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Abstract
Anthropogenic disturbances are having strong, negative effects on aquatic systems globally, altering ecological communi-
ties and potentially creating vacant niches for both native and non-native species (NNS). Globalization and new trade 
routes have amplified the spread and establishment of NNS by connecting disturbed areas worldwide. In this study, we 
conducted a comparative assessment of seasonal variations in amphipod communities at three southeastern Baltic Sea 
locations – two anthropogenically impacted and one protected habitat – to determine if native and NNS diversity differed 
among these habitats. Our study revealed nine amphipod species - of which two were NNS - across all three habitats. The 
impacted habitats had significantly higher native species richness and lower NNS abundance. Grandidierella japonica was 
the only NNS found at the impacted habitas. In the case of the protected habitat, NNS Gammarus tigrinus was dominant 
for most of the year. In autumn, dominance shifted in favour of the native Gammarus locusta and Microdeutopus cf. 
gryllotalpa. Grandidierella japonica was not detected there. Although anthropogenically impacted habitats may be under 
higher invasion risk, other environmental factors, such as salinity and temperature, may be driving the establishment pat-
tern of NNS and the resulting community structures. Furthermore, undisturbed and/or protected habitats may be highly 
vulnerable to invasions due to more tolerable environmental conditions, robust NNS populations and naïve native species 
to newcomers. Seasonality is an important aspect of ecological studies and must be taken into account, as omissions could 
potentially distort our understanding of the dynamics of ecosystems and prevent the detection of NNS.
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richness
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Introduction

Marine habitats are facing strong, negative impacts due to 
anthropogenic disturbances, with coastal zones particularly 
threatened (Halpern et al. 2008). These regions receive 
land-derived pollutants from a variety of sources, including 
agriculture and livestock farming, urban development, tour-
ism and industry. Ocean-based pollutants, on the other hand, 
arise from activities like shipping, fisheries, aquaculture, 
exploitation for fossil fuels (Halpern et al. 2008; Nogales 
et al. 2011), and – among others – the introduction of non-
native species (NNS; Simberloff et al. 2013; Linders et al. 
2019; Pyšek et al. 2020; Soto et al. 2024). The impacts of 
associated noise and light pollution are also being increas-
ingly recognised (Davies et al. 2014; Di Franco et al. 2020). 
Such disturbances alter the composition of communities and 
may lead to vacant niches and habitats (Wilkinson 2002; 
Lockwood et al. 2013), potentially creating opportunities 
for both native species and NNS (Daehler 2003).

The majority of NNS are found in areas affected by 
human disturbances, and several instances showed that such 
disturbances foster their establishment (Smith and Knapp 
1999; Minchinton 2002; Lockwood et al. 2013). This can be 
attributed to three main reasons. The first is high propagule 
pressure (i.e., introduction effort) between many anthro-
pogenically disturbed areas due to strong interconnectiv-
ity (Briski et al. 2011, 2012a; Lockwood et al. 2013). For 
example, shipping ports are not only exposed to high levels 
of heavy metals, noise and light pollution, and contain huge 
amounts of artificial structures, such as pontoons, wharfs 
and buoys, but they also receive huge amounts of ballast 
water containing diverse taxa from viruses and bacteria to 
macroinvertebrates and fishes (Briski et al. 2012b, 2013; 
Lin et al. 2022). Furthermore, the equipment used during 
the construction of those ports is typically moved from site 
to site, often without biosecurity protocols to prevent the 
spread of “hitchhiking” species (Lockwood et al. 2013). The 
second reason is connected to the high environmental toler-
ance of NNS to diverse stressors when compared to species 
without an invasion record (Briski et al. 2018; Paiva et al. 
2018, 2020; Casties et al. 2019; Martinez Reyes et al. 2024). 
This possibly stems from selection (i.e. survival of only 
prior-adapted individuals for particular environmental con-
ditions) before and during the invasion process (Hufbauer et 
al. 2012; Briski et al. 2018). Finally, NNS may alter invaded 
habitats, causing an additional disturbance, and facilitate 
the establishment of more NNS. This phenomenon creates a 
positive feedback loop – known as “invasional meltdown” 
(Simberloff and Von Holle 1999; Light and Marchetti 2007; 
Lockwood et al. 2013).

The Baltic Sea is exposed to many anthropogenic stress-
ors, including strong shipping activities (Kaluza et al. 2010; 

Knebel 2021), introduction of NNS (Casties et al. 2016), 
and increases in temperature and pCO2 levels exceeding the 
global average seven times (Nikulina et al. 2008; Belkin 
2009; Jutterström et al. 2014; Pachauri et al. 2014; Reusch 
et al. 2018). It is a large semi-enclosed brackish water sys-
tem characterized by a strong salinity gradient ranging 
between 2 and 24 ppt (Casties et al. 2016). Seasonality in 
the system also strongly influences community composi-
tions by affecting species behaviour, feeding, reproduction 
cycle, and even taxon survival (Fretwell 1972; Theurich et 
al. 2024). Yet, seasonality is rarely considered in ecological 
studies, particularly in connection to other anthropogenic 
activities and/or introductions of NNS (Wahl et al. 2020; 
White and Hastings 2020), and its omission could distort 
our understanding of ecosystem dynamics.

Amphipods are a globally distributed, diverse and wide-
spread taxonomic group, spanning various aquatic habitats 
from freshwater to fully marine environments (Cuthbert 
et al. 2020). They are highly abundant, playing important 
roles in various ecosystem functions including the detritus 
cycle, the microbial loop, and as prey in the diet of many 
fish species (Grabowska and Grabowski 2005; Gerhardt et 
al. 2011). Due to their tolerance of environmental stressors, 
and in particular wide ranges of salinity, accompanied by 
foraging plasticity, migration ability and tendency to drift, 
they are also very successful and often notorious invaders 
(Grabowski et al. 2007; Gerhardt et al. 2011; Paiva et al. 
2018; Cuthbert et al. 2020). Some well-know gammarid 
invaders include species such as Dikerogammarus villo-
sus, Gammarus tigrinus, Echinogammarus ischnus and 
Pontogammarus robustoides that have spread throughout 
European and North American brackish and freshwater 
ecosystems (Grabowski et al. 2007; Cuthbert et al. 2020; 
Soto et al. 2022). Non-native species can outnumber and 
sometimes replace native species, exhibiting rapid growth, 
early maturation and high fecundity (Dermott et al. 1998; 
Grabowski et al. 2007; Soto et al. 2023).

With the Baltic Sea as our chosen study system, we there-
fore used amphipod taxa – an important taxonomic group 
in Baltic Sea ecosystems (Zettler and Zettler 2017) – to 
explore the effects of diverse environmental conditions on 
the biological communities. We conducted a comparative 
assessment of seasonal variation in amphipod communities 
from three Baltic habitats - two anthropogenically impacted 
and one protected, characterized by different salinity and 
temperature conditions. We expect that in impacted habitats 
native diversity will be lower than in protected ones, assum-
ing native species unable to withstand disturbances have 
previously retreated to less affected areas. We also expect 
anthropogenic activities to provide more chances for NNS 
to be introduced into impacted habitats, and therefore we 
anticipate more NNS in these habitats than in the protected 
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site. The three null hypotheses that we tested were: (i) there 
is no difference in native diversity between impacted and 
protected habitats; (ii) there is no difference in NNS diver-
sity between impacted and protected habitats; and (iii) there 
is no difference in gammarid communities across seasons.

Methods

Sample collection

From April 2022 until March 2023, amphipod taxa were 
collected monthly at three locations in Schleswig-Holstein, 
Germany. Two locations were anthropogenically impacted 
habitats: (i) Falckenstein beach (54°39’04” N 10°19’24” E) 
and (ii) downtown Kiel (54°32’97” N 10°14’93” E), and 
one location was a protected area: (iii) Dassower See (i.e. 
Dassow Bay, 53°90’10” N 10°90’69"E; Supplementary Fig-
ure S1). Due to its proximity to the Nord-Ostsee-Kanal (i.e. 
North-Baltic Canal), one of the busiest canals in the world 
(Knebel 2021), Falckenstein beach is exposed to strong 
shipping activities and ballasting operations throughout the 
year, as well as being subjected to tourism activities dur-
ing summer months (Fig. 1). Meanwhile, downtown Kiel 
faces numerous urban disturbances from light, noise, tour-
ism and sailing activities to commercial shipping, ferry and 
shipyard activities. Both of these locations are also highly 
polluted by heavy metals, such as copper, zinc, tin and lead 
(Nikulina et al. 2008). Conversely, Dassower See has been 
a protected habitat since 1983, and is one of the largest bird 
reserves in Germany (Landkreis Nordwestmecklenburg, 
FD Bauordnung/Umwelt). However, it is also linked to the 
Trave River which connects the Baltic Sea with the Port of 
Lübeck; the Trave River catchment is polluted by diverse 
antifouling biocides (Mavchate et al. 2021). In addition, 
salinity conditions at Falckenstein beach and downtown 
Kiel fluctuate between 11 and 22 ppt, while those at Das-
sower See between 6 and 15 ppt (Supplementary Table S1). 
Temperature is similar throughout the year across locations 
(around 5 °C in winter and 20 °C in summer), except for 
Falckenstein beach where the temperature can rise to 30 °C 
during summer months (Supplementary Table S1).

Samples were collected during the first week of each 
month by intensive sampling of one person for an hour 
(April-July), or two persons for half an hour (August-March). 
At Falckenstein beach, Fucus spp. was collected using a 
26 × 26 cm 500 μm mesh size landing net and shaken until 
the amphipods detached from the algae. In downtown Kiel, 
blue mussels, Mytilus sp., were scratched from the dock 
pilings with 16 × 11 cm 500 μm mesh size net and shaken 
to collect the amphipods hiding in between them. For Das-
sower See, a 26 × 26 cm 500 μm landing net was used to 

collect plant debris and algae from the shallower parts of the 
lake near bulrushes and other vegetation. This debris was 
spread out on a sampling table allowing for amphipods to 
be collected. Slightly different sampling methods were used 
due to varying local conditions. At all three locations, only 
animals bigger than 2 mm in size were collected, as smaller 
individuals cannot be identified morphologically to the spe-
cies level using conventional methods. Additionally, at each 
sampling location, salinity, pH, temperature, and oxygen 
were measured using WTW ProfiLine Cond 3110 m with 
TetraCon 325 probe and WTW ProfiLine pH 3110 m for 
salinity and pH, respectively, and WTW ProfiLine Oxi 3310 
IDS meter for temperature and oxygen. Collected individu-
als were transferred in source water to GEOMAR in Kiel, 
preserved in 99% ethanol and stored at 4 °C until identifica-
tion. All animals were identified morphologically following 
Zettler and Zettler (2017). At least five individuals of each 
morphologically identified species were further identified 
molecularly to confirm morphological identification (see 
below). Individuals that could not be visually identified to 
the species level were grouped morphologically, and again 
at least five individuals per group were taken for molecular 
identification.

Molecular species identification

Total genomic DNA was extracted from the telson using 
the DNeasy Blood and Tissue kit (QIAGEN, Germany) fol-
lowing the manufacturer’s protocol. Partial sequences of 
cytochrome c oxidase subunit 1 (COI) gene were amplified 
using several sets of primers to be able to obtain sequences 
for different gammarid species: LCO1490 and HCO2198 
(Folmer et al. 1994), UCOIF and UCOIR (Costa et al. 
2009), LoboF1 and LoboR1 (Lobo et al. 2013) and G. tigri-
nus species-specific primers (Kelly et al. 2006a). PCR reac-
tions were performed in 20 µl volume including 9.8 µl of 
nuclease-free water, 2 µl of 10X PCR buffer (Invitrogen, 
USA), dNTPs, forward and reverse primer (5mM concen-
tration) and 2 µl template DNA, and 0.2 µl of DreamTaq 
DNA polymerase (Invitrogen, USA). The amplifications 
using LCO1490 and HCO2198 and UCOIF and UCOIR 
sets of primers were performed with a denaturation step for 
5 min at 94 °C, followed by 33 cycles of denaturation at 
94 °C (35 s), annealing at 47 °C (45 s), extension at 69 °C 
(45 s) and a final extension step of 69 °C for 10 min. In 
the case of LoboF1 and LoboR1 primers, denaturation was 
performed at 94 °C for 1 min, followed by 5 cycles of dena-
turation at 94 °C (30 s), annealing at 45 °C (1 min 30 s) and 
extension at 72 °C (1 min), then by 44 cycles of denatur-
ation at 94 °C (30 s), annealing at 54 °C (1 min 30 s) and 
extension at 72 °C (1 min), and finally ended with a final 
extension of 5 min at 72 °C. For G. tigrinus species-specific 
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Statistical analyses

To compare species diversity among three sampling loca-
tions (i.e. Falckenstein beach, downtown Kiel, and Das-
sower See), Simpson’s Diversity Index (D) was calculated 
for each month (i.e. from April 2022 to March 2023), for 
each location, following the equation:

D = 1−
(
Σni (ni − 1)

N (N − 1)

)
 (1)

primers, the protocol of Kelly et al. (2006a) was followed. 
The PCR products were sequenced on Sanger sequencing 
platform (Applied Biosystems, USA) at Eurofins Genomics 
(Kiel, Germany). Raw COI sequences were assembled and 
trimmed using CodonCode Aligner v 3.7.1 (Codon Code 
Corporation). Each sequence was blasted on NCBI (https://
www.ncbi.nlm.nih.gov/). Sequences with ≥ 98% similarity 
were deemed a species-level identification, while those with 
< 98% were grouped as unidentified; sequences with ≥ 98% 
similarity are shown in Supplementary Table S2.

Fig. 1 Absolute monthly abundance of each amphipod species in three sampling locations from April 2022 until March 2023 with corresponding 
area images
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Results

Absolute and relative abundance and richness of 
amphipod communities

Across the three sampling locations, a total of nine species 
of amphipods were identified: G. salinus, G. oceanicus, G. 
locusta, G. zaddachi, G. tigrinus, Calliopius laeviusculus, 
Monocorophium insidiosum, Grandidierella japonica, and 
Microdeutopus cf. gryllotalpa (Figs. 1 and 2). All species 
except M. cf. gryllotalpa were identified both morphologi-
cally and molecularly; Microdeutopus cf. gryllotalpa was 
identified only morphologically due to the lack of the cor-
responding record of the species in GenBank (https://www.
ncbi.nlm.nih.gov/nuccore/; accessed on March 20th, 2024). 
At all three locations, there were very few numbers of 
unidentified individuals (Supplementary Tables S1). Gran-
didierella japonica and G. tigrinus are NNS at the Baltic 
Sea, native to the North-West Pacific and the North-West 
Atlantic, respectively (Chapman and Dorman 1975; Kelly 
et al. 2006a, b; Soors et al. 2022).

At Falckenstein beach, the amphipod community was 
the most diverse and abundant with eight species present: 
G. salinus, G. oceanicus, G. locusta, G. zaddachi, C. lae-
viusculus, M. cf. insidiosum, and G. japonica. Gammarus 
salinus was the most abundant in spring, from April to June, 
when G. locusta took over (Figs. 1 and 2). Grandidier-
ella japonica was present at low abundance. At downtown 
Kiel, six species were identified: G. salinus, G. oceanicus, 
C. laeviusculus, M. insidiosum, M. cf. gryllotalpa, and G. 
japonica. Gammarus salinus, G. oceanicus and M. cf. gryl-
lotalpa were abundant species (Figs. 1 and 2). At Dassower 
See, three amphipod species were present: M. cf. gryllo-
talpa, G. locusta, and G. tigrinus, with G. tigrinus being 
the most abundant (Figs. 1 and 2). Indeed, G. tigrinus was 
dominant throughout most of the year, except November 
and December, when M. cf. gryllotalpa took over (Figs. 2 
and 3). There was a significant effect of study location on 
Simpson’s Diversity Index (χ2 = 12.764, df = 2, p < 0.005). 
Both Falckenstein beach and downtown Kiel exhibited sig-
nificantly greater diversity in comparison to Dassower See 
(Z = 3.186, p < 0.005; Z = 2.994, p < 0.005: Fig. 4).

Seasonal effects on amphipod communities

Our models did not indicate any significant seasonal change 
in amphipod abundance over time across the three locations, 
though Falckenstein beach demonstrated slight seasonal-
ity but not significantly (all p > 0.09; Fig. 5; Table 1). The 
observed temporal patterns showcased considerable fluc-
tuations among the period studied, with Falckenstein beach 
having the highest abundance of amphipods on average 

whereby ni was the number of amphipods that belong to 
species i, and N was the total number of amphipods. The 
value of D spans from 0 to 1, whereby 1 represents maximal 
diversity and 0 represents no diversity. For months where no 
species were collected from sampling, an index score of zero 
was assigned. To determine the effect of site on diversity, a 
non-parametric Kruskal-Wallis test was conducted, with a 
post-hoc Dunn’s test to determine the pairwise differences 
between locations. A Benjamini and Hochberg p-adjustment 
was used to control the rate of false discoveries (Benjamini 
and Hochberg 1995).

To assess the variation in amphipod abundance and rich-
ness over a 12-month period across different locations we 
employed Generalized Additive Models (GAMs) at three 
locations due to non-linear relationship and non-constant 
variance. To account for the temporal patterns in the data 
across different locations, we first transformed the sampling 
dates into a continuous numeric variable, representing the 
number of days since the start of our sampling period. This 
transformation facilitated the use of GAMs to investigate 
temporal trends across locations. Subsequently, we applied 
a non-cyclic cubic spline (i.e., cs spline) with a maximum 
of five knots to avoid overfitting but allowing flexible mod-
eling. We then evaluated the model by examining the dis-
tribution of the residuals using histograms, and determined 
that the negative binomial distribution with a log-link was 
the most appropriate distribution to use. Afterwards, we 
explored the population dynamic for native and non-native 
amphipod abundances across sites. However, due to the 
small number of NNS records at Falckenstein beach (n = 5) 
and downtown Kiel (n = 1), we were not able to create reli-
able models for these two locations, but only for Dassower 
See (n = 11).

Finally, we analyzed the influence of the four environ-
mental predictors (i.e. pH, salinity, water temperature, and 
dissolved oxygen) on the temporal abundance of amphipod 
communities. For this purpose, we fitted a series of GAMs 
with individual predictors because the low number of sam-
ple points (n = 12 per location, i.e. one per month) generated 
the risk of overfitting across each site. Due to the multiple 
statistical tests conducted for each predictor across each 
location, we applied Holm’s method for p-value adjustment 
to control the family-wise error rate. After visually inspect-
ing the residual distribution of all models, we selected 
negative binomial distribution for all models. Additionally, 
Redundancy Analysis (RDA) was performed using the rda 
function of the vegan R package (Oksanen 2012). To assess 
the significance of the environmental variables in the RDA 
model, we conduced a permutation test using the anova.
cca function with 999 permutations. The reproducible code 
and data used in this study are stored at https://github.com/
IsmaSA.
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exhibited the least variability, as well as the lowest amount 
of species richness (ranging from 1 to 3 species).

Following the above analyses, the abundance of native 
amphipods did not change over time in Falckenstein beach 
and downtown Kiel (both p > 0.15; Fig. 6; Table 3). Though, 
in Falckenstein beach, slight decrease in abundance was 
noticeable during the winter months (Fig. 6). However, we 
found a significant change in Dassower See (p < 0.003), 
with peak abundance during the fall months (i.e. October 
and November), followed by a decline in the subsequent 
months. A significant change was also observed in the abun-
dance of NNS in Dassower See (p < 0.001; i.e. G. tigrinus), 

(135.1 and 9.1 mean and standard error, respectively), fol-
lowed by downtown Kiel (60.3 and 5.0, respectively), and 
lastly, Dassower See (43.4 and 5.3, respectively). The maxi-
mum abundance was recorded in Falckenstein beach during 
April with 351 individuals. Similar to abundance trends, we 
did not find any significant changes in the species richness 
over time across the three locations (all p > 0.12; Fig. 5; 
Table 2). Model responses suggested high variability in 
species richness over time (all p > 0.12), with Falckenstein 
beach displaying highest species richness variability (rang-
ing from 3 to 8 species). On the other hand, Dassower See 

Fig. 2 Relative monthly abundance of each amphipod species in three sampling locations from April 2022 to March 2023
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Table S1). Our analyses did not reveal significant impacts 
of pH or dissolved oxygen on amphipod abundance across 
the three locations (Supplementary Table S3). In the case of 
salinity, we observed a notable effect on the overall amphi-
pod abundance at Falckenstein beach (p < 0.001; Fig. 7), 
while no significant effect was found for downtown Kiel 
nor Dassower See (p > 0.55); interestingly, an increase in 
salinity at Dassower See in November and December was 
associated with a decrease in abundance of G. tigrinus and 
increase of M. cf. gryllotalpa. Lastly, water temperature 
exerted a positive influence on the overall amphipod abun-
dance in Dassower See (p = 0.04) (Supplementary Table 
S3). The RDA plot revealed distinct clustering of samples 
based on location, indicating that species composition var-
ied among the three studied locations. Salinity had an oppo-
site effect on amphipod community than pH, oxygen and 
temperature (Fig. 8; Supplementary Table S4).

Discussion

Anthropogenic disturbance is a major threat to ecosystem 
biodiversity, with NNS often establishing in habitats subject 
to high levels of human activity (Smith and Knapp 1999; 
Minchinton 2002; Halpern et al. 2008; Nogales et al. 2011; 
Lockwood et al. 2013; Linders et al. 2019; Haubrock et 
al. 2021). To assess the impacts of such activities on the 
diversity of native, as well as NNS, we monitored amphi-
pod communities in two anthropogenically impacted and 
one protected habitat in the Baltic Sea for a whole year. 
Despite the higher invasion risk in the two anthropogeni-
cally impacted habitats, they experienced significantly 

with a peak during the summer months (i.e. June and July) 
followed by a sharp decrease until the end of the year, before 
a slight increase at the beginning of 2023 (January, Febru-
ary, and March).

Environmental effects on amphipod abundance

Over the study period, pH varied between 8.1 and 8.9, 7.8 
and 8.2, and 7.9 and 9.1 at Falckenstein beach, downtown 
Kiel, and Dassower See, respectively (Supplementary Table 
S1). Salinity ranged from 11.1 to 20.4 ppt, 12.1 to 20 ppt, 
and from 6.2 to 15.1 ppt, respectively, while temperature 
ranged from 5.5 to 29.6, 4.6 to 20.9, and 4.2 to 20.8 °C. 
Dissolved oxygen measures were from 98.4 to 167.3, 84.0 
to 107.2, and 93.1 to 122.4%, respectively (Supplementary 

Fig. 4 Simpson’s Diversity Index of amphipod species for each month 
in three sampling locations. Median values and interquartile ranges 
have been indicated in the box plots

 

Fig. 3 Absolute abundance of 
native and non-native amphipods 
at three sampling locations
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Recent studies across a variety of taxa have revealed 
that species can adapt quickly in response to anthropogeni-
cally impacted environments (Johnson and Munshi-South 
2017; Thompson et al. 2018; Santangelo et al. 2018; Bor-
den and Flory 2021). The two anthropogenically impacted 
habitats in our study have already been affected by humans 
for centuries, and therefore the adaptation of native commu-
nities to numerous and diverse stressors may have already 
occurred or may currently be ongoing. However, we empha-
size that our study does not provide evidence that adapta-
tion of native taxa to anthropogenic conditions is the driver 

higher native species richness, as well as lower NNS abun-
dance, when compared to the protected Dassower See. Out 
of nine amphipod species identified, only two were NNS, 
with G. japonica found strictly in the anthropogenically 
impacted habitats, and G. tigrinus in the protected habitat. 
Interestingly, G. japonica was also consistently recorded at 
low abundances, while Dassower See was dominated by G. 
tigrinus for the majority of the year. Similar results were 
also observed by Lin et al. (2022), where several NNS were 
highly abundant at an unpolluted oyster aquaculture site 
compared to a heavily polluted nearby shipping port.

Table 1 Results of the generalized additive models (GAMs) for the 
total abundance of amphipods at each location
Total abundance
Falckenstein beach

Estimate Standard Error P value
Intercept 4.99 0.33 < 0.001
Smooth terms: edf Ref.df
Months 0.46 9 0.09
Downtown Kiel

Estimate Standard Error P value
Intercept 4.17 0.32 < 0.001
Smooth terms: edf Ref.df
Months < 0.01 9 0.53
Dassower See

Estimate Standard Error P value
Intercept 4.16 0.42 < 0.001
Smooth terms: edf Ref.df
Months < 0.001 9 0.54
edf and Ref.df denote estimated degrees of freedom and reference 
degrees of freedom, respectively

Table 2 Results of the generalized additive models (GAMs) for the 
species richness of amphipods at each location
Species richness
Falckenstein beach

Estimate Standard Error P value
Intercept 1.58 0.15 < 0.001
Smooth terms: edf Ref.df
Months 0.54 9 0.12
Downtown Kiel

Estimate Standard Error P value
Intercept 1.09 0.19 < 0.001
Smooth terms: edf Ref.df
Months < 0.001 9 0.79
Dassower See

Estimate Standard Error P value
Intercept 0.57 2.30 0.02
Smooth terms: edf Ref.df
Months < 0.001 9 0.64
edf and Ref.df denote estimated degrees of freedom and reference 
degrees of freedom, respectively

Fig. 5 Model responses for the temporal trends in absolute abundance and richness over the study period across each site. Each dot represents the 
total species abundance or total species richness recorded for a given month
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this species has already been spreading throughout North 
America and Northern Europe, where it has been reported 
at both low and high densities (Pilgrim et al. 2013; Soors 
et al. 2022). Though this species can colonise a variety of 
habitats, including harbours, marinas, and areas near sew-
age treatment plants (Chapman and Dorman 1975), it is sen-
sitive to high metal concentrations (Lee et al. 2005). With 
both of the locations where we recorded the species being 
highly polluted by heavy metals (Nikulina et al. 2008), the 
heavy metal concentrations may prevent the species from 
becoming abundant.

Although the three locations sampled during this study 
are in close proximity, the highly invasive NNS G. tigrinus 
was observed only in Dassower See. One explanation for 
this could be the susceptibility of G. tigrinus to disturbances 
and habitat structural characteristics (Kotta et al. 2014), 
making the anthropogenically impacted Falckenstein beach 
and downtown Kiel environments possibly too disturbed 
for the species. Kotta et al. (2014) also reported that vari-
ous forms of disturbance, such as the removal of plants and 
the mixing or removal of the sediment surface layer, can 
significantly affect its biomass in the Northeastern Baltic 
Sea. They suggested that while native species have already 
adapted to these disturbances, characteristic of the area, G. 
tigrinus has not. Another reason could stem from Dassower 
See having lower salinity compared to Falckenstein beach 
and downtown Kiel. Though G. tigrinus’ North American 
native-range salinity varies from 4 to 30 ppt, it has invaded 
only freshwater and brackish habitats (Sexton and Cooper 
1939; Jazdzewski et al. 2002; Kelly et al. 2006b). Paiva et 
al. (2018) demonstrated that populations of gammarids from 
different regions have distinct salinity tolerances, suggesting 
local adaptation of populations to environmental conditions. 
Multiple introduction events of G. tigrinus to Europe pro-
moted population admixture, increasing its genetic diversity 
(Kelly et al. 2006b). However, all established populations 
originated from freshwater and estuarine environments 
(Kelly et al. 2006b). Gammarus tigrinus established in 
European waters may therefore prefer lower saline habitats, 

of differences of species abundances across sites. We also 
point out that newly arrived NNS might fail to establish, or 
persist only at low abundances, due to suboptimal environ-
mental conditions. These NNS populations may be “sleeper 
populations” (Spear et al. 2021). Such populations can 
remain at low abundance for years, or even decades, until 
their population growth is triggered by a change in envi-
ronmental factors, freshly introduced genetic material by 
newly arrived individuals from native or other non-native 
regions, or selection acting on the established population 
(Bock et al. 2015; Colautti and Lau 2015; Dlugosch et al. 
2015; Spear et al. 2021). Grandidierella japonica, a NNS 
recorded at both anthropogenically impacted habitats in our 
study, was constantly detected at low density. For decades, 

Table 3 Results of the generalized additive models (GAMs) for the 
abundance of native and non-native amphipods at each location
Native abundance
Falckenstein beach

Estimate Standard Error P value
Intercept 4.97 0.33 < 0.001
Smooth terms: edf Ref.df
Months 0.47 9 0.15
Downtown Kiel

Estimate Standard Error P value
Intercept 4.17 0.32 < 0.001
Smooth terms: edf Ref.df
Months < 0.001 9 0.53
Dassower See

Estimate Standard Error P value
Intercept 1.96 0.66 < 0.001
Smooth terms: edf Ref.df
Months 1.35 9 0.003
Non-native abundance
Dassower See
Parametric coef: Estimate Standard error P value
Intercept 2.92 0.42 < 0.001
Smooth terms: edf Ref.df
Months 1.58 9 0.001
edf and Ref.df denote estimated degrees of freedom and reference 
degrees of freedom, respectively

Fig. 6 Model responses for the temporal trends in absolute abundance of native and non-native species over the sampling period across each site. 
Each dot represents the total native species abundance (blue) and total non-native species abundance (red) recorded for a given month
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Gammarus tigrinus was the most abundant species in 
Dassower See, dominating over the native G. locusta and 
M. cf. gryllotalpa. Furthermore, the previously recorded 
native G. duebeni was completely absent during our sam-
pling. With sampling in previous years showing similar 
abundances of G. duebeni and G. tigrinus (Zettler 2001; 
Briski, personal observation), the native species may have 

as demonstrated for the Dassower See population by Dickey 
et al. (2021). Finally, a shift in the dominating population 
from G. tigrinus to native M. cf. gryllotalpa when salinity at 
Dassower See increased, further suggests that salinity may 
be one of the barriers preventing the spread of current G. 
tigrinus populations in European waters.

Fig. 7 Model responses for the relationship among environmental 
conditions (i.e. oxygen, pH, salinity and temperature) and absolute 
amphipod abundance over the sampling period across each site. Each 

dot represents the total species abundance recorded for a specific envi-
ronmental conditions
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salinus to G. locusta between spring and summer. There 
was also a significant change at Dassower See from sum-
mer to autumn, with the native G. locusta and M. cf. gryl-
lotalpa replacing the non-native G. tigrinus as the most 
dominant taxa. Seasonality is rarely considered in ecology, 
but several recent studies have demonstrated its importance 
(Fuhrman et al. 2015; Needham and Fuhrman 2016; Wahl 
et al. 2020; White and Hastings 2020; Theurich et al. 2024). 
For instance, Fuhrman et al. (2015), Needham and Fuhrman 
(2016), Needham et al. (2017) determined prokaryotic and 
eukaryotic phytoplankton bloom species successions among 
seasons, while Theurich et al. (2024) revealed fluctuating 
feeding impacts of the non-native Hemigrapsus takanoi 
towards Mytilus sp. prey, with seasonality also mediating 
feeding responses between sexes of the predator. Our study 
correlates with these, further emphasizing the importance of 
seasonality in ecological studies, and in our case, its omis-
sion would have failed to recognize the seasonal succession. 
Further, failing to account for seasonality could lead to NNS 
being unrecorded from a study location should sampling be 
conducted when the NNS is at low abundance or absent.

Consequently, our study demonstrated that anthropo-
genically impacted habitats may be under higher invasion 
risk – serving as gateways for NNS (Smith and Knapp 1999; 
Minchinton 2002; Lockwood et al. 2013), but at the same 
time, they may not be the best environments for them to 
establish and flourish. In contrast, nearby undisturbed and/
or protected habitats, such as Dassower See, may be highly 

since been replaced by the NNS. Indeed, G. tigrinus has a 
long invasion history in Europe and has been identified as 
one of the most widespread and aggressive invaders cur-
rently in the Baltic Sea (Ojaveer and Kotta 2015). Its suc-
cess may stem from traits such as higher fecundity, earlier 
sexual maturity and wider salinity tolerance when compared 
to native gammarid taxa (Pinkster et al. 1977; Grabowski et 
al. 2007; Orav-Kotta et al. 2009; Jänes et al. 2015; Paiva et 
al. 2018). The impact of this NNS is further enhanced by its 
aggressive and predatory behavior towards native amphi-
pods and the propensity to attack and wound prey without 
consumption. This not only depletes potential food sources, 
but also introduces additional stress and vulnerability to 
native populations (Dick 1996; Dickey et al. 2021). Despite 
native gammarids occupying a wider ecological niche, they 
are limited by their attack and predation rates relative to G. 
tigrinus (Herkül et al. 2016; Cuthbert et al. 2022), which 
may also contribute to this NNS successfully outcompet-
ing and replacing native species (Pinkster 1975; Pinkster et 
al. 1992; Szaniawska et al. 2003; Grabowski et al. 2006). 
After the decline of G. tigrinus abundance in late autumn, 
the abundance of native species increased, suggesting that 
G. tigrinus exerts strong competitive pressure on the native 
G. locusta and M. cf. gryllotalpa.

Though our model did not find significant seasonal dif-
ferences for abundance nor species richness at Falcken-
stein beach when all gammarids were taken into account, 
the study demonstrated a clear shift in dominance from G. 

Fig. 8 Redundancy Analysis 
(RDA) plot showing the relation-
ship between environmental 
variables and species composi-
tion across three locations: Falck-
enstein beach, downtown Kiel, 
and Dassower See. The marginal 
histograms on the top and right 
sides show the distribution of 
RDA1 and PC1 scores from each 
location
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