
Citation: Alrabayah, O.; Caus, D.;

Watson, R.A.; Schulten, H.Z.; Weigel,

T.; Rüpke, L.; Al-Halbouni, D.

Deep-Learning-Based Automatic

Sinkhole Recognition: Application to

the Eastern Dead Sea. Remote Sens.

2024, 16, 2264. https://doi.org/

10.3390/rs16132264

Academic Editor: Fumio Yamazaki

Received: 1 May 2024

Revised: 5 June 2024

Accepted: 18 June 2024

Published: 21 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Deep-Learning-Based Automatic Sinkhole Recognition:
Application to the Eastern Dead Sea
Osama Alrabayah 1,*,†, Danu Caus 2,3,4 , Robert Alban Watson 5, Hanna Z. Schulten 5, Tobias Weigel 2,3,4 ,
Lars Rüpke 1 and Djamil Al-Halbouni 6

1 Helmholtz Centre for Ocean Research—GEOMAR, 24148 Kiel, Germany; lruepke@geomar.de
2 German Climate Computing Centre, 20146 Hamburg, Germany; caus@dkrz.de (D.C.); weigel@dkrz.de (T.W.)
3 Helmholtz Centre Hereon, 21502 Geesthacht, Germany
4 Helmholtz AI, Germany
5 School of Earth Sciences, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;

hanna.schulten@rwth-aachen.de (H.Z.S.)
6 Institute for Earth System Science and Remote Sensing, University of Leipzig, 04103 Leipzig, Germany;

dhalbouni@uni-leipzig.de
* Correspondence: alrabayah@bwl.uni-kiel.de
† Current address: Department for Technology Management, Christian-Albrechts-University at Kiel,

24118 Kiel, Germany.

Abstract: Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives
in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole
mapping methods often require costly high-resolution data and manual, time-consuming expert
analysis. This study introduces an efficient deep learning model designed to improve sinkhole
mapping using accessible satellite imagery, which could enhance management practices related to
sinkholes and other geohazards in evaporite karst regions. The developed AI system is centered
around the U-Net architecture. The model was initially trained on a high-resolution drone dataset
(0.1 m GSD, phase I), covering 250 sinkhole instances. Subsequently, it was additionally fine-tuned
on a larger dataset from a Pleiades Neo satellite image (0.3 m GSD, phase II) with 1038 instances. The
training process involved an automated image-processing workflow and strategic layer freezing and
unfreezing to adapt the model to different input scales and resolutions. We show the usefulness of
initial layer features learned on drone data, for the coarser, more readily-available satellite inputs. The
validation revealed high detection accuracy for sinkholes, with phase I achieving a recall of 96.79%
and an F1 score of 97.08%, and phase II reaching a recall of 92.06% and an F1 score of 91.23%. These
results confirm the model’s accuracy and its capability to maintain high performance across varying
resolutions. Our findings highlight the potential of using RGB visual bands for sinkhole detection
across different karst environments. This approach provides a scalable, cost-effective solution for
continuous mapping, monitoring, and risk mitigation related to sinkhole hazards. The developed
system is not limited only to sinkholes however, and can be naturally extended to other geohazards
as well. Moreover, since it currently uses U-Net as a backbone, the system can be extended to
incorporate super-resolution techniques, leveraging U-Net based latent diffusion models to address
the smaller-scale, ambiguous geo-structures that are often found in geoscientific data.

Keywords: deep learning; computer vision; CNN; U-Net; segmentation; automatic recognition;
geohazards; subsidence; sinkholes; dead sea

1. Introduction

Subsidence is a worldwide phenomenon of vertical ground settlement, either due
to natural or anthropogenic reasons [1]. A special form of subsidence is the appearance
of enclosed depressions, so-called sinkholes, as a morphological landscape expression
of karstified rock in the underground. Well-known examples of sinkholes are located
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in Florida, Turkey, Germany, China, Spain, at the Dead Sea and in many other karst
environments worldwide (see e.g., [1,2]).

Sinkholes are a remarkable natural hazard, with the potential to cause extensive dam-
age to the environment, infrastructure, and human life (see [3–5]). Thorough and accurate
mapping of sinkholes is important to identify patterns and monitor sinkhole activities,
communicate necessary steps to prevent or mitigate their damage and it also contributes to
the creation of comprehensive sinkhole inventories. Researchers such as Galve et al. [6],
Galve et al. [7], Sevil and Gutiérrez [8], and Gutiérrez [9] have highlighted the importance
of these sinkhole maps in supporting decision-making processes for land use, development
projects, and hazard preparedness in areas susceptible to sinkhole formation.

Over time, the methods used to map sinkhole outlines have remarkably evolved,
reflecting an influential shift in the types of the data and technological approaches used.
Initially, the dominant methods were on-site field assessments and geophysical surveys,
along with manual inspection of topographic maps and stereo-images (e.g., [10,11]). An
alternative source of baseline data are Digital Elevation Models (DEMs), which can be
derived from both passive remote sensing data, such as aerial photography and satellite
imagery (e.g., [12,13]) or from active remote sensing sources such as airborne laser scans
(LiDAR, [14]) or radar, e.g., the Shuttle Radar Topography Mission (SRTM, [15]). In the
last 40 years, the increased availability of such DEMs has facilitated development of
many automated methods of depression mapping, often performed within a Geographic
Information System (GIS). These methods tend to leverage the geometric properties of
sinkholes to identify them, typically by simulating the inundation of the terrain model
with water (Figure 1). Despite the undoubted increase in efficiency and objectivity afforded
by these approaches, they require up-to-date DEMs of sufficient resolution to be obtained
every time a sinkhole inventory is to be updated, which can be extremely costly and
time-consuming. Furthermore, the mathematical generalization of sinkhole geometry
necessary to apply these ‘top-down’ approaches can be inflexible, and can result in large
numbers of depressions being missed, especially in the case of subtle and shallow sinkhole
morphologies, or nested systems. Please refer to [1] (Sect. 6.3.7) for a thorough review of
sinkhole mapping techniques.

In the last 20 years however, the combined advances in image processing and statistical
optimization have facilitated an explosion in ‘data-driven’ automatic image classification,
e.g., training deep, convolutional neural network architectures to recognise data patterns
and other methods (e.g., [16–20]). After manually labelling a subset of the total population
of studied features, training data is extracted and turned into image patches of fixed
size. The model then identifies common patterns among the training data, such as edges
of various size and orientation for example. This is completed in several stages/layers,
with the dimensions of input data being reduced between stages and more abstract and
complex patterns identified at each stage. Analysing the statistical relationships between
patterns, the model is then able to generalize and classify data it has not seen before.
The exact architecture of a model can be adjusted according to the specific task at hand.
The intrinsic nature of these models allows them to be far more scalable and efficient
than explicit categorisation models, such as the approaches presented in Figure 1. Such
machine learning frameworks have proved to be applicable to the detection and mapping
of sinkholes (Table 1), and their versatility and adaptability has been shown across many
other object mapping applications.

While previous studies have significantly advanced the field of sinkhole detection us-
ing machine learning models, a review of these works reveals specific methodological chal-
lenges. For instance, limitations in relation to data availability (especially high-resolution
elevation models), the need for manual verification to ensure accuracy, a lack of testing
outside of limestone karst regions, and resolution limitations that may not fully capture the
diverse geometrical characteristics of sinkhole instances, have been noted across different
approaches (see Table 1 for detailed limitations of each referenced study). These limitations
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underline the importance of developing more adaptable and efficient methodologies for
sinkhole detection.
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Figure 1. Schematic representations of different ‘top-down’ algorithmic methods of delineating 

sinkholes. (A) method of O’Callaghan and Mark, [21], which maps the depressions according to 

simulated stratification of water within them. Adapted with permission from [21], 2024, Elsevier. 

(B) the ‘D8’ method of Jenson and Domingue [22], which uses a moving window to map the water-

sheds within the depression. This method and that shown in (A) become very computationally in-

tensive with high-resolution data. (C) the ‘priority fill’ method of Wang and Liu, [23], which is able 

to simulate filling of the entire compound depression in one pass of processing. This method offers 

an improvement in run-time of a factor of 30 on (B), but is not able to capture the internal complexity 

of the compound depression. Adapted with permission from [23], 2024, Taylor & Francis. (D) The 

‘contour tree’ method developed by Wu et al. [24,25], which builds on the ‘priority fill’ method to 

produce a graph (‘tree’) of contours within the compound depression, allowing nested depressions 

to be identified and labelled by their rank. This allows for more accurate automated updating of 

depression location and morphometric databases. The method has since been further refined for 

efficient computation (see [26,27]). Adapted with permission from [25], 2024, Elsevier. 

Figure 1. Schematic representations of different ‘top-down’ algorithmic methods of delineating
sinkholes. (A) method of O’Callaghan and Mark, [21], which maps the depressions according to
simulated stratification of water within them. Adapted with permission from [21], 2024, Elsevier.
(B) the ‘D8’ method of Jenson and Domingue [22], which uses a moving window to map the wa-
tersheds within the depression. This method and that shown in (A) become very computationally
intensive with high-resolution data. (C) the ‘priority fill’ method of Wang and Liu, [23], which is able
to simulate filling of the entire compound depression in one pass of processing. This method offers
an improvement in run-time of a factor of 30 on (B), but is not able to capture the internal complexity
of the compound depression. Adapted with permission from [23], 2024, Taylor & Francis. (D) The
‘contour tree’ method developed by Wu et al. [24,25], which builds on the ‘priority fill’ method to
produce a graph (‘tree’) of contours within the compound depression, allowing nested depressions
to be identified and labelled by their rank. This allows for more accurate automated updating of
depression location and morphometric databases. The method has since been further refined for
efficient computation (see [26,27]). Adapted with permission from [25], 2024, Elsevier.
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Table 1. Overview of relevant studies which have applied Machine Learning (ML) and Deep Learning (DL) to detect sinkholes from remote sensing data.

Authors Technique Used Data Source Key Insights on ML/DL Use Study Limitations Best Performance Metrics for
Sinkhole Class

Lee et al. [28] 3D-Convolutional Neural
Network (CNN)

Thermal images from
drones, resolution:
640 × 480 pixels.

Demonstrated that a light-CNN
algorithm can effectively be

applied to thermal drone images
for detecting artificial sinkholes.

Reliance on drone-based thermal
imaging, risk of missing

sinkholes due to drone speed and
background patterns, and a
benchmark dataset not fully

representing sinkhole diversity,
indicating a need for more varied

data.

Precision: 87.9%
Recall: 88.1%

Zhu and Pierskalla [29] Random Forest Classifier
LiDAR data, average

point spacing: 1 m, DEM
cell size: 1.5 m.

One of the first studies to apply
ML to the problem of sinkhole

delineation from elevation data.

The model failed to transfer
effectively between study areas

(89% accuracy in detecting
sinkholes in area 1 vs. 73%

accuracy in area 2), elevation
models of equivalent resolution
are difficult and costly to obtain

in more remote karst regions.

Precision: 84.71%
Recall: 65.17%

Kang et al. [30]
Modified CNN architecture

based on AlexNet (See
Krizhevsky et al. [18]

Ground Penetrating
Radar

(GPR), original resolution:
50 × 50 pixels (B-scan),
50 × 13 pixels (C-scan),

enhanced to
200 × 200 pixels.

Highlighted versatility of CNN
architectures at sinkhole

detection by applying them to
GPR data.

Narrowly defined area of interest,
so transferability untested, GPR

data are difficult to obtain in
more remote study areas.

(Original resolution)
Precision: 88.26%

Recall: 72.36%,
(Enhanced resolution)

Precision: 100%
Recall: 100%,

Mihevc and Mihevc [31] U-Net LiDAR, DEM cell size:
1 m.

Proved U-Nets to be a highly
scalable automatic approach to

sinkhole detection—initially
mapped > 470,000 sinkholes in

Slovenia, and has now been
applied to map > 400,000

sinkholes across the entire USA.
See https://dolines.org
accessedon 17 June 2024

Elevation models of equivalent
resolution are currently

unavailable in many karst
regions, accuracy was not

especially high (16% variation as
compared to manual mapping

for both sinkhole count and area),
model performance relatively

untested outside limestone
karst areas.

Intersection over Union (IoU):
60.4%

Dice Coefficient: 72.36%

https://dolines.org
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Table 1. Cont.

Authors Technique Used Data Source Key Insights on ML/DL Use Study Limitations Best Performance Metrics for
Sinkhole Class

Nefeslioglu et al. [32] Artificial Neural Network
(ANN)

Satellite optical imagery
and InSAR DEMs

spatial resolution: 10 m.

Used ANNs for sinkhole
susceptibility mapping and

detection, confirming the value
of ANN models in this field.

The accuracy of the used DEM,
and its sensitivity to vegetation
and land cover changes, may

introduce errors in deformation
mapping. This emphasizes the
importance of the accuracy of

sinkhole susceptibility
assessments and

deformation analyses.

Root Mean Square Error
(RMSE): 45.1%

Rafique et al. [33] U-Net

LiDAR DEMs, aerial
imagery

resolution: 1.524 m per
pixel.

Integrated two types of raster
data (optical imagery and

elevation models) and their
derivatives to improve U-Net

performance in sinkhole
detection, with good learning

between US limestone
karst areas.

Elevation models of equivalent
resolution are currently

unavailable in many karst
regions, model performance
relatively untested outside

limestone karst areas. The study
suggests that aerial images alone

were not useful for sinkhole
segmentation.

IoU: 45.38%
Precision: 66.29%
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Our research introduces an approach to sinkhole mapping, using RGB visual bands
only as the data source. This method aims to overcome limitations highlighted in earlier
studies by using a modified deep learning pipeline. Our main objective is to develop
an automated model capable of accurately mapping the spatial distribution of sinkhole
instances by analysing aerial images of different resolutions. This was supported by the use
of labelled sinkhole data from the evaporite karst region of Ghor Al-Haditha, situated on
the eastern shore of the Dead Sea. The project was performed in two distinct phases. In the
initial phase, a U-Net model was trained, tested, and validated on a dataset of 250 instances
derived from a high-resolution orthophoto captured in December 2016, featuring a ground
sample distance (GSD) of 0.1 m. The subsequent phase involved transferring the model
to a new dataset comprising 1038 instances, obtained from a Pleiades Neo satellite image
(GSD of 0.3 m) from August 2022, capturing the same study area. The effectiveness of our
algorithm was demonstrated through its accuracy in detecting sinkhole instances across
both datasets, underlining the model’s transferability and the feasibility of automating
sinkhole mapping using readily available satellite images. The code is made publicly
available at: https://github.com/ducspe/sinkhole_geohazard_segmentation (accessed on
17 June 2024).

2. Dead Sea Site Description and Sinkhole Evolution

Sinkhole formation in the Dead Sea region has intensified over the last 35 years, with
an escalating occurrence of over 6000 sinkholes, which is closely associated with the rapid
regression of the lake and associated shoreline migration [34–36]. Several conceptual
models have been proposed on the origin and evolution of the sinkholes. Notably, different
geoscientific methods have revealed that the underlying conditions for sinkhole formation
vary from location to location at the Dead Sea shoreline. On the eastern shoreline, where
our data subset stems from, and parts of the SW shoreline, physical subsurface erosion and
chemical dissolution of evaporites, the general instability of non-evaporitic sedimentary
materials and tectonic control, have all been suggested as underlying causes for this
phenomenon [35,37–39]. For the majority of the western shoreline, however, tectonic
control, a purely chemical dissolution of a massive salt layer and related salt-dissolution
front migration have been suggested [40–44].

The selected site for this study, Ghor Al-Haditha, is situated on the south-eastern shore
of the Dead Sea in Jordan (Figure 2). The site encompasses approximately 9.75 km2 and
lies 340 to 440 m below the mean sea level, bordered by the Dead Sea to the west and the
Dead Sea highway to the east. Despite its small size, the site has a high density of sinkholes,
with over 1000 sinkholes having formed from 1967 to 2017 [36]. The sinkholes at Ghor
Al-Haditha are formed in three primary near-surface materials: unconsolidated to semi-
consolidated lacustrine silty-clay carbonates, alluvial sand-gravel sediments, and rock salt
with interleaved thin mud layers [45]. Sinkhole morphology is variable depending upon
the mixture of these materials in which they are formed. Sinkholes formed primarily in
alluvium and salt materials generally have a high depth to diameter ratio [36], indicating a
collapse origin. On the other hand, sinkholes formed mostly in mud tend to be much wider
and shallower. They are formed by surface sagging of overlying deposits, and are typically
filled with large collapsed and inward-rotating chunks of sedimentary material [45,46].
Sinkhole clustering and coalescence into larger compound sinkholes and larger-scale karst
depressions are common processes. The smallest features included in the dataset are ~3 m in
diameter, while the largest are over 60 m. In addition to these enclosed depressions, several
surface stream-channels fed by groundwater springs have formed in the former lakebed of
the Dead Sea [37]. These canyons are characterised by steep bank slopes, and the springs
feeding the streams often emerge within areas of subsidence and sinkhole formation.

Overall, despite the lack of solutional karst features, the dataset we have gathered
encompasses a wide variety of evaporite sinkhole materials, morphologies and genesis
types. The sparse vegetation and clear skies that are typical for the region amplify the
visibility of sinkholes in aerial imagery. The dynamic topography, characterized by three

https://github.com/ducspe/sinkhole_geohazard_segmentation
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major wadi systems depositing alluvial fan deposits on the coastline [37], adds diversity to
the training dataset. In this study, we aim to capitalize on these diverse characteristics to
improve our models’ performance in identifying sinkholes across different environments.
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Figure 2. Overview of the study area. (A) ESRI satellite imagery of the Dead Sea. The location of part
(B) is marked. (B) Pleiades 1-A satellite image from April 2018 of the Ghor Al-Haditha study area
on the Dead Sea’s eastern shore. The outline of data collected in the December 2016 drone survey,
the extent of sinkhole formation across the study area and the position of the Dead Sea shoreline in
1967 are shown. Additionally, the areas covered by the datasets used for Phase I (Red) and Phase
II (Grey) of our study are shown, as are the locations of parts (C,D), which depict sinkholes in both
alluvium and mud materials as they appear in the 2016 structure-from-motion orthophoto and in
Pleiades Neo satellite imagery from August 2022, respectively. Several new sinkholes have formed in
2022 as compared to 2016, and others have changed in shape and size.

Sinkhole development in the Ghor Al-Haditha area has been rampant since 1986,
with over 1000 sinkholes appearing between 1967–2017 [36], and more than 1000 further
sinkholes forming between 2017–2024 [47]. The incessant formation of sinkholes has
resulted in significant damage, disrupting infrastructure and affecting agriculture in the
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area [36]. In response to these challenges, the Ministry of Energy and Mineral Resources of
Jordan has commenced geologic and geophysical surveys in this area since the early 1990s
aiming to understand the causes and consequences of the sinkhole formation (e.g., [48]).

As the Dead Sea evolves as a potential site for geotourism, the careful identification
and mapping of sinkholes becomes very important [49,50]. This attempt goes beyond
the immediate safety concerns, offering a route to revive local economies impacted by
sinkhole formations. Enhancing our precision in detecting and tracking these formations
supports the safety standards of the region for geotourism, protecting both visitors and
local communities. Proactive identification can not only prevent significant economic losses
from infrastructure damages, but also offers valuable insights into the future trajectory
of sinkhole formation. A comprehensive grasp of current sinkhole patterns, therefore,
becomes useful in developing informed prevention and response strategies, ensuring
the Dead Sea’s viability as a geotourism hotspot without compromising on safety or
environmental sanctity [49,50].

Various studies, deploying geological, geophysical and hydrogeological surveys,
remote sensing, and numerical simulation, have been undertaken at Ghor Al-Haditha to
comprehend the spatio-temporal development and the mechanisms of sinkhole formation
here (e.g., [51]). Through these studies, local authorities have been able to delineate areas
susceptible to sinkhole threats more effectively. Furthermore, aerial images of different
resolutions collected over the years by satellites, as well as balloon and drone surveys offer
a chronological illustration of sinkhole evolution in the region [47]. Given the dynamic
geology of the region, these aerial images form a large and diverse training dataset for our
deep learning model.

3. Materials and Methods
3.1. Deep Learning Approach

We chose to frame the research problem of mapping and delineating sinkholes as an
instance segmentation problem (Figure 3), enabling the classification of sinkhole instances
at the pixel level. This approach offers advantages over simple classification or object
detection methods by facilitating detailed spatio-temporal morphometric analysis and
evolution monitoring of the mapped sinkholes instances. Moreover, it allows for clear
delineation of ‘redundant’ and ‘non-redundant’ sinkholes (see Sevil and Gutiérrez [52] for
a recent example of this). The model development and training process relied exclusively
on the colour channels (RGB) present in the aerial data, as opposed to incorporating other
channels like Digital Surface Models (DSMs), which might not be available for all regions.
This methodology makes the model more applicable to a broader range of cases.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 13 
 

 

3. Materials and Methods 

3.1. Deep Learning Approach 

We chose to frame the research problem of mapping and delineating sinkholes as an 

instance segmentation problem (Figure 3), enabling the classification of sinkhole in-

stances at the pixel level. This approach offers advantages over simple classification or 

object detection methods by facilitating detailed spatio-temporal morphometric analysis 

and evolution monitoring of the mapped sinkholes instances. Moreover, it allows for clear 

delineation of ‘redundant’ and ‘non-redundant’ sinkholes (see Sevil and Gutiérrez [52] for 

a recent example of this). The model development and training process relied exclusively 

on the colour channels (RGB) present in the aerial data, as opposed to incorporating other 

channels like Digital Surface Models (DSMs), which might not be available for all regions. 

This methodology makes the model more applicable to a broader range of cases. 

 

Figure 3. Relevant computer vision problems within which we could frame our task. We chose im-

age segmentation in the end. (A) Image classification: an entire image is classified according to a label. 

(B) Object detection: the task of detecting instances of objects of a certain class within an image. (C) 

Semantic segmentation: label each pixel of an image with a corresponding class, i.e., per pixel classi-

fication (D) Instance segmentation: label each pixel of an image with a corresponding class and detect 

instances of objects of each class within an image. 

3.2. Datasets and Annotation Process 

The study was conducted in two phases, employing two different datasets: high-res-

olution (HR) drone orthophoto imagery for Phase 1 and low-resolution (LR) optical satel-

lite imagery for Phase 2. The first dataset was compiled from a point cloud collection of 

high-resolution drone images, which were processed by using structure-from-motion 

photogrammetry (see [35], for an overview of this process), and the second dataset was 

generated from a single Pleiades Neo scene acquired in August 2022. Both datasets are 

taken from the same region shown in Figure 2 above. Notably, the satellite imagery covers 

a larger area that includes the region covered by the drone. The description of both da-

tasets and the process of their annotation are elaborated below. 

3.2.1. Dataset for Phase 1 (HR Drone Images) 

For the initial phase of the study, a high-resolution dataset was employed that has 

been gathered in December 2016 through drone-based, close-range aerial surveys. This 

dataset comprises optical orthophoto mosaics with a resolution of 0.1 m/pixel, acquired 

via a 12 MP DJI Phantom 3 inbuilt camera at an altitude of around 100 m. The manual 

annotation process was directed by a digital surface model (DSM) which was devised by 

photogrammetric processing of the optical images. For a more detailed explanation re-

garding the creation of orthophoto mosaics and DSMs, refer to Al-Halbouni et al. [35] and 

Watson et al. [36]. The dataset was explicitly annotated for the purposes of this research 

project to train a deep learning model. In this phase, particular emphasis was placed on 

the precision and quality of the annotation process, prioritizing the accuracy of labelled 

data over its quantity. 

Figure 3. Relevant computer vision problems within which we could frame our task. We chose
image segmentation in the end. (A) Image classification: an entire image is classified according to a
label. (B) Object detection: the task of detecting instances of objects of a certain class within an image.
(C) Semantic segmentation: label each pixel of an image with a corresponding class, i.e., per pixel
classification (D) Instance segmentation: label each pixel of an image with a corresponding class and
detect instances of objects of each class within an image.
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3.2. Datasets and Annotation Process

The study was conducted in two phases, employing two different datasets: high-
resolution (HR) drone orthophoto imagery for Phase 1 and low-resolution (LR) optical
satellite imagery for Phase 2. The first dataset was compiled from a point cloud collection
of high-resolution drone images, which were processed by using structure-from-motion
photogrammetry (see [35], for an overview of this process), and the second dataset was
generated from a single Pleiades Neo scene acquired in August 2022. Both datasets are
taken from the same region shown in Figure 2 above. Notably, the satellite imagery covers
a larger area that includes the region covered by the drone. The description of both datasets
and the process of their annotation are elaborated below.

3.2.1. Dataset for Phase 1 (HR Drone Images)

For the initial phase of the study, a high-resolution dataset was employed that has
been gathered in December 2016 through drone-based, close-range aerial surveys. This
dataset comprises optical orthophoto mosaics with a resolution of 0.1 m/pixel, acquired
via a 12 MP DJI Phantom 3 inbuilt camera at an altitude of around 100 m. The manual
annotation process was directed by a digital surface model (DSM) which was devised
by photogrammetric processing of the optical images. For a more detailed explanation
regarding the creation of orthophoto mosaics and DSMs, refer to Al-Halbouni et al. [35] and
Watson et al. [36]. The dataset was explicitly annotated for the purposes of this research
project to train a deep learning model. In this phase, particular emphasis was placed on the
precision and quality of the annotation process, prioritizing the accuracy of labelled data
over its quantity.

The annotation process involved manually digitizing sinkhole extents within the
ArcGIS Pro V. 2.9 software, employing various layers and tools within the software to guide
the annotation process (Figure 4). In this way, we created a sinkhole instance segmentation
mask image where each sinkhole was designated with a distinct colour (Figure 5). Expert
knowledge of the distinction between an enclosed sinkhole and an open stream-channel
sink has been incorporated at this stage. Finally, the mask image was exported as a TIFF
RGB image of the same dimensions as the orthophoto image (12,633 × 15,062 × 3).
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Figure 4. The different layers that were used to guide the annotation process for the training dataset
in Phase I. The sinkhole cluster shown here is the same as that highlighted in Figure 5C–F. (A) RGB
orthophoto mosaic. (B) DSM data visualized as a hill-shaded relief map. Contour lines generated
from the DSM data with an interval of 1 m were also used. (C) Elevation profile generated within
ArcGIS Pro (V. 2.9) along the axis of a sinkhole cluster. The tool was used in special cases to find the
exact edges, especially the edges between compound (merged) sinkholes, as presented in the image.
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Figure 5. Generating the sinkhole instance segmentation mask image. (A) The selected area from the
drone image for training sample generation. (B) Several depicted sinkholes. Note the 3 compound
sinkhole instances. (C) Using different layers to guide the annotation process. (D) Different polygons
were manually drawn for each sinkhole instance with precise edges. (E) Converted polygons to a
raster layer where each sinkhole is presented using a different colour. (F) TIFF mask image with all
the sinkholes in the selected area.
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3.2.2. Dataset for Phase 2 (LR Satellite Images)

In the subsequent phase of our research, the focus shifted towards exploring the poten-
tial of transfer learning [53] to enrich the versatility of our model. To this end, we adapted
the model that was initially tailored for drone data, to suit satellite imagery. This transition
leveraged a dataset curated from a collection of pre-existing datasets, originating from
research studies conducted on satellite images from the year 2022. The images stem from
Pleiades Neo satellite with a resolution of 0.3 m/pixel, acquired in August 2022 and pan-
sharpened. The annotation process for sinkhole instances was guided by the central points
of these sinkhole instances present within the original dataset. Utilizing the capabilities of
ArcGIS Pro, we meticulously mapped the extent of each sinkhole as polygons.

The annotation of the satellite images was enhanced using the streaming tool on
ArcGIS software—a convenient feature allowing users to craft polygons reflecting the
computer mouse movements. Several defining characteristics of the sinkholes assisted in
the annotation process. These included pronounced shadowing typically observed in the
southern corner, noticeable alterations in texture and colouration, a discernible bright salt
layer, and occasionally, water accumulation at the sinkholes’ depocentres, as depicted in
Figure 6. Annotation limitations primarily stemmed from the lower resolution of satellite
images—in comparison with the drone case—and the absence of elevation data to guide
the process.
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3.2.3. Annotation Special Cases

During the annotation process, we encountered a few unique scenarios. For instance,
where vegetation obscured parts of a sinkhole, making the borders not entirely visible,
an estimation method was employed for the high-resolution drone dataset. In such cases,
sinkholes that were predominantly concealed by vegetation were not mapped. On the
other hand, in the low-resolution satellite dataset, the annotator resorted to satellite images
from previous years to estimate the borders of obscured sinkholes. This situation was
not frequent, affecting only approximately 1 to 10 sinkholes per image, due to the sparse
vegetation in the Dead Sea region.

Another unique case involved compound (merged) sinkholes. These were treated
differently between the two datasets: in the high-resolution dataset, each sinkhole within a
compound structure received a separate annotation, while in the low-resolution dataset,
compound sinkholes were consistently mapped as a single unit. The subsequent section
will focus on the data preprocessing and training methodology for the deep learning model.

3.3. Deep Learning Model Architecture

The choice of an appropriate CNN architecture is important in achieving the objectives
of our sinkhole recognition project. In this study, our aim is to identify individual instances
of sinkholes, a task known as instance segmentation. This poses a challenge, particularly
given the constraints of our limited dataset. To address this, we selected the U-Net archi-
tecture [54], which despite its typical association with semantic segmentation, presents a
viable solution for our requirements. The U-Net architecture was deliberately chosen for
several reasons:

• Simplifying intermediary steps: U-Net generates semantic segmentation maps that
serve as simplifying intermediary steps in our pipeline, followed by post-processing
operations like connected-component labelling (CCL) [55] to generate the instance
segmentation map. This two-step approach reduces the complexity of the problem,
allowing for more accurate segmentation despite limited data.

• Adaptability to limited datasets: U-Net is particularly adept at handling limited
datasets due to its efficient structure. The fully convolutional nature of U-Net allows
it to perform well even with relatively small amounts of training data, which was
crucial considering the limited number of annotated sinkhole instances available for
our study.

• Multiscale feature extraction: U-Net’s architecture, with its encoder-decoder structure
and skip connections, allows it to capture multiscale features effectively [56]. This
is advantageous for detailed sinkhole identification, as it enables the network to
retain high-resolution information, while also learning more abstract representations
at the same time. In certain scenarios, the skip connections can also help manage
class imbalance challenges, commonly encountered in image segmentation tasks, as
they facilitate the retention of high-resolution information, important for accurately
depicting smaller-scale, minority classes [54].

• Scalability: U-Net is known for its scalability and efficiency in processing large
datasets. Even if the datasets grow substantially with more drone and satellite data
being accumulated over time, U-Net’s fully convolutional architecture can keep pace
with the increased scale and is amenable to efficient parallel processing in hardware.
The fully convolutional nature, also allows to address various input sizes seamlessly,
such as the ones we experimented with: 128 × 128 and 256 × 256, as well as other
shapes that may arise in the future due to our focus on multi-resolution aspects.

• Strategic goals: Additionally, the U-Net architecture fits well within our strategic
goal of developing a multi-scale, multi-resolution sinkhole detection system. Given
the potential for future integration of super-resolution techniques via latent diffusion
models such as SR3, which is a U-Net-based super-resolution diffusion model [57],
U-Net provides a robust foundation that can be expanded upon. It acts therefore
as a backbone and allows to connect heterogeneous components, i.e., segmentation
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and super-resolution modules, in a consistent manner. Adding such super-resolution
techniques can help improve the detection of tightly spaced geological features, for
example, around merged sinkholes’ edge areas, something we encountered issues
with in this work, and would like to address next.

We also considered other networks, such as Mask R-CNN [58] and Cascade R-CNN [59].
These architectures are specifically designed for instance segmentation and could poten-
tially handle the task end-to-end. However, they are naturally more computationally
intensive to be able to isolate the instances as well, as opposed to simply segment semanti-
cally. This is to be expected, since instance segmentation is generally a harder task than
semantic segmentation. Furthermore, we do not have enough depictions of the same
sinkholes from various perspectives to be able to train them properly.

We would also like to mention the recent advancements in segmentation foundational
models, such as Segment Anything [60], that generally make use of the Vision Transformer
technology/ViT [61]. Unfortunately, they do not work well with geological data, possibly
because of the statistics of the data distributions they were originally trained on, amongst
other things. Strategically however, we also did not choose a transformer architecture on
our end, because it is attention-based and is therefore much more data-demanding than
traditional convolution-based models.

Given the data constraints, U-Net was more suitable for our needs, allowing us to
reduce the complexity of the task first by doing semantic segmentation, and then performing
instance segmentation as a second step, building therefore on the abstraction principle,
i.e., the intermediary maps provided by the U-Net. In addition to this, U-Net is also more
universal, allowing us to reuse its latent space embeddings in a consistent manner, namely,
in the super-resolution extension we are planning via U-Net based diffusion models that
would hopefully address the lower edge segmentation scores we are currently facing.

Considering all the above points, we specifically chose the U-Net architecture because
it fits our expectations in terms of intended use-case, computational complexity, and
consistency with future development plans and features that we intend to try out and
possibly incorporate into the broader geohazard detection system.

To ensure that our system effectively identifies each sinkhole instance, we integrated a
post-clustering algorithm into our methodology. However, this method faced limitations in
differentiating compound sinkholes specifically, often classifying them as single instances.
To address this, we experimented with adding a third class in the segmentation process
to represent the edges between merged sinkhole instances. The idea behind is that we
will attempt to predict where the in-between sinkhole edges are, subtract those pixels
such that the sinkholes are separated first, and then apply the clustering algorithm on the
separated sinkholes.

Our preprocessing phase included a multistep procedure to incorporate this edge
class effectively. Initially, we employed a customized Sobel filter to detect edges between
compound sinkholes in the mask image. The formula used for the filtered edge image was:

I =

√(
∂ f
∂x

)2
+

(
∂ f
∂y

)2
,

where I is the intensity of the pixels in the edge image and f is the 2D function depicting the
original RGB label image. We apply this formula on the label image to detect where there
is a sharp transition between the pixel values of one sinkhole and another sinkhole. This
effectively means we detect the boundary between 2 merged sinkholes. The pixel intensity
of this boundary is the magnitude of the label image gradient, and the components of
this gradient are the derivatives/sharp transitions in the x (horizontal) and y (vertical)
directions of the image. Note that we apply this formula efficiently, such that we do not
detect edges between the sinkholes and the black background, but rather only between
merged sinkholes. We do this by scanning the image to see where black background is
present and ignoring those patches, i.e., not applying the formula there. Once we have the
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thin edges computed in this manner, we apply dilation, a morphological computer vision
operation, to dilate the edges to a certain extent. A dilated edge has the interpretation of
a region of uncertainty, encoding the ambiguity, even for experts, regarding the question:
where exactly does one sinkhole end and the other one begin? The model then will have the
chance to encode the class uncertainties in its final layer, and become more or less uncertain
depending on the different data examples it sees. The dilated edges are finally overlaid
onto the binary label image to create a 3-class label image: ‘Sinkhole’ class, ‘Background’
or ‘Non-sinkhole’ class, and ‘Edge’ class between sinkholes (Figure 7). Subsequently, this
finalized label image is ready to be patched and used to train the U-Net.
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Figure 7. (A) Drone RGB image for the research area, (B) Sinkhole instance segmentation label image
as created for the drone image case, and (C) The derived 3-class label image.

In the final phase of data preparation, we segmented the large images from the original
orthophoto and the associated 3-class binary label into smaller, equally-sized tiles using a
sliding window method with a 50% shifting/pixel overlap. This overlapped tiling allowed
us to generate more data and hence facilitated the training of a more accurate model.
The labelled images were then divided into training, validation, and testing sets in an
80:10:10 ratio, ensuring a comprehensive evaluation of the model’s performance.

Our adaptation of U-Net was further refined to address the class imbalance challenge,
a common issue in image segmentation. We employed data augmentation techniques and
additionally, also experimented with specialized loss functions to see if they help balance
the representation of different classes. Figure 8 illustrates the developed methodology for
sinkhole instance segmentation.

The image tiles in our study are processed through a U-Net implemented in PyTorch
Lightning, beginning with a double convolution block to extract basic features such as edges
of different angles. This initial block consists of a convolutional layer, batch normalization
and ReLU nonlinearity, repeated twice, where batch normalization helps to decouple the
convolutional layers for better convergence during training. Following this initial stage, the
U-Net architecture includes four down-sampling stages in the encoder, each comprising
a max-pooling layer and a double convolution. This structure progressively learns more
abstract features, with input/output channel tuples increasing from (64, 128); (128, 256);
(256, 512) and finally to (512, 1024) throughout the stages. The encoder’s compressive path
is mirrored by an expanding decoding path with four up-sampling stages, each consisting
of a transposed 2D convolution, followed by a double convolution block. The channel
tuples in these stages reverse the encoder’s pattern, decreasing from (1024, 512) to (128,
64). In the last layer, adapted for our ternary segmentation task, a 2D convolution layer
aggregates 64 channels into three: one for the background, one for edges between sinkholes,
and one for the sinkholes themselves. We kept the skip connections between the encoder
and decoder, allowing unimpeded information flow across, enabling the decoder to access
detailed information from the encoder. Our U-Net model is flexible to input sizes, but for
this study, we focused on 128 × 128 image patches.
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Figure 8. Overview of the sinkhole instance segmentation pipeline used in phase I of the study.
This diagram illustrates the multi-stage process used to train a multi-class U-Net model, adapted
from Ronneberger et al. [54]. The workflow begins with pre-processing the mask image (STEP
1) to detect edges between sinkholes, transforming the original two-class mask (Background and
Sinkhole) into a three-class mask (Background, Sinkhole, and Edge Class). The input RGB orthophoto
and the generated three-class mask are then used to train the multi-class U-Net model (STEP 2).
The best-trained model is then applied to segment the full orthophoto, generating a semantically
segmented mask (STEP 3). This mask undergoes a post-processing step (STEP 4) to generate the final
instance segmentation mask image.

3.4. Transition from Higher- to Lower-Resolution Satellite Imagery

Our research pivots on the use of high-resolution drone images in the first phase.
These images, owing to their level of detail, allowed for intricate mapping, annotation, and
sinkhole detection. Training our deep learning models on this dataset ensured a robust
understanding of sinkhole morphologies, their varied appearances across different terrains,
and the intricate details that separate them from the surrounding landscape.
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In the second phase, our research confronted a particular challenge for the field: How
do we leverage the knowledge acquired from high-resolution images when faced with
lower resolution satellite data? For this part, we turned to satellite images from the year
2022, which inherently lack the details present in drone samples. The transition involved
several key modifications, which will be listed below.

3.4.1. Addressing Combined Sinkholes

In the first phase, employing high-resolution drone images, the distinction between
combined (merged) sinkholes was prioritized for various reasons. Foremost, a clear un-
derstanding of individual sinkhole boundaries is pivotal for advanced sinkholes hazard
mitigation and monitoring efforts. This demarcation helps in comprehending sinkhole
merging patterns, useful for nuanced decision-making within sinkhole management activi-
ties. Training with the additional ‘Edge’ class broadens the model’s exposure and is an extra
step towards generalization. Delineation between merging sinkholes helps more accurate
tracking and offers insights into sinkhole growth and future potential developments.

However, as the study transitioned to low-resolution satellite images in the second
phase, adjustments were imperative. The reduced granularity of these images constrains the
discernment of boundaries between closely clustered sinkholes. Thus, recognizing them as
a unified instance became more accurate and avoided data extraction errors. This approach
better aligns with practical scenarios where the overarching objective is to identify a broader
hazardous area rather than discrete sinkholes. Also, given the guidance of annotations
for satellite images through centre points from the high-resolution dataset, an attempt to
define boundaries in clustered sinkholes could jeopardize annotation consistency. Lastly,
considering the limited number of combined sinkholes in the first place, recognizing them
as singular instances alleviated the data imbalance issue, ensuring a more adequate dataset
for model training.

3.4.2. Modifications in Data Pre- and Post-Processing

Transitioning from high-resolution drone to low-resolution satellite images required
some pre-processing steps to be modified. For the satellite imagery, histogram equalization
was applied to enhance image contrast, and additionally mean subtraction was further
completed to centre the pixel values, optimizing it for transfer learning. An important
difference to reiterate is that the drone-based pre-processing method put an emphasis
on identifying combined sinkhole boundaries, employing edge detection and dilation
techniques to label transitions between sinkholes. In contrast, the satellite case, aligned
with the decision to consider combined sinkholes as singular entities, omitted these steps,
accommodating the lower resolution limitations and the goal for robust annotations. Thus,
only two classes were used in this approach: ‘Sinkhole’ class, and ‘Background’ or ‘Non-
sinkhole’ class.

3.4.3. Transfer Learning and Freezing of Certain U-Net Layers for the Satellite Case

In transitioning to satellite imagery, we applied transfer learning by initializing our
satellite experiment models with the best weights obtained from the drone experiments
and continuing training with satellite data. This approach involved strategic decisions on
which layers to freeze and which to fine-tune. The key scenarios were as follows:

Freezing Initial Encoder Layers: By freezing the early layers, we took advantage
of the recognition capability of basic features, e.g., patterns and textures with various
angles learned in the drone training phase. We assume that these fundamental features are
generally transferable and useful across different datasets.

Freezing Half of the Encoder Layers: This strategy extends beyond basic features,
transferring more complex feature combinations learned from the drone data. We assume
that the effectiveness of this method varies, as these complex features may or may not be as
relevant for satellite data.
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Freezing the Entire Encoder: Here, only the decoder was fine-tuned. We anticipated
potential limitations since the encoder’s ability to adapt to the complex, special features of
the satellite dataset was restricted.

Unfreezing the Entire Encoder: This scenario entailed training on satellite data with
all layers of the U-Net, including both the encoder and decoder. This approach allows for
comprehensive fine-tuning using the new data, benefiting from the efficient starting point
provided by the drone-trained weights. A good starting point for the weights also ensures
quicker convergence to an optimal set of weights for the satellite dataset case. Although
this method allows the model to learn new features from the satellite data, it may lead
to some loss of previously learned information from the drone data. However, with this
partial loss of information we gain also the benefit of adapting more flexibly to the new
datasets, taking advantage at the same time of good initialization points. We can minimize
this partial loss to some extent by choosing a more gradual re-training process, with smaller
learning rates. Comparing the results from the ‘Unfreezing the Entire Encoder’ experiment
to the other experiments provides valuable empirical insights into the trade-offs between
potential risks and gained benefits of this approach.

3.5. Model Evaluation

The model’s performance and accuracy in detecting and segmenting sinkholes from
satellite and drone images were evaluated using multiple performance metrics. Considering
the safety risks associated with undetected sinkholes (False Negatives) and the potential
costs of monitoring False Positives, the metrics prioritized minimizing false negatives
over false positives, i.e., we penalize more the cases of not detecting a ‘Sinkhole’ class. We
computed the following metrics: model accuracy, specificity, per class precision, recall, F1
score, i.e., dice score. (refer to Table 2). Below are some brief definitions:

Confusion Matrix: A table used to describe the performance of a classification model
by comparing the predicted class for each data instance to its actual class label [62].

True Positives (TP): These are pixels correctly identified as belonging to the target
class. For the ‘Sinkhole’ class, it represents the number of pixels that are correctly identified
as ‘Sinkhole’ in the prediction, while also classified as ‘Sinkhole’ in the ground truth.

True Negatives (TN): In our multi-class segmentation context, TN for a specific class
refers to pixels that are correctly identified as not belonging to that class. To calculate it, we
assume all pixels not involved in TP, FP and FN for a class are TNs.

False Positives (FP): These are pixels incorrectly labelled as belonging to the target
class. For the ‘Sinkhole’ class, it represents the number of pixels that do not actually belong
to a sinkhole, but are predicted as such.

False Negatives (FN): These are pixels that belong to the target class, but are not
identified as such. For the ‘Sinkhole’ class, it represents pixels that are truly part of a
sinkhole, but missed (i.e., predicted as either ‘Background’ or ‘Edge’).

Specificity: measure of the model’s ability to correctly identify true negatives (TN),
i.e., correctly predict the absence of a condition. It is calculated as:

Specificity = TN/(TN + FP)

Recall (also known as Sensitivity): represents the model’s ability to correctly identify
all actual instances of a specific class. It is the percentage of correctly predicted class pixels
out of the total existing pixels of that class. For the ‘Sinkhole’ class, it is calculated as:

Recallsinkhole = TPsinkhole/(TPsinkhole + FNsinkhole)

Precision: the percentage of correctly predicted class pixels out of all pixels predicted
as the class of interest. For the ‘Sinkhole’ class, it is calculated as:

Precisionsinkhole = TPsinkhole/(TPsinkhole + FPsinkhole)
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F1 Score: Harmonic mean of precision and recall for each class. F1 score is used to
find an equilibrium between the reliability of positive predictions and the model’s ability
to detect positives. For the ‘Sinkhole’ class, it is calculated as:

F1sinkhole = 2 × (Precisionsinkhole × Recallsinkhole)/(Precisionsinkhole + Recallsinkhole)

Accuracy: The proportion of correctly identified pixels for a specific class (both TP
and TN) relative to the total number of pixels in the image. It is calculated as:

Accuracy = (TP + TN)/(TP + TN + FP + FN).

Table 2. Performance metrics for the developed models.

(A) Phase I—Train Models with Drone Images Exploring Different Loss Functions
Focal Loss with Gamma = 1

Precision Recall Specificity F1 Score Accuracy
Sinkhole 97.477 96.222 99.937 96.846 99.751

Edge 17.117 17.244 99.996 17.18 99.989
Background 99.909 99.944 96.622 99.927 99.803

Focal Loss with Gamma = 2
Precision Recall Specificity F1 Score Accuracy

Sinkhole 97.302 96.587 99.932 96.943 99.764
Edge 16.962 15.433 99.997 16.161 99.99

Background 99.915 99.941 96.86 99.928 99.804
Focal Loss with Gamma = 5

Precision Recall Specificity F1 Score Accuracy
Sinkhole 97.242 96.372 99.93 96.805 99.752

Edge 16.498 15.63 99.997 16.052 99.989
Background 99.913 99.94 96.783 99.927 99.798

Weighted CE
Precision Recall Specificity F1 Score Accuracy

Sinkhole 89.547 90.642 99.73 90.091 99.273
Edge 7.809 10.79 99.995 9.06 99.987

Background 99.806 99.708 92.138 99.757 99.243
Non-weighted CE

Precision Recall Specificity F1 Score Accuracy
Sinkhole 97.364 96.791 99.933 97.077 99.776

Edge 18.31 17.244 99.997 17.761 99.99
Background 99.921 99.942 97.077 99.932 99.81

(B) Phase II—Fine-Tune the Best Drone Model using Satellite Images
Freezing Initial Encoder Layers

Precision Recall Specificity F1 Score Accuracy
Sinkhole 90.415 92.055 99.973 91.228 99.95

Background 99.959 99.977 88.948 99.968 99.937
Freezing Half of the Encoder Layers

Precision Recall Specificity F1 Score Accuracy
Sinkhole 88.668 91.341 99.967 89.985 99.943

Background 99.956 99.969 88.203 99.963 99.925
Freezing the Entire Encoder

Precision Recall Specificity F1 Score Accuracy
Sinkhole 85.088 82.049 99.96 83.541 99.909

Background 99.928 99.952 80.636 99.94 99.88
Unfreezing the Entire Encoder

Precision Recall Specificity F1 Score Accuracy
Sinkhole 90.119 91.898 99.972 91 99.949

Background 99.959 99.975 88.843 99.967 99.934
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4. Results
4.1. Experiment Setup

We used PyTorch and PyTorch Lightning as our frameworks of choice for all the
experiments and took advantage of the scaled training capabilities they provide over
multiple compute nodes and GPUs. Microsoft’s Neural Network Intelligence (NNI) tool
was utilized to explore the search space for different hyperparameters, such as batch size
and learning rate, thus maximizing model performance on the available dataset. We can
highlight the details of our best experiment setup: a batch size of 64, 1000 epochs (In deep
learning, an epoch refers to one complete cycle through the entire training dataset during
the model’s training process. We cycle through several epochs to complete the training, i.e.,
tune the network weights) of training using the Adam optimizer (The Adam optimizer
is an algorithm for optimizing neural networks, combining the advantages of AdaGrad
and RMSProp to adjust learning rates based on recent gradient changes, enhancing the
efficiency and speed of training) [17] and a learning rate of 0.0003. All convolutional layers
were set to have a 3 × 3 kernel (In a convolutional neural network (CNN), a kernel is a
small matrix used to apply a filter across an input image to extract features such as edges
and textures by performing convolution operations) size, and padding was enabled to
ensure that the output feature maps maintain the same spatial dimensions as the input. To
increase the training data volume and enhance the network’s generalization performance,
data augmentation techniques such as rotation, horizontal and vertical flipping of the
image patches were employed using the ‘albumentations’ library.

We made use of three distinct loss functions: non-weighted cross-entropy, weighted
cross-entropy, and focal loss. We deliberately chose non-weighted cross-entropy to begin
with, because the task of semantic segmentation can be viewed as a per-pixel multiclass
classification task, where each pixel decides on a categorical label. Cross-entropy loss is
therefore a desirable choice, especially for such a multi-class scenario. The alternative
would have been dice loss, but since this one suffers from gradient instabilities, we decided
in favour of nonweighted cross-entropy, with the added constraint of evaluating on the
dice metric instead. Later on, when faced with data imbalance issues, we chose two more
functions that would put more focus on the minority classes, while at the same time being
natural extensions of the parent loss function, i.e., the nonweighted cross-entropy. The first
choice was naturally weighted cross-entropy, which puts a fixed/static attention on the
minority pixels. Subsequently, we chose a more dynamic/adaptive attention using the
focal loss, to contrast it with the fixed scenario of weighted cross-entropy. Focal loss offers
a more soft, gradual/adaptive attention on the minority pixels throughout the training
procedure as evidenced by Lin et al. [63].

• Non-Weighted Cross-Entropy

Calculated as:
CE = −ylog(p)− (1 − y)log(1 − p)

where y is the ground truth and p the predicted probability for class with label 1. This
loss function measures the disparity between predictions and actual values, treating all
classes equally.

• Weighted Cross-Entropy

Changes the standard cross-entropy by introducing weights for classes:

WCE = −w1 y log(p)− w0 (1 − y)log(1 − p)

with w being the weight assigned to each class. This approach gives higher importance to
underrepresented classes. We assigned weights inversely proportional to the number of
pixels in each class, i.e., w = 1

counted number o f pixels o f a particular class .

• Focal Loss
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Expressed as:
FL(pt) = −αt(1 − pt)

γlog(pt)

where αt and γ are hyperparameters, and pt is the model’s estimated probability for the
class with label t. Focal loss dynamically focuses on challenging misclassifications during
training, adapting to problematic cases in a more responsive manner than weighted cross-
entropy. This adaptability may allow for a quicker and more efficient training process, as it
prioritizes difficult-to-classify instances on the fly. Note that Focal Loss is a generalization
of the non-weighted cross-entropy loss, with γ = 0 and αt = 1 for all classes.

Progress monitoring involved computing the validation loss, and dice score (see
Figure 9) after each epoch. The model checkpoint was updated each time the validation
dice score improved. We used early-stopping to prevent overfitting, i.e., not to learn
by heart the train dataset, which is usually correlated with an inability to generalize to
other third-party datasets. More concretely, if the validation score did not improve after a
tolerance threshold of 10 epochs, then we stopped training. The best model was evaluated
quantitatively on the test dataset by calculating the test metrics, as well as qualitatively by
storing the prediction maps for visual inspection (see Appendix A).
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Figure 9. Model performance for Phase I as judged by the average dice score.

4.2. Performance of the Model

The initial results were obtained by training the model using the drone image dataset.
Table 2 provides the outcomes from the various experiments performed. These results un-
derscored the importance of choosing and tuning the appropriate loss functions, primarily
due to the imbalanced nature of the dataset. To monitor the minority classes, i.e., sinkholes
and edges, per-class metrics were reported. Regarding the accuracy metric, we would like
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to point out that because of the very big number of background pixels, the 99% mark was
consistently reached.

4.3. Performance Analysis across Datasets

In this section, we highlight how the model performed across the high-resolution
drone and lower-resolution satellite imagery (See Table 2). This includes looking at the
recall for the ‘Sinkhole’ class for accurate sinkhole detection (maximizing TP) and lowering
risk by reducing missed detections (minimizing FN). In addition, we will consider the F1
Score which serves as a key metric for balancing precision and recall, indicating the model’s
overall effectiveness in identifying sinkholes. Moreover, given the class imbalance, speci-
ficity and accuracy might be less indicative of model performance for sinkhole detection
compared to recall and precision.

4.3.1. Phase I—Trained with Drone Images

The experiments demonstrate notable consistency in achieving high precision and
recall for the ‘Sinkhole’ class across different loss functions, with the precision for ‘Sinkhole’
remaining above 89% across all experiments. The highest sinkhole recall, achieved using
non-weighted CE, stands at 96.79%, alongside an F1 score of 97.08%. The ‘Edge’ class,
on the other hand, reveals significantly lower precision and recall across all experiments,
barely reaching the highest recall of 17.24% with both non-weighted CE and focal loss
(Gamma = 1), and an F1 score of 17.761 achieved through non-weighted CE. Meanwhile,
the ‘Background’ class consistently exhibits high performance, which can be attributed to
its majority representation in the dataset (See Table 2A).

4.3.2. Phase II—Trained with Satellite Images

In the second phase of our research, we aimed to maintain the model’s performance in
identifying the ‘Sinkhole’ class on lower resolution satellite images via transfer learning.

Our experiments revealed a consistent performance in detecting and delineating
sinkholes, where ‘Freezing Initial Encoder Layers’ was the most effective strategy, achieving
a recall of 92.055% and an F1 score of 91.228%. This was closely followed by ‘Unfreezing the
Entire Encoder’, then ‘Freezing Half of the Encoder Layers’, and finally, ‘Freezing the Entire
Encoder’ showing the least effectiveness. In all experiments, the precision and F1 Score for
the ‘Sinkhole’ class remained high, above 85.088% and 83.541%, respectively (See Table 2B).
It is worth noting that the competitive results of ‘Unfreezing the Entire Encoder’ indicate
that the model is capable of adapting to new data, flexibly altering all the drone experiment
weights in a holistic manner, while still maintaining a reasonable level of performance.

5. Discussion

This work demonstrates the capability of our implemented U-Net-based pipeline to
accurately detect sinkholes. The system’s effectiveness in segmenting separate sinkhole
instances with accurate detection of their boundaries was particularly evident when trained
with high-resolution drone images. Scholars have highlighted the importance of high-
resolution data in enhancing the accuracy of geological hazard detection [64] and our
results confirm this perspective, yet we also show that considerable accuracy can be
maintained even with lower resolution images through techniques like transfer learning.
Throughout both deployment phases—from high-resolution drone to lower-resolution
satellite imagery—the model maintained consistent high precision and F1 scores for the
‘Sinkhole’ class (Table 2). Such consistency under varied imaging conditions and resolutions
is critical in minimizing potential risks associated with inaccurate sinkhole detection [3,65].
Our findings confirm the scalability and capability of the U-Net architecture to effectively
detect sinkholes from aerial data, as previously noted by Mihevc and Mihevc [31]. In
addition to the quantitative evaluations, we carried out qualitative assessments throughout
visual inspection of prediction maps (see Appendices A and B), because sometimes just
looking at the numbers may not convey the full picture.
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5.1. Challenges in Sinkhole Edge Detection

One of the major challenges we faced was the accurate segmentation of edges between
merged sinkholes, primarily due to class imbalance and the less distinct nature of these
features compared to the sinkholes themselves. This difficulty aligns with the findings
from Kang et al. [30], who noted the challenges in detecting sinkholes within narrowly
defined areas and diverse datasets, and also echoes concerns noted by Nefeslioglu et al. [32]
about the complexities involved in distinguishing closely spaced geological features due to
overlapping characteristics.

Edges are inherently more challenging to detect than other classes, because they repre-
sent thin, often ambiguous transitions between distinct sinkholes, which can be difficult
for the model to learn and generalize. In addition, this class contains significantly fewer
training samples compared to the ‘Sinkhole’ and ‘Background’ classes, which constitutes
an imbalance that affects the model’s ability to accurately learn its characteristics. This
imbalance is reflected in the lower recall and F1 scores for the ‘Edge’ class, as the model
tends to have a bias towards the more prevalent classes.

One other aspect we can point out contributing to low ‘Edge’ recall and F1 scores,
is that there is a very high inter-class similarity between sinkhole pixels and edge pixels.
One can say that an edge pixel is actually a sinkhole pixel that belongs to several sinkholes
simultaneously. Given that the sinkhole class can be regarded as subsuming the edge class
in some sense, it is understandable that the neural network has difficulties predicting the
edge class in particular.

Yet another important point is the fact that we apply the computer vision morphologi-
cal operation of dilation as a pre-processing step to the thin edges derived via customized
Sobel edge detection. This is accomplished to mark the transition regions between two
merged sinkholes and emulate the natural uncertainty that even human experts experience
when demarcating the exact boundaries where one sinkhole ends and the other one begins.
The dilation, however, does have also a confusing effect for the CNN, because naturally
some pixels from the sinkhole class are put in the edge set. Hence, the CNN will encounter
some ambiguity stemming from occasional data mixing related to dilation. Nevertheless,
we do believe in keeping the dilation step to encode uncertainty and let the network reduce
this uncertainty in a data-driven manner, while we scale and accumulate more data over
time, from new sources. And to mitigate the data mixing issue, the dilation operation can
be coupled with an additional fuzzy logic block, where we label pixels probabilistically,
e.g., a certain pixel is 70% sinkhole-like, and 30% close to a ‘pure’ edge. We would like to
pursue this direction, as it resembles human intuition, amongst other things. Currently, we
are forcing the CNN to draw a hard distinction between two ambiguous classes, when in
fact we may benefit from a softer decision-making between the two.

Despite these challenges, the model showed a degree of success in edge classifica-
tion, laying initial groundwork for further improvement in future studies. On the other
hand, the ‘Background’ class demonstrated high performance, facilitated by its majority
representation in the dataset. The ease of classifying ‘Background’ pixels also contributes
to the model’s overall effectiveness in distinguishing salient sinkhole features from their
surroundings, which is critical for generating accurate sinkhole maps.

5.2. Handling Class Imbalance

Class imbalance in our dataset posed a significant challenge, affecting the model’s
ability to learn from less represented classes such as ‘Sinkhole’ and ‘Edge’. The literature
confirms that the effectiveness of machine learning models in environmental applications is
heavily reliant on the balance and representation of classes within the training data [31,64].
Recognizing this, we have adopted strategies such as using weighted cross-entropy and
focal losses. Both of these loss functions narrow the attention of the model in the initial
cycles of the training towards the minority classes, either in a more fixed/static manner
in the case of weighted cross-entropy loss, or more adaptively in the case of focal loss, as
presented by Lin et al. [63]. However, adapting these strategies in practice proved to be
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more challenging than expected and surprisingly: non-weighted cross-entropy provided
better results for the ‘Sinkhole’ and ‘Edge’ minority classes with the least amount of energy
(Table 2). We would like to note that so far, we took a principled approach, and in the case
of weighted cross-entropy for example, we made the class weights inversely proportional
to the number of class pixels available. But technically, these class weights can be searched
more empirically, i.e., by brute force within a broader search space. The search space can
also be extended for the gamma parameter in the case of focal loss as well. Therefore,
we generally assume that by expanding the search space for the class-weights in the case
of weighted cross-entropy loss; and gamma hyperparameter in the case of focal loss we
might reach better local minima for our model. However, this of course comes at a cost
of much more training resources and GPU time. For efficiency reasons therefore, we
would like to expand the search space for these alternative loss function hyper-parameters
once we gather more data for the edge class either from new sources, or from super-
resolution techniques. We assume that applying our above-mentioned loss functions is
indeed promising, provided that one reaches a data quantity threshold, i.e., one has a critical
mass of samples available. In our case, the sinkhole pixels are very underrepresented with
respect to the background, and the edge pixels are extremely underrepresented. Hence, we
would like to collect especially more edge samples in the future and increase this type of
data pool in particular.

Considering this, as well as the points mentioned in Section 5.1, dealing with class
imbalance is a complex matter, requiring not only expanding the search space for the
hyperparameters of our alternate loss functions, but also broadening the data pool for the
minority classes, as well as better curating these samples to minimize data mixing, and
employing fuzzy logic to encode uncertainty and enable soft decision-making, rather than
hard demarcation of naturally ambiguous classes.

5.3. Effectiveness of Transfer Learning

Our research highlights the model’s adaptability across different resolutions and
imaging conditions through strategic application of transfer learning [53]. This adaptability
is important for practical applications, ensuring that the model can be deployed in various
real-world scenarios with different data quality and resolutions [65]. A key to our success
was the strategic freezing and unfreezing of specific layers within the U-Net architecture,
which played an important role in achieving high precision and recall for the ‘Sinkhole’
class. Especially beneficial was the ‘Freezing Initial Encoder Layers’ approach. It capitalized
on the fundamental features recognized from the high-resolution drone imagery, effectively
transferring this knowledge to interpret the lower-resolution satellite images. Karpatne
et al. [65] and Ma and Mei [64] further reinforce the importance of transfer learning for a
wider applicability across fields and aerial data distributions.

5.4. Model Generalisability to Other Karst Environments

The adaptability of our model to different geological settings and multi-resolution
scenarios broadens its applicability and utility for geohazard management. However,
computer vision models for landform mapping can produce unexpected predictions when
applied to a different geographical area than that where they were first trained [33]. This
so-called ‘out-of-distribution’ phenomenon is one of the greatest challenges for machine
learning mapping and requires considerable attention. This is especially true in karst
environments, whose landscape configuration is highly variable. Unique environments
can develop within very small areas, and their characteristics depend upon many factors,
including the lithology and structure of the host rocks, the present and past climates
which have prevailed in a given karst area, and the surface and subsurface hydrological
conditions [1,66,67].

The karst environments on the shores of the Dead Sea have formed by dissolution
and physical erosion of subsurface evaporite deposits, which are interlayered with poorly
consolidated alluvial and lacustrine sediments [34,35,37,40]. As the climate is very arid,
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there is very little surface water or vegetation present in the study area, meaning that
there is not really an epikarst layer present. Dissolution therefore is almost absent as a
surface process: collapse into subsurface voids is the primary mechanism of sinkhole
formation, along with surface sagging across broader areas, with wide areas of subsidence
and coalescence of sinkholes forming larger depressions [8,36]. The resulting landscape
is one in which optical imagery allows clear delineation of sinkholes by the human eye
(Figures 2C,D and 6), particularly with respect to the open sinks which form at the margins
of stream-channel meanders (Figure 5A). Although sinkholes do have different morpholo-
gies, and thus different visual characteristics when formed in the alluvial fan deposits, as
compared to the lacustrine mud deposits (cf. Figure 10, [35], and Figure 5, [36]), they can
both be accurately delineated from optical imagery alone, by our model.

However, this may not necessarily be the case in solutional karst environments, where
shadowing and colour gradients between sinkholes and the background image are far less
pronounced. In such environments, a hill-shaded elevation model is likely to be more
suitable as input data for classifying sinkholes [31]. Furthermore, the general absence of
vegetation at Ghor Al-Haditha also lends itself to sinkhole detection from optical imagery.

There is considerable scope for applying our model to other karst environments,
though further training and validation would be required to ensure accurate transferability.
Fine-tuning the model would have to be carried out on additional datasets that capture the
variety of sinkhole morphologies occurring in different geological and climatic settings,
along with different vegetation covers and optical characteristics. For example, in a forested
karst landscape, our approach would likely require significant adaptation, as vegetation
would obscure the true land surface. For this case, it might be possible to incorporate
LiDAR and multispectral data, which can be corrected to remove vegetation [68]. In
urban environments, occlusion of sinkholes would present additional challenges, as the
visual appearance and morphology of sinkholes will differ from natural cavities due to
the influence of anthropogenic structures such as buildings and vehicles [69]. It may be
anticipated that, as the number of recognised sinkhole occurrences in urban areas has
increased substantially in recent decades [70], adaptation of our model to urban landscapes
may be especially important. Adaptive learning methods can be used to allow the model
to dynamically adjust to new data distributions and enhance its performance in different
environments. Techniques such as domain adaptation and domain generalization can help
the model learn invariant features that are relevant across various settings [71].

6. Conclusions

Our research, focusing on the identification and mapping of sinkholes in the evaporite
karst at Ghor Al-Haditha on the eastern shore of the Dead Sea, demonstrated the effective
use of a system designed for geological structure recognition and centred around the U-Net
architecture. The research was carried out in two phases. Initially, the model was trained,
validated, and tested using high-resolution drone-based orthophoto images (0.1 m GSD)
captured in December 2016 and covering 250 different sinkholes (see Figure 5F). In the
second phase, the model was fine-tuned and tested on a larger dataset with lower resolution
from a Pleiades Neo satellite image (0.3 m GSD) covering 1038 different sinkholes.

The methodology highlights a strategic layer freezing and unfreezing during the
training process, which supports the model’s adaptability to different image resolutions.
Our dual-phase approach has consistently returned high recall and F1 scores for the
‘Sinkhole’ class under various imaging conditions. Notably, the highest recall in Phase I
was achieved using non-weighted CE, at 96.79%, alongside an F1 score of 97.08%. In Phase
II, the ‘Freezing Initial Encoder Layers’ strategy achieved a recall of 92.06% and an F1 score
of 91.23%, showing the robustness and effectiveness across input scales.

Furthermore, the deliberate use of RGB-only visual bands in aerial data—previously
considered as not useful by some authors [33]—proved to be promising in our methodology.
This broadens the model’s applicability and enhances scalability due to more readily
available data inputs.
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The model tries to address the technical challenge of class imbalance via the use of
more sophisticated loss functions, such as weighted cross-entropy and focal loss. However,
further fine-tuning of class weights and gamma is necessary for these loss functions to
enhance the results beyond the non-weighted cross-entropy baseline. This, however,
should be completed with a larger and better curated dataset for the edge class in particular.
Additionally, given that we applied dilation as a preprocessing step to encode transition
region uncertainty within merged or coalesced sinkholes, we intend to pursue fuzzy logic as
a means towards soft decision-making for ‘sinkhole vs edge’ classification, to accommodate
the high inter-class similarity of these minority classes. Since the sinkhole sample-set can
be regarded as subsuming the edge sample-set, this would be a natural and promising next
step to follow.

The successful application of our model to delineate sinkhole instances at Ghor Al-
Haditha is a crucial initial step towards the integration of automatic sinkhole detection
within a geohazard monitoring system along the eastern shore of the Dead Sea. Our
model’s ability to utilize detailed local data and transfer this knowledge to less detailed,
more broadly available data sources is an important distinction from previous work. This
adaptability of the model to imagery of lower granularity allows deployment to study areas
where sub-decimetre resolution drone imagery is not available. With proper training and
calibration, the model could be tested in other karst settings, with different geological and
climatic contexts. Investigating the integration of multimodal data sources, such as LiDAR
and multispectral maps, could further enhance the robustness and accuracy of sinkhole
detection models in areas with occluding vegetation, offering a more comprehensive
understanding of geohazard dynamics.

In conclusion, while our model has shown promising results in sinkhole segmentation,
the identified challenges partly align with findings from other studies, such as those by
Mihevc and Mihevc [31] and Kang et al. [30], and indicate the need for future research
and iterative advancements in the field. These efforts will hopefully fill current gaps, and
enhance the scientific understanding and technological applications of machine learning
and artificial intelligence in geosciences, thereby improving ecological monitoring and
hazard mitigation.
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Appendix A. Comparative Analysis of Results from Drone Imagery Training

The following figures show the comparative analysis of the results from the developed
model trained on drone imagery with three different loss functions: non-weighted cross-
entropy, weighted cross-entropy, and focal loss.
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Table A1. Cont.

Semantic Segmentation Instance Segmentation
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formed, highlighting the effectiveness and limitations of each transfer-learning strategy in 

segmenting sinkholes from satellite imagery.  
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The second table showcases the semantic segmentation and instance segmentation
results obtained from the different transfer-learning experiments conducted during the
second phase of our study. The experiments included the following strategies:

• Freezing Initial Encoder Layers
• Freezing Half of the Encoder Layers
• Freezing the Entire Encoder
• Unfreezing the Entire Encoder

These images provide a qualitative visual comparison of how each approach per-
formed, highlighting the effectiveness and limitations of each transfer-learning strategy in
segmenting sinkholes from satellite imagery.
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