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Scientific Significance Statement

Marine microbes are essential for sustaining life in our oceans, making it crucial to monitor changes in their diversity to better
understand and predict microbially driven ecosystem functions. Global oceanographic expeditions and basin-wide transects
reveal positive correlations between microbial diversity and variables like temperature and productivity, but these studies often
lack seasonal data and include few observations from high-latitude regions during winter. Our research shows that, despite dif-
ferences in collection methods, DNA extraction protocols, targeted 16S rRNA hypervariable regions, sequencing technologies,
and bioinformatics pipelines, seasonal trends in microbial community richness and evenness remain consistent across time-
series sites in both the northern and southern hemispheres.

Abstract
Understanding the patterns of marine microbial diversity (Bacteria + Archaea) is essential, as variations in their
alpha- and beta-diversities can affect ecological processes. Investigations of microbial diversity from global
oceanographic expeditions and basin-wide transects show positive correlations between microbial diversity and

*Correspondence: ejraes@gmail.com, Julie.LaRoche@dal.ca

[Correction added on September 16, 2024, after first online publication: Article category changed from “Letter” to “Special Issue-Letter”.]

Associate editor: Zachary S Feiner

Author Contribution Statement: EJR and JLR developed the initial research idea. EJR, SM, LM, and JLR wrote the first draft of the manuscript and con-
ducted statistical analyses. SM processed Bedford Basin and SPOT data. LM conducted HGAM analyses. MW processed FRAM data. Ecological insights
and interpretation were contributed by EJR, JLR, SM, and LM (Bedford Basin); MW and CB (FRAM); KT and PJS (L4); EJR, JVDK and AB (Australian sites);
YY and JF (SPOT); and JMG and RM (BBMO). All authors provided editorial comments on the manuscript.

Data availability Statement: All data presented in this manuscript including detailed descriptions of methodologies and bioinformatic workflows are
publicly available. The sequence data and associated metadata are deposited at institutional and international data repositories as outlined in Supplemen-
tary Materials and Methods. The code to reproduce and plot the figures presented in the manuscript is available at https://github.com/EricRaes/Time-
series-Analyses.

A dedication to Paul Somerfield (1963–2023).

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

512

https://orcid.org/0000-0002-4131-9312
https://orcid.org/0000-0002-4125-5240
https://orcid.org/0000-0002-9786-3026
https://orcid.org/0000-0003-2167-0938
https://orcid.org/0000-0001-9172-5418
https://orcid.org/0000-0003-4809-6411
mailto:ejraes@gmail.com
mailto:Julie.LaRoche@dal.ca
https://github.com/EricRaes/Time-series-Analyses
https://github.com/EricRaes/Time-series-Analyses
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Flol2.10422&domain=pdf&date_stamp=2024-07-17


either temperature or productivity, but these studies rarely captured seasonality, especially in polar regions.
Here, using multiannual alpha-diversity data from eight time series in the northern and southern hemispheres,
we show that marine microbial community richness and evenness generally correlate more strongly with
daylength than with temperature or chlorophyll a (a proxy for photosynthetic biomass). This pattern is observ-
able across time series found in the northern and southern hemispheres regardless of collection method, DNA
extraction protocols, targeted 16S rRNA hypervariable region, sequencing technology, or bioinformatics
pipeline.

In terrestrial ecosystems, decreased species diversity can
reduce central ecosystem functions (Tilman et al. 2014), such
as primary productivity (Balvanera et al. 2006; Oehri
et al. 2017), and disrupt ecosystem resilience and stability
through time (Cardinale et al. 2011; Gross et al. 2014; Wagg
et al. 2019). The relationship between microbial diversity and
ecosystem functions, however, is complex, and remains
poorly understood for oceanic environments (Sunagawa
et al. 2020). At the base of the marine food web, Bacteria and
Archaea (herein referred to as prokaryotes) are essential for
ecosystem functioning (Falkowski 1997); alterations in their
diversity and distribution could affect ecological dynamics
(Horner-Devine et al. 2003; Hutchins and Feixue 2017;
Cavicchioli et al. 2019). Untangling regional and global pat-
terns in prokaryotic diversity across seasonal cycles is essential
to understanding, modeling, and predicting microbially
driven ecosystem functions (Hatosy et al. 2013; Vallina
et al. 2014; Louca et al. 2016).

Global ocean research expeditions (e.g., Tara Oceans) or
ocean basin-wide transects (e.g., GO-SHIP and Bio-
GEOTRACES) have shown a positive correlation between bac-
terial diversity and either temperature (Ibarbalz et al. 2019) or
primary production (Raes et al. 2018a, 2018b). Although
basin-wide transects cover wide biogeochemical provinces,
they do not systematically address seasonality. In addition,
these programs collected few or no samples during winter in
polar regions. Marine time series using an Eulerian sampling
design (i.e., a fixed site) provide fundamental seasonal insights
into the diversity patterns of marine microbes (Wiltshire
et al. 2010; Fuhrman et al. 2015; Bryant et al. 2016; Marquardt
et al. 2016; Brown et al. 2018; Buttigieg et al. 2018; Lambert
et al. 2019; Auladell et al. 2022) and are complementary to
basin-wide observations. In particular, highly resolved (fort-
nightly to monthly) seasonal observations from time series
suggest that marine prokaryotic community diversity is
strongly correlated with daylength (e.g., Gilbert et al. 2012;
Bryant et al. 2016; Marquardt et al. 2016; Giner et al. 2019;
Lambert et al. 2019; Raes et al. 2022).

Trends in archaeal and bacterial alpha-diversity have mostly
been linked to (i) the kinetic energy hypothesis, that is, warmer
temperatures increase metabolic reaction rates which in turn,
affect genetic and evolutionary traits, ultimately resulting in
higher alpha-diversities (Brown 2014); or (ii) the resource
hypothesis, that is, a higher energy production can support
more species through niche diversification Mittelbach

et al. 2001. We utilized the established ecological temperature
framework (Brown 2014) and the resources mechanism
(Mittelbach et al. 2001) to predict the drivers behind shifts in
prokaryotic diversity over time, with our primary focus on tem-
poral fluctuations within a specific location, rather than spatial
distinctions between different sites. Our rationale is based on
the idea that the evolutionary timeline of prokaryotes within a
given location or among various sites is likely to be similar. It is
important to emphasize that prokaryotic evolution unfolds at a
distinct pace compared to macrofauna, with prokaryotes dem-
onstrating significant responsiveness to alterations in their
environmental conditions, primarily due to their higher cell
division rates (Hillebrand et al. 2022).

Here, we use seasonal data from eight time series in the
northern and southern hemispheres (from 79�N to 42�S) to
test the hypothesis that, on a multiannual basis, marine pro-
karyotic alpha-diversity (richness and evenness) correlates
more strongly with daylength than with temperature or pro-
ductivity. Regardless of the various factors that can introduce
variation in prokaryotic diversity studies, we demonstrate the
generality of a recurrent yearly cycle in community structure.

Materials and methods
Selection of time-series sites for perspective on prokaryotic
community diversity

16S ribosomal RNA gene (rRNA) metabarcoding data were
retrieved from eight time series (Fig. 1; Table 1), alongside
physical and biochemical metadata. These include (1) the Arc-
tic FRAM observatory at the long-term ecological research
(LTER) site HAUSGARTEN at F4 and HG-IV moorings; (2) the
English Channel coastal L4 (ECL4) site; (3) the Compass Buoy
Station HL0 in the Bedford Basin (BBNS), Canada; (4) the
Blanes Bay Microbial Observatory LTER (BBMO), Spain;
(5) the San Pedro Ocean Time Series (SPOT), California,
U.S.A.; (6) Integrated Marine Observing System (IMOS)
National Reference Stations (NRS) Yongala (YON), Australia;
(7) NRS Rottnest Island (ROT), Australia; and (8) NRS Maria
Island (MAI), Australia. Data obtained were generated from
samples in the euphotic zone (shallower than 50 m depth)
from polar, temperate, and subtropical climate zones. FRAM
samples were collected autonomously using moored Remote
Access Samplers (RAS; McLane), whereas all other samples
were collected manually with Niskin bottles or a bucket
(BBMO). The Supplementary Materials and Methods provide
details on the selection criteria, discrete sampling depths at
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Fig. 1. Legend on next page.
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each site and protocols for physical and biogeochemical
metadata.

DNA sampling, sequencing, and bioinformatics
Detailed information on sample collection dates, targeted

16S rRNA gene hypervariable regions, primers, DNA extrac-
tion, sequencing technology, and bioinformatics are shown in
Table 1 and correspond to the individual specifications of the
original publications. No reprocessing of the sequencing data
was conducted and the original ASV/OTU tables were used for
statistical analyses except for SPOT and Bedford Basin, whose
raw sequencing data were reprocessed identically as originally
published (Raes et al. 2022; Yeh and Fuhrman 2022a). Details
on bioinformatic workflows are shown in the Supplementary
Materials and Methods. The V4–V5 and V6 16S rRNA regions
target Archaea, Bacteria, and Eukarya (Lane et al. 1985;
Weisburg et al. 1991; Lee and Gutell 2012; Parada et al. 2016),
but eukaryotic information was not analyzed here.

Statistical analyses
Data analyses, visualization, and maps were generated with

R (v4.2.2; R Core Team 2014) in RStudio (v.1.3.1093; see our
GitHub). Statistical tests and correlations were conducted
between sample points matching in time (i.e., alpha diversity,
temperature, chlorophyll a (Chl a) concentrations and
daylength at time x1). To visualize changes in beta-diversity
over time, pairwise Aitchison’s distances were calculated
between each possible pair of samples (Fig. 2, y-axis) and
recorded over the time difference between those samples, in
days (Fig. 2, x-axis); mean values and associated 95% confi-
dence intervals are plotted for every 10-d interval (Fig. 2) using
ggplot2 (v.1.3.2; Wickham et al. 2019). Centered log-ratio
(CLR) transformations of non-rarefied ASV/OTU tables with an
added pseudo-count of 1 for zeros and distances were calcu-
lated using the Vegan package (v.2.6.4; Oksanen et al. 2007).
To evaluate the response of diversity to different predictors
under the three hypotheses described here (daylength, temper-
ature, Chl a), we tested four versions (model S1, model G,
model S2, and model GS following Pedersen et al. 2019) of
hierarchical generalized additive models (HGAMs) in R package
mgcv (Wood 2017). HGAMs were tested with richness and
Shannon’s diversity as response variables. See Supplementary
Section 3.7 for model details.

Results and discussion
Physical and biochemical seasonality

Seasonality of physical and bio-geochemical parameters is
presented in Supplementary Fig. S8A–H. Daylength, as

determined from latitude and time of year, exhibited the
smallest and largest seasonal differences in the tropics (2.3 h)
and in the Arctic (24 h), respectively. Overall, seasonality was
apparent in the physical and biogeochemical parameters at all
stations, except for YON, with oligotrophic conditions and
low phytoplankton biomass throughout multiple years. Tem-
peratures across the eight sites in the northern and southern
hemisphere ranged from �1.7�C to 30�C. Dissolved inorganic
nitrate and nitrite (NOx) concentrations across all sites ranged
from below detection limits (< 0.02 μmol L�1) to 15 μmol L�1

at the ECL4. Highest NOx concentrations occurred in the win-
ter months, except at ROT (highest in summer) and YON (oli-
gotrophic throughout the year). Chl a concentrations, a proxy
for photosynthetic biomass, peaked in spring and autumn in
BBNS (up to 40 μg L�1), in early spring in SPOT (up to
19.8 μg L�1), in spring and autumn in the ECL4 (up to
4.76 μg L�1), in winter and spring in BBMO (up to 2.9 μg L�1),
and in summer in the FRAM (up to 2.9 μg L�1). In the south-
ern hemisphere, productivity was higher in spring at MAI
(up to 1.6 μg L�1) and in autumn at ROT (up to 0.9 μg L�1).
Low Chl a concentrations (< 0.5 μg L�1) were recorded at YON
throughout the year, though with a trend of relatively higher
concentrations during the summer months.

Consistent patterns in seasonality regardless of sampling
and metabarcoding methodology

Despite different amplification targets and different resolu-
tion (OTUs vs. ASVs), all sites showed significant seasonality
in prokaryotic diversity (community richness and evenness;
Fig. 1). Highest species richness and evenness were always
recorded in the winter (2–3� greater than in summer), even at
the tropical YON (p < 0.05 for all Wilcoxon tests between
summer and winter). These trends remained regardless of rare-
faction depths and were also observed when considering the
rare microbiome (OTUs/ASVs composing < 1% community
proportions; Supplementary Figs. S9–S16).

The choice of target 16S rRNA variable region is tailored to
specific research question and particular taxa (Choi
et al. 2017), sequencing technology (Cruaud et al. 2014), and
intercomparisons of results to other environments or older
studies (Gilbert et al. 2009; Thompson et al. 2017; Brown
et al. 2018). Considering the different PCR biases of primer
sets, there is currently no perfect universal primer set for
targeting variable 16S rRNA regions across microorganisms
(McNichol et al. 2021). Several studies have investigated how
different primers capture true prokaryotic diversity
(e.g., Bukin et al. 2019; Willis et al. 2019; Soriano-Lerma
et al. 2020). Yet, here we show a consistent signal in seasonal

Fig. 1. Global seasonal trends in prokaryotic alpha-diversity. Top: World map illustrating the location of eight time series Fram Strait (FRAM), English
Channel (ECL4), Bedford Basin (BBNS), Blanes Bay (BBMO), San Pedro (SPOT), NRS Yongala (YON), NRS Rottnest Island (ROT), and NRS Maria Island
(MAI). For each site, individual panels show alpha-diversity trends across week number including richness (Chao1), Shannon, and Pielou metrics. Data
points are colored by sampling month, with Loess regression lines (in blue with 95% confidence band in gray) fitted to the alpha-diversity metrics. The
x-axis shows time in number of weeks, with one corresponding to the first week in January and 52 corresponding to the last week in December.
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alpha-diversity across sites, regardless of location or targeted
16S rRNA gene hypervariable region (V1–V3, V4, V4-V5, V6),
DNA extraction methodology, or even sample collection
method (FRAM samples were collected autonomously and

preserved with mercury chloride). Furthermore, our analyses
display a recurring cyclical pattern in prokaryotic beta-
diversity, with the strongest signal at the temperate and polar
sites (Fig. 2; Supplementary Fig. S17). The only exceptions

Fig. 2. Global seasonal trends in prokaryotic community beta-diversity in the euphotic zone. Site-specific distributions of pairwise Aitchison distances
between community compositions of each possible time difference (x-axis) between sample collections (95% confidence intervals around estimates of
the mean every 10 d). Data from Fram Strait (FRAM), English Channel (ECL4), Bedford Basin (BBNS), Blanes Bay (BBMO), San Pedro Timeseries (SPOT),
NRS Yongala (YON), NRS Rottnest Island (ROT), and NRS Maria Island (MAI) (panels from top to bottom, left to right, respectively). Dotted lines are
shown every 365 d. The marine heatwave (the “Blob”) is denoted by an arrow on SPOT between 2014 and 2015. Aitchison distance is the Euclidian dis-
tance calculated for the prokaryotic community compositon; it is based on read counts which were center logratio transformed.
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occurred at YON, where a “drifting” signal characterized the
community as diversity became more dissimilar over time
(Fig. 2). A possible explanation could be that biological inter-
actions have a greater impact on that community as
daylength, and oligotrophic conditions remain relatively con-
stant year-round as is typical for tropical oceans. The recurring
compositional cycle at SPOT was disrupted around 2014–2015
(Fig. 2; Yeh and Fuhrman 2022b), due to an anomalous major
heating event across the northeast Pacific Ocean related to El
Niño (“the Blob”), which impacted the whole marine food
web (Cavole et al. 2016; Traving et al. 2021).

Kinetic energy, resource, and daylength hypotheses
Various environmental and ecological factors correlate with

marine prokaryotic diversity (reviewed in Fuhrman
et al. 2015; Ibarbalz et al. 2019). The kinetic energy and
resource hypotheses provide mechanisms for changes in
marine prokaryotic community diversity. The kinetic energy
hypothesis postulates that elevated temperature leads to
higher local diversity, through increased metabolic rates,
accelerated physiological processes, shorter generation times,
and ultimately producing a more diverse community. The
resource hypothesis postulates that increasing productivity
scales with expanding diversity due to the greater resource
availability, which can support a greater number of species
(Brown 2014; Ibarbalz et al. 2019). We used log-scaled Chl
a concentrations, although it is notably not the best estimator
of resource limitation for prokaryotes, particularly in very oli-
gotrophic sites and during summer where a diverse bacterial
component support pigment diversification (Auladell
et al. 2022). Although the kinetic energy and resource hypoth-
eses provide a framework to explain global marine biodiversity
patterns, individual time-series observations have shown that
prokaryotic richness and evenness are negatively correlated
with daylength (Gilbert et al. 2012; Wietz et al. 2021; Raes
et al. 2022; Doane et al. 2023).

In addition to linear correlations and multiple linear regres-
sion models (Supplementary Figs. S18–S23) we explored a
form of hierarchical generalized additive models (HGAMs),
which provide flexible predictions of nonlinear relationships
(Hastie and Tibshirani, 1986). We show, using HGAMs, that
the negative correlation between prokaryotic alpha-diversity
and daylength persists on a multiannual basis across sites in
both northern and southern hemispheres. The primary find-
ing of the HGAMs indicates a prominent seasonality effect:
knowing the month, site, and year of an observation accounts
for > 80% of deviance explained (Fig. 3; Supplementary
Table S1). Including daylength, temperature, and chlorophyll
as fixed effects into HGAMs with global (model “G”) and site-
specific (model “S2”) smoothers broadly reproduced similar
patterns shown in linear regressions. Visualizing the partial
dependence curves shows how model “G” captures a strong
negative relationship between diversity and daylength, a posi-
tive relationship to temperature up to � 20�C—resembling a

thermal performance curve—and a right-skewed relationship
to chlorophyll with a peak at � 1 μg L�1. Alternatively, model
S2 allows variation using site-specific smoothers, yet only 1%
additional deviance was explained compared to model
G. Here, the relationship between diversity and temperature
or chlorophyll are mixed across sites, although still signifi-
cant, and a consistently negative relationship to daylength
persists. Daylength emerges as a key statistical variable
explaining patterns in prokaryotic diversity across multiple
time series in the northern and southern hemispheres factor
across the entire dataset, albeit with some variation at site
level.

A clear example of site level variation is noticed for the
tropical site YON, where annual variability in daylength is
minimal (Fig. 3). Similarly, for the Arctic site FRAM, the abso-
lute Pearson correlation coefficients between log(Chl a) and
Shannon diversity was higher compared to the correlation
coefficient between Shannon diversity and day length
(Supplementary Fig. S19). In the Arctic, extreme seasonal
shifts between summer and winter dictate changes in commu-
nities. Light triggers primary productivity, leading to lower
prokaryotic diversity in summer and higher diversity in win-
ter. In winter, prokaryotic niche diversity increases and a
diverse group of prokaryotes contributes to nutrient replenish-
ment in winter (Wietz et al. 2021). The only positive relation-
ship with log(Chl a) concentrations was found for ROT (< 7%
explained), with daylength still explaining between 15% and
24% of the trend in prokaryotic diversity (for Chao1
and Shannon, respectively; Supplementary Figs. S18, S19). A
positive relationship between productivity and prokaryotic
community richness has previously been noted by Raes
et al. (2018a, 2018b) from a single transect along the Leeuwin
Current flowing past Rottnest Island, explained by niche par-
titioning between nitrate-driven autotrophic and mixotrophic
micro-eukaryotes. Multiple linear regression models (with
temperature + log(Chl a) + daylength fitted last) corroborated
our results (Supplementary Fig. S23). In a previous study we
used Partial Mantel tests to separate the effects of day length
and temperature on prokaryotic beta diversity. Despite the
high temporal resolution of the Bedford Basin data (weekly
over 4 years), it remained difficult to distinguish between light
and temperature effects (Raes et al. 2022).

Studies at large spatial scales showed that temperature is
the main (and positively correlated) explanatory variable for
microbial community diversity in marine ecosystems
(Fuhrman et al. 2008; Ibarbalz et al. 2019). Our analyses show
that the relationship with temperature varied between sites;
encompassing negative, positive, or no correlation with pro-
karyotic richness or evenness (Supplementary Figs. S6,
S18, S19).

Our findings do not support the kinetic energy nor the
resource hypothesis to explain the factors influencing pro-
karyotic diversity (Mittelbach et al. 2001; Ibarbalz et al. 2019).
Instead, our analyses closely align with Ladau et al. (2013),
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highlighting the primary impact of seasonality on regional,
and potentially global, prokaryotic diversity. The true drivers
for prokaryotic community diversity are difficult to identify
with certainty as many parameters co-vary with daylength,
and many potentially important parameters were not assessed
here. Hence, it is not an “either/or verdict” for the hypotheses
that were considered here, but rather a complex interplay of
processes that dominate and differ when sampling at different
spatial and temporal scales. We demonstrate that prokaryotic
diversity patterns investigated locally, with seasonal resolu-
tion, are affected by different environmental drivers compared
to large spatial studies, which usually do not account for tem-
poral or seasonal variations. Our findings indicate that in
high-latitude regions, diversity must be interpreted in the con-
text of the particularly strong seasonal cycle, with highest
diversity during the polar night. Hence, seasonality and local
variation must be considered to understand marine prokary-
otic community diversity, especially when comparing globally
distributed sites.

The relevance of daylength has been described as a variable
that integrates seasonal variability in temperature and stratifica-
tion (Wietz et al. 2021). Shorter day length co-occurs with sea-
sonal vertical mixing, thus the passive merging of surface (photic)

and deep (aphotic) prokaryotic communities resulting in higher
diversity (García et al. 2015). In addition, increased daylength
and associated higher solar irradiance might have negative (bacte-
ricidal) effects on photosensitive microbes that are poorly adapted
to high solar irradiance (Ruiz-Gonz�alez et al. 2013). Alonso-S�aez
et al. (2006), for example, carried out experimental work that
suggested that some groups of non-photosynthetic, heterotrophic
bacteria may be negatively impacted by light, as they lack bacteri-
orhodopsin or other light harvesting photosystems as well as pro-
tective mechanisms against UV radiation.

A multiannual recurring state
Time-series data allow the description of long-term sea-

sonal patterns and their associated variability, affording
explicit tests for how changes in biological diversity impact
ecosystem functions and ecological stability (Fuhrman
et al. 2015; Benway et al. 2019). This advantage of time series
is unique in comparison to larger-scale spatial studies (O’Brien
et al. 2017) such as Tara Oceans, which cannot capture sea-
sonality. Our analyses confirm clear boundaries for prokary-
otic community variability over multiannual scales, from
subtropic to polar oceans. While the kinetic energy or
resource hypotheses are not mutually exclusive—temperature

Fig. 3. Hierarchical generalized additive model plots (HGAM) showing the partial effects of explanatory variables: (A) daylength, (B) temperature, and
(C) log (Chl a) on richness. The y-axis represents the contribution of a specific predictor to the response variable, after accounting for the effects of other
predictors in the model (Supplementary Table S1). Positive values indicate an increase in the response variable, while negative values indicate a decrease.
HGAM plots are shown for model G which uses global smoothers and random intercepts for sites (random effect). Gaussian quantiles for model G are
shown in Supplementary Fig. S5. (D) Model S2 partial dependence curves for day length with site-specific smoothers and random intercepts for sites
(random effect; see also Supplementary Fig. S6; Table S1. Global smoothers use default thin plate regression splines (TPRS) for each fixed effect covariate.
Ticks are shown on each x-axis for the distribution of observed data points.
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and Chl a covary—our findings and those from Fuhrman
et al. (2015) show that daylength explains the largest varia-
tion in prokaryotic alpha- and beta-diversity. Daylength, as a
variable, integrates various seasonal processes, including net
heat flux, wind speed, total daily irradiance, stratification,
depletion, and regeneration of nutrients, as well as the release
of POC and DOC. These processes create a recurring pattern
of changes in diversity that are not solely driven by tempera-
ture or Chl a.

Conclusions
Our results showed that daylength is statistically a strong

variable accounting for prokaryotic diversity patterns across
six of the eight independent prokaryotic time series. However,
the inverse relationship between daylength and diversity is
counterintuitive, and does not readily link to an underlying
biological mechanism. Although physical mixing and season-
ality in light-sensitive taxa are potential ecological mecha-
nisms, other causal processes are possible, and a unifying
mechanistic explanation still eludes formal description. Our
study shows the necessity for considering the temporal
dimension in both regional and global prokaryotic diversity
analyses, as diversity trends are connected to our planet’s sea-
sonal rhythm. Diversity was up to threefold higher in winter
across the majority of the eight time series analyzed. The
highest variation was observed between the summer and win-
ter months, with clear annually recurring seasonal beta-
diversity patterns in polar and temperate waters. Notably,
these patterns were independent of collection methods, DNA
extraction chemistry, targeted 16S rRNA hypervariable region,
sequencing technology, resolution of taxonomic units, or bio-
informatics pipeline. Our findings underscore the potential
for improved global and networked observational initiatives
by harmonizing methods so we can address comparisons of
absolute diversity. This emphasizes the value in establishing
standardized best practices for genomic data acquisition and
reporting, encompassing the creation of a Minimum Informa-
tion for an Omics Protocol, as recommended by Samuel et al.
(2021). Such harmonization will promote data interoperabil-
ity, facilitate collaborative research efforts, and promote com-
parisons of absolute diversity values between sites, which our
work cannot address. Where climate changes do generate
more frequent extreme events, this work highlights a poten-
tial, hitherto undescribed process whereby prokaryotic com-
munity fluctuations in response to an interference with the
regular daylength-correlated cycles can be identified (see,
e.g., the “Blob” 2-yr heatwave event Fig. 2e). We posit that
based on the prokaryotic time series presented here, among
the richest datasets yet available, the empirical evidence sup-
ports a primary role for daylength in explaining the seasonal
diversity and ecological rhythm of prokaryotic microbes, the
basal component of marine food webs, and warrants deeper
investigation for causal processes.
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