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Abstract

Archaeological sites in Northwest Africa are rich in human fossils and artefacts providing proxies for behavioural and evolutionary studies.
However, these records are difficult to underpin on a precise chronology, which can prevent robust assessments of the drivers of cultural/
behavioural transitions. Past investigations have revealed that numerous volcanic ash (tephra) layers are interbedded within the Palaeolithic
sequences and likely originate from large volcanic eruptions in the North Atlantic (e.g. the Azores, Canary Islands, Cape Verde). Critically,
these ash layers offer a unique opportunity to provide new relative and absolute dating constraints (via tephrochronology) to synchronise
key archaeological and palaeoenvironmental records in this region. Here, we provide an overview of the known eruptive histories of the
potential source volcanoes capable of widespread ashfall in the region during the last ∼300,000 years, and discuss the diagnostic glass com-
positions essential for robust tephra correlations. To investigate the eruption source parameters and weather patterns required for ash dis-
persal towards NW Africa, we simulate plausible ashfall distributions using the Ash3D model. This work constitutes the first step in
developing a more robust tephrostratigraphic framework for distal ash layers in NW Africa and highlights how tephrochronology may
be used to reliably synchronise and date key climatic and cultural transitions during the Palaeolithic.

Introduction

Despite our desire to learn more about the forces driving the bio-
logical and behavioural evolution of our species during the
Middle and Late Pleistocene (∼300,000 to 10,000 years ago),
many fundamental questions remain unresolved. These concern
both the timing and synchroneity of major cultural transitions
that occurred across NW Africa, and the role that climatic vari-
ability and other natural forces played in the origin, migrations
and behaviour of Homo sapiens. For example, it is possible that
periods of severe climatic conditions (e.g. aridity) may have led
to the emergence of significant cultural developments (e.g. inno-
vations in tool technology), as H. sapiens adapted to a life in the
changing Late Pleistocene landscape (Potts, 2013; Chase et al.,
2018; Kuhn, 2023). Unfortunately, it has not been possible to
interrogate the archaeological record in this way, since fossil
sequences are notoriously difficult to underpin by a robust chron-
ology, and many critical developments took place during times
that lie beyond the limits of radiocarbon (14C) dating (>50,000

years). Moreover, climatic variability is known to have occurred
on extremely rapid timescales (even within a human lifespan)
and can respond asynchronously in different regions (Lane
et al., 2013; Shanahan et al., 2015; Abrook et al., 2020;
Nakagawa et al., 2021; O’Mara et al., 2022). Exceptional chrono-
logical precision is therefore required to compare robustly arch-
aeological (e.g. fossil assemblage) and highly detailed climate
(e.g. marine isotope or sea-surface temperature signal) records,
and for robust causal-effect relationships to be established.

Archaeological sites in NW Africa are rich in Palaeolithic
organic remains and lithic technology, and have recently emerged
at the forefront of evolutionary studies of H. sapiens (Hublin et al.,
2017; Scerri et al., 2018; Barton et al., 2021). Those in modern-day
Morocco (e.g. Taforalt, Bizmoune, Dar es Soltan, Harhoura II;
Jebel Irhoud; Figure 1) in particular have been providing a critical
insight into early human occupation and behaviour, recording
detailed continuous Middle Stone Age (MSA) or Middle
Palaeolithic (MP) assemblages, as well as the subsequent and
widespread transition into the Later Stone Age (LSA) (∼250,000
to 40,000 years ago) (Figure 1). The region hosts some of the
earliest evidence of behavioural innovations in modern humans,
including the introduction of novel tool forms and hafting meth-
ods, as well as the onset of symbolism and artistic behaviour
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(Bouzouggar et al., 2007; Bouzouggar and Barton, 2012; Sehasseh
et al., 2021). For example, several MSA sites dating back to as
early as the last interglacial period, Marine Isotope Stage (MIS)
5e, (∼130 ka), contain modified Nassariidae gibbosulus perforated
shells that exhibit wear patterns and red ochre colouration, con-
sistent with their use as personal ornamentation (Vanhaeren
et al., 2006; Dibble et al., 2012; Steele et al., 2019; Sehasseh
et al., 2021). Despite the age uncertainties often associated with
these findings, the modified shells provide some of the earliest
known evidence of explicitly symbolic objects in the archaeo-
logical record and of a fundamental stage in the emergence of
modern social behaviour in H. sapiens (Barton and d’Errico,
2012).

The MSA in NW Africa is often sub-divided into the
Maghrebian Mousterian and Aterian industries (Dibble et al.,
2013), with the latter widely traced from the Atlantic coast to
the fringes of the Nile Valley (see Bouzouggar and Barton,
2012). The origin, chronology and significance of the Aterian
have been a source of long-standing debate, and its spread has
been linked to the dispersal of behaviourally modern humans
(McBrearty and Brooks, 2000). Aterian assemblages include lithics
such as bi-pointed bifacial foliates and a wide range of tanged
implements, as recorded at sites such as Dar es-Soltan I, situated
on the Atlantic coast of Morocco (Figure 1), dated to the later
part of MIS 5b (80–90 ka; Barton et al., 2009). Although novelties
including small bifacial tools are recorded in East and South Africa,
it is not yet clear if these were used at different times and under
different assorted conditions and selective pressures (Marean,
2015; Blome et al., 2012; Powell et al., 2009). The role of climatic
factors in the distribution of the Aterian, and whether this might
have been related to the opening of green corridors through the
Sahara during more humid episodes of MIS 5 (132–74 ka) remains
unresolved (Garcea and Giraudi, 2006; Osborne et al., 2008).

Chronological uncertainties are also pertinent for younger
archaeological assemblages, in particular for the transformational
MSA to LSA transition observed across NW Africa. This wide-
spread cultural shift is most clearly marked by a change from

MSA flake and blade technologies to a more standardised micro-
lithic bladelet production (an industry also referred to as
Iberomaurusian). This shift is well documented at the site of
Grotte des Pigeons (Taforalt, eastern Morocco; Figure 1), where
a clear break in MSA deposits precedes a rich and thick sequence
of bladelet and composite tool technology. This has been con-
strained by several accelerator mass spectrometry (AMS) radio-
carbon dates between 25–23 ka cal. years BP (Barton et al.,
2013). Improved chronological frameworks for other such sites,
however, are required to disentangle the intricacies of these
changes and determine whether this significant shift also origi-
nated via independent behavioural pathways, and what role cli-
mate may have played.

Chronometric dating methods have developed considerably
over recent years, allowing new opportunities to reinterpret arch-
aeological data and hypotheses, particularly in the realm of evolu-
tionary studies (Wood, 2015; Becerra-Valdivia and Higham, 2023;
Grün and Stringer, 2023). Notably for radiocarbon dating, more
reliable preparation methods, that allow the extraction of diagene-
tically unaffected organics, have been established, permitting
more robust chronologies for archaeological sites in Europe
(Higham et al., 2014). Furthermore, more accurate calibration
methods (e.g. Ramsey et al., 2010; Reimer et al., 2020), alongside
their integration within detailed Bayesian age modelling techni-
ques (e.g. OxCal Bayesian program; Ramsey, 1995), have allowed
a more robust anchoring of such developments in time.
Notwithstanding these latest advancements, robust age models
for archaeological sites are still difficult to construct, with pro-
blems typically arising from the availability of directly dateable
material through the sequence (or at least with the necessary qual-
ity for high-resolution dating), and the potential for discontinu-
ous or disturbed sedimentation accumulation (see Hunt et al.,
2015). Beyond the radiocarbon timeframe (>50,000 years) recon-
structions are even more blurred by the greater age uncertainties
that accompany other techniques suitable for archaeological
sequences, such as multi- and single-grain optically stimulated
luminescence (OSL), uranium-series, thermoluminescence (TL)
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Figure 1. (a) Location of key MSA-LSA archaeological and climate records (e.g. MD03-2705; Skonieczny et al., 2019) in NWAfrica and the key volcanic source regions
of greatest relevance for this region. (b) Schematic showing the potential of identifying co-located volcanic ash (tephra) layers. These time-parallel markers permit
possibilities to: (i) share chronological information and (ii) directly compare climatic and cultural changes.
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and cosmogenic nuclide dating techniques, meaning it is difficult
to isolate taphonomic issues. There can also be limited opportun-
ities to generate detailed and continuous paleoclimatic reconstruc-
tions using archaeological sequences, dependent on suitable
accumulation and preservation of proxy material, such as organic
plant/microfossil remains (e.g. Scott and Neumann, 2018), or
bone/enamel/shell (e.g. Stoetzel et al., 2011; 2019; Jeffrey, 2016;
Barton et al., 2020; Terray et al., 2023).

To establish the long-term climatic framework of the archaeo-
logical and faunal assemblages, the record must have an adequate
chronology allowing the sequence to be pinned against other
high-resolution climate archives. These can typically include spe-
leothems/stalagmites from cave sites (e.g. Ait Brahim et al., 2023;
Day et al., 2023), or detailed sedimentary records, such as offshore
marine (e.g. MD03-2705; Skonieczny et al., 2019; O’Mara et al.,
2022; Figure 1) or lacustrine sediments (e.g. Atlas Mountains;
Rhoujjati et al., 2010). In particular, records from deep-sea sedi-
mentary cores can provide global to regional climate reconstruc-
tions that reflect both the marine and terrestrial realms.
Furthermore, these records can be tied to an orbitally tuned
chronology with millennial scale resolution using benthic oxygen
isotope (δ18O) data (Lisiecki and Raymo, 2005). Marine climate
records include (global) atmospheric CO2 reconstructions from
foraminiferal boron isotope or haptophyte algae alkenone δ13C
values (e.g. Hönisch et al., 2023); regional marine climate vari-
ables include sea-surface temperatures, which provide informa-
tion about latitudinal temperature gradients, regional
temperatures and relative monsoon strength from proxies such
as alkenones (Uk

37), foraminiferal Mg/Ca or glycerol dialkyl gly-
cerol tetraether (GDGT) analyses (Brassell et al, 1986; Elderfield
and Ganssen, 2000; Schouten et al., 2002). Terrestrial vegetation
is recorded in marine cores in the form of microbotanical remains
(e.g. cuticle, pollen or phytoliths) and carbon isotope ratios of
n-alkyl lipids (Morley and Richards, 1993; Bonnefille, 2010;
Uno et al., 2016). Continental hydroclimate can be discerned
from hydrogen isotope ratios of n-alkyl lipids and dust fluxes
off the Sahara (Sachse et al., 2012; Tierney et al., 2017; O’Mara
et al., 2022). Finally, emerging methods for reconstructing past
fires from molecular products of biomass burning add new
dimensions to terrestrial paleoecological reconstructions (e.g.
Karp et al., 2020; 2021). Critically, tephras that occur in both a
marine core and archaeological record provide a means to estab-
lish a direct temporal link between regional climate records and
human behavioural and technological transitions, discussed
above, with exceptional chronological precision.

Pilot investigations at several key archaeological sites in NW
Africa have revealed that numerous microscopic volcanic ash
layers (known as ‘cryptotephra’) are preserved in the sediments
with long MSA and LSA cultural sequences (Lane et al., 2014;
Barton et al., 2015; 2021; Figure 2). At Grotte de Pigeons
(Taforalt; Figure 1), microscopic volcanic glass shards were
found interbedded between the levels containing MSA and LSA
technology (Barton et al., 2015; 2016). The dominantly alkalic
chemical composition of the glass, which can be used to deter-
mine the volcanic source, suggests that the ash was erupted
from ocean island volcanoes in the North Atlantic. Due to the
strong prevailing westerly winds in this region, ash layers have
the potential to be widely dispersed, and become deposited in a
range of sedimentary environments, including the surrounding
ocean basins and onshore in subaerial, peat and lacustrine
records. Indeed, ash erupted from the Azores has been identified
∼5000 km from its volcanic source in lake sediments in Svalbard,
Norway (van der Bilt and Lane, 2019; Figure 2), highlighting the
opportunity to link records temporally over exceptionally large
distances. However, prior to the utilisation of these volcanic ash
layers as synchronous markers, it is critical to conduct a detailed

assessment of the source regions and geochemical uniqueness of
the layers, so that the fingerprint of individual and well-dated vol-
canic events is robustly identified. This assessment constitutes one
of the cornerstones of tephrochronology, without which it is not
possible to ensure that unequivocal correlations are established
across archives.

This article explores the key volcanic sources that have the
potential to disperse widespread ash to NW Africa and provide
tephra layers suitable for linking key MSA-LSA archaeological
and climate records. Here, we first outline the main prerequisites
for utilising tephra layers as time-stratigraphic markers, particu-
larly within an archaeological setting. Secondly, we explore the
volcanic regions (the Azores, Canary Islands and Cape Verde)
known to have produced large ash-rich eruptions (sub-Plinian
to Plinian in style) and the known chronology of several key
and widespread units. We collate the geochemical datasets avail-
able for the key regions and eruptions to distinguish specific glass
chemical ‘fingerprints’ (unique to different eruptions; Lowe,
2011), which are essential for correlating deposits in the distal
zone with their source. Finally, we investigate the eruption source
parameters (e.g. tephra volume, column height, eruption dur-
ation) and weather patterns that are required to generate ashfall
dispersal towards NW Africa and mainland Europe, which sup-
port the locations of distal evidence of tephra.

Volcanic ash layers as time-stratigraphic markers

Prerequisites for utilising tephra layers

Volcanic ash (tephra) layers can provide ideal time-stratigraphic
markers and a powerful way of overcoming problems in compar-
ing disparate sedimentary records (e.g. archaeological and paleo-
environmental) on independent time scales (Davies et al., 2002;
Turney et al., 2006; Lane et al., 2014; McLean et al., 2016). In gen-
eral, three basic prerequisites are required before they can be
widely used as chronological markers (Davies et al., 2012; Lane
et al., 2014; Lowe et al., 2015). First, it must be possible to identify
robustly the primary ashfall event within the sequence (i.e. dis-
criminate undisturbed volcanic deposits from reworked or sec-
ondary deposits). Secondly, for a tephra layer to be utilised, it
must have a known and distinct geochemical ‘fingerprint’ that
can be singled out and used for unequivocal correlations.
Finally, the approximate (relative or absolute) eruption age of
the event must be established, permitting the layer to be inte-
grated within a detailed chronological framework. These key prin-
ciples are explored further here.

The term ‘tephra’ encompasses all pyroclastic material
(quenched melt and crystals) ejected during a volcanic eruption
(Thórarinsson, 1944); however, in medial and distal regions (e.g.
>100 km from source) tephra is typically comprised of ash-size par-
ticles (<2 mm in size), and to a lesser extent lapilli-size particles
(2–64 mm), and is predominantly composed of volcanic glass. In
order to produce a significant amount of ash, eruptions need to
be highly explosive, typically of sub-Plinian to Plinian styles, i.e.
they need to attain a Volcanic Explosivity Index (VEI; Newhall
and Self, 1982) or an eruption magnitude (M; Pyle, 1989) greater
than or equal to 4. This implies the eruption of tephra volumes
of >0.1 km3 and eruptive columns >15 km in height. The usefulness
of the ash as a time-stratigraphic marker is reliant on the tephra
being quickly deposited following the eruption and remaining as
a discrete, in situ horizon (i.e. recording an instantaneous event).
Reworking processes (e.g. erosion and redeposition, bioturbation,
site reoccupation, high-energy floods) can sometimes obscure the
primary ashfall event, either by moving/skewing the stratigraphic
positioning, or by the re-deposition of older units (e.g. Wastegård
et al., 2006; McLean et al., 2018). It is therefore essential that all
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possible taphonomic processes are considered, and that secondary
reworking events can be identified and avoided. This criterion is
usually achieved on a site-specific basis and best accomplished by
considering several lines of reworking evidence (e.g. visual features
of the unit such as grading, microscopic components of minerals
and glass, geochemical consistency, morphoscopy of the grains,
etc; Gudmundsdóttir et al., 2011; Abbott et al., 2018; McLean
et al., 2018).

Tephra markers can be preserved as non-visible (cryptotephra)
layers, where the concentration of glass shards is diluted and does
not form a clear macroscopic unit (e.g. Davies, 2015).
Cryptotephra layers are almost exclusively composed of volcanic
glass shards and are typically <125 μm thick in distal settings,
and can contain very low concentrations (i.e. below 500 shards
per gram of dried sediment). As such, they can provide evidence
of lower magnitude and/or very distant events, allowing records
over wider geographic footprints to be synchronised. In order
to identify the primary stratigraphic position of cryptotephra
layers, sequences are continuously scanned to identify a peak in
glass shard concentrations. This can be achieved by non-
destructive techniques, such as X-ray fluorescence (XRF) continu-
ous scanning (e.g. Kylander et al., 2012; McCanta et al., 2015;
McLean et al., 2022) or computed tomography (CT) (e.g.
Griggs et al., 2015; van der Bilt et al., 2021), but findings can
be inconsistent especially for low concentrations of glass shards
or those with geochemical compositions similar to the host sedi-
ment (e.g. McLean et al., 2022). Arguably the most reliable but
labour-intensive technique is achieved using density separation
methods, which isolate the volcanic glass from the host sediment.
Heavy liquid flotation methods effectively extract the volcanic
shards from lighter (typically organic) and denser (minerogenic)
components, allowing the glass to be microscopically counted to
calculate concentrations (see Eden et al., 1996; Turney, 1998;
Blockley et al., 2005; Iverson et al., 2017).

To correlate distal ash to its volcanic source and ensure robust
correlations, individual glass shards must be geochemically ana-
lysed to determine the eruption’s diagnostic ‘fingerprint’. Glass
shard compositions, obtained through electron microprobe
(EPMA) analyses, approximate the composition of the magma
at the time of the eruption, meaning major (>1 wt. %) and
minor (0.1-1 wt. %) element concentrations can be used to distin-
guish different eruption events and the different tectonic settings
where the magmas where formed. Since some volcanic centres
erupt geochemically similar compositions through time (e.g.
Óladóttir et al., 2011; Lane et al., 2012; Bourne et al., 2015;
Albert et al., 2019; McLean et al., 2020), trace element (<0.1 wt.
%) compositions are often analysed to further discriminate the
deposits of different eruptions (e.g. Albert et al., 2018). Trace
element compositions of individual glass shards can be deter-
mined using Laser Ablation Inductively Coupled Plasma Mass
Spectrometry (LA-ICP-MS) (e.g. Tomlinson et al., 2010; Pearce
et al., 2011), with recent improvements in the spatial resolution
(e.g. spot size) and machine sensitivity (e.g. precision and accur-
acy) allowing the reliable analysis of increasingly small shard sizes.

In addition to providing a valuable relative dating technique,
once the eruption age is determined, it can be imported into
other archives that contain distal tephra, to improve or independ-
ently test the existing chronology. Eruptions can be dated directly
using radiometric-dating methods (e.g. 40Ar/39Ar dating or fission
track; Brauer et al., 2014), but these techniques often rely on
knowing the source volcano to obtain large quantities of minerals
from the deposits which are suitable for dating. For example,
40Ar/39Ar dating requires measurable quantities of radiogenic
argon, formed from the decay of potassium, and therefore
K-rich minerals are required for precise ages. In fact, some of
the most precise eruption ages are obtained indirectly and are
constrained in the medial or distal settings by sedimentary
archives such as those provided by lacustrine or marine cores,
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Figure 2. (a) Location of the key volcanic regions located within the North Atlantic, including the islands of the (b) Azores (AZ), (c) Canaries (CA) and (d) Cape Verde
(CV), of greatest relevance for ash dispersal across NW Africa. The distal sedimentary palaeoenvironmental records reported to contain volcanic ash erupted from
the Azores are marked with a blue box (Chambers et al., 2004; Barton et al., 2015; Watson et al., 2017; van der Bilt and Lane, 2019; Wastegård et al., 2020; Kinder
et al., 2020; Walsh et al., 2021).
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for which is often possible to obtain detailed age models based on
estimated sedimentation rates (e.g. OxCal Bayesian age-models;
Ramsey, 2008; Staff et al., 2013), and/or are underpinned by incre-
mental chronologies (e.g. annually laminated varves; Wulf et al.,
2004; Smith et al., 2013) or other reference isotope chronostrati-
graphic curves (e.g. marine isotope geochronology).

The increasing number of distal archives found to contain
cryptotephra isochrons, as well as a better understanding of the
values and complexities of tephrochronology, has led to the devel-
opment of regional tephrostratigraphic frameworks (also referred
to as lattices) (e.g. Blockley et al., 2014; Davies et al., 2014; Lowe
et al., 2015; Fontijn et al., 2016; McLean et al., 2018; Jensen et al.,
2021). These frameworks can be constructed using the sequence
of ash layers preserved in the geological record to create a network
of sites that are bound by co-located markers. These are necessary
to achieve a comprehensive understanding of the number and fre-
quency of eruption events, generate constrained eruption chron-
ologies and build geochemical fingerprints for correlation
purposes. Regional frameworks are usually underpinned by key
reference sites (often termed tephrostratotypes), which offer
both detailed tephrostratigraphic sequences and a precise chron-
ology of eruptive events, usually from a range of volcanic sources
(e.g. the Greenland ice cores; Abbott and Davies, 2012; Bourne
et al., 2015; Cook et al., 2022).

Tephra dispersal from the North Atlantic region

There are three key volcanic archipelagos within the North
Atlantic with the potential to produce widespread ash dispersal
towards NWAfrica over the last 300 ka. These include the islands
of the Azores, Canary Islands and Cape Verde (Figure 2).
Proximal outcrops of pyroclastic deposits indicate that these
ocean island volcanoes have had a wide variety of explosive styles,
ranging from low explosivity or largely effusive eruptions, to large
caldera-forming eruptions. As discussed, in order to have gener-
ated a substantial amount of ash, explosive eruptions would need
to have attained a VEI or M greater or equal to 4 (see ‘Eruption
source parameters for ash dispersal to NW Africa’).

Distal cryptotephra layers compositionally attributed to ocean
island volcanoes in the North Atlantic region have been identified
in sedimentary records in NW Africa and Europe (as marked in
Figure 2), showing the remarkable opportunity to link records
over continental scales. There has been extensive work on the vol-
canic stratigraphies of the Azores, Canary Islands and Cape
Verde, but an integrated tephrostratigraphic framework, including
detailed major and trace element glass chemistry, for widespread
events has not yet been established. Currently, there are few distal
ash layers from these volcanic archipelagos that can be confidently
linked to specific individual eruptions or used as time-
stratigraphic markers.

To date, evidence of Holocene-derived ash from the Azorean
volcanoes has been reported in palaeoclimate records in the UK
(Chambers et al., 2004; Watson et al., 2017; Walsh et al., 2021),
Svalbard (Wastegård et al., 2019; van der Bilt and Lane, 2019)
and eastern Europe (Kinder et al., 2020) (Figure 2). Moreover,
as part of the ‘Response of Humans to Abrupt Environmental
Transitions’ (RESET) Project (Lowe et al., 2015), pilot investiga-
tions at key Palaeolithic archaeological sites in NW Africa identi-
fied Atlantic and Mediterranean-derived glass shards in sites
including Taforalt (Barton et al., 2015). The RESET Project was
also key in verifying that widespread tephra layers have the poten-
tial to answer longstanding questions in archaeology (Lowe et al.,
2015). For example, volcanic ash of the Campanian Ignimbrite
eruption from Campi Flegrei in Italy (dated to ∼40 ka; Giaccio
et al., 2017) was identified in several palaeoenvironmental sites
and archaeological cave sequences, synchronising these eastern

Mediterranean records to show spatial and temporal variation
in the start of the Upper Palaeolithic lithic industries associated
with Anatomically Modern Humans (Lowe et al., 2012). Further
work in sites in NW Africa may also locate widespread layers
from Italian or Icelandic sources depending on the specific
meteorological conditions and eruption source parameters.

Source regions for widespread ash dispersal in NW Africa

Here, we explore the documented eruptive histories, eruption
source parameters and published glass geochemical data available
for the three volcanic archipelagos, with a specific focus on large
eruptions capable of generating widespread tephra fall (over the
last ∼300 ka). We highlight key references that offer additional
information and primary datasets.

The Azores

Geological setting and eruptive history
The Azores Archipelago, located in the central North Atlantic
∼1700 km from the coast of NW Africa (Figure 2), has an exten-
sive record of explosive eruptions. Due to the prevailing strong
south-westerly winds in this region, tephra of Azorean volcanoes
has dispersed over wide areas, reaching Europe and Africa,
including the adjacent continental coastlines.

The Azores are formed of nine islands straddling the triple
junction between the Eurasian, African (Nubian) and North
American plates, and extending 600 km from WSW to ENE
(between latitudes 37°–40° N and longitudes 25°–31° W) (see
Figure 2b). The volcanic islands are arranged into the eastern
(São Miguel and Santa Maria), central (Graciosa, Terceira, São
Jorge, Faial, and Pico), and western (Flores and Corvo) groups
(see Figure 2b). Volcanism in this region is thought to result
from the interaction between a deep melting anomaly (often
referred to as the Azores mantle plume) and volcano-tectonic
structures (e.g. Cannat et al., 1999; Trippanera et al., 2014;
Storch et al., 2020). Eruptions occur along regional fault zones (vol-
canic fissure systems) or at the intersection of fault systems (central
volcanoes) (Madeira and Brum da Silveira, 2003; Madeira et al.,
2015). Almost all the islands consist of one or more central volca-
noes intersected by fissure zones with WNW–ESE direction. Seven
of the islands have active volcanic systems, most of which have
erupted in historical times, i.e. since settlement in the fifteenth cen-
tury. Since then, 28 volcanic eruptions (subaerial and submarine)
have been recorded (Gaspar et al., 2015a), showcasing the highly
active nature of these volcanoes.

Eruptions on the Azores islands have ranged from Hawaiian
(effusive) to Plinian (explosive) in style, including
Surtseyan-style events. At least four of the nine islands (São
Miguel, Terceira, Faial and Graciosa) are known to have produced
very recent large magnitude events, with eruption columns
extending high into the atmosphere and generating ground-
hugging pyroclastic density currents (PDCs), which formed mas-
sive pumiceous PDC deposits termed ignimbrites. The Plinian
and sub-Plinian events originate from the active central volcanoes
with calderas, where intermediate to small volume events are also
recurrent in their eruptive histories (e.g. Self, 1976; Booth et al.,
1978; Gaspar, 1996; Pacheco, 2001; Gertisser et al., 2010, Guest
et al., 2015; Pimentel, 2016; Queiroz et al., 2015; Wallenstein
et al., 2015). Given the short distances between the calderas and
coastlines, large volumes of tephra are commonly deposited off-
shore. Thus, eruption volumes are poorly constrained and prob-
ably substantially underestimated. However, due to the small
size of the Azorean calderas, it is estimated that the larger events
probably did not involve more than 1 km3 DRE of magma
(Gertisser et al., 2010; Pimentel et al., 2015). The established
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island stratigraphies are typically grouped by volcano and deli-
neated using an Upper/Superior group (younger) and Lower/
Inferior group (older) scheme, as shown in Figure 3 and Table 1.

São Miguel (Eastern Group)
São Miguel (part of the eastern group along with the inactive
Santa Maria) is the largest and most populated of the Azorean
islands with >137,000 inhabitants. It is comprised of three active
trachytic central volcanoes with calderas, which dominate the
island (listed west to east) – Sete Cidades, Fogo (also known as
Água de Pau) and Furnas, which are linked by Picos and

Congro fissure systems (Figure 3a). These trachytic central volca-
noes are the sources of widespread ash layers relevant for linking
distal records in this region. The eastern part of the island is
formed by the older volcanic systems of Povoação and Nordeste
(>878 ka; Johnson et al., 1998) (Figure 3a), which are considered
extinct. Although their stratigraphy is poorly understood and
radiometric dating has yet to resolve their chronology, it is
thought that they have not erupted in at least several hundred
thousand years (Johnson et al., 1998; Duncan et al., 2015). The
active central volcanoes of São Miguel are characterised by explo-
sive trachytic volcanism of Plinian and sub-Plinian style, while

Fi
g.

3
-
Co

lo
ur

on
lin

e,
B
/W

in
pr
in
t

Figure 3. (a) Map of São Miguel and the location
of the three trachytic central volcanoes Sete
Cidades, Fogo and Furnas (Basemap: NASA
JPL; 2021). Simplified volcanostratigraphic
scheme for (b) São Miguel and (c) Terceira,
Faial and Graciosa’s volcanoes. These are
based on those presented by Queiroz (1997),
Queiroz et al. (2008; 2015), Wallenstein (1999),
Wallenstein et al. (2015); Guest et al. (1999;
2015); Self (1976); Gertisser et al. (2010),
Pimentel et al. (2021), Maderia (1998), Pacheco
(2001), Maund (1985), Gaspar (1996), Larrea
et al. (2014a; 2014b), respectively.
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basaltic Hawaiian/Strombolian eruptions dominate in the fissure
systems. There are several key studies which have established
the volcanostratigraphy of São Miguel (Booth et al., 1978;
Queiroz, 1997; Guest et al., 1999; Wallenstein, 1999). The eruptive
histories of these centres include several caldera-forming events
and the more recent intra-caldera sub-Plinian and hydromag-
matic eruptions (Table 1; Figure 3b).

On São Miguel Island, Sete Cidades has been the most active in
the last 5000 years (Booth et al., 1978, Queiroz, 1997; Queiroz
et al., 2008), with at least 17 trachytic explosive intracaldera erup-
tions, predominantly hydromagmatic in nature (part of the Lagoas
Formation; eruptions are named P1 to P17; Figure 3). Today, Sete
Cidades has a broadly circular caldera 5 km wide, occupied by
lakes and several pumice cones, tuff rings and maars. The last par-
oxysmal eruption, dated at ∼16 ka (Table 1; Figure 3b), was related
to the final phase of caldera-enlarging and is recorded by the Santa
Bárbara Formation (Queiroz, 1997; Queiroz et al., 2015; Porreca
et al., 2018). Prior to this event, two paroxysmal eruptions related
to main phases of caldera collapse are identified, including the
Risco Formation (∼36 ka) and the Bretanha Formation (∼29 ka)
(Figure 3b; Queiroz, 1997). All three formations are dominated
by ignimbrite members, but also include other members with fall-
out pumice and minor PDC deposits (e.g. pyroclastic surges and

block-and-ash flow deposits). These major pyroclastic formations
are intercalated with subordinate trachytic and basaltic products of
the Ajuda and Lombas Formations. There are other thick ignim-
brites interpreted to be older than these major formations (e.g.
located at Rocha da Relva and Ponta da Ferraria) (Queiroz,
1997) and are ascribed to the Inferior Group (Figure 3b; Table 1).

Due to the short distance between the caldera rim and the
coast (<2–5 km) and the thick cover of younger products, field
data for estimation of source parameters for these major eruptions
are somewhat limited. However, the existence of a distinctive
deposit of the Santa Bárbara formation ∼25 km east of Sete
Cidades caldera (at Ponta do Cintrão) (Kueppers et al., 2019;
Figure 3a) allowed the estimation of eruption source parameters
and wind conditions. Numerical simulations suggest the last
phase of the eruption was sub-Plinian with an eruption column
that extended up to 17 km, dispersed towards E, and had an
erupted volume of at least 0.27 km3 (Kueppers et al., 2019; dis-
cussed further in ‘Eruption source parameters for ash dispersal
to NWAfrica’). Moreover, simulated eruption scenarios of similar
events would affect air traffic in the North Atlantic and ash could
reach NW Africa, Europe and Central/South America depending
on wind direction (Kueppers et al., 2019). The estimated eruption
source parameters are in agreement with those by Cole et al.

Table 1. Simplified stratigraphy and key pyroclastic formations for the Azores Islands (São Miguel, Terceira, Faial, Graciosa islands). Key widespread units are
highlighted in grey and are used to distinguish groups and link across the islands. Key published geochemical datasets (whole rock and glass) available for the
formations are listed

Azores
Island

Volcanic
System Key Groups/Formations

Key Formations and/or
Members

Approximate
Age Range

Compositions Reference
(whole rock and glass)

São
Miguel

Sete Cidades Lagoas Pepom (P1 to P17) and
Cascalho Negro

ca. 5–500 ka Ellis et al. (2022)

Superior Group (Santa Bárbara) Santa Bárbara ∼16 ka Kueppers et al. (2019);
Laeger et al. (2019)

Superior Group (pre- Santa
Bárbara)

Risco, Ajuda, Bretanha,
Lombas,

36–16 ka Queiroz et al. (2015)

Inferior Group Numerous 210–36 ka Queiroz et al. (2015)

Fogo (Água
de Pau)

Upper Group (post-5 ka) Fogo A to Fogo 1563 4.6 ka–AD 1563 Wallenstein et al. (2015)

Upper Group (~40 ka) Roída de Praia, Ribeira Chã,
Pisão

40–4.6 ka Wallenstein et al. (2015)

Lower Group (pre-40 ka) Numerous 181–40 ka Wallenstein et al. (2015)

Furnas Upper Furnas Group Numerous including AD 1445 to
Furnas A to Furnas AD 1630

5 ka–AD 1630 Jeffery et al. (2016);
Guest et al. (2015);
Guest et al. (1999)

Middle Furnas Group Numerous 27–5 ka Guest et al. (2015);
Guest et al. (1999)

Povoação Ignimbrite Formation Povoação Ignimbrite 30 ka Jeffery (2016) unpublished
thesis

Lower Furnas Group
(pre-Povoação Ignimbrite)

Numerous 95–30 ka Guest et al. (2015);
Guest et al. (1999)

Terceira Pico Alto Upper Terceira Group (including
the Lajes-Angra Formation)

Numerous < 25–1 ka Self (1976)

Lower Terceira Group (Old
ignimbrite sequence)

Numerous 100–25 ka Pimentel et al. (2021);
Jeffery et al. (2017);
D’Oriano et al. (2017);
Gertisser et al. (2010)

Santa
Bárbara

Upper Terceira Group Numerous <25–AD 1761 Pimentel et al. (2016)

Faial Caldeira Cedros Volcanic Complex – Upper
Group (14 eruptions)

Numerous (C1 to C14) 16 ka–AD 1958 Pimentel et al. (2015);
Pacheco (2001);
Zanon et al. (2013)

Graciosa Central Vitoria-Vulcão Central Volcanic
Complex

Numerous 100 ka? Larrea et al. (2014a; 2014b)
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(2008), who modelled sub-Plinian events at Sete Cidades, using a
P17 type eruption with a column height of 10 km, and a larger
P11 type eruption with a column height of 18 km.

Fogo volcano, also known as Água de Pau, is situated in the
central part of São Miguel (Figure 3a) and is responsible for sev-
eral major explosive eruptions (Wallenstein, 1999; Wallenstein
et al., 2015; Figure 3a). The stratigraphic sequences of the nor-
thern and southern flanks are described separately since most of
the units cannot be correlated/integrated across the volcano
(Figure 3b). The stratigraphy of the north flank is composed of
several thick pyroclastic sequences, some of which contain ignim-
brites and PDC deposits, including the Porto Formoso (∼21 ka),
the Barrosa and the Fenais da Luz. Older (>40 ka) unnamed
sequences of volcaniclastic deposits including tephra fall and
thick ignimbrites have also been identified along the north coastal
cliffs of Fogo (Wallenstein, 1999). The south flank sequence
includes two thick pyroclastic formations also containing ignim-
brites: the Roída da Praia (∼34 to 15 ka) and the Ribeira Chã
(constrained between 12 and 8 ka). One of the largest and most
widespread eruptions, named Fogo A (dated to ∼4.5 ka), outcrops
both north and south of Fogo caldera (Wallenstein, 1999; Pensa
et al., 2015) and is commonly used as a time-stratigraphic marker
to link the upper stratigraphies and eruptive histories of Sete
Cidades and Furnas volcanoes (Figure 3b). This eruption corre-
sponds to a paroxysmal Plinian event, associated with the forma-
tion of the caldera, that produced ignimbrites with distinct
characteristics (Pensa et al., 2015). The Fogo A eruption para-
meters estimated by Pensa et al. (2015) suggest this was a VEI
5/M5.6 event with an erupted tephra volume of 4.4 km3 (see
‘Eruption source parameters for ash dispersal to NW Africa’).
Post-Fogo A volcanism includes four trachytic sub-Plinian erup-
tions, named Fogo B to Fogo 1563 (Wallenstein, 1999;
Wallenstein et al., 2015).

Furnas is a nested caldera-complex situated on the eastern side
of São Miguel and its stratigraphy includes several major pyroclas-
tic formations (Guest et al., 1999; 2015; Figure 3a). The lower
sequence is dominated by trachytic pyroclastic deposits including
ignimbrites and other PDC deposits. The largest known eruption
of Furnas is represented by the Povoação Ignimbrite Formation
(∼30 ka) and is interpreted to record the first caldera-forming
event (Duncan et al., 1999; Guest et al., 1999; Figure 3b). Other
pyroclastic formations located stratigraphically above the
Povoação Ignimbrite (i.e. within the Middle Furnas Group)
include other key units (oldest to youngest): the Ribeira do
Tufo Formation (∼27 ka), the Ponta Garça Ignimbrite
Formation (∼17 ka), the Cancelinha Formation and an unnamed
younger ignimbrite (∼12 ka) that outcrops below Pico do Ferro
domes. The latter is believed to be associated with the formation
of the inner caldera (Guest et al., 1999). Within the Upper Furnas
Group (<5 ka), ten intracaldera sub-Plinian eruptions (Furnas A
to J), with alternating magmatic and hydromagmatic activity,
are recognised; a few of them generated dilute PDCs including
the AD 1630 (also known as Furnas J), Furnas I and Furnas C
eruptions (Cole et al., 1999).

Terceira, Faial, Graciosa (Central Group)
Terceira Island is formed by four overlapping central volcanoes
(from east to west): Cinco Picos, Guilherme Moniz, Pico Alto
and Santa Bárbara, as well as a Fissure Zone that crosses the island
from NW to SE (Self, 1976; Madeira, 2003). Cinco Picos forms
the eastern third of the island and is dominated by a large eroded
caldera (∼7 km in diameter, the largest of the Azores). This
extinct volcano is considered to be the oldest eruptive centre
(401 ka; Hildenbrand et al., 2014). Guilherme Moniz, situated
in the central part of the island, is characterised by a partially
destroyed elliptical caldera. Together with Pico Alto (to the

north), they form a twin caldera complex. Pico Alto has erupted
highly evolved lavas and pyroclastic deposits (pantellerites and
comendites) including several major ignimbrites (Gertisser
et al., 2010). Santa Bárbara is located in the western third of the
island and is the youngest eruptive centre (65 ka; Hildenbrand
et al., 2014). The conical-shaped edifice has been truncated by
two small overlapping calderas. As shown in Figure 3c, the volca-
nostratigraphy on Terceira is separated into two main groups fol-
lowing Self (1974) and is delineated by the Lajes-Angra
Ignimbrite Formation, which represents the last ignimbrite-
forming phase (∼25 cal. ka). These ignimbrites (Lajes and
Angra) exhibit a relatively rare peralkaline composition
(Pimentel et al., 2021; Figure 4). The Lajes-Angra Ignimbrite
Formation is the most widespread formation on Terceira and is
used as a key time-stratigraphic marker to link outcrops on the
island (Pimentel et al., 2021). The Lower Terceira Group (>25
ka) includes the oldest directly dated ignimbrite on the Azores
with an approximate age of 86 ka, named Ignimbrite i
(Gertisser et al., 2010). At least seven pyroclastic formations
dominated by ignimbrites are recognised in the last 86 ka and
are likely to have originated from the central part of the island
(e.g. Pico Alto or Guilherme Moniz volcanoes). The Upper
Terceira Group records numerous eruptive episodes from Sánta
Barbara, Pico Alto and the Fissure Zone, including nine trachytic
sub-Plinian eruptions named A to I (Self, 1974; 1976).

Faial, like other islands of the Azores, is built by central and
fissure volcanism. It is composed of four volcanic systems,
which include the extinct Ribeirinha shield volcano (850 ka;
Hildenbrand et al., 2012), the Caldeira central volcano and the fis-
sure systems of Horta Platform and Capelo Peninsula (Madeira,
1998; Pacheco, 2001). Explosive volcanism on Faial Island is fairly
recent (<16 ka) and restricted to Caldeira Volcano (Figure 3c).
The stratigraphy reveals that at least 14 explosive events occurred
in this timeframe, two of which have generated PDCs (Pacheco,
2001). The products of Caldeira constitute the Cedros Volcanic
Complex (following Pacheco, 2001), which is divided into the
Lower (>16 ka) and the Upper (<16 ka) Groups (Figure 3c).
The Upper Group, mainly of Holocene age, is of most relevance
for widespread tephra dispersal as it is dominated by trachytic
pyroclastic deposits (eruptions C1 to C12; Pacheco, 2001), includ-
ing the pumice fall and ignimbrite of the major C11 eruption
interpreted to represent the first stage of caldera formation
(Pimentel et al., 2015).

Graciosa is the northernmost island of the Central Group and
consists of a succession of volcanic edifices built one over the
other, which have been partially dismantled by faulting and ero-
sion (Maund, 1985; Gaspar, 1996; Larrea et al., 2014a). Three
major volcanic complexes are recognised on the island, including
(from the oldest to youngest), the Serra das Fontes Complex
(>620 ka), the Serra Branca Complex and the Vitória-Vulcão
Central Complex (Gaspar, 1996; Figure 3c). The latter is divided
into the Vulcão Central Unit, which comprises a range of rocks
from basaltic to trachytic composition (subunits A to V), record-
ing effusive and explosive volcanism, and the Vitória Unit consti-
tuted of basaltic products. Most of the products of Serra Branca
Complex have been eroded and covered by the younger
Vitória-Vulcão deposits. Only one major PDC-forming eruption
has been identified on the island, as part of the Upper
Hydromagmatic Sequence (subunit S:∼12 ka) of the Vulcão
Central and is thought to have resulted from a caldera-forming
event (Gaspar, 1996).

Glass geochemistry
Published geochemical glass compositions of key pyroclastic
sequences from the Azorean islands are listed in Table 1 and plot-
ted in Figure 4. Although datasets are missing for many individual
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eruptive units (particularly those for the lower/inferior groups
from the central islands), those available can be used to generate
general compositional fields (i.e. fingerprints) of the different vol-
canic centres and individual eruptions. The largest eruptions of
the Azores are generally trachytic in composition, although
some are peralkaline (i.e. those from Terceira; Pimentel et al.,
2021) and can be easily discriminated from the more heteroge-
neous eruptive products from the Canary Islands and Cape
Verde (Figure 4a). Those geochemically characterised from São
Miguel Island (Sete Cidades, Furnas and Fogo) compositionally
overlap on all major elements. The known glass compositions
of products erupted from Terceira, can best be discriminated
using a FeOt vs SiO2 biplot (Figure 4c).

Distal identifications
As discussed in ‘Tephra dispersal from the North Atlantic region’,
several distal cryptotephra layers compositionally attributed to

ocean island volcanoes in the North Atlantic region have been
identified in sedimentary records in NW Africa and northern
and central Europe (as marked in Figure 2). The glass composi-
tions of these tephra are in agreement with the major element
compositional field of the Azores (Figure 4d). However, there
have been no visible medial ash deposits (i.e. within a couple of
hundred kilometres) of Azores eruptions (i.e. those preserved in
offshore marine cores) that can be used to further investigate
the eruption source parameters.

The Canary Islands

Geological setting and eruptive history
The Canary Islands, situated ∼300 km from NW Africa, are the
second largest intraplate ocean island volcanic system after the
Hawaiian chain. The seven islands lie in a complex non-linear
age progressive E–W chain and include Lanzarote,
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Figure 4. (a–c) Published major element glass compositions of key eruptive units from the Azores (plotted with blue symbols and compositional fields), the Canary
Islands (orange) and Cape Verde (purple). (d) Glass compositions from distal sedimentary records (1–6 on Figure 2) plotted with fields defined in a–c. Glass chem-
istry data for the Azores (Tomlinson et al., 2015; Johansson et al., 2017; Laeger et al., 2019; Wastegård et al., 2020; Pimentel et al., 2021; Ellis et al., 2022), Canary
Islands (Brey and Schmincke, 1980; Bryan et al., 1998; Klügel et al., 2000; Gottsmann and Dingwell, 2001; Olin and Wolff, 2007; Klügel et al., 2005; Galipp et al., 2006;
Stroncik et al., 2009; Clay et al., 2011; Del Moro et al., 2015; Di Roberto et al., 2020; Wolff et al., 2020; Romero et al., 2022; Diego González-García, 2022; Jagerup et al.,
2023), Cape Verde (Eisele et al., 2015a; Eisele et al., 2015b) and distal records (Chambers et al., 2004; Barton et al., 2015; Watson et al., 2017; van der Bilt and Lane,
2019; Wåstegard et al., 2020; Kinder et al., 2020; Walsh et al., 2021).
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Fuerteventura, Gran Canaria, Tenerife, La Gomera, La Palma and
El Hierro (Figure 2b). As such, these volcanic islands are in differ-
ent phases of evolution, ranging from a shield-building stage (El
Hierro and La Palma), a rejuvenation phase (Tenerife) and, for
the easternmost islands, an erosive phase (Lanzarote and
Fuerteventura) (Schmincke, 1979; Carracedo et al., 1998, 1999,
2001). The region is characterised by long-lived volcanic activity,
and each of the islands has been active since its formation. Canary
Island volcanism is proposed to have stemmed from the upwelling
of melt ‘blobs’ in the Canary plume (Hoernle and Schmincke,
1993). The majority of the Canary Islands’ eruptions corre-
sponded to effusive alkali basaltic events; however, some felsic
eruptions have occurred at the largest islands of Tenerife and
Gran Canaria owing to continued plume activity and magmatic
evolution over >10 Myr.

Tenerife is both the largest (2058 km2) and tallest (3718 m) of
the Canary Islands (Ancochea et al., 1990) and is at the peak of its
development (Guillou et al., 2004). It is the only island known to
have produced significant explosive events in the last 300 ka
(Schmincke and Sumita, 2010; Troll and Carracedo, 2016), several
of which were caldera-forming eruptions. The island has been
constructed by numerous phases of volcanism, which has
spanned more than 12 Myr (Marti and Wolf, 2000). The most
recent phase of activity generated a new central stratovolcano
complex (Pico Viejo-Pico Teide) within the older Las Cañadas
caldera; however, the eruption chronology is currently poorly
constrained. Over the island’s eruptive history, Tenerife has dis-
played a large variation in eruption styles, ranging from basaltic
lavas from monogenetic cones and fissures to Plinian eruptions
producing fallouts and PDCs (Cas et al., 2022).

The stratigraphy, eruption chronology and whole-
rock geochemistry of Tenerife are well-studied (e.g. Martí et al.,
1994; Bryan et al., 1998; Ancochea et al., 1990; Huertas et al.,
2002; Edgar, 2003; Figure 5a; Table 2). The most recent cycle
(relevant for the last ∼250 ka) is the Diego Hernandez
Formation (DHF) (Marti et al., 1994; Wolff et al., 2000; Edgar
et al., 2007; Cas et al., 2022), also referred to as the Bandas Del
Sur (Brown et al., 2003; Davila-Harris, 2009) (Figure 5a). A num-
ber of caldera-forming events, with an estimated deposit volume
of >190 km3 over 11 distinct members, excluding intracaldera
volumes, are grouped into this formation (Cas et al., 2022;
Figure 5; Table 2). Two of the largest events in this sequence
were the Fasnia (312 ka; Edgar et al., 2007) and Abrigo
(∼170–190 ka; Brown et al., 2003; Edgar et al., 2007; Table 2),
which erupted 30 km3 and >11 km3 of tephra respectively, with
the column height for the Fasnia estimated at 25 km (Edgar
et al., 2007). Similar to the Azores, many large fall deposits
have been mostly dispersed offshore or are now significantly
eroded on the island, making the eruption stratigraphy and vol-
ume calculations more difficult. In general the formations include
a complex sequence of eruptions, with Edgar et al. (2007) noting
at least six (based on the maximum number of units observed at
one location) and as many as 15 (based on the chemical stratig-
raphy) Plinian eruptions between the Caleta and Abrigo members
alone. There are also numerous minor eruptive units, which cannot
be recognised at more than a few exposures, or are of uncertain
stratigraphic position (Edgar et al., 2007). Several sub-Plinian
events have also been recorded since the Abrigo (<170 ka) that
are known to have produced pumice fall deposits and PDCs
(Ablay et al., 1995; García et al., 2011; Martí et al., 2012; García
et al., 2014).

Glass geochemistry
Published geochemical glass compositions relating to key eruption
formations/members from the Canary Islands are collated in
Table 2 and plotted in Figure 4. The compositional range is

notably distinct from those erupted from the Azores and Cape
Verde, leaning towards more alkalic compositions. Moreover,
the individual eruptions exhibit greater heterogeneity, often span-
ning the entire compositional range.

Cape Verde

Geological setting and eruptive history
The Cape Verde (Cabo Verde) volcanic islands are situated
∼1000 km SW of NW Africa and may also have dispersed wide-
spread ash across the North Atlantic (Figure 2; ‘Eruption source
parameters for ash dispersal to NWAfrica’). The archipelago con-
sists of ten major islands, as well as several islets and a number of
peripheral seamounts (Kwasnitschka et al., 2024). Volcanism is
considered to have formed as a result of mantle plume activity
on the Cape Verde Rise. The distribution of the islands forms a
horseshoe shape with two island chains (Figure 2d). The eastern
to southern chain includes the islands of Sal, Boa Vista, Maio,
Santiago, Fogo and Brava. The northern chain includes the islands
of Santo Antão, São Vicente, Santa Luzia and São Nicolau
(Figure 2d). The eastern to southern chain shows an age progres-
sion from NE to SW (Ramalho et al., 2010a; 2010b), with the old-
est volcanic activity known from Sal (Torres et al., 2002). Late
Pleistocene to Holocene volcanic activity within the southern
chain is limited to the islands of Fogo and Brava and the adjacent
Cadamosto seamount (Holm et al., 2008; Ramalho et al., 2010a;
2010b; Grevemeyer et al., 2010; Eisele et al., 2015a;
Kwasnitschka et al., 2024), with Fogo and Brava being the most
likely candidates for dispersal of ash towards NW Africa. Fogo
is the most active and has had at least 28 reported eruptions
since its discovery in the fifteenth century (Mata et al., 2017).
The eruptive history of Fogo has been divided into four main
phases (Day et al., 1999; Foeken et al., 2009), of which the
Monte Amarelo Group is the main subaerial phase. This consists
of highly alkaline mafic to intermediate lava (Foeken et al., 2009).
This phase is known to have terminated with a giant lateral col-
lapse of the Monte Amarelo volcano, which is estimated to have
occurred at ∼68 ka (Cornu et al., 2021).

Santo Antão, the westernmost island of the northern chain,
was also the source of several large explosive eruptions in the
last 250 ka. Noteworthy are the sub-Plinian to Plinian Cão
Grande eruptions I and II (CG I and CG II), which ejected
over 10.3 km3 (VEI 6) and 3 km3 (VEI 5) of tephra, respectively
(Eisele et al., 2015a; 2016). These two eruptions, which have dis-
tinct geochemical fingerprints, happened in close succession
at 106 ± 3 ka and 107 ± 15 ka, respectively.

Marine sediment sequences around the ocean islands have
been successfully used to determine the stratigraphic order of
the eruptive units and identify widespread events. Eisele et al.
(2015a) utilised 13 sediment gravity cores obtained from offshore
the southern islands of Fogo and Brava and the Cadamosto sea-
mount (Figure 5b). The tephrostratigraphy of these cores includes
43 mafic and five phonolitic tephra layers spanning the Late
Pleistocene to the Holocene. Of these, ten layers could be strati-
graphically identified across a region of at least 6200 km2 to
17,650 km2. This revealed that tephra volumes were in order of
1 km3, equating to the VEI 5/M5 event and sub-Plinian to
Plinian in style. Moreover, the tempo of these events could be elu-
cidated, suggesting that a relatively large magnitude eruption
occurred about every 300 years on Fogo during the last 150 kyr.
One widespread event identified in these cores (named C12;
Figure 5a) could be correlated to Brava, verifying that a widely dis-
persed eruption event occurred at 145 ka (Eisele et al., 2015a).
Additional sedimentary cores north of the islands are required
to determine the eruptions that were dispersed in a NW direction.
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Glass geochemistry
The glass shards in the ash layers preserved in the marine cores
and proximal deposits from the southern islands of Fogo and
Brava have been characterised using their major and trace ele-
ments by Eisele et al. (2015a), producing a detailed compos-
itional field for these volcanic centres and the widespread
events. As shown in Figure 4a, glasses are typically less evolved
than those of the Canary Islands and the Azores, with higher
alkali contents. The glass geochemistry for most eruptive events
are homogeneous in composition, covering a small section of the

overall trend, and have phonolitic, intermediate or mafic compo-
sitions (Eisele et al., 2015a; Figure 5a). For example, the wide-
spread eruption from Brava (C12; Figure 5a) dated to ~145 ka
has a SiO2 content of 53.5–57.5 wt. %, whereas the significant
C4 eruption at 25 ka from Fogo has a SiO2 content of
41.2–47.3 wt. %. Groups with overlapping major element com-
positions can be separated using their trace elements. It is not
yet clear how the composition of the eruptive products of
these islands (Brava and Fogo) compares to others in the Cape
Verde Archipelago.
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Figure 5. (a) Two simplified stratigraphic
schemes for the upper formations/members of
Tenerife Las Cañadas stratovolcano (Canary
Islands), that are referred to as Bandas Del
Sur (Brown et al., 2003; Davila-Harris, 2009) or
Diego Hernandez (Martí et al., 1994; Wolff
et al., 2000; Edgar et al., 2007; Cas et al.,
2022). Argon ages based on (1) Edgar et al.,
2002/2007, (2) Brown et al. 2003 and (3) Edgar
et al. 2017, also refer to those listed in
Table 2. (b) Selected marine core tephrostrati-
graphies around the Cape Verde south-eastern
island chain (see Eisele et al., 2015a). Tephra
units C1 to C12 are those most widely dispersed
in the region and permit the integrated
correlations.

Table 2. Key pyroclastic formations/members from the Diego Hernandez (Edgar et al., 2007) and Bandas Del Sur (Brown et al., 2003) their (40Ar/39Ar)
geochronological and compositional datasets.

Island Eruptions
Eruption Age

(Brown et al., 2003)
Eruption Age

(Edgar et al., 2002/ 2007/2017)
Compositions ref.

(whole rock and glass)

Tenerife Abrigo 169 ± 1 ka 196 ± 6 ka Wolff et al. (2020), González-García (2022),
Olin (2007)

Battista - 234 ± 7 ka

La Caleta 221 ± 5 ka - Olin (2007)

Sabinita Formation - - Olin (2007)

Poris (member 9) 271 ± 6 ka 268 ± 8 ka Wolff (2020), Edgar et al. (2002)

Poris (member 2) 276 ± 9 ka - Wolff et al., (2020), Edgar et al. (2002)

Fasnia 289 ± 6 ka 312 ± 6 ka Olin (2007)

Aldea Blanca - 322 ± 5 ka Olin (2007)
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Distal identifications
There are no known distal tephras associated with eruptions from
the Cape Verde volcanoes in the NWAfrica archaeological record.
However, considering the eruption size of some of the events (e.g.
∼VEI 5/M5) and the proximity of active centres such as Fogo and
Santo Antão to the western coast of Africa, the tephra must have
made it onshore and should be preserved in records (see
‘Eruption source parameters for ash dispersal to NW Africa’).

Italy: potential volcanic regions

Various volcanic sources in southern Italy, ∼1500 km NE of NW
Africa, have been active in the last 250 ka, and include Campi
Flegrei caldera (e.g. Costa et al., 2022), Roccamofina (De Rita
and Giordano, 1996), Aeolian Islands (Lucchi et al., 2013), and
Pantelleria (Jordan et al., 2018). Many of the large eruptions
from these sources are preserved in distal records in Italy and
towards the east (e.g. Lake Ohrid, North Macedonia; Leicher
et al., 2019). The 40 ka Campanian Ignimbrite from Campi
Flegrei, the largest eruption in Europe during the last 200 kyr,
is found in Libya at Haua Fteah (Douka et al., 2014). However,
given the prevailing westerly winds, it is unlikely that many of
the Italian eruptions, if any, dispersed ash over NW Africa.
Hence, the sources and their eruptive histories and compositions
are not discussed in detail here.

Eruption source parameters for ash dispersal to NW Africa

Ash3D overview and input parameters

Geological evidence in the distal realm reveals that volcanic ash
from sources in the North Atlantic can be dispersed over dis-
tances of >5000 km, extending into northern Europe (Figure 2).
Yet due to the limited exposure on the islands, eruption source
parameters such as tephra volume, column height and mass erup-
tion rate, particle grain size distribution, density and shape, as well
as dispersal direction are poorly constrained. Atmospheric tephra
dispersal models, that use databases of known meteorological
conditions (e.g. wind speed and direction), offer an excellent
means of investigating and forecasting the likely dispersal and
limits, for a wide range of eruptive conditions (e.g. tephra volume,
column height, eruption duration). Here, we use Ash3D, a three-
dimensional Eulerian atmospheric model for tephra transport,
dispersal and deposition, which is frequently used to study and
forecast hazards of volcanic ash clouds and ash fallout (Mastin
et al., 2014; Schwaiger et al., 2012). This model can be used to pre-
dict airborne volcanic ash concentration and tephra deposition
during volcanic eruptions. Ash3D models ash transport by divid-
ing the atmosphere into 3D grid cells and calculating the flow of
mass through the cells. The model simulates downwind advection,
turbulent diffusion and settling of ash injected into the atmos-
phere by a volcanic eruption column. The model uses a wind
field taken from the global NCEP/NCAR Reanalysis 1 model
with a 2.5-degree resolution (Kalnay et al., 1996). Several studies
have utilised Ash3D and the modern wind profiles to effectively
simulate the tephra dispersal of a range of prehistoric explosive
events (e.g. Chang and Yun, 2017; Barker et al., 2019; Buckland
et al., 2022).

Numerical simulations using Ash3D allow us to investigate the
effects of variable eruption size and meteorological conditions on
ash dispersal and, critically, ashfall likelihoods across NW Africa.
The eruption scenarios are determined using the following criteria:

1) Characteristics of explosive eruptions suitable to produce large
amounts of ash (e.g. at least 0.23 km3 tephra, M4.4), with other

source parameters partly constrained by analogous historical
eruptions.

2) Geological parameters calculated for past eruptions from the
source volcanoes (e.g. evidence of previous activity and erup-
tive volumes known for the last 200 ka).

Here, we simulate ash dispersal using three plausible eruption
scenarios, similar to the approach by Barker et al. (2019). These
are run for three exemplary volcanic centres in the investigated
source regions, including Sete Cidades (São Miguel, Azores),
Teide (Tenerife, Canary Islands) and Fogo (Cape Verde). For sim-
plification purposes, eruption events are considered as a single
phase of activity. Eruption Scenario 1 (S1) is the smallest magni-
tude scenario, and uses a tephra volume of 0.23 km3 (0.1 km3

dense rock equivalent (DRE) magma), with a column height or
umbrella cloud top height of 15 km above sea level and an erup-
tion duration of six hours (Figure 6). These parameters are closest
to Scenario 1 of Barker et al. (2019). Scenario 2 (S2) uses a tephra
volume of 2.3 km3 (1 km3 DRE), with the same column height or
umbrella cloud top height (15 km above sea level), but with an
increased eruption duration of 12 hours. These parameters are
similar to Scenario 2 of Barker et al. (2019). Scenario 2b (S2b)
has the same eruption source parameters as S2, but the full ash
dispersal simulation is run for 72 hours. A longer simulation
run is of relevance to understand the entire dispersal footprint
potentially depositing enough ash for cryptotephra preservation.
To crudely investigate changes in relation to historical wind pat-
terns, each of the scenarios for the three volcanoes was run on the
1st of each month in 2022, as well as several other variations (e.g.
runs on consecutive days, varying start times). As shown in
Figure 6, we use the volcanic ash concentration results, which
simulate possible extents for cryptotephra deposition in distal
sedimentary archives (e.g. a tephra load of ∼100 g/m2 equates
to a tephra thickness of ∼1 mm).

The three scenarios (S1, S2 and S2b) follow eruption source para-
meters estimates for well-studied eruptions in the source regions, as
outlined in ‘Source regions for widespread ash dispersal in NW
Africa’. For example, those calculated for a moderate-size Azorean
eruption (e.g. the sub-Plinian phase of the ∼16 ka Santa Bárbara
eruption from Sete Cidades) by Kueppers et al. (2019) suggested a
tephra volume of 0.27 km3 and column height of 17 km, falling clos-
est to S1. These parameters are also reflected in ashfall models inves-
tigated by Cole et al. (2008), who modelled sub-Plinian events at
Sete Cidades, with the P17 type eruption (column height of
10 km) and larger P11 type eruption (column height of 18 km).
Estimated eruption source parameters for the Fogo A Plinian erup-
tion (∼4.6 ka) include a higher tephra volume of 4.4 km3 (Pensa
et al., 2015), thus closer to the larger magnitude scenario S2.

Model simulation observations

Representative simulations of eruptions with ash dispersal
towards NW Africa (e.g. January and November 2022 for the
Azores) are shown in Figure 6. As expected, the factors that
most influence the ash dispersal relate to the run date and time
of day, and are therefore related to the specific meteorological
conditions (e.g. wind direction and/or speed). Simulations run
on the 1st of each month through 2022 show differing ash-cloud
directions and extents for all regions. The climate acro4ss the
Atlantic Ocean is highly changeable, with complex weather pat-
terns that can change over relatively short timescales. For the
Azores, the dominant ash-cloud direction often led towards the
E or NE, reflecting the dynamic wind patterns of this region,
dominated by the prevailing westerlies (Figure 6a). Although
ash dispersal frequently extended towards Morocco (e.g.
November), or towards Europe (January) under both S1 and S2
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conditions, coverage across both regions required an increase in
simulation duration (i.e. the number of hours the ash cloud is
tracked) to >24 hours (i.e. as shown in Scenario 2b; Figure 6a).
Indeed, the ash-cloud direction and extent are highly variable
within the same season (although they would have different like-
lihoods of possibility; Pimentel et al., 2006; Gaspar et al., 2015b),
as well as on subsequent days. For example, between the period of
1st–3rd November 2022, ash erupted under S1 conditions was

able to reach Morocco on the 1st, Portugal on the 2nd and
remained clustered within the Atlantic Ocean on the 3rd. Such
stark ash cloud directions are also evident even between simula-
tions run on the same day (e.g. 12 am vs. 12 pm).

In general, if the wind conditions are favourable, the model
simulations showed that an ash cloud from all three regions,
under both S1 and S2, can reach NW Africa. Specifically, the
November 2022 S1 simulation estimates that ash from Sete
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Figure 6. Selected examples of Ash3D airborne ash (end results) simulated for moderate-sized eruptions from (a) Sete Cidades (Azores; AZ), (b) Teide (Canary
Islands; CA) and (c) Fogo (Cape Verde; CV). The input parameters were changed for the three scenarios, as listed on the upper row. The examples show the
wind conditions suitable for ash dispersal towards NW Africa and mainland Europe and therefore of relevance for the deposition of time-stratigraphic markers
in archaeological and climate records. The vent location is shown by a blue marker. A tephra load of ∼100 g/m2 equates to a tephra thickness of ∼1 mm. The
rose diagrams show the typical wind directions and speeds in m/s across a vertical section extending to 5000 m (based on measurements from 1990 through
to 2009; see header) The diagrams are adapted from those in Mastin (2017).
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Cidades would reach NWAfrica in <24 hours (Agadir in 16 hours
and Rabat in 21 hours). For S2, the ash cloud arrival times are
almost identical (Agadir in 17 hours and Rabat in 20 hours).
For S2b (with an extended run time), ash would arrive in main-
land Europe within 23 hours (Gibraltar in ∼22 hours, Lisbon in
∼33 hours, Cornwall UK in ∼38 hours). Such dominant direc-
tions also align with geological evidence (e.g. isopach and isopleth
maps) for the large eruption mapped on São Miguel (e.g. Santa
Bárbara Fm, Fogo A and others; Booth et al., 1978; Kueppers
et al., 2019) and other islands such as Flores (Funda Volcanic
System; Andrade et al., 2022), which suggest dispersal orientated
to the E and NE.

Although the potential ash concentrations are marginally
lower in S1 than those in S2, the concentrations correspond to
tephra thicknesses around 1 mm, and eruptions should be
recorded as cryptotephra over a similar dispersal footprint. It is
likely this modelled footprint provides an underestimation of
the true extent. The specific conditions for fine-ash dispersal
and deposition are still poorly understood and modelled
(Stevenson et al., 2015; Cashman and Rust, 2020; Krüger and
van den Bogaard, 2021). Buckland et al. (2022) discuss many of
the contributing reasons why numerical simulations may differ
from the field data and cryptotephra extent. Large eruptions
can have multiple phases of activity and complex dynamics. In
particular, those with significant co-PDC phases can be associated
with large volumes of fine ash, and the behaviour of far-travelled
ash has been difficult to reconcile with the geological record. The
grain size in distal settings can be <100 μm, which has a low par-
ticle settling velocity that rarely exceeds the vertical component of
air velocity (atmospheric turbulence). Therefore, sedimentation is
suppressed and other mechanisms, such as particle aggregation,
are required, which can be difficult to model numerically.
Cryptotephra data are measured by shard counts that lie close
to the mass loading limit, and there are also discrepancies
between tephrochronology and satellite infrared measurements
of volcanic ash (Stevenson et al., 2015). Examples show: (1)
10–20% of the eruptive mass is typically deposited outside the
mapped limits; (2) estimates of the ash mass transported in vol-
canic clouds cannot account for all this unmapped ash; (3) ashfall
observed at distances beyond mapped deposits can have measur-
able impacts and can form cryptotephra deposits with high shard
counts (see Cashman and Rust, 2020).

This work demonstrates that comprehensive ash dispersal
models offer a powerful method of investigating the likely source
parameters of the prehistoric eruptions from North Atlantic
ocean island volcanoes, and assessment of the likelihood of ash
reaching NWAfrica. It is clear that even moderate-sized eruptions
may generate substantial amounts of ash with a widespread dis-
persal, which is greatly facilitated by the strong and variable
winds prevalent in this region. Furthermore, these simulations
underscore the necessity for detailed, integrated records of past
eruptions from this region. Such records are crucial to prevent
the misinterpretation or assumption that distal tephra relate to
the largest magnitude events preserved in the proximal realm.

5. Conclusions: building a tephrostratigraphic framework
for NW Africa

In this paper, we demonstrate the significant opportunity for uti-
lising tephrochronology in NWAfrica to advance the chronology
of environmental and behavioural changes in humans over the
last 300,000 years. This provides much-needed chronological con-
trol beyond the radiocarbon limit of ∼50,000 years. The likely
source regions within the North Atlantic include volcanoes of
the Azores, Canary Islands and Cape Verde. As explored, these
ocean island volcanoes have undergone a diverse range of

eruption styles, many of which could produce widespread ash dis-
persal over NWAfrica if the wind conditions were simultaneously
favourable. Collating the available published geochemical glass
data reveals that the major element compositions are conducive
to fingerprint and discriminate the different source regions.
However, the current dataset is still limited and therefore it is
still unclear how the compositional diversity has varied through
time for the specific volcanoes. Examination of the geological evi-
dence and its integration within atmospheric tephra dispersal
models indicates that markers from each of the three regions
could be remarkably widespread, serving as critical time-
stratigraphic layers to link a broad array of Palaeolithic archaeo-
logical and climate sequences (e.g. marine core records).
Synchronising these archives would allow the Palaeolithic
sequences to be contextualised within their climatic backdrop
and shed new light on the role it may have played in shaping
the observed behavioural and technological pathways.

The chronological evidence for the largest eruption events
indicates tephra would ideally frame pivotal advancements
within the archaeological sequences, providing numerous
chronological constraints and anchors for synchronising.
Eruptions within the Upper/Superior Groups (<50 ka years)
from São Miguel (Azores), such as the Povoação Ignimbrite
(from Furnas volcano dated to ∼30 ka), would be interbedded
within key MSA layers (e.g. characterised by core and flake tech-
nology). Similarly, the Santa Bárbara eruption (from Sete
Cidades volcano dated to ∼16 ka), would align with the notable
and widespread transition to the LSA, and a shift towards a more
standardised microlithic bladelet production. For older
sequences outside the radiocarbon timeframe, the caldera-
forming succession from Tenerife (e.g. the Abrigo Formation,
dated to ∼190-170 ka) could also offer a valuable chronological
anchor, particularly for the onset of symbolism and artistic
behaviour in the MSA, as observed at key sites such as
Bizmoune in Morocco (Bouzouggar et al., 2007; 2012;
Sehasseh et al., 2021). Importantly, the North Atlantic tephros-
tratigraphic framework can facilitate future cryptotephra identi-
fications in two key ways: (1) by serving as a predictive tool to
determine the likely positioning/age-range for locating key iso-
chrons within archaeological and climate sequences; and (2)
by assisting in addressing common taphonomic questions,
such as the likelihood of primary tephra deposits and thus,
proxy remobilisation (i.e. the possibility of upward or younger
reworking within the sequence).

Collating this data underscores the need for further detailed
investigations in both proximal and distal zones before tephra
layers can be solidly utilised as discrete time-stratigraphic mar-
kers. Crucially, additional pyroclastic samples from at least the
major eruptions are necessary to generate detailed major and
trace element glass fingerprints for individual volcanic centres
and eruptions. Presently, the identified distal ash layers in NW
Africa can only be tentatively linked to their volcanic source, lack-
ing firm association with dated events. As demonstrated by the
dispersal simulations, favourable wind conditions could mean
that moderately explosive eruptions may produce widespread
ash, further highlighting the importance of compositional finger-
prints through the complete stratigraphy. Moreover, it is impera-
tive to establish an integrated tephrostratigraphic framework, or
lattices, for the region to accurately determine the relative and
absolute timing of widespread events. This is crucial for identify-
ing some of the eruptions that may have limited/no exposure on
the relatively small volcanic islands. Developing such a framework
entails detailed tephrostratigraphic studies in the medial and distal
regions, utilising offshore marine cores spanning the coast of NW
Africa. These cores hold immense potential for constructing a
clear and integrated record, and importantly identify the
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isochrons suitable to precisely synchronise marine core climate
records and the Palaeolithic sequences in NW Africa for the
first time.
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