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Temperature overshoot responses to
ambitious forestation in an Earth
System Model

Yiannis Moustakis 1 , Tobias Nützel 1, Hao-Wei Wey2, Wenkai Bao1 &
Julia Pongratz1,3

Despite the increasing relevance of temperature overshoot and the rather
ambitious country pledges on Afforestation/Reforestation globally, the miti-
gation potential and the Earth system responses to large-scale non-idealized
Afforestation/Reforestation patterns under a high overshoot scenario remain
elusive. Here, we develop an ambitious Afforestation/Reforestation scenario
by harnessing 1259 Integrated Assessment Model scenarios, restoration
potential maps, and biodiversity constraints, reaching 595Mha by 2060 and
935Mha by 2100.We then force theMax Planck Institute’s Earth SystemModel
with this scenario which yields a reduction of peak temperature by 0.08 oC,
end-of-century temperature by 0.2 oC, and overshoot duration by 13 years.
Afforestation/Reforestation in the range of country pledges globally could
thus constitute a useful mitigation tool in overshoot scenarios in addition to
fossil fuel emission reductions, but socio-ecological implications need to be
scrutinized to avoid severe side effects.

Reaching net-zero greenhouse gas emissions as required by the Paris
Agreement’s goals will require the deployment of Carbon Dioxide
Removal (CDR) methods, compensating at least for hard-to-abate
emissions1–3. Pursuing a more ambitious 1.5 oC (compared to pre-
industrial levels) goal implies a more limited remaining emission
budget, and thus rapid decarbonization, major societal transforma-
tions, and large-scale CDR application1,4. Thus, CDR deployment has
been at the spotlight of scientific research recently5,6. Future scenarios
generated by Integrated Assessment Models (IAMs) that keep to 1.5 oC
by 2100 typically exhibit excess positive emissions early on which are
then sharply reduced, leading to a temperature overshoot (i.e., period
during which mean global temperature exceeds intended warming
level, here 1.5 oC, before returning to it)7,8. This delay of early action in
IAMs emerges due to the high upfront investments and near-term
mitigation costs required to limit the overshoot9,10, but caution is
needed since the normalization of the overshoot idea could possibly
facilitate a political flexibility associated with a lack of action11. Over-
shoot is becoming increasingly more relevant due to incredible
country pledges12,13, and concerns of political feasibility and delay of

the required climate action14,15. Despite that, uncertainty still remains
with regards to overshoot dynamics such as the peak temperature and
overshoot duration and the associated Earth system responses and
adaptation needs, which should thus be further studied9,16.

Afforestation/Reforestation (AR), which has been practiced for
decades, can be a useful mitigation tool17 and combined with forest
management practices constitutes virtually all (99.9%) of currently
applied CDR18. In the literature a wide range of possible AR seques-
tration potentials has been reported, varying depending on themodel
used, land availability, CO2 levels, and assumptions regarding the
capacity of different biomes in sequestering CO2 under a changing
climate7,19,20. Apart from the potential of durably sequestering carbon
(C) and mitigating warming, uncertainty remains regarding the per-
manence of C storage21, possible impacts of large-scale AR on local
climates22, ecosystembiodiversity19, food security23, and the associated
societal risks7. Still, recently the Land-Gap Report24 has estimated that
long-term and net-zero country-level mitigation pledges amount to
quite ambitious land-based CDR commitments, which would require
633Mha of AR globally by 2060, in addition to 551Mha for the
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restoration of degraded ecosystems. This estimation has recently been
updated reaching likely up to 490Mha of AR and up to 570Mha of
restoration25. Even though such levels of AR might seem rather high
and their feasibility and associated socioeconomic risks have been
questioned24, it is only through decisive action and ambitious policies
that we can diverge from the high-risk climate path that we are cur-
rently following13. Hence, themitigation potential and impacts of large-
scale AR in the range of country pledges should be further assessed.

The complexity of assessing ambitious AR deployment emerges
since both the changes in atmospheric CO2 following CDR application
and the biogeophysical effects via alteredmoisture and surface energy
fluxes can strongly affect the Earth system26. To capture these effects
and feedbacks and thus get more reliable estimates of AR potentials
and impacts, fully coupled Earth System Models (ESMs) need to be
employed, which solve for the exchange of mass and energy between
the land surface, the atmosphere and the ocean27. The assessment of
biogeophysical effects hasmostly been done for land use change, land
management, and related land-cover changes (short “land use” in the
following) in general. Studies investigated local or remote
temperature26,28, precipitation29, and circulation changes30, caused by
changes in surface roughness and albedo31, moisture recycling and net
radiation22, as well as their interplay with the biogeochemical effect
(cooling) of the associated decrease in atmospheric CO2

32.
Even though significant progress has been made in isolating and

investigating such effects, studies inmany cases employ fully idealized
land use scenarios including massive (de)forestation globally, and
cannot be thus used to confidently assess the effects of more realistic
patterns33–35. This is especially the case with the multitude of results
reported by deforestation studies, since it has recently been demon-
strated that the responses of local climate to forest loss and gain are
asymmetric36. Modeling efforts with a focus on assessing the impacts
and mitigation potentials of more realistic AR scenarios have been
rather limited. Some have been based on the available land use change
scenarios associated with the Representative Concentration Pathway
4.5 (RCP4.5) from the Coupled Model Intercomparison Project 5
(CMIP5)37–39. In RCP4.5, however, the total ~800Mha forest area
increase by 2100 also includes a forest expansion that the models
simulate in response to climate change, and typically, by experimental
design (comparison is only possible between various land use sce-
narios), AR can be assessed only together with land transitions other
than AR, including avoided deforestation, and thus it is not possible to
isolate the effect of CDR39. Recently, Matthews et al.40 examined the
mitigation potential of forest regrowth to 1920 levels by 2056, fol-
lowed by a release of sequestered carbon during the second half of the
century, and demonstrated that high AR levels, even when of tem-
porary nature, can mitigate global temperature increase under a low
overshoot scenario. However, Matthews et al.40 employed an inter-
mediate complexity climate model, which does not fully represent all
the relevant processes, and an idealized spatiotemporal AR pattern. In
the ongoing Land Use Model Intercomparison Project (LUMIP)41 the
land use pattern of the Shared Socioeconomic Pathway (SSP) SSP1-2.6
is considered. Even though this was intended to include substantial AR
based on the marker IAM (IMAGE) scenario42, translation to ESMs has
failed to reproduce that signal yielding moderate AR levels43, thus
falling behind the ambitious amounts suggested by country pledges
globally.

Overall, uncertainty still remains regarding the Earth system
responses under temperature overshoot pathways16. Reported results
show a significant variability of responses among ESMs, whose statis-
tical significance, as well as the signal emergence from internal natural
variability have not been robustly assessed, due to the lack of multiple
(within and across model) ensemble members16,44. Yet, in most AR
studies high future emission scenarios are used34,39. Importantly, such
approaches suffer from the paradox of applying ambitious AR
-implying strong coordinated climate action-, while following high-end

emission scenarios -implying delayed and insufficient climate action.
The normalization of the idea of coupling largelyunmitigatedwarming
scenarios with ambitious AR could connotate the establishment of AR
as an alternative to emission reductions, and needs to be treated with
caution45. From a biophysical perspective, high-end scenarios induce
an enhanced CO2 fertilization effect, thus strengthening vegetation
carbon uptake, land surface fluxes, mitigation potentials and biogeo-
chemical cooling34,38,39,41. Typically, they also yield intensified dis-
turbances (e.g., wildfires) which could compromise the permanenceof
carbon stored in vegetation46. Evidently, the roleof ARunder scenarios
with stronger emission reductions yielding a weaker vegetation ferti-
lization, and hence less biogeochemical cooling, as well as lower dis-
turbance rates, thus suffering less from CDR permanence
overestimation, remains unclear.

To fill this gap, we investigate to what extent an ambitious con-
strained AR scenario in the range of total country pledges globally can
mitigate a temperature overshoot emission scenario and alter its
dynamics (duration, peak and end-of-century temperature), andwhether
biogeochemically-induced cooling can emerge from internal variability
and compensate for any possible AR-induced biogeophysical warming.
We first develop an AR scenario in the range of country pledges globally
reaching 595Mha of AR in 2060 and 935Mha by 2100, and then run fully
coupled simulations with the Max Planck Institute’s Earth System Model
(MPI-ESM). Simulations are performed under a high-overshoot SSP5-
3.4os emissions scenario which follows SSP5-8.5 until 2040, followed by
rapid decarbonization, and reaching net-zero around 2070 and net-
negative thereafter. To take into account the technoeconomic con-
siderations, biogeophysical potentials, and biodiversity concerns, we
harvest the recently published AR6 Scenarios Database (AR6-SD)47,
restoration potential maps, and maps of human influence. Beyond these
considerations we also discuss in detail the possible socioeconomic
barriers and tradeoffs of such ambitious AR implementation.

Our results show that ambitious AR in the range of country pledges
globally canmitigate a temperature overshoot scenario by reducing the
peak and end-of-century temperature by0.08 oC and0.2 oC respectively,
as well as the duration of the overshoot by 13 years. Overall, biogeo-
chemical cooling due to the reduction of CO2 dominates, and at least
compensates for any biogeophysically-induced warming.

Results
Afforestation/Reforestation pattern
Following AR6-SD estimates (Fig. 1, “Methods”), AR is applied at the
expense of grazing land globally, while cropland areas and natural
grassy and shrubby biomes remain unchanged. By considering
restoration potential maps and biodiversity proxies (Fig. 2, “Meth-
ods”), the resulting AR scenario (Fig. 3) exhibits a strong increase in
forest area over the 21st century, with slightly higher dynamics in the
first half, reaching 595 (935)Mhaof forest area increaseby 2060 (2100)
over current (2015) levels. This occurs at the expense of heavily man-
aged pastures, which decrease by 472 (575)Mha and more lightly
managed rangelands, which decrease by 123 (360)Mha. Latin America
(256Mha in 2100) and Africa (215Mha) emerge as hotspots of forest
area increase, followed by theOrganization for EconomicCooperation
and Development (OECD90) developed countries (201Mha), Asia
(162Mha), and Eastern European countries and the reforming econo-
mies of the former Soviet Union (101Mha). At the country level, the
United States (142Mha), Brazil (113Mha), China (110Mha), Russian
Federation (64Mha), and Argentina (24Mha) carry out in total 48% of
AR by 2100 (Supplementary Fig. 1). The scenario includes reforesting
514 Mha in 2100 of previously deforested areas globally, correspond-
ing to 60% of total historical deforestation (851Mha during 1850–2014
in MPI-ESM following the Land Use Harmonization 248 historical pat-
tern) (Supplementary Fig. 2). The remaining 421Mha are afforestation,
which is employed by priority over the less biodiverse rangelands
(Fig. 2 & Supplementary Fig. 2).
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Fig. 2 | Overviewof theAR scenario development.Given that total rangelands (a)
can have different levels of management and grazing intensity and hence biodi-
versity richness, weuse the Very LowHuman Influence (VLHI)mapbased onRiggio
et al.127 (b) to filter out grazing land that can be considered closer to a pristine state.
Combined with pasture, the remaining available grazing land (c) constitutes the
total grazing land that is considered for AR (d) in our framework. Available ran-
geland is further categorized into 4 biodiversity groups (e), based on the Low

Human Influence (LHI) map based on Riggio et al.127 (f). The Griscom et al.19

restorationpotentialmap (GRS, (g)) andAtlas of Forest and Landscape Restoration
Opportunities126 (ATL, (h)) are further used to guide the spatial pattern of AR, given
an annual AR target for each world region. Allocation of the AR target across the
gridcells is performed using the iterative process presented in the “Methods”
section. The resulting AR pattern by 2100 for the target set in this study is pre-
sented in (i).

Fig. 1 | Percentiles of theAR6scenario database.The figures present the different
percentiles of global (a) forest cover, (b) grazing land, and (c) cropland change in
Mha compared to 2015. Each line does not correspond to a specific scenario, but
rather represents a different percentile of area change for each year, estimated by
pooling all AR6 Scenario Database scenarios together. Highlighted is the 90th

percentile for forest area change and its complementary threshold, the 10th per-
centile for cropland and grazing land change. The probability density plots for
2040, 2060, 2080, and 2100 indicative of the spread of the area change distribu-
tion are also shown in light gray. The country pledges global estimate presented in
the Land-Gap report24, and its 2023 update25 are shown with the green bar.
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Mitigation of global temperature
The average global 2m air temperature (compared to the 1850–1900
MPI-ESM average) and the global carbon fluxes are shown in Fig. 4.
Under the reference (REF) simulation (constant land use at 2015 levels,
see “Methods”), temperature overshoot lasts for ~65 ± 2 years
(mean± standard deviation estimated from smoothing and boot-
strapping—see “Methods”), from 2035 up to 2099. The probability that
end-of-century temperature will be within 1.5 °C over pre-industrial
levels is 46%, with an average temperature of 1.51 °C (minimum—

maximum of 5-year period from ensemblemembers: 1.27–1.87 °C—see
“Methods”). In year 2058 ± 2, a peak temperature of 2.06 °C
(1.89–2.29 °C) is reached, which follows the year during which atmo-
spheric carbon reaches its maximum value (~ + 980 GtCO2, 126 ppm in
2057 compared to 2015). Under the AR simulation, temperature
overshoot lasts for ~52 ± 2 years, from2036up to 2087. Theprobability
that the 1.5 °C target is returned to by the end of the century is 90%,
with an average temperature of 1.31 °C (1.02–1.59 °C). In year 2058 ± 2,
a peak temperature of 1.98 °C (1.8–2.23 °C) is reached, staying below
the Paris Agreement 2 °C target with a probability of 48%. Peak tem-
perature lags ~3 years after the maximum in atmospheric carbon.
Comparing the REF and AR simulations suggests that the isolated
effect of AR on average global temperature yields peak temperature
reduced by ~0.08 oC, overshoot duration by ~13 years, and end-of-
century temperature by ~0.2 oC. The impact of AR on global

temperature emerges already in ~2052± 2 years, when the temperature
differencewith REF starts becoming statistically significant (Fig. 4a). At
that point, AR has reached 495 Mha, atmospheric carbon is lower by
~110 GtCO2 (30 PgC, 14 ppm), and oceanic carbon by ~22 GtCO2 (6
PgC), due to a total increase of ~132 GtCO2 (36 PgC) in the land carbon
sink (Fig. 4b). The temperature trajectory under AR is smoother, rather
reaching a plateau before it starts leveling off. By examining different
percentiles of global average daily temperature a similar behavior is
demonstrated (Supplementary Fig. 3).

CO2 removal
The land C stock divergence of AR from REF is notable within few
decades and continues until the end of the century (Fig. 4b). Over
gridcells where AR is applied the land sequesters in total ~395 GtCO2

(108 PgC) more compared to REF by 2100, with less carbon being
sequestered over the forested rangelands, which are typically more
arid (Fig. 4c). This is the net result of ~420 GtCO2 (115 PgC) sink
enhancementover 912MhaofourAR area, and aweakeningof the land
C sink by ~25 GtCO2 (7 PgC) over the remaining 23 Mha, mostly in the
tropics (despite the forest area increase). Overall, ~249 GtCO2 (68 PgC)
correspond to the partial reversal of historical deforestation. Over
gridcells where AR is not applied, a total weakening of CO2 uptake by
~13 GtCO2 (4 PgC) emerges, most prominently over the Amazon.
Therefore, the net land sink increase compared to REF is ~382 GtCO2

Fig. 3 | Results of the AR scenario development (see “Methods” and Fig. 2). The
panels in (a) show the timeseries of forest area increase (in Mha) and how AR is
allocated betweenpasture and rangelands i) globally and at the regional level for ii)
Organization for Economic Cooperation and Development (OECD90) developed
countries, (iii) Eastern Europe and reforming economies of the former Soviet Union
(EEu & RefSU), (iv) Latin America (LAC), (v) Middle East and Africa (MAF), and (vi)

Asia (the 5 world economic regions typically used in IAMs). The country pledges
global estimate presented in the Land-Gap report24, and its 2023 update25 are also
shown with the green bar in (i). In the right-column maps the resulting change in
cover fraction of (b) forest cover (corresponding to Fig. 2i), (c) heavily managed
grazing land (Pasture), and (d) lightlymanaged grazing land (Rangeland) from2015
to 2100 is shown (other vegetation/land use including croplands remain unaltered).
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(104 PgC) by 2100 in total, reducing the atmospheric CO2 level by ~281
GtCO2 (77 PgC, 36 ppm), and the ocean sink by ~101 GtCO2 (27 PgC).

The rate of change in land C under both REF and AR mostly fol-
lows the signal of change in atmospheric C, which is driven by fossil
fuel emissions (Supplementary Fig. 4). Under REF, the land C stock
transits from being a sink to a source in ~2090, whereas under AR the
land C remains a sink, even though with weak and ever decreasing
sequestration rates, becoming a sourceonly in2100. This suggests that
under AR increased forest cover coupled with decreased CO2 atmo-
spheric levels compared to REF offer a ~10-year buffer before the land
C stock transits to a source behavior, allowing for more C to be
sequestered during this period. However, the reverse image is
observed when the ocean C sink is examined (Fig. 4 & Supplementary
Fig. 4). Here, not only is ocean C uptake consistently weaker under AR
compared to REF, due to the lower CO2 concentration as a con-
sequenceof theCDR application, but in fact the ocean sink transits to a
source behavior under AR in ~2085. Under REF the ocean C sink does
not transit to a source behavior, even though by 2100 the rate of
increase is almost zero. This demonstrates that the ocean tends to
partly offset the efficiency of applied CDR. On average, for every
additional 100GtCO2 (27 PgC) sequestered in landunderARcompared
to REF 26 GtCO2 (7 PgC) less carbon is taken up by the ocean, leading
to a net removal of 74 GtCO2 (20 PgC) from the atmosphere, which
suggests a 74% efficiency.

Overall, the applied AR manages to sequester ~4.49 GtCO2/year
more over land compared to REF on average, but eventually reduces

atmospheric CO2 only by ~3.32 GtCO2/year on average, due to com-
pensation by the ocean CO2 fluxes. By 2100, this corresponds to a ~41
GtCO2 (11 PgC) gain over land compared to REF and ~0.02 °C tem-
perature reduction for every 100 Mha of forest area increase, which
also suggests a ~0.05 °C temperature reduction for every 100 GtCO2

(27 PgC) additionally sequestered in land compared to REF. CDR effi-
ciency expressed as temperature reduction per 100 GtCO2 removed
from the atmosphere compared to REF increases across time, reaching
~0.07 °C in 2100 (Supplementary Fig. 5). Efficiency expressed in terms
of C removal per 100Mha increases until ~2080 and thenplateaus until
the end of the century, reaching on average ~30 GtCO2 (8 PgC) (Sup-
plementary Fig. 5).

AR sequestration rate defined as the rate of land C increase when
AR and REF are compared shows a sharp increase to 3.9 GtCO2/year in
2030 (27 GtCO2 cumulatively), rising further to 6.3 GtCO2/year in 2050
(121 GtCO2) (Fig. 5). These high rates are sustained and strengthened
until ~2065 (7.1 GtCO2/year, 222 GtCO2), before they start levelling off,
reaching 1.7 GtCO2/year (382 GtCO2) in 2100 even though at this point
the individual land C stocks under REF and AR have both transited to a
source behavior. When it comes to the rate of decrease in atmospheric
CO2whenARandREF are compared, a removal rate of 3.39GtCO2/year
is achieved by 2030 (24 GtCO2), 5.3 GtCO2/year by 2050 (103 GtCO2),
and 5.6 GtCO2/year by 2065 (185 GtCO2). By 2100, atmospheric CO2

rates reach −0.21 GtCO2/year (281 GtCO2 in total), since additively the
oceanand landC sources under AR are stronger than the landC source
under REF.

Fig. 4 | Earth system responses. a Average annual global 2m air temperature
(difference compared to pre-industrial era, expressed here as the 1850–1900
average) is plotted for each ensemble member (light lines) for both AR (green
color) and REF (blue color) scenarios. The thick lines represent the ensemblemean
(10members) for each scenario. The colored arrows depict the overshoot duration
for each scenario. The bright green shaded region indicates that there is no sta-
tistically significant difference between the two scenarios, while the purple shading
suggests that a statistically significant difference exists (significance estimated as

described in “Methods”).bThe changes inglobal ensemblemean total atmospheric
(Catmo), land (Cland), and oceanic (Cocean) carbon (GtCO2) compared to 2015 are
shown for each scenario. All ensemble members are plotted in light color, but
overall variability is weak compared to the temperature variability. cMap showing
the ensemble mean difference in carbon (GtCO2 in each gridcell) stored on land
between the AR and the REF scenario in 2100. Blue color indicates an increase in
land carbon under AR.
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Changes in regional hydroclimate
Gridcell-level results (Fig. 6, Supplementary Fig. 6) show patches of
cooling emerging as early as 2030, when the mean temperature pat-
tern under AR is already statistically significantly different compared
to REF (see “Methods”, and Supplementary Fig. 7). Regions with sig-
nificant cooling during 2030–2050 emerge not only formean, but also
for more extreme temperature, mostly over the northern high-lati-
tudes, and over LatinAmerica, and central Africa (Fig. 6, top row). Such
cooling becomes progressively more robust and widespread over
time, and is already dominant during the period around the peak of
global temperature (2050–2070) (Fig. 6, mid row), especially over
Africa, Latin America, and the northern high-latitudes. The pattern of
mitigation is consistent across the mean, and the high and low tem-
perature extremes, but differs in magnitude over the northern-
latitudes where low temperature extremes are reduced more
strongly. Patches of warming at the sites of forestation in Eurasia and
NorthAmerica emerge,whichare however statistically insignificant. By
the end of the century, cooling is dominant globally for mean tem-
perature (Fig. 6, bottom row). Cooling is stronger over Africa, Latin
America south of the Amazon rainforest, northern Asia, and North
America. A similar pattern is obtained for the extreme high tempera-
ture, albeit with a weaker temperature mitigation over the northern
high-latitudes. On the contrary, mitigation for the extreme low per-
centile is stronger over the northern high-latitudes, and a small patch
of statistically significantwarming emerges in easternAsia over sites of
forestation.

Our results further suggest a wetter hydroclimate over forested
regions emerging during the mid-century (Fig. 7). This is most clearly
evident with increases in relative humidity and cloudiness over sites of
forestation, which start emerging already from 2030 onwards, and are
especially pronounced and widespread over Latin and North America,
Africa, and east Asia. This is accompaniedby statistically significant but
less widespread patterns of precipitation and evapotranspiration
increases evident over Latin and North America, Africa, and east Asia,
where the hotspots of changes in cloudiness and relative humidity are
reported. Over sites of forestation reduced albedo leads to an increase
in surface net radiation, thus resulting in an increase in latent heat
fluxes commensuratewith the reported increase in evapotranspiration
and in a reduction of sensible heat flux (Supplementary Fig. 8). An
increase in albedo is reported over the Arctic already from the mid-
century, which can be explained by the increase in sea-ice, which is
however noisy at the global scale (Supplementary Fig. 9). Surface
ocean pH reaches a 0.03 increase under AR compared to REF (Sup-
plementary Fig. 9).

Discussion
Mitigation potential of ambitious Afforestation/Reforestation
Here we go beyond simply using marker IAM scenarios and rather
utilize anensemble of 1259 landuse scenarios, which to our knowledge
is unprecedented. This allows us to navigate through the more opti-
mistic spectrum of the wide ensemble of opportunity that IAMs can
offer49 and design an AR scenario aligned in spirit with the ambitious

Fig. 5 | Sequestration potentials of Afforestation/Reforestation. Sequestration
potentials of AR based on this study, previous literature, and AR6-SD are shown,
expressed as (a) cumulative carbon sequestration through AR over time (GtCO2)
and (b) annual sequestration rate through AR (GtCO2/year). The green line repre-
sents the ensemblemean (10members) additional sequestration by land compared
to REF achieved in this study and the dark red line the corresponding removal
(positive) from the atmosphere, both smoothed with a Savitzky-Golay122 filter. The
5–95% percentiles (purple shading), as well as the mean (dark purple line) of AR
sequestration estimates of AR6-SD are also presented, estimated based on a subset

of 300 scenarios for which explicit information on C sequestration from AR is
available. The black dots (and the associated minimum-maximum ranges with
vertical thin black lines—if applicable) represent (mean) AR sequestration estimates
based on the compiled list of 40 previous studies (see “Methods”, and Supple-
mentary Data 1). The most widely cited studies among them19,20,67 and the most
recent estimate of Mo et al.75 which are explicitly mentioned in the “Discussion”
section, are shown with different color. The technical and economic mitigation
potentials suggested by IPCC WGIII Ch.7174 are also shown for comparison. To aid
visualization, the studies have been randomly shifted in time by ±2.5 years.
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climate policies that are necessary to overcome climate uncertainty
and yield robust results in terms of achieving our climate goals13,50. For
the first time, the mitigation potential of ambitious AR in the range of
country pledges24 is studied under an overshoot scenario with a fully
coupled high-complexity ESM. This is particularly important since
delayed climate action15, insufficient Nationally Determined
Contributions12, the policy credibility gap13, political feasibility
concerns14, and the possible overstatement of CDR potentials in
IAMs51, suggest that reaching 1.5 oC with no or limited overshoot is less
likely. This increases the possibility and policy-relevance of high tem-
perature overshoot pathways11,12 unless immediate drastic action is
taken. Our multi-ensemble member approach allows for a robust sta-
tistical treatment of the results, adding useful insight to the uncer-
tainty surrounding the responses of the Earth system to temperature
overshoot pathways16.

Even though direct comparisons with previous studies employing
different spatiotemporal AR patterns, models, and/or emission path-
ways cannot be made easily, our findings are in rough agreement with
previous studies. Matthews et al.40 reported a 0.02 oC reduction of
peak warming and a lower efficiency of 0.03 oC for every 100 GtCO2

sequestered in land, although under the SSP1-1.9 emission pathway
and an idealized AR pattern. Sonntag et al.39 reported similar results
with MPI-ESM yielding a 0.27 oC end-of-century temperature reduc-
tion, as a consequence of an 800Mha forest area increase concurrent
with 100 Mha of avoided deforestation compared to the reference
scenario under RCP8.5 emissions. Using a reduced complexity climate
model Dooley et al.52 demonstrated an upper limit of 0.25 oC tem-
perature reduction in 2100, but a negligible impact on peak tem-
perature by ecosystem restoration efforts under a low overshoot
scenario. However, their scenario yields peak temperatures in
2030–2050, which is too early for the signal to emerge, since time is
needed not only for the CDR to be scaled up, but also for carbon to
accumulate. This agreeswith our resultswhere the signal emerges only

in 2052, despite ambitious deployment early on, and only after 132
GtCO2 have been accumulated in land. Under a high-emission scenario
Arora and Montenegro53 reported a global temperature reduction of
0.25 oC estimated with an ESM, after increasing forest cover following
an idealized pattern by 1010 Mha globally due to an increase of the
land C sink by 440 GtCO2, roughly agreeing in magnitude with our
estimate. Recently, based on the LUMIP simulation employing the land
use pattern SSP1-2.6 under emissions following SSP5-8.5, Loughran
et al.43 reported insignificant changes in global temperature across 6
ESMs following a land C sink increase with an intermodel range of
37–220 GtCO2. However, part of this apparent uncertainty may be
related to the lack of ensemble members, and the significant differ-
ences in forest area increase across models.

The extent to which our findings aremodel-specific remains to be
assessed, by utilizing amultitude of available ESMs, eachwith different
process representation and climate sensitivity under an emission-
driven configuration. Both peak and end-of-century temperature
under REF are at the lower range of the CMIP6 SSP5-3.4osmulti-model
ranges (5models not includingMPI-ESM)of 2–4.35 oC and 1.39–3.47 oC,
respectively, as recently reported by Asaadi et al.54, suggesting that
MPI-ESM is among the models with the stronger cooling behavior as a
response to negative emissions. However, direct comparisons cannot
be made with confidence, since in our study land use under REF is
constant, while it follows the trajectory of SSP5-3.4os in Asaadi et al.54.
It should also be noted that the ranges reported therein are not based
on multiple ensemble members. Results from the Zero Emissions
Commitment Model Intercomparison Porject (ZECMIP)55 have
demonstrated that MPI-ESM shows a stronger cooling following the
cessation of emissions compared to other models56. Despite the sen-
sitivity of MPI-ESM to negative emissions not having been directly
compared against othermodels so far16,54 and uncertainty remaining, it
is the additional sequestration under AR and the consequent feed-
backs that determine temperature mitigation compared to REF.

Fig. 6 | Spatiotemporal pattern of temperature change. The differences in 10th
percentile (low temperature extremes, left), mean (mid), and 90th percentile (high
temperature extremes, right) of 2m air temperature between AR and REF simula-
tions during 2030–2050 (top), the period around peak warming (2050–2070)
(mid), and end-of-century (2090–2100) are shown. A negative difference (blue

color) indicates that temperature is lower in the AR scenario. Dots indicate regions
where the difference is statistically insignificant at the 5% level, estimated with a
two-tailed Student’s t-test after correcting for lag-1 temporal autocorrelation123 (see
”Methods”).
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Therefore, it is rather the feedback strength within MPI-ESM that
would play the key role. In particular, both land carbon gain due to
increased atmospheric CO2 concentration as well as land carbon loss
due to elevated temperature in MPI-ESM are below the CMIP6-model
average57. As a result, MPI-ESM is placed close to the average of CMIP6-
models in terms of carbon sequestration when the total effect of ele-
vated CO2 is considered. However, MPI-ESM has also a slightly below-
average Transient Climate Response compared to other ESMs58, indi-
cating that the cooling reported here is possibly below anticipated
average ESM responses, for given levels of carbon sequestration. All
this adds confidence to the robustness of our results, demonstrating
the effectiveness of large-scaleAR at reducing temperature evenunder
strongly reduced emissions scenarios.

Changes in rainfall can affect terrestrial ecosystem water and
carbon fluxes in various ways, depending on the ecosystem type59. De
Hertog et al.60 reported on the local and non-local biogeophysical
effects of idealized forestation on the water cycle with the MPI-ESM
and the Community Earth System Model (CESM) ESMs, with both
models reporting increased evapotranspirative fluxes and precipita-
tion over the tropics and subtropics agreeing with our results, albeit
with CESM not yielding increased water fluxes over the higher lati-
tudes. A wetter hydroclimate with increases in rainfall due to AR has
also been recently reported based on a kilometer-scale model61.
However, based on an idealized global forestation scenario with CESM
Portmann et al.30 reported that pronounced precipitation and cloud
cover changes did not coincide with hotspots of forest area increase,
but were rather driven by large-scale circulation adjustments.

When it comes to the obtained temperature pattern at the gridcell
level, direct comparisons with previous findings cannot be made, since
they significantly differ in the AR spatiotemporal pattern and other land
use, and the experimental setups, whereas the number of relevant ESM-
based studies is limited. For example, under a SSP5-3.4os scenario
where AR is applied instead of bioenergy crops after 2040, Melnikova
et al.44 reported patches of strong warming over the mid- and high-

latitudes compared to a fixed land use scenario, even though locally at
many forested gridcells cooling emerged. However, this was a
concentration-driven run where the land C uptake does not result in a
reduction of atmospheric CO2 and thus the results reported therein are
indicative of the biogeophysical effects only. De Hertog et al.34 sug-
gested that the total biogeophysical effect ofAR in ESMs (includingMPI-
ESM) under idealized AR patterns tends to yield a temperature increase
over the mid- and high-latitudes and a cooling over the (sub)tropics.
According to our results following an emission-driven approach, this
signal is dominated or at least compensated for locally by global bio-
geochemical cooling caused by the reduction of atmospheric CO2

levels, as the land takes up more CO2. This agrees qualitatively with
Sonntag et al.39 who also usedMPI-ESM and is noteworthy because here
we employ a scenario with stronger emission reductions and hence
significantly lower CO2 fertilization rates. However, the extent to which
this can be consistent across models remains to be assessed.

An important emerging feature in our simulations is the early rise
and continuous buildup of the land C stock, with high productivity
reached already within decades, followed by a continuous forest C
uptake, as the woody and soil C pools saturate only slowly62. However,
despite the continuous increase of forest cover, the signal of AR
sequestration is dominated by the emission trajectory that reaches
net-negative thus drastically reducing atmospheric CO2 concentra-
tions, and consequently the strength ofCO2 fertilization. Nevertheless,
AR offers a notable buffer delaying the transition of the land C sink
from a sink to a source by ~10 years. This demonstrates that a rapid
deployment of AR early on can provide a continuous C sink acting on
both short and long timescales. However, atmospheric C removal is
less than total land C uptake due to the emerging carbon-cycle
feedbacks63. In particular, oceanic C uptake is dependent on atmo-
spheric CO2 partial pressure and hence part of the increase in the land
C sink is compensated for by less uptake by the ocean as atmospheric
CO2 concentrations decrease, or even transits to being a source64–66, as
has also been reported here.

Fig. 7 | Spatiotemporal pattern of changes in hydroclimate. From left to right,
the differences in mean precipitation (mm/day), evapotranspiration (mm/day),
cloud cover fraction, and relative humidity (%) between AR and REF simulations
during 2030–2050 (top), the period around peakwarming (2050–2070) (mid), and

end-of-century (2090–2100) (bottom) are shown. A negative value indicates a
reduction in the AR scenario. Dots indicate regions where the difference is statis-
tically insignificant at the 5% level, estimated with a two-tailed Student’s t-test after
correcting for lag-1 temporal autocorrelation123 (see “Methods”).
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Across the literature a wide range of potentials has been reported
(Fig. 5, see “Methods”, and Supplementary Data 1), with our estimates
of cumulative C sequestration under AR compared to REF being
towards the upper range of AR6-SD (300 scenarios for which infor-
mation is available) throughout the 21st century. This potential is
within the upper range of estimates found in previous literature during
early- and mid-century but falls within the mid-range by 2100. When it
comes to yearly sequestration rates, our results lie within the upper
range of AR6-SD and previous literature estimates during the early-
and mid-century, before levelling off and reaching the lower-range of
estimates by 2100. Notably, our estimate reaches ~50% of the estimate
of Bastin et al.67, who consider an AR area of similar magnitude
(~900 Mha) yielding 752 GtCO2, and received wide attention and
criticism68–74. Similarly, our estimate reaches ~55% of the most recent
comprehensive estimate of Mo et al.75 who employed several ground-
sourced and satellite-derived approaches and suggested that 694
GtCO2 could be sequestered through reforestation, in agreement with
Bastin et al.67. However, the AR pattern employed here also includes
afforestation over land that is inevitably less productive, which could
partially explain this difference, while it should be noted that the
estimates of Mo et al.75 are based on current climatic conditions. Our
estimate remains within the lower boundary of the 2.7–17.9 GtCO2/
year range reached by 2030 reported by Griscom et al.19, who however
consider a potential reforestation area up to 1779Mha in their calcu-
lations, which could partly explain the divergence. Roe et al.20

have reported a potential from 0.5 GtCO2/year, which corresponds to
a low ESM-based estimate, up to 10.1 GtCO2/year, which includes
global reforestation constrained by food security and biodiversity
based on Griscom et al.19, and on average aligns with the results
reported here.

It should be noted that literature estimates are the outcome of
different combinations of available land, temporal dynamics of AR
deployment, emission trajectories, and assumptions with regards to
the capacity of forests and soils to sequester C acrossdifferent biomes,
and hence such a wide range can be expected7,19,20,67,76,77. Most impor-
tantly, only 2 of the studies compiled in Fig. 5 employ a fully coupled
ESM in an emission-driven setup that accounts for climate and carbon
cycle feedbacks39,53, whereas the vast majority includes either offline
estimates of sequestration potentials and thus is not easily relatable to
changes in atmospheric CO2 concentration and climate19,67, or IAM-
based estimates (the AR6-SD scenarios, and e.g., ref. 76,78). IAMs have
different configurations and represent the climate and carbon-cycle
feedbacks with different levels of complexity79, but they lack the detail
of process representation available in ESMs, which is necessary to
robustly capture the efficiency of AR, especially when it comes to
carbon fluxes under overshoot scenarios80.

Even though pooling multiple AR6-SD scenarios together elim-
inates the bias of selecting a single IAM scenario, and utilizing regional
data allows for the regional-level dynamics to be preserved, it should
still be acknowledged that with the approach employed here, the
internal consistency found in single IAM scenarios is inevitably lacking.
Disaggregating to the gridcell level based on biodiversity and
restoration potential maps, not implementing land use transitions
other than AR, and independetly selecting an emission trajectory as is
done here can also break internal IAM logic. For example, while opting
for the SSP5-3.4os emission trajectory allows for a robust assessment
of temperature overshoot dynamics, achieving net-negative emissions
in SSP5-3.4os is heavily based on carbon capture and storage (CCS)16.
This suggests that additional land pressure would be exerted by the
need for large-scale bioenergy CCS application, thus increasing com-
petition with AR over land. However, it should be noted that incon-
sistencies are introduced even when a single IAM scenario is run with
an ESM, due to differences in spatial resolution, land use patterns, and
discrepancies in the representation of the biosphere and the carbon
cycle81,82.

Contextualizing ambitious Afforestation/Reforestation
The present study does not propose a spatiotemporal AR pattern to be
followed, but rather aims at overcoming the limitations of highly
idealized patterns and of scenarios employing only moderate levels of
AR that fall short of the range of total country pledges, by harnessing a
multitude of available IAM-generated scenarios coupled with restora-
tion potential maps and biodiversity proxies34,38–41. Using the AR6-SD
ensemble allows us to consider constraints of land competition, and
technoeconomic, environmental, and societal feasibility, to the extent
that those are accounted for in the IAMs, and the scenariohere ishence
spatiotemporallyplausibleonly to the extent that IAMscenarios canbe
treated as such. Concerns regarding the uncertainties and weaknesses
of IAMs have been reported83, such as their lack of social and institu-
tional considerations, and their inability to conceive more radical
societal reorganization and policy challenging strategies, thus not
being able to capture the full socioeconomic possibility space84–86.
However, it should be noted that the IAMs still remain themain tool at
hand when it comes to contextualizing the technical, social, and eco-
nomic developments in the world, which is necessary for developing a
constrained AR pattern that goes beyond fully idealized setups.

At the same time, it should be acknowledged that future AR will
inevitably include reversing historical deforestation, not only because
such regions can naturally support growth, but also if afforestation is
to be avoided87. This increases the relevance of patterns aimed at
prioritizing reforestation, as is the case here. Nevertheless, the feasi-
bility of setting such an ambitious global AR target in the range of
country pledges can be questioned24,25,52,88. Overall, the pledges by 9
countries amount to 90% of total AR pledges globally (Supplementary
Fig. 1), including the United States (25%), Canada (4%) and China (4%),
whose net-zero targets are considered of lower confidence rating, and
Saudi Arabia (42%), India (4%), Ethiopia (4%) and Australia (4%), whose
net-zero targets are of much lower confidence rating based on Rogelj
et al.13. The scenario employed here shows less concentration of AR
with 39 countries amounting to 90% of the global target (Supple-
mentary Fig. 1). However, this also relies on countries whose net-zero
targets are considered of lower (United States, China, Russian Fed-
eration, Colombia) and much lower (Brazil, Argentina) confidence
rating13. This credibility issue can be even more alarming when one
considers that total pledges would likely grow in the future, as more
countries set their long-term strategies25.

In our scenario grazing land is significantly reduced and no
deforestation occurs, possibly implying a strong dietary shift and
reduction of meat consumption89, coupled with a sustainable intensi-
fication of remaining grazing lands and regulations to prevent defor-
estation elsewhere as a compensating mechanism for lost agricultural
land90. Thisfitswith a land-sparing paradigm that can indeed offer high
mitigation potentials91 and benefit biodiversity92,93; however, the
extent to which this can be considered realistic from a socioeconomic
perspective is not investigated here. It should also be noted that given
fair burden sharing considerations, our scenario, which largely
includes forest expansion over the global South, would require finan-
cing AR deployment over these regions by the more developed
countries94, as is also suggested by the pledge of Saudi Arabia. Until
this day, lack of public and private finance has been one of the key
barriers to meeting global restoration needs, and scaling-up funding
would be a big challenge95.

Socioeconomic factors could also possibly pose barriers to AR
implementation or a threat to the permanence of a newly planted
forest, while the possible societal consequences and associated tra-
deoffs should also be considered45,96. In particular, the rates of
sequestration achieved here can carry a high risk of exceeding sus-
tainability thresholds97, while the strong dependence of IAMs (and
consequently of our scenario) on land-based mitigation in the Global
South to reach ambitious climate targetsmight pose high risks to food
security and raise equity concerns88. Comparing the AR pattern
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employed here with socioeconomic factors such as poverty, popula-
tion density, governance, land tenure, and indigenous and community
land is thus crucial (see “Methods”, and Supplementary Fig. 10). In
particular, 6.5% (61Mha) of the AR in our scenario is applied over
gridcells with a significant extent of indigenous and community land
(>30%). Planting forests in these regions can often violate the will of
indigenous people who can be strongly tied to their land spiritually,
financially, and/or are nutritionally dependent on local food
production24, and lead to forced physical or economic displacement98.
At the same time, 17.6% (165Mha) of AR is deployed over regions
where more than 25% of the population live below the international
poverty threshold. ImplementingARover poverty-stricken regions can
carry the risk of depriving people of their livelihoods and exacerbating
poverty, even though positive outcomes on livelihoods have also been
reported99–101. Additionally, 2% (19Mha) of AR is applied over regions
with a population density higher than 500 people/km2 where rates of
human disturbance and deforestation can be higher102,103, thus likely
jeopardizing permanence.

At the same time, 18% (169Mha) of AR is applied over regionswith
poorer governance (governance indicator <0.3), and 16% (151 Mha)
over regions with insecure land (>50% of survey respondents per-
ceiving their land or property as being insecure). Poor governance and
weak rule of law are considered to be significant barriers to successful
implementation and permanence of AR, facilitating forest loss and
degradation78,104. Land tenure insecurity can significantly threaten the
establishment and permanence of a newly planted forest105, since clear
and secure land tenure can determine farmers’ decision to adopt
reforestation and maintain a forest over the long-term101,106.

Outlook
Societies have been (re)planting trees for centuries, and AR has rea-
sonably emerged as an efficient way to naturally store C6, while at the
same time restoring ecosystems that offer a wide variety of services to
our communities and support life107. Our results based on MPI-ESM
clearly demonstrate that ambitious AR in the range of country pledges
can mitigate a temperature overshoot by lowering global peak tem-
perature, overshoot duration, and end-of-century temperature. Tem-
perature is mostly reduced locally at the sites of forestation,
suggesting that the overall biogeochemical cooling effect of the
increased land C sink can dominate, or at least compensate for any
biogeophysically-induced warming that can arise. Mitigation emerges
both for average and for extreme temperature, yet to infer upon the
appropriateness of large-scale AR, one should also consider potential
AR-induced changes in climate hazard exposure, such as droughts108,
rainfall variability and extremes59,109, heat stress110, and compound
events111, that could increase adaptation needs locally or regionally112.
However, such a multi-dimensional investigation is beyond the scope
of the current study and could be the focus of future work, potentially
also employing state-of-the-art high-resolution convection-permitting
models that can take into account the effects of fine-scale topography,
and the local features of atmospheric convection on climatic
extremes61,113. Future work could also focus on investigating to what
extent the model behavior reported herein can be model- or pattern-
specific by comparing multiple ESMs and AR patterns under an
emission-driven configuration.

The mitigation potential demonstrated here constitutes ambitious
AR as a useful complementary short- and long-term mitigation tool for
climate action even under a scenario with strongly reduced emissions,
where fertilization of vegetation by CO2 is weaker. However, the scale of
mitigation achievable by such high-ambition AR scenarios—with 0.08 oC
and 0.2 oC decrease of global mean peak and end-of-century tempera-
ture respectively—clearly shows that AR does not alleviate the need for
high ambitions in emission reduction52. Importantly, even though a
normative judgment on the desirability of ambitious AR is not made
here, the results demonstrate the possible socioeconomic tradeoffs

associated with it, as well as the significant barriers to implementation
and possible threats to permanence that exist.

Methods
Model and experimental setup
We run fully coupled ESM simulations using the CMIP6 configuration
of MPI-ESM (MPI-ESM-1-2.01p7-LR)114. MPI-ESM and its land surface
component JSBACH have been widely applied, evaluated, and com-
pared against observations and othermodels, and have been generally
found to perform well for various key land surface variables115–117, and
for both biogeophysical and biogeochemical effects35,118. The model is
run in an emission-driven setup, which means that atmospheric CO2

concentration is not prescribed, but is rather dynamically updated.
The fully coupled emission-driven setup offers a dynamic interaction
of water, carbon, and energy fluxes between the land, the atmosphere,
and the ocean, thus allowing for a full representation of the complex
biogeophysical/biogeochemical effects and feedbacks of ARwithin the
entire Earth system.

Our experimental setup includes an AR and a reference (REF)
scenario spanning from 2015 to 2100, following SSP5-3.4os, except for
landuse. SSP5-3.4os reaches a total radiative forcingof 3.4W/m2, and is
an overshoot scenario that follows SSP5-8.5 emissions until 2040,
followed by rapid decarbonization, thus reaching net-zero around
2070 and then net-negative (~−3.8 GtCO2/year)

16,119. To fully isolate the
total effects of AR on the Earth system, which is estimated as the mere
difference between the AR and REF scenarios, we keep land use con-
stant at the 2015 state under REF. Hence, we do not include any avoi-
ded deforestation, or other land use transitions, which would further
complicate the accurate estimation of CDR. Towards that direction,
even though increased forest area andwoodbiomass availability could
impact the demand for wood products and hence harvest rates via
marketmechanisms120, wekeepwoodharvest amount constant at 2015
levels for both scenarios. At the same time, the amount of vegetated
surface is kept constant for both scenarios, and competition among
different Plant Functional Types (PFTs)over vegetated land is switched
off, thus not allowing forest to expand as a response to a warming
climate, in contrast to the CMIP6 model configuration. This allows for
prescribing forest area in each timestep, thus being able to fully isolate
the signal of AR, which is the main aim of this study. First, accounting
naturally expanding vegetated land could raise a concern as to whe-
ther CDR can be claimed over land that becomes available due to our
sole failure to decarbonize our economy. Second, the permanence of
stored carbon over such land is in fact questionable since, assuming
further climate mitigation, forest would contract again, suggesting
carbon fluxes towards the atmosphere. We run in total 20model runs;
10 ensemble members for each scenario, to allow for a robust prob-
abilistic treatment of our results.

Probabilistic treatment
To robustly assess the global dynamics of the overshoot and its
characteristics, a probabilistic framework is employed. To esti-
mate the time of signal emergence, the overlapping coefficient
(OVL)121 is employed, which is a measure of similarity between the
probability density functions (pdfs) of two populations f1(x) and
f2(x), and is calculated as follows:

OVL=
Z

min f1 xð Þ, f2ðxÞ½ �dx ð1Þ

Over a temporally moving window, global mean 2m air tem-
perature data from all ensemble members are pooled together,
creating two samples, whose OVL is estimated with a gaussian kernel
density function. This process is repeated by bootstrapping 1000
times, and a mean OVL is estimated. To estimate an OVL threshold
below which dissimilarity between AR and REF distributions can be
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assumed, an autoregressive model (AR (1)) fitted to REF global tem-
perature is used. At every temporal window, first 1000 pairs of sto-
chastically generated temperature timeseries of trend and sample size
equal to REF are created, for each of whomOVL is then estimated. The
lower 5th percentile of the 1000 OVL values estimated from the syn-
thetic data (coming from the same known AR(1) process) is deter-
mined as the OVL threshold, below which two data samples can be
considered to come from dissimilar distributions (at the 5% sig-
nificance level). The year of signal emergence is then calculated as the
year when the mean OVL between REF and AR data starts becoming
consistently lower than the significance OVL threshold. This process is
repeated with a window length ranging from 5 to 10 years and a mean
year of emergence is estimated, to make sure that the choice of win-
dow length does not bias the results.

To robustly characterize end-of-century temperaturewhile taking
into account interannual variability, the full end-of-century 5-year
period (2096–2100) is considered. Similarly, to get robust estimates
on peak temperature and avoid biases by likely extremely hot or cold
years later or early on, the full 5-year consecutive period yielding the
highest average temperature for each ensemble member is con-
sidered, and the temperature data are then pooled together. The
choice of the period length does not bias the results, as shown in
Supplementary Fig. 11.

To robustly capture overshoot duration, the signal needs to be
isolated from the noise of internal variability. Hence, a smoothing
Savitzky-Golay122

filter is applied. Overshoot duration is then estimated
with a varying smoothingwindow length, ranging from5 to 10 years, to
alleviate anybias inducedby the choiceofwindow length. This process
is repeated 1000 times, where each time a random combination of 10
ensemblememberswith replacement are chosen. Themeanovershoot
duration is then estimated as the mean of the values obtained by
bootstrapping. To get a clearer picture of the responses of the full
spectrum of temperature variability, different percentiles of global
average daily temperature are treated with the same approach.

At the grid level, the statistical significance of changes in 2m
temperature (Fig. 6) or other hydroclimatic variables (Fig. 7, Supple-
mentary Fig. 8) during different time periods is inferred at the 5% level.
To do this, for each scenario yearly values from all 10 ensemble mem-
bers during that period are pooled together, and a two-tailed Student’s
t-test adjusted to account for lag-1 temporal autocorrelation123 is
applied. To assess field significance (i.e., whether the annual average
temperature field under AR is statistically significantly different from
REF) theprobability of at least one falsepositive among themultitudeof
gridcell-level tests is accounted for124. If a single gridcell is found to be
statistically significantly different after accounting for this probability,
then the global null hypothesis that a statistically significant difference
between the AR and REF temperature field does not exist can be
rejected125. To increase the robustness of the approach and test its
sensitivity, a) temperature data at the gridcell level are pooled over a
moving window with length ranging from 1 to 10 years, and b) field
significance is declaredwhen thenull hypothesis is consistently rejected
for a consecutive number of years ranging from 1 to 5, defining as year
of emergence the starting year of that period. The results are presented
in Supplementary Fig. 7.

AR scenario development
To design an ambitious constrained AR scenario following tech-
noeconomic, environmental, and societal constraints, we leverage
(a) the AR6 Scenarios Database (AR6-SD)47, (b) the restoration
potential map published by Griscom et al.19 (hereafter GRS), (c) the
Atlas of Forest and Landscape Restoration Opportunities (hereafter
ATL)126, and (d) the Very Low and Low Human Influence maps
published by Riggio et al.127 (hereafter VLHI and LHI, respectively).
All maps are regridded to the MPI-ESM resolution with a con-
servative remapping algorithm.

The AR6-SD includes amultitude of IAM-generated scenarios that
consider the pressure exerted on land by rising population and food
demand, carbon pricing strategies, energy policies and economic
costs47. Here, we use the 1259 scenarios for which explicit information
on global forest area is available to capture the feasible range of global
AR79. The change in forest area, when positive, can represent not only
active AR deployment, but also abandonment of agricultural land, and
natural regrowth and succession dynamics, depending on the IAM20.
For each year, we estimate the forest area change compared to the
previous year for each scenario, and pool all the values together. To
obtain an ambitious AR target at the global level which is in the range
of estimates of total country pledges24,25 we use the 90th percentile of
the pooled global yearly forest area change estimates, which cumula-
tively reaches 595 Mha by 2060, and 935 Mha by 2100 (Fig. 1). This
forest area increase would roughly correspond to its complementary
threshold, the 10th percentile of cropland and pasture area change,
which suggests that AR is mostly applied at the expense of grazing
lands across AR6-SD, while croplands remain relatively stable (Fig. 1).
To mimic that behavior, AR only replaces grazing land in our scenario.
It is important to note that we do not select individual scenarios, but
rather a high percentile across all values each year, and that we refrain
frommaking any judgment upon the likelihood of the individual AR6-
SD scenarios, which are treated as different equiprobable narratives
across the feasibility space79, nor do we consider the high percentile
utilized here as being less probable than the mean49.

Given the lackof pledges formany countries globally, and that the
significantly high pledge of Saudi Arabia (42% of global) can only be
met through international offsets in addition to domestic land-based
CDR25, the spatial disaggregation of global AR pledges is not made
based on the individual country pledges themselves, but rather
regionally based on AR6-SD estimates. Unavoidably, this creates a
spatial mismatch between the scenario employed here and pledges at
the country level (Supplementary Fig. 1). However, it should be noted
that employing the AR6-SD allows for an explicit treatment of the
temporal evolution of AR across the century based on technoeco-
nomic considerations, instead of simply interpolating pledges up to
2060, and arbitrarily extrapolating thereafter.

Here, we use information available in AR6-SD to disaggregate the
global yearly AR target across the 5 world economic regions shown in
Fig. 3; a regionalization typically used in IAMs. Even though different
regionalizations are also available in AR6-SD, the one chosen here
offered the most available scenarios (1124). In a similar fashion, for
every region we pool available scenarios together and select the 90th
percentile of the pooled regional yearly forest area change. Given that
a different number of scenarios is available at the regional compared to
the global level, and that a percentile for every region is chosen rather
than a specific scenario consistent across regions, we rescale the
regional estimates so that their sum matches the yearly global target
(preserving their relative magnitude with respect to their sum). Inter-
polation of the 5-year AR6-SD data to yearly both at the global and
regional level is performed with a piecewise cubic hermite inter-
polating polynomial algorithm.

The regional-scale yearly AR target is further distributed spatially,
from regional level to the MPI-ESM grid by following the GRS and ATL
maps. We consider the ATL restoration potential that includes refor-
estation and tree integration into mixed-use landscapes and excludes
croplands126. GRS is a subset of ATL further constrained by food
security and biodiversity concerns and excludes a range of areas from
AR: croplands, regions where forest is not the native cover type
(afforestation), regions with dense rural population, regions with
intensive management, and boreal regions that could potentially yield
strong local warming19. Both GRS and ATL potentials per gridcell are
expressed as fractions of the gridcell area. Using these maps to guide
our scenarios takes implicitly into account the considerations therein.
For a given year and region, the AR target is first distributed across
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gridcells prioritized by GRS. The gridcells considered for AR are the
ones where (a) grazing land is available, (b) the remaining GRS
potential is greater than zero, (c) forest area has not already increased
more than 10% in that year, to avoid excessive AR rates that could be
institutionally challenging or incompatible with sustainable local
socioeconomic changes, and (d) at least 20% forest cover has histori-
cally been or could potentially be sustained, to not use climatically
unsuitable regions that would largely require management practices.
The target is uniformly applied to the gridcells considered; however,
the amount of AR applied over each is limited by (a–d). AR applied
within each step reduces the remaining GRS potential by the same
amount. This is an iterative process until either the regional target is
met, or there are no remaining gridcells to be considered because
(a–d) are no longer satisfied anywhere in the given region. In the latter
case, the remaining AR target is filled by gridcells prioritized by ATL
with a similar iterative process, and if still needed, the rest of the
gridcells (satisfying (a–d)) can also be used to meet the AR yearly
target. As a result, the AR pattern is constrained first by GRS (362 Mha
in the resulting pattern), and then by ATL (375Mha), but meeting the
regional AR target each year can also mean increasing forest cover
beyond total restoration potential (GRS and ATL combined) and
reaching other gridcells (not prioritized by GRS or ATL), if needed
(198Mha). Reforestation of historically deforested sites is thus
strongly prioritized in our approach, but reaching an ambitious target
while preserving croplands globally constitutes afforestation (i.e.,
increasing tree cover beyond 1850 levels) and utilization of land not
prioritized by restoration potential maps inevitable.

To account for biodiversity protection, heavily managed pastures
are replaced first within every iterative step of the distributive process,
and then the more lightly managed rangelands are replaced progres-
sively, starting from the less to the more biodiverse. To protect old-
growth grassy biomeswhich canbeof huge ecological importance and
exhibit high biodiversity richness87, we characterize rangeland biodi-
versity by using the VLHI map to determine which rangelands can be
considered as being closer to a pristine, and thus as more biodiverse
state, and exclude them. Natural grassy biomes which are not char-
acterized as grazing land are also excluded. Then, we use the LHI map
to split remaining rangelands into 4 biodiversity groups, based on the
level of agreement among the datasets used by Riggio et al.127. By using
these maps as a proxy for biodiversity, we assume that the higher the
dataset agreement is, themore likely a gridcell experiences lowhuman
influence, and hence it is more likely less heavily managed, with less
infrastructure, human stress, and cattle densities, weaker land frag-
mentation, and thus, probably closer to its pristine state, and hence
likely more biodiverse127. Even though anthropogenic disturbance is
known to be amajor driver of biodiversity loss128, biodiversity richness
is not necessarily associatedwith the level of human influence129. At the
same time, although abandoningpastures canpromote biodiversity, in
some cases this does not translate to ecosystems returning to their
initial biodiverse state130. Even though we acknowledge these short-
comings, amore detailed treatment of biodiversity concerns is beyond
the scope of this study, and the usage of largely available metrics of
human influence is preferred here127.

Evidently, in our study no biophysical or climatic limit is applied
when considering gridcells eligible for AR, other than whether forest
cover has or could potentially (basedonMPI-ESMestimates) be at least
20%. Stricter limitationswould reduce the amount of grazing landused
for AR, since grazing land is often found in semi-arid, transitional
regimes (Fig. 2). Hence, increasing forest cover over such areas pos-
sibly implies the need of some form of forest management in the real
world to support forest growth. Still, carbon sequestration is climate-
dependent in MPI-ESM, and more arid regions typically yield lower
productivity and sequestration rates (Fig. 4c), and hence afforesting
more arid rangelands would not contribute to themitigation potential
in the sameway as themore productive areas included in our scenario.

It should also be noted that our simulations start in 2015 and do
not include historical land use transitions having occurred later than
2014. According to FAO data131, forest area has decreased by ~30Mha
from 2015 to 2021. By that time in our model AR amounts to ~5 Mha,
which corresponds to ~0.5% of total AR application, thus yielding a
net difference of ~35Mha of forest area. By 2021 land C stocks are
increased by ~3 GtCO2 (0.81 PgC) in the AR compared to the REF
scenario, constituting 0.78% of total additional sequestration (382
GtCO2). Clearly, the bulk of forest area increase and additional C
sequestration under AR occur after 2025 in our simulations, which
suggests that our results remain relevant with respect to overshoot
dynamics and mitigation, regardless of this discrepancy with recent
historical data.

An overview of the methodology used to develop our scenario is
shown in Fig. 2 and the detailed resulting pattern is presented in Fig. 3
and Supplementary Figs. 1 & 2.

To test the sensitivity of the AR scenario development to the
different constraints employed, different configurations are con-
sidered. In particular, we develop scenarios where: a) only the
restoration map published by Griscom et al.19 (GRS) and the Atlas of
Forest and Landscape Restoration Opportunities126 (ATL) map (i.e., no
explicit biodiversity consideration), b) only GRS, and biodiversity
maps127, and c) no restoration or biodiversity maps are used to con-
strain the scenario development.

Results are shown in Supplementary Fig. 12. Even though differ-
ences arise between the configurations, the patterns share some
similarity with the AR scenario employed in this study. It should be
noted that pastures are an integral part of both GRS and ATL (the first
being a subset of the latter). As a result, prioritizing pastures canpartly
compensate for not using restoration potential maps to guide AR, due
to the inherent consistency between the two. At the same time, con-
sideration of biodiversity does not affect the partitioning between
rangelands and pastures that are given up, since biodiversity is only
considered for rangelands. Therefore, since pastures are generally
given up first in our algorithm regardless of the configuration tested,
the rough AR pattern is not heavily sensitive to the different con-
straints employed. However, considering biodiversity affects the spa-
tial pattern of AR, mostly since it determines the regions where
rangelands can be considered closer to a pristine state, and thus
excluded from AR. Even though the AR pattern by 2100 unavoidably
converges to the availablegrazing land, the differences across time can
be more pronounced as the partitioning between pastures and ran-
gelands, and the specifics of each configuration change.

Literature estimates of sequestration potential
In Fig. 5, the AR sequestration estimates demonstrated here are com-
pared with potentials that have been reported in previous literature.
The list of 40 studies presented includes (a) a subset of the compre-
hensive list of studies provided by “CO2 removal.org”5,7,132 for which
explicit quantitative information on AR sequestration potentials at the
global scale is provided (19 studies in total)19,39,76,133–148, (b) studiesmore
recent than5,7,132, which are not included in the comprehensive list
(16 studies)20,52,67,75,77,78,149–158, and (c) studies published prior to5,7,132 that
we identified asmissing from the comprehensive list (5 studies)53,159–162.
The complete list of studies including the estimates of AR sequestra-
tion potentials are listed in Supplementary Data 1.

Across the identified studies we have included only the ones for
which cumulative sequestration AR potentials over a defined period,
and/or instant sequestration fluxes at a defined year or period can be
confidently estimated, based on the information available in each
study. Studies for which sequestration potentials cannot be attributed
to an increase in forest cover and mostly include other nature-based
climate solutions or contain only regional estimates have been omit-
ted. Importantly, modeling studies that are employing idealized AR
patterns34,163–165 are not considered.
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For studies reportingmultiple sequestration potentials, we define
the rangeof estimates as [minimum-maximum]and calculate themean
potential across all values. For studies providing a range of values, we
also estimate their mean. It should be noted, however, that not all
estimates are entirely independent from one another, but quite a few
studies rather build upon prior knowledge provided in the literature.
As a result, the pool of studies is not treated as a statistical sample of
independent values, and hence descriptive statistics (e.g., mean,
standard deviation) are not employed.

The AR6 Scenarios Database (AR6-SD) estimates of AR seques-
tration potentials is based on a subset of 300 scenarios for which: a)
explicit information on AR sequestration is available, b) the three
exclusion criteria defined by Prütz et al.166 are met. Therefore, this
pool of available scenarios includes only a subset of the 1259 sce-
narios used to guide the spatiotemporal design of the AR pattern of
this study.

Socioeconomic indicators
To aid in the discussion of the possible socioeconomic risks and trade-
offs associated with the implementation of the AR scenario employed
in this study, several spatially explicit socioeconomic indicators are
used. In particular, we use:
a. Governance indicator: TheWorldwide Governance Indicators (WGI)

provided by the World Bank are used167. The WGI includes country-
level indicators on voice and accountability, political stability and
absence of violence/terrorism, government effectiveness, regula-
tory quality, rule of law, and control of corruption over the period
1996–2022. Missing values are filled by taking the arithmetic mean
of the specific world subregion that a country belongs to, based on
the 22 geographical subregions defined in the United Nations
Geoscheme by the United Nations Statistics Division. Following
Andrijevic et al.168 a composite governance indicator is estimated by
taking the arithmetic mean of the six WGI components for 2022.
The composite indicator is found to correlatewell (>0.8 correlation)
with all of the underlying components.

b. Land tenure insecurity indicator: The Prindex 2020 global
dataset169,170 of land tenure insecurity is used. This indicator
describes land tenure and property insecurity as perceived by
individuals over 140 countries, expressed as a percentage (%) of
the survey’s respondents. Missing values are filled as
described above.

c. Poverty indicator: The poverty headcount ratio (%) at $2.15 (2017
purchasing power parity, lineup est. of 2019) from the Global
Subnational Atlas of Poverty (GSAP)171 is used. The data are
regridded to the resolution of MPI-ESM with conservative
remapping. Missing values are filled as described above.

d. Indigenous and community land: Indigenous and community land
data from Landmark172 are used. The data are regridded to the
resolution ofMPI-ESMwith conservative remapping. In particular,
the land that is considered here consists of:
i. Indigenous land—Acknowledgedby government: Documented

and not documented.
ii. Indigenous land— Not acknowledged by government: Held or

used with formal land claim submitted and held or used under
customary tenure.

iii. Community land—Acknowledged by government: Docu-
mented and not documented.

iv. Community land—Not acknowledged by government: Held or
used with formal land claim submitted and held or used under
customary tenure.

e. Population density: The WorldPop population count173 is used.
The data are regridded from the ~1 km resolution to the resolution
of MPI-ESM by summing, and are then divided by gridcell area to
obtain population density.

An overview of the socioeconomic indicators overlaid with the AR
pattern, and some indicative estimates of how AR is distributed across
regions with various levels of governance, land tenure insecurity,
poverty, perscentage of indigenous and community land, and popu-
lation density are presented in Supplementary Fig. 10.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The AR6 Scenarios Database (AR6-SD)47 is freely available at AR6
Scenario Explorer and Database hosted by IIASA. The Atlas of Forest
and Landscape Restoration Opportunities126 is freely available at
https://www.wri.org/data/atlas-forest-and-landscape-restoration-
opportunities. The (Very) LowHuman Influencemaps of Riggio et al.127,
and the restorationpotentialmapofGriscomet al.19 are freely available
with the respective publications. The Worldwide Governance Indica-
tors (WGI) are freely available at https://www.worldbank.org/en/
publication/worldwide-governance-indicators167. The Prindex 2020
global dataset is freely available at https://www.prindex.net/data/170.
The poverty headcount ratio is freely available at https://pipmaps.
worldbank.org/en/data/datatopics/poverty-portal/home171. The Indi-
genous and community land data are freely available at https://www.
landmarkmap.org/172. The WorldPop population count is freely avail-
able at https://www.worldpop.org/173. A repository with data support-
ing this publication is published in Zenodo at: https://doi.org/10.5281/
zenodo.12533125.

Code availability
The Max Planck Insitute’s Earth System Model (MPI-ESM-1-2.01p7-LR)
is made available under a version of the MPI-M software license
agreement (the license and information on how to access the code can
be found here: https://code.mpimet.mpg.de/projects/mpi-esm-
license). Python 3.11.2 has been used for all data analysis.
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