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Marine carbon sink dominated by biological 
pump after temperature overshoot

Wolfgang Koeve    1 , Angela Landolfi2, Andreas Oschlies    1 & 
Ivy Frenger    1 

In the event of insufficient mitigation efforts, net-negative CO2 emissions 
may be required to return climate warming to acceptable limits as defined 
by the Paris Agreement. The ocean acts as an important carbon sink under 
increasing atmospheric CO2 levels when the physico-chemical uptake of 
carbon dominates. However, the processes that govern the marine carbon 
sink under net-negative CO2 emission regimes are unclear. Here we assessed 
changes in marine CO2 uptake and storage mechanisms under a range of 
idealized temperature-overshoot scenarios using an Earth system model 
of intermediate complexity over centennial timescales. We show that while 
the fate of CO2 from physico-chemical uptake is very sensitive to future 
atmospheric boundary conditions and CO2 is partly lost from the ocean at 
times of net-negative CO2 emissions, storage associated with the biological 
carbon pump continues to increase and may even dominate marine excess 
CO2 storage on multi-centennial timescales. Our findings imply that excess 
carbon that is attributable to the biological carbon pump needs to be 
considered carefully when quantifying and projecting changes in the marine 
carbon sink.

Under rising carbon dioxide (CO2) emissions since pre-industrial times, 
the ocean has been an important sink of anthropogenic CO2, thereby 
reducing potential global warming. In recent decades, the marine CO2 
sink has been equivalent to about 25% of emissions from fossil fuel 
burning, cement production and land use change, and has largely been 
rising in proportion to the rise in atmospheric CO2 (refs. 1–3). The 
marine CO2 sink is largely due to physical–chemical processes associ-
ated with the anthropogenically perturbed atmosphere–ocean CO2 
partial pressure (pCO2) gradient and seawater CO2 buffer chemistry, 
while the net effect of physical and biogeochemical feedbacks under 
a changing climate, the so-called ‘carbon–climate feedbacks’, is usually 
considered to be relatively small3–6

In particular, changes in the biological carbon pump7 (see ‘Carbon 
pump terminology’ in the Methods)—as one potential carbon–climate 
feedback process—are thought to be of limited importance for the 
additional uptake of atmospheric CO2 by the ocean under rising atmos-
pheric pCO2 (pCOatm

2
) and on decadal timescales (for example, 2% for the 

time period 1995–20188), which is in contrast to its important control 

of atmospheric carbon on long timescales (for example, glacial–inter-
glacial)9. This is the case because a global decrease in the storage of 
carbon that is attributable to the biological carbon pump (termed 
‘biological pump carbon’ throughout), which is driven by a declining 
export of organic matter into the interior ocean10–12, is projected to be 
overcompensated by an increase in the biological-pump carbon in the 
interior ocean that is driven by increasing ocean residence times by 
the end of this century13–17.

Limiting global warming to an acceptable degree18 is very likely to 
require net-negative CO2 emissions after some overshoot of surface air 
temperature (SAT), to compensate for too-high greenhouse gas emis-
sions before reaching the peak SAT19,20. Net-negative CO2 emissions 
imply substantially declining atmospheric CO2 boundary conditions 
that may also be accompanied by the ocean transitioning from a net 
sink to a source of CO2 into the atmosphere after the overshoot21–24. 
However, the response and relative role of different marine carbon 
sinks (the physico-chemical ‘solubility’ pump versus the biological 
carbon pump) under such conditions is currently not well understood.

Received: 2 February 2024

Accepted: 22 August 2024

Published online: 30 September 2024

 Check for updates

1Biogeochemical Modelling, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. 2National Research Council of Italy, Institute of Marine 
Sciences (CNR‑ISMAR), Rome, Italy.  e‑mail: wkoeve@geomar.de; ifrenger@geomar.de

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01541-y
http://orcid.org/0000-0002-2298-9230
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-3490-7239
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-024-01541-y&domain=pdf
mailto:wkoeve@geomar.de
mailto:ifrenger@geomar.de


Nature Geoscience | Volume 17 | November 2024 | 1093–1099 1094

Article https://doi.org/10.1038/s41561-024-01541-y

periods of net-negative CO2 emissions, excess CO2 storage attributable 
to the biological carbon pump survived in the ocean over a considerably 
longer time compared with carbon stored due to physical–chemical 
processes (called ‘solubility pump carbon’ throughout; see ‘Carbon 
pump terminology’ in the Methods).

Global excess DIC on multi-centennial timescales
We tested the stability of the marine carbon sink on the basis of an 
idealized overshoot scenario model experiment (see Methods for 

Here we explored the contribution of biological-pump carbon 
to excess marine CO2 storage (‘excess’ is used from now on to denote 
‘excess over the pre-industrial inventory’) in idealized overshoot sce-
narios and on multi-centennial timescales using the University of Victo-
ria (UVic) Earth system model of intermediate complexity (version 2.9). 
We defined biological-pump carbon as the part of dissolved inorganic 
carbon (DIC) that originates from biological processes (primary pro-
duction, export flux and degradation of organic matter) and is stored 
in the ocean interior13,17. We found that, under scenarios which include 
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Fig. 1 | Time evolution of global properties during the experiment REVERSE. 
Results of default experiment REVERSE, where all changes in the ocean are 
relative to pre-industrial conditions. Throughout, black lines indicate the 
ramp-up period (pCOatm

2  increases), red lines denote the ramp-down period 
(pCOatm

2  decreases) and blue lines indicate the stabilization period with constant 
pCOatm

2  simulated until year 500. Vertical dashed lines at years 70 and 140 indicate 
the end of the ramp-up (peak pCOatm

2 ) and ramp-down periods, respectively. 
 a, pCOatm

2  boundary condition. b, Diagnosed cumulative compatible emissions 
(measured in petagrams of carbon (PgC)). c, Globally integrated excess marine 

DIC (ΔDIC), which is excess total DIC (DICtotal, solid curve) with contributions 
from changes in preformed DIC (DICpre, dashed curve) and DIC attributable to the 
biological carbon pump (DICremin, dotted curve). The third vertical dashed line 
indicates the intersection point (ΔDICremin = ΔDICpre). d, Globally integrated 
excess export production (ΔEP, solid curve), ΔEP north of 40° S (dashed curve) 
and ΔEP south of 40° S (dotted curve). e, Change in temperature (ΔT), which 
shows the variation in SAT (solid curve), variation in the sea surface temperature 
(SST, dashed curve) and variation in the ocean mean temperature (Tmean, dotted 
curve). f, Change in globally averaged ideal age (Δideal age).
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details). In our default experiment, termed REVERSE (Fig. 1a), atmos-
pheric pCO2  was prescribed to increase at 1% per year until reaching 
twice the pre-industrial pCO2 in year 70 (ramp-up phase), followed by 
a ramp-down phase with an equivalent drop in pCOatm

2  (that is, −1% per 
year) until pre-industrial levels are reached again in year 140; after this, 
there was a stabilization period characterized by a constant pCO2 until 
year 500. Compatible CO2 emissions25, consistent with this pCOatm

2  path, 
showed that cumulative negative emissions during the ramp-down 
phase were smaller compared with cumulative positive emissions dur-
ing the ramp-up period (Fig. 1b).

This difference between the ramp-up and ramp-down cumulative 
emissions was explained by a considerable amount of carbon remaining 
in the ocean after pCOatm

2  had returned to pre-industrial levels (Fig. 1c, 
solid curve). By the end of the experiment, the marine carbon sink was 
mostly due to biological-pump carbon (Fig. 1c, dotted curve). We used 
idealized model tracers to attribute the contributions of individual 
marine carbon pumps to the excess in total DIC (ΔDIC) referenced to 
the pre-industrial state. Carbon processed by the biological carbon 
pump7,26 was traced using an explicit tracer of remineralized DIC 
(DICremin). Briefly, the tracer is zero at the surface and accumulates CO2 
released during the remineralization of organic carbon in the ocean 
interior (see Methods for technical tracer definitions). Over the course 
of our 500 year experiment, this DIC component (DICremin) became an 
increasingly important contributor to ΔDIC (Fig. 1c and Supplementary 
Fig. 7b). At the end of the ramp-up period, the increase in DICremin 
accounted for only about 10% (black portion of the dotted curve in 
Fig. 1c) of the integrated marine CO2 uptake, whereas the change in 
preformed DIC (DICpre; black portion of the dashed curve in Fig. 1c) 
dominated the marine carbon sink. DICpre is the DIC component that 
leaves the surface ocean as circulation occurs, that is, via advective 
transport and mixing. This component has no sinks or sources in the 
interior ocean. In our transient experiments, the increase in DICpre was 
largely attributed to anthropogenic CO2 entering the ocean, driven by 
the non-steady-state atmosphere–ocean pCO2 gradient (gas exchange) 
and enhanced by the buffer chemistry of CO2 in seawater27. During and 
after the ramp-down period, however, DICpre was rapidly lost from the 
ocean, simply because the atmosphere–ocean pCO2 gradient reversed 
due to a decrease in pCOatm

2  and circulation had not yet moved DICpre far 
away from the surface layer. In addition to the reversal of the atmos-
pheric pCO2 boundary condition, carbon–climate feedbacks, including 
the persistently warmer surface ocean, contributed to the loss of DICpre 
(Supplementary Fig. 8). At the same time, DICremin largely remained 
within the ocean and even increased its contribution to excess marine 
DIC over time (Fig. 1c and Supplementary Fig. 7b), accounting for about 
22% at the end of the ramp-down period. After about 300 years into the 
model simulation, DIC attributable to the biological pump dominated 
ΔDIC in our default model experiment (Fig. 1c and Supplementary 
Fig. 7b).

Spatial patterns of excess DIC storage
The timescales and pathways by which ΔDIC enters (and leaves) the 
ocean were reflected in the spatial and vertical distributions of excess 
DICpre (ΔDICpre) and excess DICremin (ΔDICremin) (Fig. 2). During the 
ramp-up phase, anthropogenic CO2 entered the ocean essentially eve-
rywhere at the surface (Fig. 2a). Accordingly, the largest ΔDICpre was in 
the warm water sphere at the end of ramp-up period (Fig. 2a) as a con-
sequence of the elevated pre-industrial surface ocean CO2 buffer in 
warm low-latitude surface waters compared with cold high latitudes 
(Supplementary Fig. 1a, black line) and intensive ventiliation of inter-
mediate and mode waters2,28–31. The former is consistent with the lati-
tudinal distribution of the Revelle factor (for example, ref. 27). At the 
end of the ramp-down phase in year 140 (Fig. 2d), the ‘bowl’ of most 
elevated ΔDICpre (orange area in Fig. 2a) had disappeared whereas mod-
erately elevated ΔDICpre had been transported southwards in the inte-
rior ocean with the flow of North Atlantic Deep Water and northwards 

with the flow of Antarctic Intermediate Water. Waters at the very sur-
face, however, started to show negative ΔDICpre compared with the 
pre-industrial status, as a consequence of rapid equilibration with the 
atmosphere under conditions that were still warmer than pre-industrial 
sea surface temperatures (Fig. 1e; change in sea surface temperature 
(ΔSST) = 0.38 °C) and pre-industrial-like pCOatm

2  boundary conditions 
(Fig. 1a). By the end of our experiment in year 500, ΔDICpre in surface 
and deep waters had reduced further (Fig. 2g).

Spatial patterns of ΔDICremin developed quite differently compared 
with ΔDICpre over the course of experiment REVERSE. At peak pCOatm

2 , 
DICremin had changed little and in a patchy manner compared with the 
pre-industrial state (ΔDICremin, Fig. 2b). Changes in ΔDICremin were only 
partly due to changes in net primary production (Supplementary Fig. 2) 
and export production (EP) (Fig. 1d), which can contribute to reducing 
DICremin in low latitudes and increasing DICremin in high latitudes13. How-
ever, globally integrated EP was lower than at pre-industrial times (black 
line in Fig. 1d) until year 250, and time-integrated excess EP (ΔEP) (not 
shown) remained negative even until the end of the experiment. Hence, 
the overall reduction in export carbon flux could not explain the overall 
increase in ΔDICremin, consistent also with a recent climate model inter-
comparison study17. Both the global integral of ΔDICremin (Fig. 1c, dotted 
curve) and large-scale patterns of ΔDICremin (Fig. 2b) were dominated 
by the effect of increasing upper-ocean stratification and circulation 
changes on the accumulation time of organic matter degradation 
products in the interior ocean. We traced this change in accumulation 
time via changes in the ideal age (Δideal age; Figs. 1f and 2c). During 
the ramp-down period and until the end of the experiment (Fig. 2e,h), 
areas with lower than pre-industrial DICremin became more prominent, 
particularly in the low latitudes. Here again, regions of decreasing 
DICremin could not be explained by the time history of low-latitude EP 
observed in the experiment (Fig. 1d), but overall agreed better with 
patterns of reduced ideal age (Fig. 2f,i), indicating that a reduced accu-
mulation time of DICremin was a major source of regional lows in 
ΔDICremin. In turn, larger ideal ages in the Southern Ocean and the deep 
ocean, developing already during the ramp-up phase and strengthen-
ing during the ramp-down phase (Fig. 2c,f), indicated a prolonged 
accumulation time of DICremin together with reduced outgassing with 
increasing stratification as major causes of regional highs in ΔDICremin 
(Fig. 2b,e). In addition, elevated DICremin and ideal age changes originat-
ing to a large part in the Southern Ocean (Fig. 2b,e and Fig. 2c,f, respec-
tively) were later transported into deep and bottom waters of the 
Atlantic and Pacific Oceans (Fig. 2h) and were also subject to mixing. 
Given the millennial-timescale residence times (that is, the time until 
re-emergence at the surface) of these waters32, we speculate that the 
slow rate of decrease of globally integrated ΔDICremin observed until 
year 500 (Fig. 1c) may persist for an even longer time as elevated 
ΔDICremin was trapped in the deep-ocean circulation.

We confirmed the results of REVERSE in experiments with modified 
model variants and modified pCOatm

2  trajectories, which differ by the speed 
of pCO2 decrease after year 70 (Supplementary Figs. 3 and 4), and found 
that ΔDICremin was more durable than ΔDICpre and became the dominant 
marine storage of excess CO2 (ΔDIC) on multi-centennial timescales in 
most of the studied scenarios (see Supplementary Results for details).

The marine carbon sink under moderate 
overshoot scenarios
As a return to pre-industrial pCOatm

2
 in experiment REVERSE implies an 

ambitious mitigation pathway, we also explored the response of ocean 
carbon storage and the relative importance of biological-pump carbon 
(DICremin) and solubility-pump carbon (DICpre) via—according to current 
ambitions—more realistic moderate overshoot scenarios that return 
to the 1.5 °C target after shortly passing a warming of 2 °C. We explored 
a moderate SAT overshoot as a consequence of delayed CO2 emission 
reduction efforts for idealized experiments in which anthropogenic 
net-zero emissions were assumed around the ΔSAT = 1.5 °C climate 
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target after passing the maximum temperature in experiment REVERSE 
(for which ΔSAT = 2.02 °C) (see details in Supplementary Methods). 
All experiments branching off from experiment REVERSE with net-zero 
emissions showed a slow long-term decline in SAT (Fig. 3a; ~0.04 °C 
per 100 years) and an associated decline in atmospheric pCO2 (Fig. 3b), 
consistent with anthropogenic net-zero emissions and the slow con-
tinued uptake of CO2 and heat by the ocean. ΔDICremin (Fig. 3d) increased 
continuously until the end of the experiments. This prominent increase 
in ΔDICremin was explained by continuous ocean heat uptake (Fig. 3e, 
coloured lines). This continuous ocean heat uptake prolonged the 
conditions of elevated upper-ocean temperature gradients (Fig. 3f), 
which through their effect on the vertical density structure supported 
isolation of the interior ocean as indicated by a continuous increase in 
the global ideal age anomaly (Fig. 3g). ΔDICremin (relative to pre-industrial 
conditions; Fig. 3d, coloured lines) never exceeded ΔDICpre (Fig. 3c). 
However, computing ΔDIC components relative to the time point after 
which we assumed net-zero CO2 emissions (vertical dashed lines in 
Fig. 3) changed the picture. In the overshoot experiments, ΔDICremin 
computed this way (solid orange curve in Fig. 3h) was much larger 
compared with the equivalent ΔDICpre (dashed orange curve in Fig. 3h). 
In other words, biological-pump carbon dominated additional CO2 
storage after a moderate temperature overshoot. For net-zero CO2 
emission experiments without any temperature and pCO2 overshoot, 
this was not observed (green curves in Fig. 3h)—that is, DICpre 
(solubility-pump carbon) remained the major marine carbon sink under 
the conditions of net-zero emissions and climate stabilization without 
temperature and pCO2 overshoot.

We suggest that the differences in ΔDICpre for experiments with 
and without pCO2 and temperature overshoot can be understood in 
terms of a delayed response to the time history of atmospheric pCO2. 
Assuming that the physico-chemical uptake of atmospheric CO2 by the 
ocean (into DICpre) responds to negative CO2 emissions with a similar 
impulse response function33 as it does to positive emissions, we suggest 
that the negative emissions between peak pCO2 and net-zero emission 
regimes caused a stronger loss of DICpre (dashed orange line) compared 
with the simulation without net-negative emissions (dashed green line).

Potential implications for integrated assessment 
modelling
With the ocean being a principal player in the global carbon cycle and 
for the uptake of anthropogenic CO2 (refs. 34,35), recent efforts have 
focused on better understanding the impact of climate change on 
the marine uptake of anthropogenic CO2, for example, by weaken-
ing the overturning circulation and the effect of climate change on 
the natural marine carbon cycle, both under scenarios of increasing 
CO2 emissions5,36,37. However, the response and relative importance 
of the marine carbon–climate and carbon–concentration feedbacks 
under scenarios of net-negative (or net-zero) CO2 emissions remain 
unknown. Here we showed that, under scenarios of net-negative CO2 
emissions, the ocean may become a source of formerly stored anthro-
pogenic CO2 to the atmosphere, while additional CO2 stored in the 
ocean and attributable to the biological pump outgassed from the 
ocean at a much slower rate and became an important component 
of centennial-timescale marine carbon storage. Acknowledging the 
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Fig. 2 | Vertical distribution of ΔDICpre, ΔDICremin and Δideal age. a–i, For 
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ramp-down period (year 140, d–f) and at year 500 (g–i). Changes relative to  

pre-industrial levels (for example, year 70 − pre-industrial) are shown. Running 
from left to right in each plot, the x axes show distributions along 30° W (from 
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simplicity of our Earth system model and the ideality of our experi-
ments, we expect our main conclusion to hold for simulations with more 
complex Earth system models and more realistic emissions scenarios, 
as supported by our various sensitivity-model experiments.

This shift in processes relevant for marine CO2 storage under 
net-negative emissions has so far not been recognized. It is of particular 
relevance in the context of the socio-economic evaluation of potential 
future emission and climate pathways as the class of models used there 
(integrated assessment models, or IAMs) utilize simple climate models 
such as MAGICC (Model for the Assessment of Greenhouse Gas Induced 
Climate Change)38, which typically represent the marine carbon sink 
via an impulse response function (see, for example, ref. 33), assuming a 
purely physico-chemical behaviour of CO2 uptake. As these models are 
usually trained against Earth system model output from experiments 
similar to our ramp-up phase, they do not represent the fact that Earth 
system feedbacks like the storage via biological-pump carbon become 
increasingly relevant after a temperature overshoot and subsequent 
net-negative emissions. We speculate that the lack of representation 
of this feedback may cause an underestimation of the marine carbon 
sink and an overestimation of the eventually needed net-negative emis-
sions. In agreement with ref. 39, we propose that a better integration 
of such Earth system feedbacks may be needed to realistically project 
the centennial-timescale future of marine CO2 uptake and storage 
under complex emission scenarios, and benefit more realistic climate 
mitigation scenarios.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-024-01541-y.
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Methods
We used a modified version of the UVic Earth system model of inter-
mediate complexity (version 2.9)40,41, which we ran in an ocean–atmos-
phere–sea-ice configuration13. The ocean biogeochemistry used in this 
model was based on an NPZD model—which simulates interactions 
between the model compartments’ nutrients (N), phytoplankton (P), 
zooplankton (Z) and detritus (D)—with phosphate and nitrate as prog-
nostic nutrients and iron limitation prescribed by an iron concentration 
mask42. The model simulated diazotrophs and ordinary phytoplankton, 
one zooplankton and one detritus pool. It applied fixed elemental 
ratios (of C:N:P:O2) for organic matter cycling and the interactions with 
prognostic oxygen, total DIC and alkalinity tracers. The degradation of 
organic matter was temperature-sensitive. For more details on model 
equations and evaluation against observations, see ref. 42.

DIC component attribution
We used idealized model tracers to distinguish the contributions from 
different processes to total DIC6. DICremin represented the impact of 
organic matter degradation on DIC in the interior ocean. Below the 
surface layer (that is, below z = 50 m in this model), DICremin was subject 
to source-minus-sink terms associated with organic matter degrada-
tion (and production). In the surface layer, DICremin was set to zero at any 
time step during the model run time. DICpre represented the fraction of 
DIC that behaves conservatively in the ocean. At the surface, DICpre was 
set to the value of DIC; in the interior ocean it had no biogeochemical 
sinks or sources. Implicitly, DICpre was also affected by gas exchange, 
and hence by the transient changes in atmospheric CO2 in the experi-
ments performed here (see below). In the interior ocean (z > 50 m), 
both tracers (as with any other tracer) were transported according to 
the model physics and could be (further) modified due to the mixing 
of water masses. A third component, the DIC affected by the produc-
tion or dissolution of CaCO3, was not modelled explicitly but may be 
computed via difference between DIC and DICremin + DICpre. In this study 
we particularly reported and analysed changes in DICpre and DICremin. 
In a climate change context, DICpre increases when anthropogenic CO2 
enters the ocean; DICpre can also change as a consequence of carbon–
climate feedbacks6 (Supplementary Methods and Supplementary 
Fig. 8). The former process, however, dominated the change in DICpre 
in particular during the ramp-up phase. DICremin was subject to carbon–
climate feedbacks, for example, by changing circulation (changing the 
residence time of the interior-ocean water) or changing the export 
flux of organic matter. Our model did not include CO2–concentration 
feedbacks on biology, assuming that CO2 is never limiting for biological 
growth in marine surface waters. In other words, we assumed no effects 
of ocean acidification on phytoplankton.

We further applied an ideal age tracer43,44. An ideal age tracer quan-
tifies the mean age since last contact with the atmosphere. This tracer 
was set to zero at the surface of the ocean and ages at a rate of one 
day per day everywhere else. The tracer was also subject to physical 
transports and water-mass mixing. We note that an ideal age tracer is 
an ideal tracer of mean age in the steady state. Tracers of the model’s 
true oxygen utilization (or TOU) and preformed oxygen (O2

pre) were 
defined as analogues of DICremin and DICpre, respectively, with respect to 
their sink and source terms and surface ocean boundary conditions45.

Default model experiment
The experiment presented here was based on a 10,000-year-long 
experiments run with prescribed constant pre-industrial pCO2 and 
climate forcing (spinup) with the fully coupled model, followed by 
1,500 years with the ocean–atmosphere–sea-ice model (see ref. 13 for 
details and model evaluation). Using an ocean–atmosphere–sea-ice 
model with idealized pCO2  concentration forcing, we neglected any 
non-CO2 forcings and feedbacks. We performed idealized CO2- and 
temperature-overshoot experiments (experiment REVERSE, modified 
from ‘CDR-reversibility’ experiments described in ref. 46) starting at 

pre-industrial conditions with a 1% increase in atmospheric pCO2 per 
year until twice the pre-industrial CO2 conditions were reached 
(ramp-up phase, 70 years). Thereafter, atmospheric pCO2 was predicted 
to decrease at a rate of −1% per year until pre-industrial pCO2 was reached 
again (ramp-down phase, years 71–140). The experiment was continued 
until year 500 with predicted pre-industrial pCOatm

2  (stabilization phase, 
years 141–500).

Sensitivity experiments
To demonstrate the robustness of our main findings, we carried out 
idealized sensitivity experiments with different model set-ups (circula-
tion strength and biogeochemistry), modified assumptions about 
negative emissions during ramp-down and different peak pCOatm

2  condi-
tions. Further sensitivity experiments performed using the default 
model set-up explored potential effects concerning the predicted pCOatm

2  
rate of decrease after peak pCO2, that is, assuming a slower pCOatm

2  
decrease. We also performed experiments with a moderate tempera-
ture overshoot. All sensitivity experiments were run for 500 years in 
total. Details of the sensitivity experiments are given in the Supple-
mentary Information.

Compatible CO2 emissions
In an Earth system model experiment with prescribed pCOatm

2
, compatible 

emissions (emissions consistent with this atmospheric pCO2 path and 
the models Earth System feedbacks) were diagnosed from the change 
in the Earth system carbon inventory (land + ocean + atmospheric 
carbon) relative to the pre-industrial state25. Carbon–climate feed-
backs, such as the warming CO2-solubility feedback, reduced the com-
patible emissions by reducing the marine carbon sink (reducing DICpre). 
For the applied ocean–atmosphere–sea-ice model, land carbon change 
was not considered in the computation of compatible emissions.

Carbon pump terminology
Processes that give rise to a vertical gradient of DIC in the ocean and 
thereby affect pCOatm

2  have been referred to as marine carbon pumps7. 
Since the original proposal of the three pumps (soft-tissue pump, 
CaCO3 pump and solubility pump), they have been addressed using 
slightly differing terminologies in the literature. Here we adopt, for 
example, from ref. 47 and others, usage of the generic term ‘biological 
(carbon) pump’ for what originally was more specifically referred to 
as the ‘soft tissue pump’ by Volk and Hoffert7. This carbon pump starts 
with the incorporation of CO2 into living organic matter (tissue) by 
phytoplankton, followed by organic carbon propagating through the 
food web and eventually being transported into the interior ocean (via 
sinking particles, active transport and physical mixing; see, for exam-
ple, ref. 48). In the interior ocean the majority of organic matter is 
degraded back to CO2, entering the pool of total DIC, and nutrients, 
with a small fraction sinking down to the sediment. The degradation 
products are subject to transport by the ocean’s circulation. The 
amount of DIC attributable to the soft-tissue pump that we trace with 
our idealized model tracer DICremin in the interior ocean is due to the 
balance of processes that increase DICremin (organic matter transport 
and subsequent degradation in the ocean interior) and ocean circula-
tion, which will return the degradation products to the surface ocean 
(see ref. 16 for a more detailed discussion). The soft-tissue pump is 
considered to be the dominant biological pathway for enhancing DIC 
in the interior ocean49,50, and has a considerable long-term impact on 
atmospheric pCO2  (ref. 51). The CaCO3 (counter) pump, the second 
biological carbon pump defined in ref. 7, is not traced by DICremin, nor 
can it meaningfully be traced by an idealized carbon tracer as the CaCO3 
pump is primarily an alkalinity pump (exporting alkalinity and DIC into 
the deep ocean in a 2:1 ratio) and hence has an inverse effect on marine 
carbon storage. In this context, we note that changes in DICremin and 
DICpre do not perfectly add up to changes in DIC (ΔDIC ≠ ΔDICremin +  
ΔDICpre). This is so because DIC that is attributable to the  
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CaCO3 pump (that is, ΔDICca) may change as well. In the experiment 
REVERSE, the globally integrated residual (ΔDIC − ΔDICpre − ΔDICremin =  
ΔDICca) was 9.7 PgC (4% of ΔDIC) at peak pCO2, 19 PgC (10% of ΔDIC) in 
year 140 and 21.5 PgC (26%) at the intersection point 
(ΔDICremin = ΔDICpre). We note that this increase in DICca (Supplementary 
Fig. 7) does not contribute to an increase in the ocean carbon sink as 
the CaCO3 pump is inevitably linked to a decrease in surface alkalinity, 
contributing to the decrease in DICpre from carbon–climate feedbacks 
(see Supplementary Fig. 8) to a so far unquantified degree. The majority 
of marine DIC is DICpre, which is a consequence of the CO2 buffer chem-
istry of seawater and the associated solubility of CO2 in equilibrium 
with the atmosphere. The original term ‘solubility pump’7 addressed 
the contribution of high-to-low-latitude temperature gradients 
together with the large-scale overturning circulation on the vertical 
DIC gradient, leaving the huge background DIC unnamed. At 
pre-industrial times, DICpre includes both this background DIC and the 
DIC explicitly related to the solubility pump according to Volk and 
Hoffert7. Acknowledging that the physical–chemical marine uptake of 
anthropogenic CO2 is controlled by CO2 buffer chemistry and solubility, 
next to the partial pressure gradient and the circulation, we use the 
term solubility-pump carbon as a synonym for DICpre.
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