lost when these stressors co-occur and are likely
to diminish over longer time scales. More importantly,
model results suggested that mesocosm experiments
could be integrated with food web models to better
model marine biodiversity and productivity in response
to 21st-century climate change.
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