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Abstract
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in 
migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically 
distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments 
and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were charac-
terized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We 
genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype 
and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermo-
saline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats 
towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, 
brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and fresh-
water areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two 
putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident 
ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermedi-
ary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all 
ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a 
fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, 
indicating ecotype diversity in coastal northern pike is higher than previously believed.
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Introduction

Ecological factors like food availability, predation, and 
abiotic environmental conditions shape niche spaces and 
the fitness landscape of organisms in the wild (Roff 2002). 
Selection pressures vary over time and space due to density 
fluctuations, environmental gradients, and environmental 
stochasticity (Bell 2010). Organisms adapt to fluctuating 
selection through various traits and processes, e.g., behavio-
ral shifts in habitat use, migration, physiological adaptation 
to local environmental factors, or microevolutionary changes 
in adaptive life history traits (Felmy et al. 2022; Sunde et al. 
2022; Tibblin et al. 2015, 2016). Trade-offs between traits 
and limited ability to generalize (Rosenzweig 1974) cause 
intraspecific phenotypic and genetic variability, fostering 
ecotype evolution (Brown 1990) and sympatric speciation 
(Doebeli and Dieckmann 2003). Although terminology var-
ies (Clemens and Schreck 2021), ecotypes are characterized 
by both phenotypic (e.g., in morphology, physiology, and 
behavior) and genetic differentiation (Stronen et al. 2022). 
Documenting ecotypes therefore requires that phenotypic 

and genetic data are combined, which is rarely the case (Cle-
mens and Schreck 2021; Stronen et al. 2022). For example, 
out of 112 publications reviewed by Stronen et al. (2022) 
that use the term ecotype, only 53% incorporated genetic 
analyses, which was attributed to limited availability of 
genomic resources, particularly for nonmodel organisms.

Environmental conditions near the edge of a species toler-
ance can prompt local evolutionary adaptations and cause 
population diversification (Pörtner et al. 2010). Brackish 
estuarine systems pose such challenges, particularly for 
osmoregulating ectotherms, such as fishes, where salinity 
and temperature are key ecological factors (Kültz 2015; 
Magnuson et al. 1979). Spatio-temporal variation in these 
factors invokes trade-offs among traits and metabolic costs 
on the individual level (Sokolova 2021), driving adaptive 
responses, such as the evolution of variable migration strat-
egies (Delgado and Ruzzante 2020). A possible outcome 
is partial migration, when varying migration behaviors are 
expressed along a behavioral continuum (Chapman et al. 
2011), and behavioral endpoints (such as residency in one 
habitat) often correlate with the extremes of underlying 
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environmental factors (Cagnacci et  al. 2011). Variable 
migration behaviors, along with genetic differences, have 
been described in several coastal fish species, indicating 
ecotype evolution (e.g., Nordahl et al. 2019; Dennenmoser 
et al. 2017; Kusakabe et al. 2017). Adaptations to environ-
mental factors also occur in less mobile life stages, such as 
eggs or larvae, as physiological tolerances are often size-
specific in fishes (Werner 1988). Larger individuals often 
exhibit greater osmoregulatory capacity and lower tempera-
ture preference (Lindmark et al. 2022; Varsamos et al. 2005). 
Thus, mobile species in brackish environments can also be 
expected to adapt behaviorally through ontogenetic habitat 
shifts, e.g., favoring warmer, less saline juvenile habitats 
and colder, more saline adult habitats (Casselman and Lewis 
1996; Pursiainen et al. 2021).

Genetically, intrapopulation diversification can arise from 
isolation by environment (IBE), where individuals become 
reproductively isolated through adaptation to local environ-
mental factors (Wang and Bradburd 2014), and isolation by 
distance (IBD), where geographic distance limits gene flow 
(Wright 1943). Additionally, reproductive timing (isolation 
by time, IBT, Hendry and Day 2005), and natural or anthro-
pogenic barriers (isolation by resistance, IBR, McRae 2006) 
can limit gene flow among subpopulations. The northern 
pike (Esox lucius), a mesothermal, stenohaline freshwater 
predator (Jacobsen and Engström-Öst 2018), presents a suit-
able model to study intrapopulation diversification (Forsman 
et al. 2015), as it exhibits all these isolation mechanisms 
and multiple phenotypes across its distribution range in the 
subarctic northern hemisphere (Bekkevold et al. 2015; Esch-
bach et al. 2021; Nordahl et al. 2019; Sunde et al. 2022; 
Tibblin et al. 2016). Pike are strongly phytophilic, relying 
on macrophytes both for reproduction as well as for foraging 
and predator avoidance (Grimm 1981). They exhibit limited 
mobility and dispersal (Dhellemmes et al. 2023a) and show 
natal homing (Engstedt et al. 2014; Miller et al. 2001; Tib-
blin et al. 2016). Pike have colonized brackish habitats in 
the Baltic Sea from glacial freshwater refuges (Maes et al. 
2003), inhabiting brackish water up to 15 Practical Salin-
ity Units (PSU) (Jacobsen and Engström-Öst 2018). Previ-
ous studies indicated weak genetic differentiation between 
coastal populations, but large-scale IBD patterns, most 
likely explained by limited dispersal, as pike prefer shal-
low vegetated habitats (Laikre et al. 2005; Maes et al. 2003; 
Wennerström et al. 2017). More recent research, however, 
identified genetic differentiation at small geographic scales 
in coastal pike populations (Diaz-Suarez et al. 2022; Möller 
et al. 2020; Nordahl et al. 2019; Wąs-Barcz et al. 2023). 
Although IBD patterns were also present on a local scale 
(e.g., Möller et al. 2020), several studies found strong evi-
dence for IBE through local adaptation (Sunde et al. 2018, 
2019, 2022). Key abiotic factors driving fine-scale adaptive 
population differentiation in pike include salinity (Jørgensen 

et al. 2010; Sunde et al. 2018, 2022; Arlinghaus et al. 2023), 
and local temperature (Sunde et al. 2019). Subpopulation-
specific variation in early life history traits, growth rates, 
vertebra number and reproductive investment (Berggren 
et al. 2016; Tibblin et al. 2015, 2016) indicated the evolu-
tion of ecotypes with limited gene flow.

The literature on coastal pike often emphasizes two 
ecotypes: A brackish resident, adapted to reproduce in salini-
ties up to 10 PSU (Arlinghaus et al. 2023; Jørgensen et al. 
2010; Sunde et al. 2018), and an anadromous ecotype that 
forages in coastal sites but returns to freshwater for repro-
duction (Arlinghaus et al. 2023; Larsson et al. 2015; Müller 
et al. 1986). This dichotomy mirrors ecotype literature in 
various fish species, such as benthic vs. pelagic (e.g., Blain 
et al. 2023), limnic vs. marine (e.g., Kusakabe et al. 2017) 
or migratory vs. resident (e.g., Olsson et al. 2006). However, 
intermediary phenotypes with flexible habitat use between 
freshwater and brackish water have repeatedly been reported 
in coastal fishes (Almeida et al. 2023; Kerr et al. 2007, 2009; 
Limburg et al. 2001; Rohtla et al. 2020, 2023; Russell et al. 
2022), challenging the dichotomous perspective and hinting 
at patterns of partial migration (Chapman et al. 2011). The 
presence of additional phenotypes has also been proposed 
in coastal pike populations (such as freshwater residents in 
tributaries, Birnie-Gauvin et al. 2019), but without genetic 
evidence to confirm them as ecotypes.

Previous studies on habitat use of coastal pike often 
focused on specific habitats (coastal habitats only in Engst-
edt et al. 2010; Jacobsen et al. 2017; or freshwater tributaries 
only in Engstedt et al. 2014; Tibblin et al. 2015), or specific 
life stages (natal origin, Möller et al. 2019, or adult move-
ments, Dhellemmes et al. 2023a). Therefore, much of this 
past research only resolved short periods of individual life 
cycles, and only for subsets of coastal populations. High-
resolution otolith microchemistry offers a powerful com-
plementary tool to purely genetic studies (Trueman et al. 
2012) by retrospectively identifying individual-level move-
ments between freshwater and brackish habitats throughout 
their entire lives, for example through strontium to calcium 
ratios (Sr:Ca, Kafemann et al. 2000), and by reconstructing 
thermal environments experienced by individuals through 
oxygen isotope ratios (δ18O values, Patterson et al. 1993). 
Lifelong individual assessments that cover all possible phe-
notypes, and link habitat use to genetic diversity and fitness 
surrogates, may reveal crucial aspects of the species’ evolu-
tionary history (Durif et al. 2023), and aid in detecting addi-
tional ecotypes (Stronen et al. 2022).

The study objective was to identify the full suite of behav-
ioral phenotypes and genotypes present in a coastal pike 
population along a salinity gradient from freshwater tribu-
taries to mesohaline lagoons, compare subpopulation-level 
fitness (using growth as a proxy), and identify ecotypes. 
To assess evolutionary divergence, individual-level 
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thermosaline habitat use was matched to individual-level 
genotypic information, using genomic markers involved in 
adaptive divergence along a salinity gradient. We hypothe-
sized that (1) thermosaline habitat use changes with size and 
age, with smaller pike inhabiting warmer, less saline habitats 
that become increasingly colder and more saline as individu-
als grow; (2) pike in brackish lagoons and their tributaries 
have evolutionarily diverged into multiple phenotypically 
and genetically distinct ecotypes; and (3) adaptation to salin-
ity is a driver of ecotype evolution of pike in coastal brackish 
lagoons and adjacent tributaries.

Materials and methods

Study site and sampling

We studied the pike population in brackish lagoons sur-
rounding Rügen island in the southern Baltic Sea, Ger-
many. This interconnected system of lagoons and tributar-
ies features strong environmental gradients in salinity and 
temperature. Freshwater from rivers (e.g., Recknitz, Barthe, 
Odra, Peene) mixes with brackish water from the Baltic Sea, 
forming oligohaline lagoons towards the west (Saaler Bod-
den, SAB, Bodstedter Bodden, BOB, Fig. 1) and southeast 
(Peenestrom, P, Achterwasser, AW, and Stettiner Haff, SH, 
Fig. 1). Additionally, numerous smaller creeks and drainage 
ditches, many of which were obstructed by pump sheds and 
shutters during melioration measures in the 1970s (Roser 
et al. 2023), drain into the lagoons (Fig. 1). Salinity levels 
increase from an annual average of 3–5 PSU in the western 
oligohaline lagoons to 8–10 PSU in the northwestern meso-
haline lagoons (Western Rügen Bodden chain, WRBC, and 
Northern Rügen Bodden chain, NRBC, Fig. 1), and from 2 
to 3 PSU in the southeastern oligohaline lagoons to 6.5 PSU 
in the northeastern mesohaline lagoon (Greifswalder Bod-
den, GB, Fig. 1). A temperature gradient spans from warmer 
average annual temperatures in the eutrophic lagoons in the 
southwest (SAB, BOB) and southeast (P), towards colder, 
mesotrophic lagoons in the north (WRBC and NRBC) 
(Fig. S1, Table S1).

To assess the full range of phenotypic diversity along 
the salinity and temperature gradient, we sampled 66 adult 
pike (> 95% maturation size, Palder et al. 2023) (43 females, 
23 males, 40 – 126 cm total length, mean ± standard devia-
tion, 82 ± 17 cm, 1 – 13 years in age) from the three major 
mesohaline lagoon chains WRBC (N = 24), NRBC (N = 24) 
and GB (N = 18), and 54 adult pike (36 females, 18 males, 
42 – 106 cm, mean total length 77 ± 13 cm, 1 – 11 years in 
age) from adjacent freshwater tributaries (Fig. 1) over three 
consecutive years (2019 – 2022) for otolith microchemistry. 

To capture both resident and migratory phenotypes, we col-
lected fish outside the spawning season (outside March and 
April) in the brackish lagoons, and during the spawning sea-
son (March and April) in the freshwater tributaries, when 
we assumed all phenotypes were present in a given habitat 
(Table S2). To ensure salinity differences between habitats 
were sufficient to be measured via otolith microchemistry, 
we excluded oligohaline lagoons. To sample the full range 
of freshwater residents, a small additional set of fish (N = 11) 
was captured in tributaries outside the spawning season in 
July 2019. To cover variability across larger spatial scales 
and different habitat types, tributaries of varying size and 
location were sampled: Larger rivers Barthe (N = 23) and 
Peene (N = 5), medium-sized creeks Sehrowbach (N = 20) 
and Ziese (N = 5), and two small drainage ditches, Neuen-
dorfer Hechtgraben (NHG, N = 3) and Badendycksgraben 
(BKG, N = 2, Fig. 1). To mitigate gear-induced bias on size 
and age structure, multiple gears were employed (Wilson 
et al. 2015): Gill nets, fyke nets and angling in brackish 
lagoons, as well as electrofishing in freshwater tributaries 
(Table S2). Fish were sampled by the research team and by 
contracted fishers, measured (total length, mm), internally 
sex determined, fin clipped for genetic analyses, and sagittal 
otoliths were retrieved. To represent different age classes 
for lifelong phenotypic assessments, pike were selected ran-
domly in a length-stratified manner. We aimed for an equal 
sex ratio at 5 cm size class intervals and equal sample sizes 
for each lagoon chain and tributary. Sampling limitations 
and sex-dimorphic growth (Casselman 1995) did ultimately 
not allow for an equal sex ratio (Figs. S2, S3). Low capture 
rates did not allow for length-stratified sampling in all tribu-
taries, so tributary samples were pooled for some analyses 
(Table S2). However, we acquired length-stratified sam-
ples in two tributaries draining into two different lagoons 
(Sehrowbach and Barthe, Table S2), and supplemented sam-
ples from the other tributaries to cover the spatial gradient 
of freshwater tributaries in the region (Fig. 1).

To assess genetic diversity present in the lagoon system at 
the individual level, we sampled 1514 individuals for which 
fin clips were collected non-lethally via cooperating fishers 
and anglers and by the research team across the entire salin-
ity gradient (including oligohaline lagoons) and all major 
tributaries (Fig. 1). In addition, 6 fish were collected from 
a freshwater lake (Kleiner Döllnsee) roughly 250 km to the 
south of the study system. All fish were individually geno-
typed (see below). For a subset of pike where both otolith 
microchemistry and genotype information was available 
(N = 101), data were used for phenotype-genotype match-
ing as described below.
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Otolith microchemistry

To assess the lifelong thermal environment experienced 
by each individual fish, intraotolith δ18O (‰ relative 
to Vienna Pee Dee Belemnite, VPDB) values were deter-
mined at 35 µm intervals along transects from the oto-
lith core to the outer edge, covering all visible year rings 
(annuli) on transverse thin sections of sagittal otoliths 
with secondary ion mass spectrometry (SIMS) at the Geo-
ForschungsZentrum (GFZ), Potsdam. To resolve the life-
long saline environment, Sr:Ca ratios (mg/g) were deter-
mined at GEOMAR Helmholtz Centre for Ocean Research 
Kiel with laser ablation inductively coupled plasma mass 
spectrometry (LA-ICPMS), at 5.5 µm intervals within the 
same core–edge transects used for SIMS. An average of 40 
combined elemental determinations per individual otolith 

equated to an average spatial resolution of 14 values per 
annulus, achieving sub-monthly temporal resolution. To 
correct δ18O values for salinity-induced effects (Darnaude 
et al. 2014), we extracted residuals from a linear regres-
sion of δ18O on Sr:Ca values from the same location on the 
otolith. δ18O residuals were then assumed to reflect life-
long individual variation in the thermal environment. Age, 
annual otolith growth increments and radius of each otolith 
were determined to estimate the growth rate as per Rit-
tweg et al. (2024). To avoid back-calculation assumptions, 
growth analyses were conducted on otolith annual incre-
ments (supplement, section B).

Analysis of otolith transects

We used individual-level salinity and thermal metrics to 
identify habitat use patterns in pike. We applied dynamic 

Fig. 1   Capture locations of northern pike (Esox lucius) between 
July 2019 and April 2022 around Rügen island, Germany. Numbers 
highlighted in blue indicate the number of pike captured for otolith 
microchemistry (total N = 120) at the respective locations, numbers 
highlighted in red indicate the total number of genetic samples (total 
N = 1514) from a location. Major  brackish lagoon chains used for 
otolith sampling are outlined in color: WRBC Western Rügen Bod-
den Chain, NRBC Northern Rügen Bodden Chain, GB Greifswal-
der Bodden. Labels with white text buffer are referring to brackish 

lagoons, labels without text buffer to  freshwater tributaries. Single 
lagoon abbreviations (from west to east): SAB Saaler Bodden, BOB 
Bodstedter Bodden, BAT Barther Bodden & Grabow, KB Kubitzer 
Bodden, SB Schaproder Bodden, ST Strelasund, WB Wieker Bodden, 
BEG Breeger Bodden, GJB Großer Jasmunder Bodden, KJB Kleiner 
Jasmunder Bodden, P Peenestrom, AW Achterwasser, SH Stettiner 
Haff. Tributary abbreviations: NHG Neuendorfer Hechtgraben, BKG 
Badendycksgraben
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time warp (DTW) clustering on individual elemental tran-
sects of Sr:Ca and δ18O residuals, pooling samples from 
brackish lagoons (N = 66) and tributaries (N = 54). We per-
formed an agglomerative hierarchical clustering following 
Hegg and Kennedy (2021), using Wards distance with a 5% 
slanted band window in the R package dtwclust  (v5.5.10, 
Sarda-Espinosa 2022). A range of clustering solutions (num-
ber of clusters k = 2 – 10) were tested, with the ideal number 
of clusters determined by a majority vote from six internal 
cluster validity indices (Barbour et al. 2023). Dynamic time 
warp clustering may result in very fine-grained cluster solu-
tions, as both the shape and mean values of a time series are 
evaluated (Hegg and Kennedy 2021). To account for clusters 
of fish distinguished solely based on differences in mean 
values between habitats that were otherwise ecologically 
similar (such as migratory fish from streams draining into 
lagoons of different average salinity, or brackish resident fish 
differing in mean δ18O residuals due to differences in mean 
temperature between lagoons), we grouped the resulting 
clusters further into a smaller set of ecologically informa-
tive groups, which we interpreted as behavioral phenotypes. 
To that end, a decision framework, grouping by capture 
location (e.g., pike captured in tributaries during spawning 
could not be brackish residents), natal origin (e.g., pike with 
Sr:Ca values corresponding to brackish water in the otolith 
core could not be freshwater resident), and lifelong habitat 
use (e.g., oscillations in Sr:Ca or δ18O residuals indicated 
habitat shifts), was applied (supplement, section C). To test 
whether these final behavioral phenotypes accurately repre-
sented natal (first year), early (second year) and later life (all 
remaining years) habitat use, we tested the reproducibility 
of behavioral phenotype assignments from average values 
of Sr:Ca and δ18O for the different life stages using jack-
knife cross-validation (MASS package, v7.3.57, Venables 
and Ripley 2002). The frequency distribution of behavioral 
phenotypes across capture locations was then assessed with 
a Χ2-test.

Genetic population structure

To identify genotypes, we developed a genotyping assay 
based on a panel of 33 single nucleotide polymorphism 
(SNP) markers, targeting previously identified genomic 
candidate regions with maximal differentiation. To iden-
tify candidate genomic regions of maximal allele frequency 
difference that were likely involved in adaptive population 
divergence, we screened sequences of 11 DNA pools, repre-
senting samples of putative brackish, putative freshwater and 
putative anadromous populations by capture location (Roser 
et al. 2023), using whole-genome sequencing. Genes associ-
ated with these regions and their functions were identified 
based on an annotated pike genome (GCF_011004845.1, 
NCBI, 2020). Next, we individually genotyped all 1,514 

pike, including 101 pike (N = 58 brackish, N = 43 tributary) 
for which both behavioral phenotype and genetic data were 
available. We used STRU​CTU​RE (Pritchard et al. 2000) to 
determine the most likely number of genetic clusters and 
extract individual assignment probabilities to each genetic 
cluster. A PERMANOVA (vegan package, v2.6–2, Oksanen 
et al. 2022) tested the association between genotype and 
behavioral phenotypes, using assignment probabilities to the 
four genotypes as dependent variables. To assign discrete 
individual genotypes for frequency testing, an assignment 
probability threshold of 0.7 (Austrich et al. 2020; Skey et al. 
2023) was applied, which offered a compromise between 
retaining individuals in the sample and applying a conserva-
tive threshold. We also tested the association of genotype, 
phenotype, and capture location with Χ2-tests. Behavioral 
phenotypes that differed significantly in their genotype 
assignment probability from all others, i.e., represented phe-
notypically and genetically distinct entities, were interpreted 
as ecotypes in the sense of Stronen et al. (2022).

Growth analyses

To examine whether behavioral phenotypes and genotypes 
differed in age-specific growth and in response to thermo-
saline niche, we fitted linear mixed effect models to annual 
otolith increments. Behavioral phenotype, genotype, average 
annual δ18O residual as thermal proxy, average annual Sr:Ca 
as salinity proxy, age and sex were fixed effects, with a quad-
ratic term for age, as growth slows down with age (von Ber-
talanffy 1938). Sex is a known predictor for growth in pike, 
with females growing larger than males (Casselman 1995). 
Individual ID was a random predictor, to account for the 
repeated measures design. To test for differences in age-spe-
cific growth rate, we included interactions between behav-
ioral phenotype/genotype (run in separate models) and age. 
The model was run using restricted maximum likelihood 
estimation (lme4 & lmerTest packages, v. 1.1.30 and 3.1.3, 
Bates et al. 2015), and log-likelihood ratio (LLR) test for 
significance. Model assumptions were assessed graphically.

To infer lifelong growth performance, we estimated 
individual-level von Bertalanffy growth functions (von 
Bertalanffy 1938) separately for behavioral phenotypes, 
genotypes, and ecotypes, in a hierarchical Bayesian approach 
(Stan, version 2.21.0). Otolith radius R at age t was estimated

with Rt,i as the radius of fish i at age t. R∞,i is the theoretical 
maximum radius, ki is the Brody growth completion coef-
ficient, ti is the estimated age, and t0,i is the age at which 
radius was zero for fish i. Radii at ages were nested within 
individuals, and individuals were nested within phenotypes/
genotypes. Parameters of the models were assumed to be 

R(t,i) = R∞,i

(

1 − e
−k

�
(t
�
−t0,�

)

,



281Oecologia (2024) 206:275–292	

gamma-distributed with phenotype/genotype-specific mean 
and precision. Convergence problems and autocorrelation 
were assessed graphically (supplement, section F). Non-
overlapping credibility intervals (95%) were interpreted as 
significant differences in lifetime growth among behavioral 
phenotypes, genotypes, or ecotypes.

Results

Behavioral phenotypes

Time-series clustering identified four clusters as the best 
solution for the lagoon sample and six clusters for the tribu-
tary sample. In the tributary sample, several clusters differed 
only in later-life Sr:Ca values, while in the lagoon sample, 
several clusters differed only in mean δ18O residuals, but 
not in the shape of their lifelong trajectories (Figs. S4, S5). 
To discern general habitat use patterns, clusters were fur-
ther grouped based on natal origin, capture location and 
thermosaline history (supplement, section C). Through this 
approach, we identified four distinct behavioral phenotypes 
(Fig. 2):

	 (i)	 Freshwater residents (N = 27): Born in freshwa-
ter, these individuals exhibited low Sr/Ca values 
throughout life, suggesting freshwater residence, 

and a shift from warm (lower δ18O values) to colder 
(higher δ18O values) habitats with age (Fig. 2A).

	 (ii)	 Anadromous individuals (N = 21): Born in freshwa-
ter, these individuals oscillated between brackish and 
freshwater habitats in later life, with an ontogenetic 
shift from warm juvenile to colder adult habitats 
(Fig. 2B).

	 (iii)	 Brackish residents (N = 44): Born in brackish water, 
these individuals displayed high lifelong salinity, no 
freshwater signal and a weak ontogenetic shift from 
warm juvenile to colder adult habitats (Fig. 2D).

	 (iv)	 Cross-habitat phenotype (N = 28): Comprising pike 
captured from both freshwater tributaries and brack-
ish lagoons, this phenotype had no clear freshwater 
or brackish origin. It instead exhibited intermediate 
lifelong salinity, a distinct ontogenetic shift from 
warm juvenile to colder adult habitats, and oscil-
lations in salinity above the freshwater threshold 
(Fig. 2C).

These four behavioral phenotypes accurately reflected 
habitat use across life stages, with a high reproducibility 
rate based on life stage-specific Sr:Ca and δ18O residual 
values (82% correct jackknife reclassification). The ratio of 
males to females was constant across the behavioral phe-
notypes. In the lagoon sample (by capture location), 44 
individuals (67%) were identified as brackish residents, 17 
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Fig. 2   Behavioral phenotypes identified in northern pike (Esox lucius, 
N = 120), sampled between July 2019 and April 2022 from brack-
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in mg/g, fitted with a GAM smoothing Line. Lower panels show indi-
vidual lifelong δ18O residuals in transparent grey fitted with a GAM 
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(26%) as cross-habitat, and 5 (7%) as anadromous. For the 
tributary sample, the timing of sampling was important. 
All individuals captured in tributaries outside spawning 
season (July 2019) were classified as freshwater residents 
(N = 11, Table S2), while those sampled during spawning 
season (N = 43) included relevant proportions of anadro-
mous (N = 16, 37%) and cross-habitat types (N = 11, 26%), 
in addition to freshwater residents (N = 16, 37%, Fig. 3). The 
11 individuals captured in tributaries outside of spawning 
season were omitted from frequency distribution tests. Fre-
quency distributions of behavioral phenotypes of the remain-
ing fish (N = 109) followed the salinity gradient (χ2 = 9.54, 
df = 2, p = 0.008): Fish captured from higher salinity lagoons 
were more likely brackish residents, while frequencies of 
cross-habitat and anadromous pike significantly increased 
from higher salinity to lower salinity lagoons and freshwater 
tributaries (Fig. 3).

Genotypes

A genome-wide screen of 11 pooled sequence samples 
of pike revealed 33 candidate loci (supplement, section 

D, Table S4). Five SNP markers with high diagnostic poten-
tial between brackish water and freshwater samples were 
tightly associated with osmoregulatory genes, suggesting 
salinity contributed to the divergence (Table S4). Known 
functions of other candidate genes have not been associ-
ated with ecotypes in fishes yet (Table S4). STRU​CTU​RE 
analysis revealed k = 4 clusters as the best solution (Fig. 4). 
We called these clusters  putative freshwater genotype, puta-
tive anadromous genotype and two putative brackish water 
genotypes brackish 1 and 2. Distribution of genotypes was 
correlated with capture location: The two putatively brackish 
genotypes (N = 13 for brackish 1; N = 22 for brackish 2) had 
mostly been captured in brackish lagoons (92%). Putatively 
freshwater genotypes (N = 19) had mostly been captured in 
the larger rivers Peene and Barthe (84%), and putatively 
anadromous genotypes (N = 17) had mostly been captured  
in the smaller tributaries Sehrowbach and Ziese (76%) 
(χ2 = 81.84, df = 12, p < 0.0001, Fig. S12). 28 individuals 
did not reach the 0.7 assignment threshold and remained 
unassigned, suggesting they were related to more than one 
genotype.

Fig. 3   Distribution of behavioral phenotypes of northern pike (Esox 
lucius, N = 120), sampled between July 2019 and April 2022 in brack-
ish lagoons and freshwater  tributaries around Rügen island, Ger-
many. NRBC North Rügen Bodden chain, WRBC West Rügen Bod-

den chain, GB Greifswalder Bodden, NHG Neuendorfer Hechtgraben, 
BKG Badendycksgraben. The two lower pie charts on the left rep-
resent  the pooled samples  for freshwater tributaries and brackish 
lagoons
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Age‑specific and lifelong growth performance

The best performing age-specific growth model included 
age (continuous), sex (factor, 2 levels male/female), yearly 
mean δ18O residuals (δ18Ores, continuous) as thermal marker, 
z-scored yearly mean Sr:Ca (Sr, continuous) as salinity 
marker, an interaction term between age and behavioral 
phenotype (factor, 4 levels) and the random effect of indi-
vidual ID (1|ID, 120 groups). Genotype was not a signifi-
cant predictor of growth (LLR = 12.45, p = 0.26, Fig. S13), 
and was therefore not included in the final model.

The model,

explained 78.9% of the variance in otolith increments of 
the 120 pike individuals, 77.3% was explained by fixed 

log10 Increment ∼ age + age2 + sex + �18Ores

+ Sr + age × phenotype + (1|ID),

predictors (Table 1). Age and sex were significant predictors: 
As expected, fish grew slower with age, and females grew 
faster than males (Table 1). Relative temperature (δ18Ores) 
was a significant predictor, where warmer relative tempera-
ture led to faster growth (Table 1). This effect appeared to 
be mainly driven by the early growth phase and diminished 
as individuals grew older (Fig. 5). Salinities exceeding the 
population mean, assessed by Sr:Ca z-scores, had a nega-
tive effect on pike growth, consistent across the whole age 
range (Table 1; Fig. 5). Pike behavioral phenotypes showed 
different growth performance at different ages, as indicated 
by a significant interaction between phenotype and age. 
In early life, freshwater residents grew slower, and cross-
habitat types grew faster compared to the other phenotypes 
(Table 1). However, growth differences levelled out in later 
life (Fig. 6). We found no differences in lifelong growth 
between behavioral phenotypes, as 95% credibility inter-
vals overlapped between phenotype-specific von Bertalanffy 

Fig. 4   STRU​CTU​RE plot of individual northern pike (Esox lucius, 
N = 1514), sampled between July 2019 and April 2022 in brack-
ish lagoons and freshwater tributaries around Rügen island, Germany. 
Each vertical segmented line represents an individual pike. Sampling 
areas are ordered according to geographic location from west to east, 
and correspond to the sampling areas of Roser et al. (2023), described 

in detail in supplement, section D. The plot shows the best-fitting 
solution of k = 4 genetic clusters. Yellow and dark green corresponds 
to the putative brackish clusters brackish 1 and brackish 2, turquoise 
corresponds to the putative anadromous cluster, light green corre-
sponds to the putative freshwater cluster
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Table 1   Effects of fixed and random predictors on a linear mixed effects model of log10-transformed otolith increment widths of northern pike 
(N = 120), sampled from brackish lagoons and freshwater tributaries around Rügen island in Germany between July 2019 and April 2022

SE Standard error, SD Standard deviation, LLR Log-likelihood ratio. Significant effects are shown in bold
1 Marginal R2 describes the proportion of the total variance explained by fixed effects in the model; conditional R2 describes the proportion of 
total variance explained by fixed and random effects combined in the model

log10-transformed Increment width (marginal R2 = 0.77; conditional R2 = 0.79)1

Predictors Estimate (± SE) t-value LLR p-value

Intercept 2.76 (0.03) 85.67
Age – 0.15 (0.01) – 15.13
Age2 0.01 (0.00) 12.90 142.08  < 0.001 ***
Mean d18O residuals – 0.03 (0.01) – 4.74 20.79  < 0.001 ***
Mean Sr/Ca (z-score) – 0.04 (0.01) – 3.19 9.72  < 0.01 **
Phenotype [BW resident] – 0.02 (0.03) – 0.68
Phenotype [FW resident] – 0.08 (0.03) – 2.71
Phenotype [Cross-habitat] 0.04 (0.03) 1.07
Sex [male] – 0.03 (0.01) – 2.62 6.84  < 0.01 **
Lifeyear * phenotype [BW resident] 0.01 (0.01) 0.63 388.13  < 0.001 ***
Lifeyear * phenotype [FW resident] 0.01 (0.01) 1.52 388.13  < 0.001 ***
Lifeyear * phenotype [Cross-habitat] 0.01 (0.01) 0.11 388.13  < 0.001 ***

Random Effects Variance (± SD) t-value LLR p-value

ID 0.001 (0.03) 4.20 0.04
Residual 0.012 (0.11)

Fig. 5   Effect of relative temperature (A, salinity-corrected δ18O val-
ues) and relative salinity (B, Sr/Ca values) on growth increments of 
northern pike (Esox lucius, N = 120), captured in brackish  lagoons 
and freshwater  tributaries around Rügen island between July 2019 
and April 2022. Individuals were grouped into age categories: Early 
life (0–2 years), adult (3–6 years) and late adult (> 6 years), to vis-

ualize age- and stage-dependent effects. Colored lines represent the 
linear regression line between the predictor variable and the growth 
increments of each subgroup, and shaded areas around the regression 
lines depict the 95% confidence intervals. Note that no pairwise com-
parisons were run between discrete age classes in the model
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parameter estimates for all phenotypes (Table 2; Fig. 7). 
Similarly, average lifelong growth showed no difference 
between genotypes, or ecotypes (Tables S5, S6; Figs. S14, 
S15).    

Matching behavioral phenotypes with genotypes 
to infer ecotypes

Behavioral phenotypes exhibited significantly different 
assignment probability distributions to the four geno-
types (PERMANOVA with 9999 permutations, F = 19.55, 
p < 0.001), with behavioral phenotype explaining 37.8% of 
the variance in genotype assignment probabilities. Freshwa-
ter residents (N = 21) and anadromous phenotypes (N = 11) 
were related to both putative anadromous and freshwater 
genotypes, with no significant differences in assignment 
probabilities (pairwise PERMANOVA, fdr-adjusted pair-
wise Wilks λ tests, p = 0.20), but not to the putative brackish 
water genotypes (pairwise PERMANOVA, pbrackish = 0.0015, 
Fig.  8; S11). In contrast, brackish resident phenotypes 
(N = 39) were genetically distinct from all other phenotypes 
and predominantly comprised of the putative brackish geno-
types 1 and 2 (pairwise PERMANOVA, panadromous = 0.0015; 
pfreshwater = 0.0015; pcross-habitat = 0.0096) (Fig. 8; Fig. S11). 
Cross-habitat phenotypes (N = 28) comprised a mixture of 

putative anadromous and both brackish genotypes, with 
little relation to the putative freshwater genotype (Fig. 8; 
Fig. S11). The genotypic composition of the cross-habitat 
phenotype was significantly different from all others (pair-
wise PERMANOVA, panadromous = 0.0015; pbrackish = 0.0096; 
pfreshwater = 0.0015). No obvious patterns in behavioral 
phenotype expression (Fig. 8; Fig. S11), or capture loca-
tion (Fig. S12), were evident for the two divergent putative 
brackish genotypes. Therefore, phenotype-genotype match-
ing suggested the presence of three ecotypes: (i) a brackish 
ecotype encompassing two genotypes with limited gene flow 
and life-time residence in brackish areas, (ii) a freshwater 
ecotype expressing either freshwater residency or anadromy, 
and (iii) an intermediary cross-habitat ecotype adapted to 
intermediate salinity and limited reliance on freshwater. 
Lifelong growth of the three ecotypes was not significantly 
different (Fig. S15).

Discussion

We integrated otolith microchemistry data on habitat use 
and migration behavior with genetic differentiation in a 
freshwater-adapted predatory fish, to test whether envi-
ronmental gradients in salinity and temperature promote 

Fig. 6   Predicted otolith incre-
ments for four behavioral 
phenotypes calculated from 
growth data of northern pike 
(Esox lucius, N = 120), sampled 
between July 2019 and April 
2022 in the brackish lagoons 
and several freshwater tributar-
ies around Rügen island in Ger-
many. Boxes depict the median, 
lower, and upper quantile of the 
data, with vertical lines depict-
ing the 95% confidence interval

Table 2   Phenotype-specific 
von Bertalanffy growth 
parameters of northern pike 
(N = 120), sampled between 
July 2019 and April 2022 
from brackish lagoons and 
freshwater tributaries around 
Rügen island

Parameter values are given in the interquartile range from 2.5% to 97.5% credible parameter space. Values 
in brackets denote the median parameter estimate

Phenotype L∞ k t0

Freshwater resident 2.61 – 3.18 (2.85) 0.10 – 0.13 (0.12) – 0.77 to – 0.46 (– 0.62)
Anadromous 2.60 – 3.09 (2.85) 0.11 – 0.14 (0.12) – 0.77 to – 0.48 (– 0.63)
Cross-habitat 2.61 – 3.31 (2.96) 0.10 – 0.14 (0.12) – 0.76 to – 0.52 (– 0.64)
Brackish resident 2.52 – 2.87 (2.68) 0.10 – 0.12 (0.11) – 0.93 to – 0.69 (– 0.81)
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ecotype diversification in a brackish lagoon ecosystem. 
Our findings supported our first hypothesis, revealing sig-
nificant ontogenetic variation in thermosaline niches among 
pike. They showed a preference for warmer and less saline 
habitats in early life, transitioning to colder, more saline 
environments as adults. In response to our second hypoth-
esis, we identified four behavioral phenotypes: Freshwater 
residents, anadromous individuals, brackish residents, and 
a previously unrecognized cross-habitat phenotype. While 
phenotype-genotype matching confirmed the evolution of 
three ecotypes, not all phenotypes exhibited clear genetic 
differentiation. Freshwater and anadromous phenotypes were 
genetically similar, and all genotypes expressed more than 
one behavioral phenotype. Our results imply a split between 
a freshwater/anadromous and a brackish-adapted ecotype, 
with a third, intermediary, cross-habitat ecotype connecting 
them. Supporting our third hypothesis, we found evidence 
of clear separation in behavioral phenotypes and genotypes 
along the salinity gradient of the brackish lagoons. Diver-
gent functional candidate genes related to osmoregulation 
suggested the observed differentiation was, at least in part, 
driven by adaptation to salinity.

Interindividual variability in habitat use revealed diverse 
migration and habitat use behaviors in the coastal pike 
meta-population. While previous studies have described 
three behavioral phenotypes in coastal pike—brackish resi-
dents, anadromous, and freshwater residents (e.g., Birnie‐
Gauvin et al. 2019; Jacobsen et al. 2017; Möller et al. 
2019; Nordahl et al. 2019)—we identified a fourth behav-
ioral phenotype. This cross-habitat phenotype resembled 
intermediary behaviors connecting freshwater and marine 
realms reported in other coastal fishes (Almeida et  al. 
2023; Kerr et al. 2007, 2009; Limburg et al. 2001; Rohtla 
et al. 2020, 2023; Russell et al. 2022). Each behavioral 
phenotype likely faces specific trade-offs. Brackish resi-
dents avoid energetically costly spawning migrations and 
benefit from access to marine prey in the brackish lagoons 
(Winkler 1987). But they face risks of reproductive failure 
during high saline inflows (Sunde et al. 2018; Arlinghaus 
et al. 2023), and predation by top predators such as grey 
seals (Halichoeres gryphus) (Bergström et al. 2022; Olin 
et al. 2024). Freshwater residents also do not migrate and 
avoid the need for osmoregulatory adaptations. However, 
they may experience lower prey availability (Rohtla et al. 

Fig. 7   Von Bertalanffy growth 
curves of four behavioral pheno-
types described in northern pike 
(Esox lucius, N = 120), sampled 
between July 2019 and April 
2022 in brackish lagoons and 
freshwater tributaries around 
Rügen island, Germany. Grey 
lines represent individual-level 
growth curves. Colored lines 
represent mean radius-at-age 
of phenotypes, with shaded 
areas indicating 95% credible 
intervals

0

1

2

3

1 3 5 7 9 11 13 15

Freshwater resident (N = 27)

0

1

2

3

1 3 5 7 9 11 13 15

Anadromous (N = 21)

0

1

2

3

1 3 5 7 9 11 13 15

Cross−habitat (N = 28)

0

1

2

3

1 3 5 7 9 11 13 15

Brackish resident (N = 44)

Age (years)

O
to

lit
h 

ra
di

us
�m

m
�



287Oecologia (2024) 206:275–292	

2012) and local environmental challenges, such as vary-
ing water levels and anoxic conditions in highly modi-
fied tributaries (Roser et al. 2023), reducing early growth. 
Anadromous individuals spawn in freshwater and benefit 
from productive brackish environments after outmigra-
tion (Rohtla et al. 2012). In turn, they face energy costs 
and increased mortality risk during migrations (Haugen 
et al. 2006). Cross-habitat individuals select intermediary 
habitats for spawning, such as sheltered bays with fresh-
water influence (Flink et al. 2023) and river mouths (Dhel-
lemmes et al. 2023b; Lukyanova et al. 2024), potentially 
avoiding extensive migrations. Their offspring can then 
benefit from less saline conditions while retaining access 
to brackish environments, resulting in rapid early growth. 
However, the absence of old individuals in this phenotype 
suggests increased adult mortality, potentially offsetting 
early growth advantages (Roff 1988).

The positive effect of temperature on pike growth, par-
ticularly in early life, aligns with previous research (Pagel 
et al. 2015), suggesting that young pike thrive in shel-
tered habitats that warm up faster (Pursiainen et al. 2021). 
All phenotypes except freshwater residents experienced 

increasing salinities with age, which reflects higher 
osmoregulatory capacity in adults (Varsamos et al. 2005). 
This allows older and larger individuals to explore more 
saline habitats with a wider prey range (Winkler 1987). 
However, there is an upper limit to salinity adaptation 
(Jacobsen and Engström-Öst 2018), as higher salinities 
negatively affect growth, likely due to the energetic costs 
of osmoregulation in fluctuating salinities (Bœuf and 
Payan 2001). Our findings collectively suggest that pike 
undergo ontogenetic habitat shifts from less saline, warm 
habitats to open, more saline habitats, similar to habitat 
shifts from shallow to deeper habitats known from pike in 
lakes (Casselman and Lewis 1996), but also indicate that 
higher salinities can reduce growth despite evolutionary 
adaptations to brackish environments.

Our study builds upon prior research on coastal pike 
(e.g., Engstedt et al. 2010, 2014; Möller et al. 2019, 2020; 
Tibblin et al. 2015, 2016; Nordahl et al. 2019; Sunde et al. 
2018, 2019, 2022) by linking behavioral phenotypes with 
underlying genotypes along a salinity gradient. Genetic dif-
ferentiation among behavioral phenotypes suggests evolu-
tionary adaptations to salinity, consistent with earlier findings 
(Arlinghaus et al. 2023; Jørgensen et al. 2010; Lukyanova 
et al. 2024; Sunde et al. 2018, 2022). In addition, IBD (Möller 
et al. 2020; Nordahl et al. 2019), adaptations to other ecologi-
cal factors, such as temperature (Sunde et al. 2019), and habi-
tat alterations (Eschbach et al. 2021; Roser et al. 2023), i.e., 
IBR, may all have contributed to the observed patterns. For 
instance, the blocking of freshwater tributaries since the late 
1970s in the study region (Roser et al. 2023) likely increased 
selection pressure for the evolution of cross-habitat pike. 
Differences in phenotypic and genotypic frequencies were 
particularly evident at the extremes of the salinity gradient, 
indicating salinity adaptation, i.e., IBE, was a major driver 
of differentiation, consistent with previous studies (Sunde 
et al. 2022). Unexpectedly, we identified two divergent, spa-
tially overlapping genotypes within the brackish lagoons. The 
absence of thermosaline niche differentiation among the two 
brackish genotypes suggests sympatric coexistence. Previous 
telemetry work in our study area hinted at subtle differences 
in thermal microhabitat between the two brackish genotypes, 
but these differences were not statistically significant (Nolte 
et  al. 2023). Mechanisms for the reproductive isolation 
between the two brackish genotypes remain unclear and may 
involve other ecological factors not resolved by our work.

Our study did not provide conclusive evidence for life-
long growth advantages between the behavioral phenotypes, 
genotypes, and ecotypes. Similar growth rates can facilitate 
coexistence (Kobler et al. 2009), as growth strongly cor-
relates with fitness in pike (Haugen et al. 2006). However, 
despite comparable growth rates, different phenotypes and 
genotypes might still vary in reproductive fitness due to dif-
ferent breeding success in fluctuating environments (Bell 
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Fig. 8   Assignment probabilities to four genetic clusters identified by 
STRU​CTU​RE for four behavioral phenotypes described in north-
ern pike (Esox lucius, N = 101), sampled from brackish  lagoons and 
freshwater  tributaries around Rügen island between July 2019 and 
April 2022. Boxes represent upper and lower quantile along with 
median assignment probability value per genotype, vertical lines rep-
resent the 95% confidence intervals, single points represent outlier 
values, and red diamonds indicate mean assignment probability per 
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2010). Controlled common garden experiments using off-
spring from wild-captured parents, either pure or hybrids, 
as well as large-scale tracking and offspring assignments to 
parents could provide insights into the environment-depend-
ent reproductive fitness variation of the various phenotypes, 
genotypes and ecotypes.

The presence of two well-defined ecotypes in freshwa-
ter and brackish habitats, linked by a third intermediary 
cross-habitat ecotype, aligns with the theory of habitat 
selection and ecotype evolution in variable environments 
(Rosenzweig 1974; Brown 1990). The overlap in behavioral 
phenotype expression between putatively anadromous and 
freshwater genotypes suggests a single freshwater-adapted 
ecotype, expressing migratory or resident behavior, which 
may depend on both environmental (Olsson et al. 2006) and 
genetic cues (Vainikka et al. 2023), consistent with predic-
tions from partial migration theory (Chapman et al. 2011). 
Indeed, telemetry work on putatively anadromous pike in our 
study area revealed flexibility in migration behavior among 
years, with some individuals migrating into tributaries in 
one year, but remaining in estuaries during spawning time in 
the next (Dhellemmes et al. 2023b). Genetic differentiation 
between freshwater and putatively anadromous pike likely 
arose from local adaptation, exacerbated by isolation by dis-
tance, natal homing and spawning site fidelity to specific 
streams (Engstedt et al. 2014; Nordahl et al. 2019). The well-
defined brackish resident ecotype has adapted to complete its 
entire life cycle in brackish habitats, and is known to show 
the highest reproductive fitness at intermediate salinities 
(Arlinghaus et al. 2023). The third, less defined cross-habitat 
ecotype, is an intermediate between freshwater/anadromous 
and brackish residency. This ecotype might be a response 
to extensive blockage of freshwater tributaries in the 1970s 
(Roser et al. 2023). These habitat alterations likely caused 
selection pressures for intermediate behavioral strategies that 
seek out low salinity areas for spawning, consistent with pre-
vious studies showing rapid adaptive divergence in response 
to anthropogenic habitat alteration in pike (Bekkevold et al. 
2015; Eschbach et al. 2021). Therefore, the cross-habitat 
ecotype potentially evolved as a hybrid between anadromous 
and brackish lagoon genotypes that thrives in intermediate 
salinities. A discrepancy in the proportion of brackish resi-
dents (68%) in our work compared to previous studies in the 
same region (98.7%, Möller et al. 2020) can be explained by 
our identification of the cross-habitat ecotype.

Our results challenge the dichotomous categorization of 
pike into just two ecotypes along the Baltic coast, suggest-
ing a range of individual habitat use and migration behav-
iors connect the two behavioral endpoints of freshwater and 
brackish residency. Behavioral extremes correspond with 
the extremes of the salinity gradient, consistent with par-
tial migration theory (Cagnacci et al. 2011; Chapman et al. 
2011). Adding to similar observations in other coastal fish 

species (Almeida et al. 2023; Kerr et al. 2007, 2009; Limburg 
et al. 2001; Rohtla et al. 2020, 2023), we suggest intermedi-
ary behaviors and partial migration patterns are a common 
and often overlooked occurrence in coastal fish populations. 
Conservation of the pike population requires protecting the 
whole suit of intrapopulation diversity, to retain portfolio 
effects of population productivity in the face of environmen-
tal change (Schindler et al. 2010). In light of stressors asso-
ciated with climate change, eutrophication, flow disruption, 
and migration barriers in the region (Roser et al. 2023), ana-
dromous phenotypes, already rare in the study region (Möller 
et al. 2019, 2020; Roser et al. 2023), might eventually go 
extinct, decreasing phenotypic diversity and resilience of 
coastal pike populations (Schindler et al. 2010).

Limitations

Our study system showed significant seasonal water δ18O 
fluctuations due to evaporation during our study period 
(Aichner et al. 2022). However, these were consistent across 
the area and unlikely to impact our relative thermal proxy. 
Our sampling design for the otolith microchemistry did not 
cover the oligohaline lagoons and only two streams were 
sampled at depth, potentially underrepresenting freshwa-
ter phenotypes. But we found strong genetic similarities 
between oligohaline lagoons and freshwater tributaries, sug-
gesting our sample likely captured the phenotypic diversity 
present in the system, despite this limitation. Further, ana-
dromous fish might be in rivers only for restricted periods 
of times (days or weeks, Dhellemmes et al. 2023b), which 
might not be sufficient to be detected in otoliths. However, 
the temporal resolution of otolith transects, particularly 
in the early years, reached up to 40 combined determina-
tions per annulus, which we deemed sufficient for detecting 
freshwater excursions even on weekly scales. In addition, 
the semi-random sampling design of our study prevented 
us from arriving at unbiased estimates of phenotypic com-
position at the different capture locations. Nonetheless, the 
result of phenotype frequency in response to the salinity 
gradient should be robust. Another limitation was our clus-
tering approach, which might have obscured subtle patterns 
in juvenile and adult habitat use. However, high jackknife 
reproducibility (82%) of behavioral phenotypes indicated 
an accurate representation of habitat use across ontogenetic 
stages. Finally, a limited within-group sample size may 
have biased results on age-specific and lifelong growth, so 
that smaller differences remain undetected. Indeed, other 
research in the region suggests that the lifetime growth of 
freshwater residents may be lower than that of brackish resi-
dents (Rittweg et al. 2023), but we only detected this effect 
in the juvenile life stage.
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Conclusions and implications

Our study suggests that a salinity gradient in lagoon eco-
systems fostered intraspecific diversification of ecotypes 
with distinct realized thermosaline niches that show similar 
growth, indicating comparable fitness potential. Flexible 
migration and habitat use behavior, both across phenotypes 
but also ontogenetically, constitute an adaptation to variable 
local ecological factors and contribute to ecotype evolution. 
The notion of pike as stenohaline freshwater species that 
can be categorized into only two ecotypes in coastal habi-
tats (anadromous vs. brackish resident) is challenged by our 
findings, suggesting the species can evolve intermediary 
migration and habitat use strategies, and complete its life 
cycle across a wider range of salinities. That said, the nega-
tive impact of above-average salinities on growth, as well as 
laboratory findings of reduced reproductive success at salini-
ties exceeding 10 PSU in brackish-adapted pike (Arlinghaus 
et al. 2023), indicates an upper threshold for salinity toler-
ance in this species. From a conservation perspective, our 
findings highlight the importance of maintaining and, if 
possible, increasing access to freshwater tributaries through 
habitat restoration (Roser et al. 2023). This could maintain 
phenotypic and genotypic diversity and increase the resil-
ience of the pike meta-population through portfolio effects 
(Schindler et al., 2010). Improving connectivity between 
brackish lagoons and freshwater tributaries can help sustain 
and increase the currently rare anadromous fish and would 
likely also be of use for the conservation and improvement 
of cross-habitat pike.
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