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ABSTRACT: Linear free energy relationships (LFERs) are pivotal
in predicting protein−water partition coefficients, with traditional
one-parameter (1p-LFER) models often based on octanol. However,
their limited scope has prompted a shift toward the more
comprehensive but parameter-intensive Abraham solvation-based
poly-parameter (pp-LFER) approach. This study introduces a two-
parameter (2p-LFER) model, aiming to balance simplicity and
predictive accuracy. We showed that the complex six-dimensional
intermolecular interaction space, defined by the six Abraham solute
descriptors, can be efficiently simplified into two key dimensions.
These dimensions are effectively represented by the octanol−water
(log Kow) and air−water (log Kaw) partition coefficients. Our 2p-
LFER model, utilizing linear combinations of log Kow and log Kaw,
showed promising results. It accurately predicted structural protein−water (log Kpw) and bovine serum albumin−water (log KBSA)
partition coefficients, with R2 values of 0.878 and 0.760 and root mean squared errors (RMSEs) of 0.334 and 0.422, respectively.
Additionally, the 2p-LFER model favorably compares with pp-LFER predictions for neutral per- and polyfluoroalkyl substances. In a
multiphase partitioning model parametrized with 2p-LFER-derived coefficients, we observed close alignment with experimental in
vivo and in vitro distribution data for diverse mammalian tissues/organs (n = 137, RMSE = 0.44 log unit) and milk−water
partitioning data (n = 108, RMSE = 0.29 log units). The performance of the 2p-LFER is comparable to pp-LFER and significantly
surpasses 1p-LFER. Our findings highlight the utility of the 2p-LFER model in estimating chemical partitioning to proteins based on
hydrophobicity, volatility, and solubility, offering a viable alternative in scenarios where pp-LFER descriptors are unavailable.

1. INTRODUCTION
The partition coefficients of structural protein and albumin in
water are not only crucial in pharmacokinetics1 but also hold
significant environmental importance.2,3 In the field of
environmental chemistry, these coefficients are essential for
understanding the fate, behavior, transport, and toxicity of
organic pollutants.4 While bioaccumulation is often considered
primarily in terms of chemical accumulation in lipids, the
accumulation in structural proteins, particularly for polar and
hydrophilic chemicals, is also noteworthy.2,5 Given that
structural proteins are a primary dietary source for carnivores
and omnivores, the partitioning of organic chemicals into
proteins may contribute to the accumulation of these
chemicals through the food web. Albumin, a major component
of serum proteins, has historically been used as a representative
model for all protein types.6 However, recent studies indicate
that the partitioning into albumin is significantly lower
compared to structural proteins, underscoring the need to
differentiate the partitioning behavior of chemicals between
these two protein types.7 Furthermore, understanding the
albumin-water partition coefficient is essential for back-
calculating the freely dissolved fractions of organic chemicals

in various in vitro cell assays,8 which is critical for accurately
assessing chemical toxicity.
A range of techniques is used to measure the partition

coefficients of structural proteins and serum albumin in
aqueous environments. These include batch sorption tests,7

passive dosing,7 filtration,9 ultracentrifugation,10 and ultra-
filtration.11 Despite these efforts, the available experimental
data for these partition coefficients is restricted to just a few
hundred chemicals. These experimental approaches are often
labor-intensive, costly, and encounter difficulties in accurately
measuring chemicals within such intricate systems. As a result,
scientists frequently turn to different estimation methods for
practical application of these partition coefficients.
Estimation techniques based on linear free energy relation-

ships are commonly utilized for predicting partition
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coefficients. One-parameter linear free energy relationships
(1p-LFERs), which rely on octanol−water partition coef-
ficients,2 have been applied to both structural and serum
proteins.12 However, due to octanol’s limited capacity to
mimic protein properties, these methods often yield estimates
within an order of magnitude for protein partition coefficients.
Their accuracy diminishes particularly for chemicals with
strong hydrogen bond donating characteristics, a result of
octanol’s reduced sensitivity to this feature.12

Conversely, poly parameter linear free energy relationships
(pp-LFERs), based on Abraham solute descriptors (ASDs),
offer notably improved accuracy.13 These provide estimates for
partition coefficients of structural14 and serum proteins15

within a two to 3-fold range. The effectiveness of pp-LFERs
stems from their comprehensive coverage of various
intermolecular interactions critical to partitioning behavior.16

The ASDs contain chemical information on a solute’s capacity
for various types of interactions, characterized by descriptors
such as E (polarizability/polarity), S (polarity), A (hydrogen
bond donating ability), B (hydrogen bond accepting capacity),
V (McGowan volume), and L (hexadecane-air partition
coefficient, indicative of dispersion interactions).17 Corre-
sponding system coefficients (e, s, a, b, v, and l) are specific to
biphasic systems,17 such as those involving structural protein−
water and serum protein−water partitioning.
The system coefficients indicate the tendencies of these

phases to interact distinctively with chemicals based on the
values of ASDs depicting polarizability, polarity, hydrogen
bonding capabilities, molecular volume, and dispersion
interactions traits of the chemicals.17,18 However, the broader
adoption of pp-LFERs is currently constrained by the limited
experimental database of ASDs, which encompasses fewer than
8,000 chemicals.
In our recent work, we have developed two-parameter

LFERs (2p-LFERs), employing linear combinations of
partition coefficients for octanol−water and air−water systems
for various properties, including skin permeability coeffi-
cients,19 sensory irritation thresholds,20 and partition coef-
ficients for air-blood,21 storage lipid−water, and phospholi-
pid−water systems.22 The performance of 2p-LFERs is on par
with pp-LFERs and surpasses that of 1p-LFERs. While pp-
LFERs provide insight into partitioning behavior of com-
pounds based on their chemical-based microscopic properties
like polarizability, polarity, and hydrogen bonding,17 our 2p-
LFERs illuminate the partitioning behavior of chemicals in
terms of macroscopic properties, such as hydrophobicity,
volatility, and solubility.
The current study aims to extend the application of 2p-

LFERs beyond the aforementioned properties to encompass
the partitioning properties of structural and serum proteins.
Additionally, this study seeks to evaluate the efficacy of the 2p-
LFER multiphase partitioning model compared to the pp-
LFER multiphase partitioning model in predicting in vivo and
in vitro distribution ratios for various mammalian organs and
tissues.

2. MATERIALS AND METHODS
2.1. Data Source and Analysis. For the development and

evaluation of 2p-LFER models for structural proteins and
bovine serum albumin (BSA) in water, experimental data were
sourced from literature. Partition coefficients for chicken
structural protein−water (log Kch, n = 46) and fish structural
protein−water (log Kfish, n = 45), along with bovine serum

albumin-water (log KBSA, n = 83), were sourced from
literature14,15 and detailed in Tables S1, S2, S3, and S4 of
the Supporting Information (SI). Due to the absence of
significant statistical differences between chicken and fish
protein coefficients (Figure S1), these data were averaged to
form a general structural protein−water partition coefficient
(log Kpw), with values ranging from 0.6 to 4.9 log units (Table
S4). The values of log Kow and log Kaw were obtained from the
US EPA EPI-Suite23 experimental database, or, in the absence
of experimental values, were estimated using pp-LFERs,24

utilizing Abraham solute descriptors from the UFZ-LSER
database.25

2.2. Data Range and Diversity. In the development of
robust 2p-LFER models, priority is given not only to the data
set’s size but also to its balance and representativeness. This
balance is crucial for ensuring that the data set thoroughly
captures a wide array of intermolecular interactions, macro-
scopic properties, and chemical classes. The training data sets
for the 2p-LFER models demonstrate considerable diversity in
these attributes.
Specifically, the data sets for structural proteins derived from

fish and chicken sources exhibit highly comparable chemical
space ranges (cf. 3.1). The primary criterion for merging these
data sets was to assess if the partitioning behaviors of fish and
chicken proteins were sufficiently similar to combine them into
a single structural protein data set, thereby expanding our 2p-
LFER model’s applicability to a broader and more diverse
range of compounds. Previous research, from which these data
sets were sourced, demonstrated a strong 1:1 correlation in log
Kpw values, with an average absolute error of only 0.10 log
units, indicating that muscle protein partitioning behavior is
largely species-independent.
In addition to this literature-based justification, we

performed a Bland-Altman analysis to further evaluate the
compatibility of the fish and chicken data sets. This analysis
(Figure S1 in the Supporting Information) showed close
agreement, with only two minor outliers, reinforcing their
compatibility for merging. Furthermore, as noted in Section
3.3, the regression equations for each individual data set are
highly similar, supporting the representativeness of the
combined data set.
By merging these data sets, we not only increased data set

size but also enhanced its chemical diversity, including unique
chemical classes (e.g., halogenated anilines previously absent
from the fish data set). This diverse and comprehensive data
set, as supported by the literature,26 improves model
robustness and applicability across a wide range of structural
proteins.
The resulting combined data set exhibits significant

variability, with log Kpw values ranging from 0.6 to 4.9 log
units, log Kow values from 1.4 to 6.1 log units, and log Kaw
values from −8.6 to 2.1 log units. Further analysis of the
Abraham solute descriptors within the structural protein data
set � specifically descriptors E (−0.1 to 3.63), S (0 to 1.98), A
(0 to 0.69), B (0 to 1.28), V (0.79 to 1.44), and L (3 to 11.74)
� highlights a comprehensive range of polarizability, hydro-
gen bonding, and dispersion forces. This suggests that the data
set, as a whole, provides a full profile of molecular interaction
potentials, ensuring considerable chemical diversity. The
expanded data set encompasses a diverse array of chemical
classes, including alkanes, haloalkanes, ethers, alcohols,
ketones, substituted benzenes, phthalates, nitro compounds,
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and polycyclic aromatic hydrocarbons, further detailed in
Table S4.
In contrast, the data set for bovine serum albumin (BSA)

exhibits even greater diversity in partition coefficients. The log
KBSA values vary from 1.5 to 4.8 log units, the log Kow values
are between 1.40 and 6.8 log units, and the log Kaw values
range from −10.6 to 2.2 log units (Table S6). This breadth of
values for BSA covers up to 12 orders of magnitude. The set
includes a spectrum of chemical classes such as alkanes,
cycloalkanes, aromatic hydrocarbons, halogenated hydro-
carbons, ethers, ketones, alcohols, phenols, polycyclic aromatic
hydrocarbons (PAHs), and various substituted benzenes, as
reported in Table S3. These classes collectively reflect the wide
range of hydrophobic and hydrophilic interactions that BSA
can engage in with different solutes.
2.3. PFAS Data and Predictive Modeling. We excluded

per- and polyfluoroalkyl substances (PFAS) chemicals from the
training sets but included them in a separate evaluation set to
test the model’s applicability to these challenging chemicals.
The partitioning data for structural proteins and BSA, available

for a set of 13 ionizable PFAS,27,28 were employed for model
evaluation (Table S7). For 47 neutral fluorotelomer com-
pounds (Table S8), which lacked experimental log Kpw and log
KBSA values, estimates were derived using their recently
published Abraham solute descriptors29 in corresponding pp-
LFERs.14,15 For PFAS compounds, experimental values of log
Kow and log Kaw were prioritized whenever available.30,31

However, in cases where these values were missing, they were
estimated using their ASDs30 in the respective pp-LFERs13 or
supplemented with previously published predictions obtained
through COSMOtherm.29

2.4. Model Evaluation and Applications. Model
accuracy was assessed through an indirect approach. Predicted
partition coefficients for various biomolecular phases were
incorporated into a multiphase equilibrium partitioning
model.12 These contributions were normalized based on
their relative abundances in a variety of mammalian organs
and tissues,12,32 facilitating the computation of distribution
ratios between plasma or blood and various organs. The
generated predictions were compared against experimental in

Figure 1. Dimensionality analyses on the calibration data sets for 2p-LFER models of logKch and logKfish. The upper panels show the results
obtained by (a) the Principal Component Analysis (PCA) and (b) Pearson Correlation Analysis performed on 46 × 9 matrix, [logKch, E, S, A, B, V,
L, logKow, logKaw]. The lower panels show the results of (c) PCA and (d) Pearson Correlation Analysis on 45 × 9 matrix, [logKfish, E, S, A, B, V, L,
logKow, logKaw]. For left panels (a) and (c), the color intensity and size of the circle are proportional to the quality of presentation of a variable in
each principal dimension (dim). For panels (b) and (d): each square contains value of correlation coefficient for each pair of variables. Blue and red
colors show negative and positive correlations between the pairs, respectively.
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vivo and in vitro partitioning data for a set of 137 diverse
compounds,12 spanning multiple tissues and organs across
different mammalian species, including humans, rats, and
rabbits (Table S9).
Furthermore, to estimate the milk-water partition coefficient,

the model utilized the composition of cow milk12 along with
the predicted coefficients for storage lipid, serum protein, and
structural proteins. The validity of this approach was
established by comparing the predicted milk-water partition
coefficients with experimental data for 108 varied chemicals
(Table S10).12

2.5. Comparative Evaluation of LFER Models. The
performance of 2p-LFERs was assessed in comparison to both
1p-LFERs and pp-LFERs,14,15 in addition to benchmarking
against experimental data. These comparisons were done not
only the development of the models but also during
evaluations of the models. The objective was to establish the
robustness and predictive accuracy of 2p-LFERs across varying
complexities of molecular interactions.
2.6. Model Development and Validation. Model

development and validation were carried out using R statistical
environment (version 4.0.3)33 and XLSTAT 2020.34 The 2p-
LFER models were built by regressing dependent variables�
log Kch, log Kfish, log Kpw, and log KBSA�against independent
variables log Kow and log Kaw through multiple linear
regression. In selecting linear regression for our study, we
closely align with the principles of LFERs,13,35 which elucidate
a linear correlation between partition coefficients and
molecular descriptors, underpinning both the predictability
and theoretical precision of our approach. This methodological
choice enhances the interpretability of our model, leveraging
extensive data sets for log Kow and log Kaw to forge a direct,
theoretically grounded connection between chemical proper-
ties and environmental behavior. By prioritizing clear, linear
relationships over the complex, nonlinear interactions typical
of machine learning (ML) regressor models, our approach
offers a nuanced understanding of chemical interactions,
setting a distinct path that emphasizes theoretical integrity
and practical applicability. Principal component analysis
(PCA) quantified the necessary dimensions to encapsulate
the variability present in the ASDs and assessed their
relationships with log Kow and log Kaw. Pearson correlation
analysis was used to investigate the interdependencies among
the variables. William’s Plot, utilizing Studentized residuals and
hat values, facilitated the identification of influential outliers.
The robustness and predictive accuracy of the models were
rigorously assessed through leave-one-out cross-validation
(LOOCV), 10-fold cross-validation, and bootstrapping involv-
ing 1000 replicates (Section 1 in SI).

3. RESULTS AND DISCUSSION
3.1. Disentangling the Complexities of pp-LFERs of

Proteins through Dimensional Analysis. To determine
whether multidimensional data sets for properties such as log
Kch, log Kfish, log Kpw, and log KBSA, which were modeled using
pp-LFERs based on Abraham solute descriptors (Tables S1,
S2, S3, and S4), could be simplified, we conducted an analysis
to assess the feasibility of representing these data sets with
fewer dimensions. This approach aimed to replace the complex
poly parameters with a more efficient and orthogonal set of
descriptors, while maintaining accuracy. The PCA revealed
that the first two dimensions accounted for significant
proportions of the data set variance: 78.0% for log Kch,

78.8% for log Kfish, 77.4% for log Kpw, and 77.9% for log KBSA
(Figure S4 in SI), suggesting the potential effectiveness of a
dimensionally reduced model. A pertinent question arising
from this analysis is whether these reduced dimensions can be
adequately represented by our descriptors of interest, log Kow
and log Kaw.
To address above question, we conducted PCA on a set of

variables that included the dependent variable, log Kpw, along
with previously employed independent variables, six ASDs, and
our candidate independent variables, log Kow and log Kaw.
These data sets were derived from Tables S1−S4, resulting in
the creation of a 46 × 9 matrix. The analysis of the square
cosine plot associated with this matrix provided key insights. It
revealed that the information related to log Kch is
predominantly concentrated within the first two dimensions,
with only minor contributions observed in the remaining seven
dimensions (Figure 1a). In contrast, the chemical information
represented by the six ASDs within this data set primarily
extends to the first four dimensions, with a minor influence
observed in the remaining three dimensions. This observation
hints at the potential simplification of the pp-LFER model.
Furthermore, the distribution patterns of our candidate
parameters, log Kow and log Kaw, closely aligned with our
property of interest, log Kch. This alignment was evident as the
quality of representation of these parameters mapped well to
that of log Kch. Consequently, based on this analysis, we
conclude that log Kow and log Kaw are suitable candidates for
the development of a 2p-LFER model to represent log Kch.
The validity of log Kow and log Kaw as parameters for 2p-

LFER is further supported by the Pearson correlation analysis
shown in Figure 1b. The analysis reveals a strong correlation
between log Kch and log Kow (r = 0.93), indicating a robust
linear relationship. In contrast, the correlation between log Kch
and log Kaw is moderate (r = 0.38), suggesting a weaker linear
relationship. The correlation of the descriptor E with log Kch is
moderately positive (r = 0.47), which is noticeably higher than
its correlation with log Kow (r = 0.24). This indicates that a
model based solely on log Kow may not fully capture the
polarizability spectrum of chemicals. Similarly, the variability in
log Kch attributed to the L parameter is not adequately
described by log Kow; however, it is more closely associated
with log Kaw. Conversely, the McGowan volume, V, which is
integral for representing cavity formation, does not correlate
well with log Kaw in the data set, but shows a strong correlation
with log Kow (r = 0.55). The inclusion of both log Kow and log
Kaw could address these disparities in accounting for
intermolecular interactions, thereby justifying the use of both
parameters in the formulation of 2p-LFER.
For the fish structural protein data set, PCA and Pearson

correlation analysis on a 45 × 9 matrix, comprising log Kfish, E,
S, A, B, V, L, log Kow, and log Kaw, revealed insights similar to
those for the chicken structural protein. This similarity
indicates that both protein types exhibit comparable
partitioning behaviors. Consequently, when the PCA and
Pearson correlation analysis was applied to a combined data
set, which averaged log Kch and log Kfish to obtain an average
log Kpw, resulting in a 51 × 9 matrix [log Kpw, E, S, A, B, V, L,
log Kow, log Kaw], similar insights were observed as with the
individual log Kch and log Kfish matrices. This observation
justifies the merger of the two data sets in the analysis.
In the study of bovine serum albumin protein, an 83 × 9

matrix encompassing variables such as log KBSA, E, S, A, B, V, L,
log Kow, and log Kaw was subjected to PCA and Pearson
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Correlation Analysis. This analysis shed light on significant
patterns. Predominantly, log KBSA was found to be represented
within the first two dimensions, showing a notable alignment
with the distributions of log Kow and log Kaw. The correlation
of log KBSA with log Kow was relatively strong (r = 0.87), while
its correlation with log Kaw was much weaker (r = 0.06),
differing from the patterns observed in the structural protein
data. Notably, the S descriptor demonstrated a more significant
correlation with log KBSA (r = −0.22) than with log Kow (r =
−0.01), indicating that log Kow alone may not suffice to
represent the full spectrum of chemical polarity. Furthermore,
variations in log KBSA related to E, L, and B were better
correlated with log Kaw than with log Kow. Therefore,
incorporating both log Kow and log Kaw into the model appears
justified, as it could rectify these discrepancies, affirming their
utility in the formulation of a 2p-LFER.
3.2. 2p-LFER Models. In this section, we describe the

results of 2p-LFER models, which were obtained with the
input of logKow and logKaw for the estimation of structural
protein−water and albumin-water partition coefficients for
neutral organic chemicals.
3.3. Structural Protein−Water. The effectiveness of 2p-

LFER models is well demonstrated through the analysis of data
sets pertaining to chicken structural protein, fish structural
protein, and combined structural protein. These models,
employing a linear combination of log Kow and log Kaw,
provide an understanding of partitioning behavior across
various structural protein types. The parameters, log Kow,
indicative of hydrophobicity, and log Kaw, a ratio reflecting
volatility to solubility, are pivotal in elucidating the partitioning
dynamics.
For chicken structural protein, the R2 value is 0.882, and the

Adj.R2 is 0.877, indicating a robust linear relationship between
the combined effects of log Kow and log Kaw and the
partitioning behavior. This trend persists in the fish structural
protein and combined structural protein data sets, with R2

values of 0.870 and 0.878, and Adj.R2 values of 0.864 and
0.873, respectively. The consistently similar R2 and Adj.R2

values across all data sets signify the adeptness of the models in
capturing the underlying linear relationships, demonstrating
the robustness of the 2p-LFER approach.
The exclusion of log Kow from LFER resulted in a substantial

decrease in explained variance, with an R2 of 0.119,
underscoring the variable’s significant predictive contribution.
Conversely, omitting log Kaw from LFER yielded an R2 of
0.844, indicating that log Kow alone maintains considerable
predictive power. These findings underline the importance of
log Kow as a key factor in determining log Kpw. However, the
dimensionality analysis discussed in the previous section

highlights the relevance of log Kaw for certain chemicals,
particularly those with specific polar intermolecular inter-
actions. Therefore, to achieve optimal predictive accuracy, it is
essential to include both log Kow and log Kaw in the model.
The RMSE values � 0.323 for chicken structural protein,

0.353 for fish structural protein, and 0.334 for combined
structural � underscore the accuracy of models. These low
RMSE values indicate that the 2p-LFER models yield
predictions closely aligned with observed data, signifying
minimal prediction errors and reinforcing the practical
applicability of models.
Moreover, the standard errors (SE) associated with the

fitting coefficients for log Kow and log Kaw in each data set
provide insights into the precision of the models. The relatively
low SE values for these coefficients in all data sets emphasize
the accuracy of the estimates, affirming their statistical
significance. This accuracy in coefficient estimation enhances
the credibility of the 2p-LFER models, underscoring their
effectiveness in capturing the combined influence of hydro-
phobicity and the balance between volatility and solubility in
protein−water partitioning.
In summary, the statistical parameters � R2, Adj.R2, RMSE,

and SE � across the data sets solidify the capabilities of the
2p-LFER models in linear fitting, prediction accuracy, and the
statistical significance of the coefficients. These models emerge
as robust tools for understanding and predicting partitioning
behavior in various structural proteins, highlighting the power
and versatility of the 2p-LFER approach in protein−water
interaction studies.
The efficacy of model was further evaluated through cross-

validation techniques. k-fold (5 folds) and repeated k-fold (5
folds, 10 repeats) cross-validation yielded mean scores of 0.838
and 0.811, respectively, which corroborates the robustness and
predictive capability of the model. Bootstrap validation, with a
high mean score of 0.876 and a low standard deviation of
0.043, reinforces the stability of model across various
resampled subsets of data.
The hold-out method, utilizing a 20:80 test-train split

(Tables S11 and S12), produced a similar model with an eq 1:

Kpw K

ow Kaw

log ( 1.0860 0.2574) (0.8439 0.0572)log

( 0.0901 0.0314)log

= ± + ±

+ ± (1)

This model demonstrated a strong predictive performance
on the test data, with an R2 value of 0.884 and an RMSE of
0.276, indicating a slightly better fit than the model derived
from the full data set.
These collective findings from the main model and various

validation techniques indicate a high level of model reliability

Table 1. Fitting Coefficients and Regression Statistics of 2p-LFER Model Equationa for Protein and Lipid Phases

phase λ1 (±SE)b λ2 (±SE) λ3 (±SE) R2 Adj. R2 F-statistics RMSEc source

chicken structural protein 0.813 (±0.049) −0.077 (±0.024) −0.874 (±0.223) 0.882 0.877 161.7 0.323 current Study
fish structural protein 0.886 (±0.055) −0.097 (±0.027) −1.243 (±0.246) 0.870 0.864 140.8 0.353 current Study
combined structural proteins 0.851 (±0.049) −0.092 (±0.025) −1.080 (±0.220) 0.878 0.873 173.3 0.334 current Study
bovine albumin serum protein 0.788 (±0.046) −0.053 (±0.018) 0.000d 0.760 0.759 130.5 0.422 current Study
phospholipid 1.070 (±0.021) − 0.056 (±0.013) −0.247 (±0.095) 0.953 0.952 1293 0.414 Khawar et al.22

storage lipid 1.102 (±0.016) 0.069 (±0.01) −0.236 (±0.043) 0.971 0.970 5046 0.375 Khawar et al.22

aMathematical form of 2p-LFER equation: logKphase−water = λ1Kow + λ2Kaw + λ3. bThe standard error (SE) represents a 95% confidence interval for
the fitted values, estimated through 1000 synthetic resamples using the bootstrap method. cRMSE: Root Mean Squared Error. dA value of 0.000
signifies that the fitted coefficient was statistically equivalent to zero. Consequently, the related parameter was excluded and the regression analysis
was repeated.
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and generalizability. The consistent R2 values across the main
and hold-out models suggest that a significant proportion of
the variance in log Kpw is systematically captured by the
predictors in different subsets of data. The RMSE values
further support the model’s precision in predicting new data.
The consistency in the performance metrics across the full data
set and the validated models underscores the model’s potential
applicability in practical scenarios, marking it as a valuable tool
for biochemical and environmental partitioning studies.
The comparative analysis of log Kow and log Kaw in Table 1

illuminates their distinct roles in influencing log Kch, log Kfish,
and log Kpw. The predominance of log Kow reflects its
substantial impact on hydrophobic interactions in protein−
water partitioning, whereas log Kaw, though significant, exhibits
a relatively lesser influence, capturing the interplay between
volatility and solubility in the partitioning process.
The similarity in the fitting coefficients and regression

statistics of the 2p-LFER model equations across the chicken,
fish, and combined data sets (Table 1) suggests a remarkable
consistency in the partitioning behavior of these structural
proteins. This consistency justifies integrating their data sets to
develop a more generalized understanding of structural
protein−water partitioning. Such an integrated approach

streamlines predictive modeling for various structural types,
enhancing the practical utility of these findings in the field.
The comparison of partitioning behaviors among structural

proteins, storage lipids, and phospholipids in terms of
hydrophobicity and a proxy parameter (log Kaw) for volatility
and solubility of chemicals is intriguing. This analysis can be
conducted by examining the fitting coefficients of 2p-LFERs
for structural proteins and comparing them with those from
previously established 2p-LFERs for storage lipids and
phospholipids.22 The 2p-LFER equations for these three
phases reveal that the octanol−water partition coefficient
(log Kow) positively influences the partitioning behavior of
chemicals across all three phases, including storage lipids,
phospholipids, and proteins. However, the storage lipids and
phospholipids exhibit approximately twice the hydrophobic
interaction compared to protein.
The role of the log Kaw varies among the three phases. For

storage lipids, an increase in log Kaw correlates with greater
partitioning into the lipid phase. In contrast, for phospholipids
and proteins, a higher log Kaw is associated with reduced
partitioning into these phases. Furthermore, the influence of
log Kaw is marginally more pronounced in proteins than in

Figure 2. Dimensionality analyses on the calibration data sets for 2p-LFER models of logKPW and logKBSA. The upper panels show the results
obtained by (a) the Principal Component Analysis (PCA) and (b) Pearson Correlation Analysis performed on 51 × 9 matrix, [logKpw, E, S, A, B, V,
L, logKow, logKaw]. The lower panels show the results of (c) PCA and (d) Pearson Correlation Analysis on 83 × 9 matrix, [logKBSA, E, S, A, B, V, L,
logKow, logKaw].
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storage lipids and phospholipids, as indicated by the relative
magnitudes of the fitting coefficients for log Kaw.
As demonstrated in Figures 1 and 2, log Kaw predominantly

captures the hydrogen bonding interactions, more so than log
Kow. This indicates that hydrogen bonding interactions play a
more significant role in the partitioning behavior of proteins
compared to lipids. This distinction highlights the differential
importance of hydrogen bonding in the partitioning processes
of proteins versus lipid-based phases. This can be further
corroborated by looking at the solvation characteristics of
storage lipid−water,36 phospholipid−water,37 and structural
protein−water14 phases, which are distinctively outlined by
Abraham’s model parameters. The storage lipid−water phase
displays pronounced hydrophobicity, as indicated by the
highest l coefficient, and the most negative s, a, and b values.
This suggests a strong affinity for nonpolar interactions.
Conversely, the structural protein−water phase emerges as
least hydrophobic and more accommodating to hydrogen
bonding and polar chemicals evidenced by the least a, b and s
coefficient. The phospholipid−water phase presents inter-
mediate properties, balancing between hydrophobicity and
polarity. Consequently, storage lipids are inferred to
preferentially partition more hydrophobic and nonpolar
compounds, while structural proteins are more receptive to
hydrogen bonding, highlighting the diverse solvation dynamics
within biological systems.
3.4. Bovine Serum Albumin. The linear regression

analysis revealed that both log Kow and log Kaw are significant
predictors of log KBSA, with log Kow having a more pronounced
effect (Table 1). This model explained approximately 76% of
the variance in log KBSA, indicating a significant relationship
between these partitioning behaviors. The positive coefficient
for log Kow suggests that as the affinity of a compound for
octanol over water increases, so does its affinity for binding to
bovine serum albumin. In contrast, the negative coefficient for
log Kaw suggests an inverse relationship for air−water
partitioning. The presence of significant coefficients for both
log Kow and log Kaw in predicting log KBSA underscores the
complex interplay between different types of partitioning
behaviors in biological systems. The positive relationship with
log Kow aligns with the understanding that compounds with
higher lipophilicity (as indicated by a higher octanol−water
partition coefficient) tend to have higher affinity for albumin
binding. The inverse relationship between log KBSA and log Kaw
may be attributed to the polarity and hydrogen bonding
interactions of chemicals, with log Kaw serving as a proxy
(Figures 1 and 2). This suggests a preferential transfer of
chemicals from the albumin to the water phase due to these
interactions. These results are valuable for understanding and
predicting how different compounds might behave in bio-
logical systems, particularly in relation to their distribution and
binding characteristics.
Further analysis of the model reveals significant differences

in the impact of dropping either log Kow or log Kaw on the
performance of the model. Removing log Kow leads to a poorly
performing model, as evidenced by a negative R2 value and a
substantially higher RMSE. This indicates that log Kow is a
crucial predictor for log KBSA, significantly contributing to the
accuracy and explanatory power of the model. Conversely,
omitting log Kaw results in a moderate decline in the model’s
performance, with a decrease in R2 and an increase in RMSE,
but not to the extent observed with the removal of log Kow.
This suggests that while log Kaw has a role in the model, its

influence is less pronounced compared to log Kow. Therefore,
log Kow is a more critical variable in predicting the partition
coefficient between bovine serum albumin and water (log
KBSA).
The cross-validation results for the linear regression model

predicting the log KBSA from log Kow and log Kaw provide an
evaluation of the robustness and predictive power of the
model. The hold-out method, with a training-to-testing ratio of
1:4 (Tables S13 and S14), showed a high R2 value of 0.847 and
an RMSE of 0.338, indicating strong predictive performance
on the test set (eq 2). However, reliance on a single train-test
split might not fully capture the generalizability model.

K K

K

log 0.703( 0.053)log 0.036( 0.021)

log
BSA ow

aw

= ± ±

(2)

The comparison of the regression coefficients between the
main model (eq 1) and the hold-out model (eq 2) reveals that
the differences in coefficients for log Kow and log Kaw are not
statistically significant. The calculated z-scores for both
coefficients fall below the threshold of 1.96, typically used to
denote significance at the 5% level. This finding indicates that
the observed variations in coefficients between the two models
are likely due to sampling variability and do not reflect
substantial differences in the underlying relationships between
the variables. Therefore, despite the slight numerical differ-
ences in coefficients, the models are statistically consistent with
each other in terms of the effects of log Kow and log Kaw on log
KBSA.
The k-fold and repeated k-fold cross-validation methods,

which mitigate the potential overfitting or underfitting issues of
the hold-out method by averaging results over multiple splits,
showed mean R2 values of 0.690 and 0.709, respectively. These
values, along with their associated standard deviations (0.195
for k-fold and 0.134 for Repeated k-fold), suggest that while
the model performs well on average, there is variability in its
performance across different subsets of the data. The bootstrap
method, with 1000 iterations and a 50% sample size, provided
a stable mean R2 of 0.746 with a low standard deviation of
0.021, indicating consistent model performance across various
resampled data sets. Overall, these cross-validation results
underscore the model’s reliability in predicting log KBSA, with
certain variability depending on the cross-validation method
used. This highlights the importance of using diverse validation
techniques to assess a model’s performance comprehensively,
especially in cases where data may have unique properties or
when working with smaller data sets.
In assessing the partitioning behaviors of chemicals with log

KBSA and log Kpw, hydrophobicity (log Kow) positively
influences both, albeit more so for structural proteins,
indicating a greater sensitivity to hydrophobic interactions.
Conversely, the proxy for volatility/solubility (log Kaw)
negatively impacts partitioning with both proteins, with
structural protein showing a stronger negative response. This
suggests that structural protein’s interaction with chemicals is
more sensitive to both the hydrophobicity and volatility/
solubility traits compared to bovine serum albumin. These
trends highlight the nuanced differences in how these proteins
interact with chemicals, emphasizing the complexity of protein-
chemical interactions influenced by multiple physicochemical
properties.
Comparing the partition coefficient between bovine serum

albumin and water (log KBSA) with those of storage lipid (log
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Klw) and phospholipids (log Kphw) reveals distinct interaction
patterns based on hydrophobicity (log Kow) and the volatility/
solubility (log Kaw). All three models show a positive
relationship with log Kow, indicating that more hydrophobic
compounds have higher affinity across these biological
matrices. However, this hydrophobic interaction is more
pronounced in the lipid models, with storage lipids and
phospholipids exhibiting higher coefficients than bovine serum
albumin. In terms of log Kaw, bovine serum albumin and
phospholipids display a negative relationship, suggesting a
decreased affinity for more volatile compounds. Conversely,
storage lipids show a positive correlation with log Kaw, implying
a different interaction mechanism, likely influenced by their
role in storing substances. These contrasts highlight the varied
and complex nature of chemical interactions with different
biological components, with lipids showing a stronger
hydrophobic influence and varying responses to compound
volatility compared to albumin.
The Abraham solvation parameters offer a comparative view

of the partitioning behaviors for chemicals within four distinct
systems: structural protein−water,14 bovine serum albumin-
water,15 storage lipid−water,36 and phospholipid−water.37 The
polarity/polarizability (s) and hydrogen bond acidity (b)
parameters are negative for all, suggesting a universal trend
where polar and hydrogen bond-donating chemicals favor the
aqueous phase. However, the more negative s and b for storage
lipid−water reflect its particularly low affinity for these
interactions, likely due to its hydrophobic nature. Conversely,
the least negative s and b for bovine serum albumin indicate a
relatively higher tolerance for polarity and hydrogen bond
donation within the protein phase.
Hydrogen bond basicity (a) follows a similar trend, with

negative values for storage lipid and phospholipid−water
phases, highlighting water’s dominance in accepting hydrogen
bonds. In contrast, the positive a for bovine serum albumin
suggests a unique capability among the biological phases to

accommodate hydrogen bond acceptors, consistent with the
diverse functionality of serum albumins.
The McGowan volume (v) coefficients are positive across all

systems, indicating a general preference for larger solutes in the
biological phases. The magnitude of v varies, with structural
protein−water showing the highest value, implying a greater
propensity to accommodate bulkier solutes, perhaps due to the
intricate tertiary structure of proteins providing more spatial
accommodation.
In summary, while all four systems exhibit a tendency to

partition polar and hydrogen-bonding solutes toward water,
the degree of this preference is most pronounced in storage
lipids. Bovine serum albumin stands out for its ability to
interact with hydrogen bond acceptors, and structural protein’s
capacity for larger solutes is notable. These distinctions
underscore the unique solvation characteristics inherent to
each biological phase, revealing the complexity of solute
interactions within biologically relevant environments.
3.5. Assessing 2p-LFER Predictive Accuracy for Per-

and Polyfluoroalkyl Substances. Per- and polyfluoroalkyl
substances (PFAS), commonly known as forever chemicals,
pose significant environmental health concerns.38 The
effectiveness of the 2p-LFER models was evaluated for two
distinct sets of PFAS. Notably, PFAS were not included in the
original chemical data sets used to train the 2p-LFER models
for log Kpw and log KBSA.
The first evaluated group consisted of 13 ionizable

perfluoroalkyl acids and sulfonates (Table S7). For these
chemicals, experimental values of log Kpw and log KBSA were
available in the literature, providing a basis for direct
comparison with the 2p-LFER model predictions. In this
comparison, the 2p-LFER model’s predictions for log Kpw
across 12 substances showed a RMSE of 1.71 log units,
indicating a significant deviation from the experimental values.
Conversely, the predictions for log KBSA across 13 substances
were more accurate, with an RMSE of 0.61 log units (Figure
3a).

Figure 3. Comparison of predicted and experimental/reference partition coefficients for bovine serum albumin to water (log KBSA) and structural
protein to water (log Kpw) systems. Panel (a) displays the predicted values against experimental data for 13 ionizable perfluoroalkyl acids and
sulfonates. Panel (b) contrasts the predicted values from 2p-LFERs with reference values obtained via pp-LFERs for 47 neutral fluorotelomer
compounds, encompassing subcategories such as fluorotelomer alcohols, iodides, olefins, acrylates, and methacrylates.
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The second group of chemicals assessed comprised 47
neutral fluorotelomer compounds, including various subcate-
gories like fluorotelomer alcohols, iodides, olefins, acrylates,
and methacrylates (Table S8). For these compounds, lacking
experimental log Kpw and log KBSA values, estimates were made
using their Abraham solute descriptors. When these estimates
were compared with the 2p-LFER predictions, the results were
more encouraging (Figure 3b). The RMSE for log Kpw
predictions was 0.30 log units, and for log KBSA, it was 0.27
log units. These lower RMSE values indicate a closer match
between the predicted and estimated values, suggesting that
the 2p-LFER model performs well for neutral fluorotelomer
compounds. This finding supports the model’s suitability for a
certain range of PFAS, particularly those that are neutral and
less complex in nature.
In summary, while the 2p-LFER model shows promising

results for certain classes of PFAS, particularly neutral
fluorotelomer compounds, its applicability is limited for
ionizable PFAS due to the overestimation of log Kpw values.
These findings highlight the need for model refinement or the
development of specialized models to accurately predict the
environmental behavior of a broader range of PFAS, especially
those with ionizable properties. Given these insights, the scope
for advancing our model’s predictive capacity through feature
engineering could be an interesting future research direction.
Although feature engineering techniques may not traditionally

align with the foundational principles of LFERs�valued for
their simplicity and interpretability�embracing such ap-
proaches could unlock new avenues for accurately modeling
PFAS behavior. By venturing beyond the conventional domain
of LFERs, future studies could explore the integration of
complex, nonlinear descriptors or features, tailored to capture
the unique properties of ionizable PFAS.
Next, we aimed to investigate the extent to which proteins

contribute to bioaccumulation compared to lipids, which are
typically used to estimate bioaccumulation. To achieve this, we
calculated the partition coefficients�� log Kpw, log KBSA, log
Klw, and log Kphw �for the PFAS in the second group using 2p-
LFERs developed in both our current and prior studies. The
relative distribution of PFAS across storage lipids, phospho-
lipids (membrane lipids), serum proteins (albumin), and
structural proteins in various organs was determined by
applying their respective partition coefficients and considering
the relative fractions of these phases within the organs’ tissues,
assuming multiphase equilibrium partitioning.
Our analysis revealed that in protein-enriched tissues such as

the liver, muscle, and plasma, the relative contribution of PFAS
load in structural and plasma proteins is significant, and in
several cases, it is even equal to or higher than that of lipids
(Figure 4). Similar results were obtained when multiphase
partitioning model was parametrized with the partition
coefficients estimated via pp-LFERs (Figure S2). This suggests

Figure 4. Relative distributions of neutral per- and polyfluoroalkyl substances (PFAS) across various phases including water, albumin, structural
proteins, lipids, and phospholipids in mammalian tissues/fluids such as plasma, muscle, and liver. These distributions are obtained through
multiphase partitioning modeling based on predicted partition coefficients via 2p-LFER.
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that the partitioning of PFAS to these proteins should be taken
into account as an important factor when evaluating the
bioaccumulation of these chemicals.
3.6. Indirect Validation of 2p-LFERs through Multi-

phase Equilibrium Partitioning Models. Our analysis of
the multiphase partitioning model, parametrized with 2p-
LFER-derived coefficients, yielded in vivo and in vitro
distribution data that closely aligned with experimental
observations (Figure 5a). The model’s predictions demon-
strated a RMSE of 0.44 log units, attesting to the model’s
precision. Notably, a parallel model, employing pp-LFERs as a
parametrization foundation, attained a marginally lower RMSE
of 0.42 log units (Figure 5b). When comparing the predicted
and experimental milk-water partitioning data (n = 108, Table
S10), the multiphase partitioning model, parametrized with 2p-
LFER-derived partition coefficients, showed good agreement,
with an RMSE of 0.29 log units (Figure S3). In contrast, the
model parametrized on pp-LFER estimated partition coef-
ficient yielded a marginally improved RMSE of 0.25 log units
against the same data set.

Notably, the multiphase model parametrized with estimated
partition coefficients for lipid and proteins using historical one-
parameter-based LFERs (1p-LFERs) � which are based on
log Kow � yielded predictions with an RMSE of 0.59 log units
when compared to the same experimental data set. This result
aligns with our current and previous observations that 1p-
LFERs are not as accurate as 2p- and pp-LFERs. This
comparative exercise underscores the comparable efficacy of
2p-LFERs with pp-LFERs, suggesting that 2p-LFERs can be
reliably utilized in scenarios where pp-LFERs may not be
suitable, particularly in the absence of adequate ASDs. These
findings substantiate the applicability of 2p-LFERs in
predictive partitioning models and reinforce their potential as
a complementary tool in chemical distribution studies.

4. INTEGRATION ASSESSMENT OF 2P-LFER MODELS
FOR EPI SUITE

The Estimation Program Interface Suite (EPI Suite) by the US
EPA and Syracuse Research Corp. provides valuable
predictions on environmental properties, fate, and ecotoxicity

Figure 5. Experimental in vivo and in vitro distribution ratios for various mammalian organs compared to their predicted values obtained through
multiphase equilibrium partitioning model. This model is parametrized with the input of (a) 2p-LFER and (b) pp-LFER predicted partition
coefficients for lipids and proteins.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01289
J. Chem. Inf. Model. 2024, 64, 9327−9340

9336

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01289/suppl_file/ci4c01289_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01289/suppl_file/ci4c01289_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01289/suppl_file/ci4c01289_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01289?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01289?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01289?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01289?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of chemicals. However, it currently lacks a module to predict
log Kpw and log KBSA. An evaluation for integrating 2p-LFER
models into EPI Suite involved using estimated log Kow and log
Kaw values from EPI Suite as inputs to the 2p-LFER equations
for log Kpw and log KBSA. These models showed promising
results, with RMSE of 0.37 and 0.50, respectively, closely
aligning with experimental data. The robustness of estimated
log Kow and log Kaw as input parameters was also confirmed,
with low RMSEs when compared to their experimental
counterparts. This analysis suggests that the 2p-LFER models
could be effectively integrated into EPI Suite, enhancing its
capability to reliably predict log Kpw and log KBSA coefficients.
Our preceding research22 rigorously assessed the accuracy of

log Kow and log Kaw values derived from EPI Suite. This
assessment revealed that EPI Suite’s performance in predicting
log Kow and log Kaw closely matched that of the ASM, yielding
RMSEs of 0.28 and 0.26 for log Kow, and 0.50 for log Kaw,
against experimental values from 304 and 296 compounds,
respectively. This level of accuracy affirms the reliability of EPI
Suite-sourced parameters for our 2p-LFER models.
However, caution is warranted for PFAS, given recent

findings29 that highlight discrepancies in EPI Suite’s
predictions of log Kaw when compared to advanced quantum
chemical models like COSMOtherm, despite ASM showing
good agreement. The absence of experimental data for direct
comparison restricts this evaluation to predictions from
different models. These findings underscore the potential
limitations of using EPI Suite-estimated parameters for PFAS
within our 2p-LFER framework, suggesting careful parameter
selection is essential, particularly for chemicals with complex or
unique attributes.

5. APPLICATION DOMAIN AND LIMITATIONS OF
2P-LFER MODELS

In the structural protein−water partitioning model, the
majority of observations align with the applicability domain,
highlighting the efficacy of model in predicting the partitioning
behavior of structural proteins using log Kow and log Kaw as
independent variables. However, deviations were observed in
four specific chemicals: 1-chlorooctane, tri-n-butyl phosphate,

4-ethyl-3-hexanol, and benzo[a]pyrene. These deviations
manifested either as high leverage, indicating a substantial
influence of their log Kow and log Kaw values, or as
discrepancies in standardized residuals, reflecting differences
between predicted and observed log Kpw values. Notably,
benzo[a]pyrene (log Kow: 6.13, log Kaw: −4.73, log Kpw:
4.925), 1-chlorooctane (log Kow: 3.64, log Kaw: 0.19, log Kpw:
2.905), tri-n-butyl phosphate (log Kow: 4.00, log Kaw: −4.24,
log Kpw: 1.760), and 4-ethyl-3-hexanol (log Kow: 2.78, log Kaw:
−2.85, log Kpw: 0.750) exhibited either extreme hydro-
phobicity or volatility/solubility, which could impede accurate
measurements of their properties. These attributes potentially
render them incompatible within the typical range of data set.
Consequently, it is challenging to determine whether the
observed deviations are due to limitations of the model or
inaccuracies in the experimental data for these compounds
with extreme properties. Nevertheless, excluding these outliers
from the training data set did not alter the fitting coefficients of
model, indicating the robustness of the model’s core structure
despite the presence of these anomalous observations.
Several chemicals in the data set fall comfortably within the

applicability domain of our linear regression model, which
successfully predicts the log KBSA (Figure 6). This indicates the
model’s robustness and reliability for a diverse range of
compounds. However, the William’s plot analysis has also
highlighted a few chemicals that show deviations from the
model’s predictions. These influential chemicals, such as n-
heptane, n-octane, γ-hexachlorocyclohexane, and diazepam,
exhibit a wide range of values in their partition coefficients in
octanol−water and air−water systems. Some, like bisphenol A
and estrone, have very negative log Kaw values, indicating a
markedly low volatility, whereas others like n-octane and n-
nonane demonstrate a strong affinity for octanol as suggested
by their high log Kow values. Accurate measurement of
partition coefficients for such extreme cases is challenging.
This makes it difficult to ascertain whether the model is
unsuitable for these compounds or if the discrepancies arise
from data quality issues. Addressing this uncertainty represents
an interesting direction for future research. The identification
of these outliers is crucial for understanding the limits of the

Figure 6.William’s Plot highlighting influential observations in the data sets for (a) structural protein and (b) bovine serum albumin. Observations
with standardized residuals beyond ±2 or leverage higher than 0.06 are marked in red and annotated with their index numbers, indicating potential
outliers or influential points for the model. The orange horizontal lines representing the ±2 standardized residual threshold and the green vertical
line indicating the leverage threshold.
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model’s applicability and for ensuring accurate interpretations,
particularly for compounds with extreme partitioning behav-
iors. These findings underscore the importance of considering
a model’s domain of applicability and the influence of
individual observations on its performance.
An inherent limitation of LFER models, including our 2p-

LFER approach, lies in their design primarily for neutral
chemicals. Predicting behaviors for ionized species necessitates
integrating specific descriptors, such as those based on
dissociation constants (e.g., pKa values), as well as metrics
that capture ionic interactions and fluorine-specific character-
istics (e.g., electronegativity or fluorination patterns), to
precisely account for ionization states and environmental
interactions.39 The inclusion of such descriptors for PFAS�a
class of chemicals lacking extensive ionization and partitioning
data�remains beyond the scope of this study due to data
availability constraints. Future work could address these
limitations by advancing models with descriptors tailored to
PFAS-specific properties, offering improved accuracy for this
distinctive class of compounds.

6. CONCLUSIONS
In conclusion, our study demonstrates that 2p-LFERs
effectively capture the variance in structural proteins and
bovine serum albumin data. The estimates of partition
coefficients for structural proteins, bovine serum albumin,
storage lipid, and phospholipid, as derived from 2p-LFERs,
show promise for use in multiphase partitioning models. These
models, when combined with the tissue composition data of
these phases within organs, can predict the in vivo and in vitro
distribution of a diverse range of organic chemicals effectively.
However, it is crucial to approach the use of 2p-LFERs with

caution, especially for chemicals at the extreme ends of
hydrophobicity and volatility spectra, as well as for ionizable
compounds. The accuracy of log Kow and log Kaw values for
such chemicals can be compromised, which in turn affects the
reliability of 2p-LFER predictions based on these inputs. While
2p-LFERs have shown questionable performance for ionizable
PFAS, their effectiveness is notable for neutral PFAS.
Employing 2p-LFERs could potentially offer valuable

insights across environmental and toxicological modeling,
suggesting essential improvements in current practices. The
conventional octanol-based 1p-LFERs have their utility in
screening scenarios, such as multimedia fate modeling, where
an estimation error within 1 order of magnitude is acceptable
for biosorption. However, for more precise estimates of
bioaccumulation, internal concentrations, and organ-specific
toxicity, pp-LFER based multiphase partitioning models prove
to be more suitable.12 Nonetheless, it is important to note that
pp-LFER descriptors are limited to approximately 8000
chemicals. In instances where pp-LFER descriptors are
unavailable, our two-parameter LFERs (2p-LFERs) offer
comparably accurate estimates of sorptive capacities of various
organs using multiphase partitioning approach. This accuracy
is particularly relevant for chemicals that engage in hydrogen
bonding interactions or exhibit hydrophilic characteristics, as
the 1p-LFERs tend to be less reliable than those from 2p- and
pp-LFERs. Similarly, for calculating benchmarks such as
biomagnification factor (BMF) and trophic magnification
factor (TMF) � traditionally derived from octanol-based
1p-LFER � the resulting fugacity capacities can exhibit errors
greater than one log unit.12 Such inaccuracies are unsuitable
for regulatory purposes, which demand more precise

estimations. In these contexts, our 2p-LFER model emerges
as a viable alternative to ASMs, offering enhanced accuracy and
reliability for environmental assessments.
Overall, 2p-LFERs present themselves as valuable models,

especially in cases where pp-LFERs are limited by the absence
of experimental Abraham solute descriptors. This study thus
contributes to the broader field by offering an alternative
modeling approach, while also highlighting areas for cautious
application and further research.
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