
Semantic Zoom
With Immersive Detail View for

ExplorViz

Jens Bamberg

Master Thesis
December 3, 2024

Software Engineering Group
Department of Computer Science

Kiel University

Advised by
Prof. Dr. Wilhelm Hasselbring

M. Sc. Malte Hansen

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

The demand for large software projects is growing and therefore the use of software
visualizations is a precious tool for onboarding new developers and introducing new
software features. The use of visualizations is an effective method for accelerating the
comprehension of data. Given the limited visual processing power of the human brain, the
amount of visible objects can become overwhelming. It is therefore necessary to reduce the
number of visible objects at once without losing access to important details. In light of these
considerations, we introduce two new features, namely semantic zoom and immersive
view, to the domain of software visualization, with ExplorViz serving as a case in point.
ExplorViz is a 3D city metaphor software visualization tool that displays both dynamic and
static data. Semantic zoom is a common technique employed in 2D graph representations
for the aggregation of data. In this work, the semantic zoom feature is applied to a 3D
visualization. The feature in question conceals, reveals, and modifies the 3D objects of
the visualization in accordance with the position of the camera within the environment.
The immersive view offers a comprehensive, unobstructed representation of the object in
question, free from the distractions inherent to traditional visualizations.

A user and a system’s performance evaluation provides insight into the usability and
performance improvements. The system’s performance evaluation indicates a higher rate
of frames per second on average in large landscapes compared to a system without the
semantic zoom feature. However, the frames per second exhibited more fluctuations and
could even reach almost zero in some cases. A user evaluation was conducted with 16
participants to examine the user performance while performing tasks in the visualization.
The results of the user evaluation indicate no improvement in the time required to complete
the tasks. However, the participants rated the interaction with the visualization positively.
The newly introduced immersive view provided further detailed information and was
considered beneficial by the participants.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Document Structure . 2

2 Goals 5
2.1 G1: Integration of Semantic Zoom and Level of Detail 5

2.1.1 G1.1: Identification of Objects and Metrics That Are Suitable for
Semantic Zoom and Level of Detail . 5

2.1.2 G1.2: Addition of Different Levels of Detail 5
2.1.3 G1.3: Implementation of Semantic Zoom for Appropriate Objects . . 5
2.1.4 G1.4 Optional: Improve Performance Using WASM for Goal 1.3 . . . 6

2.2 G2: Adding an Immersive View . 6
2.2.1 G2.1: Structuring and Designing of an Immersive View 6
2.2.2 G2.2: Immersive View Implementation 6

2.3 G3: Performance Evaluation of Goal 1 . 6
2.4 G4: Usability Evaluation by Users for Goal 1 and Goal 2 6

3 Foundations and Technologies 7
3.1 Semantic Zoom and LoD . 7
3.2 Three.js . 7
3.3 Ember.js . 8
3.4 OpenTelemetry . 9
3.5 ExplorViz . 10

4 Related Work 13

5 Semantic Zoom 19
5.1 Analysis of the Current ExplorViz State . 19
5.2 Fundamental Appearance Options . 19
5.3 New Designs, Metrics and Aggregations . 21
5.4 Concept and Pre-Implementation Thoughts . 22
5.5 Implementation of Semantic Zoom . 23

5.5.1 Appearences . 23
5.5.2 Algorithms To Decide on Level of Detail 24
5.5.3 Programmer Interface . 33
5.5.4 Known Problems and Limitations . 34

vii

Contents

5.6 User Settings and Parameters . 34

6 Immersive View 37
6.1 General Concept . 37
6.2 Analyze of Attachment Point for ExplorViz . 38
6.3 Implementation of Immersive View . 39

6.3.1 Current Data Model . 39
6.3.2 Example Implementation Based on the Immersive Class View 39
6.3.3 Entering/Exiting . 41

7 Evaluation 43
7.1 Goals . 43
7.2 Performance Evaluation . 43

7.2.1 Setup . 43
7.2.2 Evaluation Results . 46
7.2.3 Discussion . 46
7.2.4 Threats to Validity . 47

7.3 User Evaluation . 47
7.3.1 Setup . 48
7.3.2 Pretest . 48
7.3.3 Introduction to ExplorViz . 48
7.3.4 General Questions . 49
7.3.5 Questions and Assignments for Semantic Zoom 49
7.3.6 Questions and Assignments for Immersive View 51
7.3.7 Evaluation Results . 52
7.3.8 Discussion . 60
7.3.9 Threats to Validity . 62

8 Conclusion 65
8.1 Future Work . 66

A Cheat Sheet 69

Bibliography 75

viii

Chapter 1

Introduction

Software developers spent more time reading code compared to writing code [Scalabrino
et al. 2018]. Reading is required to comprehend the system in order to extend or maintain it.
A software visualization tool is designed to facilitate a more comprehensive understanding
of complex software projects. This is particularly crucial when new features are introduced,
existing features are modified, or new developers are integrated into a team. Visualization
tools can assist in the maintenance of software, as developers build an internal represen-
tation of the code architecture in their mind [Teyseyre and Campo 2009]. The software
visualization assists in the creation of a comprehensive representation of the entire system,
that can be easily shared among developers. The images are constructed using a variety
of visual objects that represent systems or components [Teyseyre and Campo 2009]. This
approach allows the new developer to avoid the necessity of examining the entirety of the
source code, offering a comprehensive overview of the structure instead. Visualization of
dynamic runtime information provides insights into the communication patterns within
a software system that are not observable in static code analysis. The use of software
visualization is beneficial in aiding comprehension of software architecture, as well as
facilitating cognitive processing through the utilization of the visual cortex [Teyseyre and
Campo 2009]. There is much research regarding a 2D visualization [Wiens et al. 2017]
or even software visualization [Alnabhan et al. 2018], but a 3D representation is gaining
more popularity since the computation power has increased in the past years [Teyseyre
and Campo 2009]. ExplorViz is one of those 3D software visualization tools. The analyzed
software with ExplorViz is structured in a treemap structure, resulting in a 3D Code-City
displayed on the frontend. The city metaphor is a known technology in terms of 3D data
visualization, like [Balogh et al. 2016] showed with a 3D-Websearch-Tool.

1.1 Motivation

Understanding software is a time-consuming and costly process, especially when the code
was written by someone else [Al-Saiyd 2017]. A software visualization tool reduces the
comprehension time [Teyseyre and Campo 2009]. The objective of software developers
is to be presented with information in a precise manner on their screens. This includes
a trade-off between the simplification of the view and the insight to be gained from

1

1. Introduction

the information, which must be carefully considered to ensure optimal usability [Voinea
and Telea 2006]. In the current state of ExplorViz, packages are opened manually by
clicking on them or collectively via a context menu. The displayed information is static
and remains unaltered when interactions occur within the virtual environment. In this
context, Semantic Zoom serves as a solution. For instance, the packages could be opened
and closed automatically, depending on the developer’s view, without requiring direct
interaction. Another example is the problem of unreadable labels if they are too far away,
which can result in flickering artifacts. Interesting properties that are weighted more than
other properties will be displayed more often than common information. Identifying such
interesting properties represents another challenge. All modern 2D map visualization tools
like Google Maps 1 provide a Semantic Zoom feature. As an illustration, one may choose
to magnify the image in order to observe the street names more closely, or alternatively,
to reduce the magnification in order to view the cities or even the country names. This
functionality is available on various online map services.

The implementation of a Semantic Zoom feature is even more advised, since a study
by Luck & Vogel in 1997, shows how the human visual memory works [Liverence and
Franconeri 2015]. An experiment was conducted using up to 12 objects. They were first
visible and then disappeared in order to alter one object’s shape or color. All objects
reappeared and the participants were required to identify the object that had been changed.
The outcome was that the participants could only keep track of up to four objects and their
features in their Visual Working Memory (VWM). This indicates, that the VWM capacity is
limited. The objective of Semantic Zoom is to address this issue by reducing the level of
detail at distant objects and enhancing the level of detail at nearby objects, while ensuring
that the visibility of other objects is not compromised [Liverence and Franconeri 2015].

In addition to the proposed Semantic Zoom, a new detailed view without context
distraction is introduced. This view is called Immersive View.

Attentional blink also plays a role in determining the amount of visible information. The
attentional blink was tested by detecting two targets in a rapid serial visual presentation
of distractors. It was difficult to notice the second target if the first target occurred within
500ms prior [Victor 2000]. This result demonstrates that the brain not only has a limited
VWM but also requires time to process the information. That’s where Semantic Zoom and
Immersive View can help to maximize the potential of the VWM and work on the edge of
the attentional blink.

1.2 Document Structure

The introduction in the first Chapter provides a brief overview of the topic and its motiva-
tion. Chapter 2 followed by this Chapter describes the goals that are pursued. It is separated
into two main goals with several sub-goals and the evaluation of the goals. In Chapter 3

1www.google.de/maps

2

www.google.de/maps

1.2. Document Structure

technologies and the baseline of the project are introduced. Chapter 4 describes related
works and useful papers. After that the Chapter 5 and Chapter 6 describe the concept and
the implementation of the Semantic Zoom and the Immersive View. The evaluation for both
implementations is presented in Chapter 7. The Semantic Zoom feature is evaluated by a
performance measurement and a user evaluation. The Immersive View is only evaluated by
a user evaluation. The final Chapter 8 states the results and an outlook.

3

Chapter 2

Goals

2.1 G1: Integration of Semantic Zoom and Level of Detail

2.1.1 G1.1: Identification of Objects and Metrics That Are Suitable for
Semantic Zoom and Level of Detail

It should be noted that not all 3D objects displayed in ExplorViz are suitable for semantic
zooming. This includes those that display only a binary value. The objective of goal 1.1 is
to identify all suitable objects. They must then be grouped into different categories and
sorted by priority.

2.1.2 G1.2: Addition of Different Levels of Detail

All identified objects from goal 1.1 can be utilized in goal 1.2 to modify their visual
representation. It is essential to store the appearance of these objects in a generic way, as
this allows an algorithm in goal 1.3 to determine the optimal rendering strategy. This raises
the question of whether the appearance change is discrete or continuous.

2.1.3 G1.3: Implementation of Semantic Zoom for Appropriate Objects

The identified objects from goal 1.1 and goal 1.2 provide a basis for the Semantic Zoom, yet
it is lacking in the ability to make decisions regarding the displayed state. It is necessary to
determine whether the state of objects is modified only in accordance with the distance
to the camera, or whether additional factors should be taken into account. What is the
impact on performance if the distance of all objects to the camera is calculated? A review
of existing literature may provide insight into the optimal approach for addressing this
issue. In any case, the system should include parameters that allow users to modify the
sensitivity and alter these values in the frontend. The automatic handling of zoom should
not interfere with the user’s actions and can be disabled. If the performance of the Frames
per Second (FPS) in the visualization drops below 30 FPS in a decent-sized landscape, the
system is not considered useful.

5

2. Goals

2.1.4 G1.4 Optional: Improve Performance Using WASM for Goal 1.3

The introduced algorithm for rendering decisions can be optimized for enhanced perfor-
mance in scenarios involving a large number of objects when utilizing WebAssembly.

2.2 G2: Adding an Immersive View

2.2.1 G2.1: Structuring and Designing of an Immersive View

The default view can be characterized by a high degree of information density, with data
from nearby system components. In contrast, the Immersive View is designed to provide a
closed view with a singular focus on a designated object. This results in a context switch
with minimal or no connection to the previous view. The objective is to develop a structure
that specifies which objects are compatible with the Immersive View and to establish a
fundamental design framework.

2.2.2 G2.2: Immersive View Implementation

The Immersive View modifies the default view to present a first-person perspective, display-
ing the functions and variables of a class (separated by public and private) in a shelf-like
arrangement. This primarily focuses on the Immersive View of class objects, with a con-
ceptual similarity to Google Maps1 and its transition from the 2D map to the street view
perspective.

2.3 G3: Performance Evaluation of Goal 1

This goal compares the approach introduced in goal 1.3 with the base approach in terms of
performance. This is particularly the case in the context of very large landscapes. Potential
parameters for evaluation include one or two landscapes with a fixed initial camera position,
fixed initial orientation, fixed Field of View (FOV), and fixed zoom speed in discrete steps.

The performance metrics are as follows: Number of displayed objects and meshes, FPS,
as well as the Central Processing Unit (CPU) utilization and memory consumption.

2.4 G4: Usability Evaluation by Users for Goal 1 and Goal 2

The impact of a software feature on usability and productivity can be evaluated through a
user survey. The users are tasked with performing specific functions, and the time required
to complete these tasks is documented. It is anticipated that there will be a marginal
enhancement in the acquisition of information displayed on the screen.

1www.google.de/maps

6

www.google.de/maps

Chapter 3

Foundations and Technologies

3.1 Semantic Zoom and Level of Detail (LoD)

Semantic Zoom has multiple definitions: It is mostly compared against the geometric zoom
or physical zoom, which only scales the objects, but do not present further information.
Semantic Zoom is described to change the structure of objects that are to be displayed. It
changes the shape or appearance in any way to display other data on different spatial scale
1. Many papers that describe Semantic Zoom are only focused on 2D representation of data
[Wiens et al. 2017], [Buering et al. 2006].

Level of Detail (LoD) displays objects with different numbers of polygons. There are three
major LoD variants. The first one is the discrete LoD. The application receives multiple
preprocessed versions of an object with a varying number of polygons. Subsequently, the
software determines the optimal choice. As the angle of the object is not known in the
pre-processing step, it is not possible to implement any optimizations in that regard.

The next significant LoD variant is the continuous LoD variant. The data structure for
an object is streamed at run time and provides enhanced granularity. Refinements can be
streamed via a slow internet connection.

The last major LoD is the View-Dependent LoD. It is a combination of continuous LoD
and the viewing angle. It is possible for larger objects to have a greater degree of granularity
of polygons that are in closer proximity to the viewer, while simultaneously reducing the
number of polygons in the far distance from the viewer. However, despite this variation,
the object remains coherent [Luebke 2003].

In general LoD focuses on the reduction of meshes and polygons for an object.

3.2 Three.js

The Three.js2 library is used to create 3D scenes within Web Browsers. It utilizes the WebGL
technology as its rendering engine [Dirksen et al. 2014]. WebGL introduces the OpenGL
2.0 SE into the realm of Web Browsers [Parisi 2012]. All major Web Browsers are supported
by Three.js, like Google Chrome, Safari and Firefox. Furthermore, it has a fallback mode,

1https://infovis-wiki.net/wiki/Semantic_Zoom
2https://threejs.org/

7

https://infovis-wiki.net/wiki/Semantic_Zoom
https://threejs.org/

3. Foundations and Technologies

where it renders the scene on a Hypertext Markup Language (HTML) canvas. The library
provides an easy-to-use Application Programming Interface (API) for the manipulation of
3D renderings, which was first made available in 2010 [Dirksen et al. 2014]. The software
developer initiates a new scene and adds a camera to it. While not mandatory, the addition
of a camera can prove beneficial in instances where the camera is to remain fixed to another
object. The presence of a light source is essential for visibility within the scene. Any 3D
object can be added to the scene, and its construction is based on the combination of a
geometry and a material. There are several fundamental geometries available, as well as
an array of materials. The former describes the shape of the object, while the latter offers
insight into its design and surface structure. The mesh is characterized by both its current
position on the three-dimensional grid and its orientation. It is possible for each mesh to
contain sub-meshes that are independent of the scene coordinate system. The coordinate
system is a right-handed cartesian coordinate system, wherein the x-axis is aligned with the
horizontal line or the width of an object, the y-axis represents the vertical line or the height
of an object, and the z-axis describes the depth. The renderer is tasked with processing the
images of the current view. It is responsible for mapping the 3D grid onto the 2D plane
screen. It requires the camera object and the scene, as illustrated in Figure 3.1. A group
is defined as a list of meshes that are represented as a singular entity, eliminating the
necessity for a unique parent object. Unlike a child-parent relationship, which is established
when one mesh is added to another, a group is a self-contained unit.

The Debug tool3 is a third-party Chrome Web Browser extension, that is utilized for the
purpose of debugging the current Three.js rendering. It shows metrics, and meshes, and
enables the user to hide an object dynamically.

3.3 Ember.js

Ember.js4 is a JavaScript framework that helps to create a Single-Page WebApp. The initial
release occurred in 2011, and the current version is Ember.js 5.8. Ember.js is build on several
core concepts. There are templates, which contain HTML. It is used as the scaffold for
the User Interface (UI). Components are usually small HTML fragments. In parallel to the
hbs file (in which the HTML fragment is stored, there is a JavaScript file), that make the
HTML UI interactive. The next major concept is the Router. It manages the navigation of
the web application, such that on different paths, different pages within the application
can be rendered. Finally, there is the Service. It handles the stored objects of Ember.js and
its lifetime. Service data can be made available in different parts of the application.

3https://github.com/oslabs-beta/BACE
4https://emberjs.com/

8

https://github.com/oslabs-beta/BACE
https://emberjs.com/

3.4. OpenTelemetry

Figure 3.1. Structural composition of a Three.js scene that is rendered by the renderer including the
camera, mesh and group objectsa.

ahttps://threejs.org/manual/en/fundamentals

3.4 OpenTelemetry

OpenTelemetry presents itself as a "vendor-neutral open source observability framework for
instrumenting, generating, collecting, and exporting telemetry data such as traces, metrics,
and logs."5 These data are used to observe the current state of the system. For example,
it helps to identify service slowdowns or failures. OpenTelemetry collects logs, metrics,
and traces. Given the existence of numerous vendors who collect data in varying formats,
OpenTelemetry is regarded as a standard for the collection and transmission of telemetry
data. It replaces the previously utilized OpenCensus and OpenTracing. The standard uses
the OpenTelemetry protocol (OTLP). In OpenTelemetry, a span includes information about the
name, parent span id, start and end time, span context, attributes, span events, span links, span
status. The parent span id can be empty in case of a root span. The span context, name and
timestamps are mandatory. Traces6 represent a series of events that have occurred within
the application and are represented by a collection of spans. Spans contain tasks that have
been carried out within a trace. Metrics7 are measurements of systems states. The metric
event is the instant that a measurement happens. It can be used for either alerting a user

5https://opentelemetry.io/docs/
6https://opentelemetry.io/docs/concepts/signals/traces/
7https://opentelemetry.io/docs/concepts/signals/metrics/

9

https://opentelemetry.io/docs/

3. Foundations and Technologies

when there is an unexpected value or to query real-time data. Logs 8 on the other hand
represent text based information that contains timestamps.

OpenTelemetry can instrument a variety of programming languages, with a focus on
distributed tracing [Hansen and Hasselbring 2024]. Using the automatic instrumentation,
the application can be traced changing only its configuration prior to the startup. It
does not require any internal imports. A third-party tool called "inspectIT Ocelot" adds
internal function calls to the automatic instrumentation [Hansen and Hasselbring 2024].
The OpenTelemetry collector is the component responsible for receiving the OTLP data
and can export that data to a multitude of other services, including Prometheus and Jaeger.
OpenTelemetry is used to provide (dynamic) data for ExplorViz

3.5 ExplorViz

ExplorViz is a system visualization tool that enables the visualization of both dynamic (live
monitoring traces) and static information (such as code structure) of a system [Hasselbring
et al. 2020], [Fittkau et al. 2017]. The backend structure is illustrated in Figure 3.2 and
is composed of numerous discrete services. Each monitored application transmits Open-
Telemetry traces via gRPC to the OpenTelemetry collector which then exports the data via
Apache Kafka. The analysis component of ExplorViz prepares the data for the visualization
in the UI [Hansen and Hasselbring 2024]. ExplorViz employs a web-based application as
its frontend, aiming to reach a broad audience and provide an optimal user experience
through collaboration. The frontend accesses multiple backend services, including the user,
collaboration, and span services. This separation enhances flexibility. The collaboration
service leverages WebSocket technology to enable real-time communication. In this project,
the Three.js library is utilized within the Ember.js library to create an integrated experience.
ExplorViz frontend initially presents a selection of a landscape. Each landscape contains
all of the recorded traces and presents them in a visual format [Fittkau et al. 2017]. The
communication between system components is illustrated by yellow curved lines and black
arrows, as can be observed in the Figure 5.3 (a).

The visualization can be displayed on multiple end-user devices, including personal
computers, tablets, and smartphones. Any browser capable of supporting WebXR can be
used to enter a virtual or augmented reality perspective [Krause-Glau et al. 2022]

8https://opentelemetry.io/docs/concepts/signals/logs

10

3.5. ExplorViz

Figure 3.2. Conceptual structure of all components in ExplorViza as well as the OpenTelemetry collector
and the instrumenting agent at the monitored application.

ahttps://explorviz.dev/3-architecture/

11

Chapter 4

Related Work

In order to gain a more comprehensive understanding of existing related work, the search
is focused on identifying Semantic Zoom features within existing software, with particular
attention to any software visualization that employs Semantic Zoom. However, the latter did
not yield any suitable results and was therefore excluded from further consideration. The
papers that were included in this chapter serve to motivate and inform the design of the
proposed semantic zoom feature.

IslandViz IslandViz [Misiak et al. 2018] is a software visualization tool for OSGi-based
applications, which are built on top of Java. In contrast to other software visualizations that
use the city metaphor, IslandVis utilizes an island-based metaphor. The ocean represents
an entire software. An island represents a bundle and is divided into subregions. Classes
are represented by buildings that are joint in regions. These regions are Java packages. This
approach bears a resemblance to ExplorViz using the city metaphor. The line of code metrics
is encoded in the height of the buildings. An arch between two buildings represents the
package dependencies [Misiak et al. 2018]. It is unclear whether a type of semantic zoom
or other zoom-based alteration of objects is present.

Ontology Graph A Semantic Zoom feature for a 2D ontology graph is described in [Wiens
et al. 2017]. The graph G(V, E) contains vertices and edges. The graphical representation of
such networks is frequently not straightforward due to the presence of intersecting edges
or a high degree of visual complexity. The graph is therefore challenging to interpret, and
the capacity of the human brain to process data is limited [Wiens et al. 2017]. The described
"Visual Appearance Layer" has two distinct directions of operation. In one direction, it
removes information from the graph, including details such as vertices or edge labels. In
the other direction, it aggregates information, combining multiple edges between the same
vertices for instance [Wiens et al. 2017]. The Topological Layer describes a simplification
of the topological graph structure. Discrete topological levels of detail are assigned to
each class. These levels allow the user to adjust the visualization to a specified level of
detail [Wiens et al. 2017]. The published approach follows the visual information-seeking
mantra proposed by Shneiderman, which is defined as follows: “overview first, zoom
and filter, then details-on-demand" [Wiens et al. 2017]. This mantra offers an interesting
perspective on the Semantic Zoom and the Immersive View implementation for ExplorViz, both
of which regulate the flow of information to the human eye. A study was conducted with

13

4. Related Work

12 participants to evaluate the effects of the new Semantic Zoom feature. The participants
were divided into two groups. Each individual was required to complete tasks with and
without the use of the Semantic Zoom feature. The order of the tasks differed depending on
the group. Following the completion of the tasks, the participants were asked to rate them
on a number of criteria, including readability, visual clarity, information clarity, navigation
support, and layout stability. The results demonstrated that the version with semantic
zoom outperformed the version without, as indicated by the ratings [Wiens et al. 2017].
The evaluation method in question can be employed in the assessment of this work with
regard to the user evaluation and group separation. The rating system for tasks is designed
with a different methodology. As the ontology graph is based on the assessment of tasks
using a range of criteria, this study aims to enhance the productivity of tasks by measuring
the time taken for each task and comparing it between a version with semantic zoom and
one without. The proposed Visual Appearance Layer bears resemblance to the registration
of LoDs per 3D object, as outlined in Chapter 5. However, there is currently no aggregation
of information, resulting in each object operating independently of one another.

Zoomable Multi-Level Tree (ZMLT) Another paper with a similar focus to [Wiens et
al. 2017] is the Zoomable Multi-Level Tree. The authors [Luca et al. 2019] set out seven
properties that their "Zoomable Multi-Level Tree (ZMLT)" algorithm must fulfill. However,
the algorithm is still designed for a 2D representation [Luca et al. 2019].

The seven features that need to be covered are [Luca et al. 2019]:

1. Appropriate representation of the abstract tree originated from the graph

2. Appropriate layout

3. Show Real path from the original graph only

4. Persistent: if an information is visible in this level. It has to be visible further down the
tree

5. Overlap-free for labels

6. Crossing-free edges

7. Compact: enough drawing space for all labels

The paper creates sub-graphs based on the original graph using the Steiner tree problem to
identify the most important nodes. V1 Ă V2 Ă ... Vn = V V1 has the most important nodes
In an iterative step for all sub-trees, it draws an overlap-free graph.

14

OntoTrix OntoTrix is a visualization technique to navigate large datasets and their
relations [Bach et al. 2011]. It uses adjacency matrices to visualize dense portions of the
graph structure underlying the ontology, thereby enhancing the visual scalability. But
does not show structural aspects within these dense graph parts any longer [Bach et al.
2011]. The Lin Log model is introduced in the paper. It is an energy algorithm designed
by Andreas Noack to provide an efficient way to minimize the energy in a force-directed
cluster graph [Bach et al. 2011]. Given that the paper is primarily concerned with layout
rather than level of detail, it is not a central component of this work. Nevertheless, the
establishment of cross-free communication lines may prove beneficial.

EvoSpaces EvoSpaces [Alam and Dugerdil 2007] is about a software system visualization
as a 3D city that can be discovered. In terms of data representation, the EvoSpace city bears
resemblance to ExplorViz. A software package is organized within a district, analogous to a
foundation component in ExplorViz. The visualization employs the use of city halls, houses,
apartment blocks, and skyscrapers to display a variety of software components, including
header files, code, and other relevant elements. The EvoSpace system offers the capability
to render building walls transparent, thereby exposing the internal file structure. In this
model, each floor represents either methods, functions, or other types of elements. The
authors do not indicate whether the different views are automatically triggered at specific
zoom levels [Alam and Dugerdil 2007]. The paper provides some basic ideas for the later
introduced Immersive View for classes in Chapter 6. The paper’s method of displaying file
content through transparent walls enables the user to enter an Immersive View with context.
The internal class structure of the file is represented by three floors, which is similar to the
three rows in Chapter 6. These rows provide a summary of the class content, ranging from
inheritance, class variables, to class methods.

Polyfocal Projection & Fisheye Views The paper [Keahey 1998] provides an introduction
to polyfocal projection, fisheye views, and focus + context. It introduced the concept of
nonlinear magnification, as illustrated in the accompanying Figure 4.1 for 2D. The paper
describes how many focus+context techniques expand the spatial area while simultaneously
reducing the surrounding areas through compression. However, it does not incorporate
additional detail within the acquired space.

The implementation of this system displays an atlas with images placed on top. In
instances where the focus + context feature is utilized, the images are rendered in a larger
size, and a per-pixel Z-buffer rendering is employed. The interesting part for our topic is
the mentioned two-layer view. Layer 1 has only basic details, while layer 2 has advanced
details and is only shown when a magnification is triggered in that area. Layer 2 is pulled
in front of layer 1 and has a seamless handover between the two layers. As an illustrative
example, a country map with an underlying city map was introduced. When the area is
magnified, the city map, which is of greater detail, is only pulled in front. For further
details, please refer to figure 12 in [Keahey 1998]. Another noteworthy section is an example

15

4. Related Work

Figure 4.1. "Single Image Magnification" Figure 10 from [Keahey 1998].

of semantic zoom in conjunction with level of detail, termed "semantic levels of detail."
For their interactive atlas, three levels of detail are provided. Level 0 is the image of a
represented castle, level 1 is an iconic representation of a castle, and level 2 is a colored
square [Keahey 1998]. The concept of the "semantic levels of detail" is also employed in
this work regarding the Semantic Zoom approach in Chapter 5.

Semantic Zoom for Scatter Plots The paper [Buering et al. 2006] focuses on the interaction
with a scatter plot on small screens and describes the use of semantic zoom and fisheye
distortion to enhance the user experience. The Semantic Zoom feature can be used to
abbreviate paragraphs once zoomed out or present images as thumbnails with varying
resolution for each LoD. The paper combines the geometric zoom with Semantic Zoom
to change from the scatter plot overview to a detailed view. A two-step interaction was
implemented. The first step is to zoom into a specific region of the scatter plot. Data points
that fall outside the view are removed. The resulting view is a sparser plot, where the new
gaps can be utilized for other purposes. The second step utilizes the new gaps to present
the user with additional information about the data point. For instance, the data point may
transition from a gray dot to a gray box, with text displayed within the box [Buering et al.
2006]. The fisheye distortion is optimal in terms of providing details and the surrounding
context in a single view. The paper implements a scatter plot interface for the user with
a detail+context based fisheye view [Buering et al. 2006]. An experiment was conducted
using PDA handheld devices on a scatter plot with 10 tasks. A total of 24 participants, aged
between 19 and 33 years, took part in the experiment. The experiment compared the time
needed to complete the tasks using either the semantic zoom feature or the fisheye interface
[Buering et al. 2006]. The results demonstrated no statistically significant difference in task
completion times. The setup of the experiment can be used as a basis for the evaluation in
Chapter 7.

Google Maps Although Google Maps1 is not a 3D application by default, it is evolving
into a 3D representation with its "Earth" feature. The "Earth" or globe feature is a realistic
bird’s-eye view of the world based on images. While the Google Maps 2D representation

1https://www.google.de/maps

16

only displays an abstract view of the streets. They use Semantic Zoom in combination with
landmarks, all sorts of labels and PoI’s such as shops. The labels change their font size,
number of repetitions in the visible part of the view, and the position of the label. This
is especially the case for large objects, such as a road or a border, that extend beyond
the user’s view after zooming in. A similar approach can be used for the communication
lines and their communication direction arrows that float above the line in Chapter 5. The
3D "Earth" functionality limits their Semantic Zoom features to PoIs and labels, as it is not
feasible to obscure minor roadways in the context of an abstract representation.

17

Chapter 5

Semantic Zoom

5.1 Analysis of the Current ExplorViz State

ExplorViz displays a comprehensive list of available landscapes on its UI. The user is given
the option to either open an existing landscape or to create a new one. Each landscape
is a container for traces and spans of distributed systems. If the correct authentication
credentials are provided, any system is able to transfer data to a landscape. The foundation
is the ground-level element, which represents a system. A further component is constructed
on this foundation. In the case of a Java application, it is a package. It is possible for
multiple packages to be stacked on top of one another. The next significant component
is a class element, which can be found at any level of a package or component. In its
entirety, the data is structured in a tree-like manner for each application, as illustrated in
Figure 5.1. The user has the option to determine the depth of the tree structure. A context
menu is available via the right mouse button, and the display of additional information is
dependent upon the location of the mouse cursor. Further options are concealed within the
settings menu, accessible via the button situated in the top right corner.

From the perspective of a software developer, the ExplorViz frontend employs Ember.js
and Three.js. Ember.js is utilized to regulate the settings, while Three.js is responsible for
displaying the data obtained from the API of the ExplorViz backend. The 3D environment is
comprised of a scene, a camera, and 3D objects. The 3D objects are represented by the code
through class meshes. Each class has different attributes and functions, and is derived from
the Three.js "Mesh" class. The ForceGraph is responsible for the layout and is therefore fed
with all the telemetry data. Upon a refresh of data, the ForceGraph is completely recreated,
which can result in the sudden movement of 3D objects and a change in the user’s view.

5.2 Fundamental Appearance Options

The following list shows basic operations to alter the appearance to encode data. The con-
cept of visual variables draws its inspiration from the study of sign systems, as conducted
by Bertin. The original identification of seven methods for encoding information visually
has been expanded to a total of 12. The utilization of visual variables on a marker in a map
or analogous visualization is a fundamental aspect of this process [Roth 2017].

19

5. Semantic Zoom

System 1 System 2 System 3

App 1 App 2 App 3

Class 1.1 Class 1.2 Class 2.1 Class 3.1 Class 3.2

Figure 5.1. ExplorViz underlying tree data visualized for three instrumented applications.

1. Location - Primarily utilized in coordination systems to represent the spatial components
of information.

2. Size - Changing the scale of an object to encode data.

3. Shape - It characterizes the external form in terms of its shape and structure. This form
may be abstract or highly distinctive.

4. Orientation - The orientation of the object in a given direction has the potential to encode
data, thereby indicating the direction of flow.

5. Color hue - Defines the primary color wavelength.

6. Color value - This color scheme is frequently employed in situations where the color
value progresses in a single direction, traversing a multitude of color hues. Its usage is
analogous to that of a heat map.

7. Texture - The term "texture" is used to describe the pattern that is created on the surface
of an object when it is filled.

8. Color saturation - Saturated colors possess a single, pronounced peak within the visible
spectrum, whereas desaturated colors are distributed more evenly across the visible
spectrum.

9. Arrangements - The arrangement may be perfectly ordered, as in a grid, or it may be
completely random.

10. Crispness - Is the sharpness of a marker.

11. Resolution - This refers to the spatial resolution at which a marker is displayed.

12. Transparency - The alpha channel serves as the primary control for blending objects in
and out, and its value determines the degree of transition.

20

5.3. New Designs, Metrics and Aggregations

Bertin’s theory states that the visual variables are processed by the eye itself, negating
the necessity for cognitive brain processing, which consequently results in accelerated
recognition. The color hue and the shape are of equal importance and, as a result, cannot
be compared to any highlighted markers. There is no dominant visual variable in color
hue or shape. The effect is not the same when it comes to color value or size. In the case of
a darker color on a white background, it is observed that the color in focus attracts more
attention than a lighter color. The same phenomenon can be observed with regard to the
size of the elements in question. The perception of an object’s size affects the amount of
attention that is directed towards it. In general, larger objects tend to attract more attention
from observers than their smaller counterparts [Roth 2017].

All of the mentioned visual variables in the previous list can be used in our 3D rendering,
although the Resolution and Arrangements can be neglected.

5.3 New Designs, Metrics and Aggregations

The following metrics have been integrated into the system to demonstrate the proof of
concept. These metrics are either newly introduced in the overall rendering process or exist
in some form prior to this implementation.

1. The height of a class mesh is modified in accordance with the request count of the
dynamic analysis.

2. Method meshes are incorporated into class meshes with the objective of demonstrating
the number of methods present within a given class. The use of alternating colors serves
to differentiate between methods. The height of each individual method mesh indicate
the Lines of Code (LoC) relative to the other methods in the same class.

3. Class labels change the size of their text.

4. Labels exceeding a predefined length are trimmed and subsequently appended with
three dots, signifying that the original label was of a greater length.

5. The communication lines are capable of modifying the line thickness in order to reduce
the degree of view blockage.

6. The communication lines undergo a transformation in their curve, thereby increasing
the arc.

7. In the event of a limited number of transmissions, communication lines may be hidden.

8. The visibility of communication lines or direction indicators is reduced when the distance
between the observer and the relevant reference point is too great.

21

5. Semantic Zoom

The initial item 1 is a boolean value that is triggered at an early stage. Item 2 is
independent from 1 and is displayed whenever there is a class object visible. Item 3
alongside with 4 are connected. The labels are available in multiple levels, as the cutting
length can be adjusted, and the font size is dependent on the distance to the object. The
width of the lines in reference to item 5 is subject to a proportional reduction or expansion
in accordance with the degree of zoom, occurring in discrete steps. Item 7 is linked to the
crucial importance of the underlying communication. For example, a communication that
occurs infrequently is given less weight than one that occurs frequently.

5.4 Concept and Pre-Implementation Thoughts

Given that ExplorViz is a 3D visualization that allows users to hide and show different parts
of the underlying tree through human interaction, it is crucial that the new feature does
not override the existing function. Accordingly, the methodology differs slightly and does
not directly interact with the underlying data, but rather with the 3D representation of said
data. This approach offers the advantage that any 3D object within the scene, regardless of
whether it is part of the graph, can possess the capability to alter its appearance based on
the level of zooming.
Three.js incorporates a built-in feature for LoD, which can override the mesh depending
on the distance to the camera. However, the new meshes must be known prior to their
actual display, and the feature does not allow for dynamic creation of new meshes or any
other function calls, which limits its utility for dynamic changes. As a discrete LoD, a new
implementation with these missing features must be found.
The next significant topic for consideration is the run time. The initial version involved
the calculation of different LoD during the creation process. However, this resulted in an
increase in memory usage and the corruption of some flexibility, such as a dynamic change
dependent on a property during run time. Consequently, a more dynamic approach was
introduced, which also permits developers to seamlessly integrate their own LoD. In this
approach, the processing of the new mesh is embedded within the run time. This reduces
memory consumption but increases calculation time.

This led to the implementation of additional measures aimed at reducing the processing
time at an earlier stage. One such measure was the use of clustering. It involves reducing the
number of checks performed on each individual 3D object to determine whether an update
was required. Initially, only elements within the camera’s field of view were updated, but
this changed as described in Section 5.5.2.

22

5.5. Implementation of Semantic Zoom

ExplorViz

New Object

Semantic Zoom Manager

Add Object

Trigger Appearence Update

Cluster Objects

Camera

Update
1

2

3

Figure 5.2. Workflow for zoomable objects that are created by ExplorViz, managed by the Semantic
Zoom manager and updated by the camera.

5.5 Implementation of Semantic Zoom

As the fundamental data forms a tree, it is feasible to integrate a Semantic Zoom functionality
based on this data set. However, there are some inherent limitations, as outlined in
Section 5.4. There were multiple conceptual approaches available to implement the desired
functionality. The Figure 5.2 provides a general overview of the workflow. Any new 3D
object created by ExplorViz for the frontend will be added to the Semantic Zoom manager.
This represents the initial stage of the process. Once all objects have been incorporated,
the manager initiates the clustering procedure, as illustrated in Figure 5.2 of the workflow
Semantic Zoom. Given the potential for new objects to be generated, they must also be
included in a cluster. As the camera is moved, a function of the manager is triggered,
which then determines the appearance level of each cluster. Thereby the entire cluster
receives an update to display the appropriate LoD. The source code of the Semantic Zoom
implementation is available for review in this archive: [Bamberg 2024b].

5.5.1 Appearences

It is possible for any 3D object to exhibit a multitude of visual manifestations. These
manifestations are organized in a sequence beginning with the value of zero and continuing
through the positive integer x. The value of zero (0) represents the original state and should
also be the smallest in terms of boundary box and shape complexity. Each subsequent
appearance is larger and more complex than the previous one, progressing from 0 to x.
The value of x may vary for each 3D object. Upon request for an appearance above level
ą x, the appearance of x is returned. In the event that an appearance between 0 and x is
not defined, it will be bypassed in the process of fulfilment of the request. An appearance

23

5. Semantic Zoom

may be either a "recipe class" or a function that can be called. In the event that the object in
question is a "recipe class", it will contain a recipe that describes the manner in which its
own appearance may be altered. More information can be found in Section 5.5.1

The appearances are called consecutively. This implies that following a level change
from level 4 to 3, all changes will restart from the beginning once more. For example, the
sequence would be 0, 1, 2, 3. In the event of an update from level 3 to 5, only the changes
for levels 4 and 5 will be triggered.

Recipe Class

The "recipe class" can be considered the equivalent of a registered function call, but it is
mutually exclusive with regard to each other. The "recipe class" class represents an effort to
provide software developers with a straightforward interface for modifying an existing 3D
object and then saving or restoring it. The proposed solution is a straightforward one: It
allows the user to save the object’s current shape and color, which can be restored later.
This is achieved by saving fundamental information such as scale, width, height, depth,
position, and color for a box mesh. A similar process is employed for spheres. However,
when the shape in question is more complex or a combination of multiple shapes, the mesh
is saved along with the material. The latter requires more memory and time to recover.

5.5.2 Algorithms To Decide on Level of Detail

This section is divided into three parts. The initial section introduces a clustering algorithm
and its implementation. The subsequent section describes the creation of an array used
to determine the current appearance level. Finally, it presents the combination of these
elements in the manager class.

Clustering

A simplistic approach would be to calculate the distance of each object from the camera
and then determine its appearance based on that information. The Figure 5.3 illustrates the
center points of both visible and invisible objects within the scene, represented as a dot. For
the purpose of this illustration, communication lines on top have been excluded. However,
this approach may result in suboptimal performance, which is not an ideal scenario for the
user. Consequently, the implementation of a clustering method to group objects together
can significantly reduce the distance calculation and shift some of the calculations to a
preprocessing stage. This work focuses on centroid-based clustering, as the provided center
point can be used as a trigger point. Therefore, any clustering method that does not utilize
centroids is unsuitable for this use case. While a density-based cluster like DBSCAN has its
own advantages, it is not effective for non-convex structures and provides no centroids.
Figure 5.4 provides a summary of well-known clustering methods with examples and their

24

5.5. Implementation of Semantic Zoom

(a) Example ExplorViz landscape. (b) Center points of each object in the landscape -
this includes non-visible objects from a, but

excludes communication lines on top.

Figure 5.3. From 3D view to object center Point view.

run time. Two algorithms have been implemented: k-means and mean shift. Both provide
centroids and have different run time behavior.

The implemented clustering algorithms have been designed with an interface that al-
lows for straightforward replacement with any alternative clustering method that employs
centroid-based operations. The interface includes a function that enables the clustering of
an array of objects. In this case, the ‘clusterMe‘ function accepts any array of ‘Semantic-
ZoomableObject‘ and returns a map, where the key is a centroid 3D vector and the value is
an array of the ‘SemanticZoomableObject‘. The function ‘addMe‘ has two parameters: the
first is the existing map from the previous clustering process, and the second is an array
of new data points. The ‘counterSinceLastReclusteringOccured‘ indicates the number of
additions that have occurred without reclustering.

K-Means Clustering

The k-means clustering algorithm serves as the fundamental approach. The run time of
k-means is given by O(nkdi), where n is the size of the dataset, k is the number of clusters,
and i is the maximum iteration count, and d is the dimension of the input data vector n1.
The k-means method requires the predefinition of the number of clusters and the placement
of the center points of k clusters at any random position. The naive sharding centroid
approach involves the placement of the cluster points based on the sum of each vector
and subsequent sorting. It then proceeds to divide the data into equally sized shards, a

1https://en.wikipedia.org/wiki/K-means_clustering

25

https://en.wikipedia.org/wiki/K-means_clustering

5. Semantic Zoom

Figure 5.4. Illustration of different clustering algorithms and their runtimea.

ahttps://scikit-learn.org/1.5/auto_examples/cluster/plot_cluster_comparison.html

process that can be achieved by jumping through the number of rows n. The step size is
determined by n/k.

Figure 5.5 show the application of k-means on the dataset of an example ExplorViz
landscape. The red marks annotate the centroid position of each cluster. The clustering
process used parameter k = 3 for the illustration. The implemented version employs a
percentage of all objects within the scene as the k value.

Mean Shift Clustering

The Mean Shift clustering algorithm requires the bandwidth parameter, which is used
to pull nearby data points into its cluster. By pulling data points towards each other, it
automatically generates separated clusters. In contrast to the k-means clustering algorithm,
a predefined number of clusters is not required. The runtime complexity is defined by
O(in2), where n is the size of the dataset and i is the number of iterations [Ren et al. 2014].
Therefore, it is less efficient for larger data sets compared to k-means.

Adaptations to the Cluster Algorithm

It is possible for an object to be associated with multiple Point of Interests (PoIs). PoI is a
coordinate in the three-dimensional room that is associated with an object. To illustrate, a

26

https://scikit-learn.org/1.5/auto_examples/cluster/plot_cluster_comparison.html

5.5. Implementation of Semantic Zoom

Figure 5.5. The positions of the objects mentioned in Figure 5.3 clustered by k-means with k = 3.
Each color represents a cluster and the red ‘x‘ is the center point of the cluster.

line may employ multiple PoIs to trigger another appearance when one of the numerous
points is in close proximity to the camera. Consequently, it is essential to modify the
outcome of the clustering algorithms in a manner that allows for a single object to be
clustered in multiple clusters.

fastAddToCluster is a function that rapidly adds additional objects to the existing
cluster centroids. It is necessary when new 3D objects are generated due to new metric data,
However, such a process would be too time-consuming if it were to interfere with the user’s
interactions. In its initial implementation, the algorithm identifies the nearest neighbor
clustering centroid and attaches itself to that cluster without modifying the position of the
centroid in question.

Creation of the Zoom-Level-Array

The objective of Algorithm 1 is to adapt the zoom level array in a dynamic manner, based
on the elements that are provided. The algorithm requires the DiscreteLevel array, which
contains integers from 0 to 100. This represents the percentage at which the specified
level should be triggered. Furthermore, the parameter "objects" contain all 3D objects
present within the scene. Each element is classified according to its mesh type, such as
FoundationMesh, ComponentMesh, ClassMesh, and ClassCommunicationMesh. For each group,
the algorithm identifies the two elements with the greatest and least values. This is achieved
through the utilisation of the bounding box functionality inherent to the Three.js framework.

27

5. Semantic Zoom

The bounding box algorithm returns a vector from the lowest to the highest corner, with
the length of the vector serving as the size. The predefined levels at which a change in the
appearance should occur are employed in a subsequent step. In the next step, the distance
between the object and the camera is calculated so that the object’s vector covers x percent
of the screen based on the FOV. The average of the previous step for the smallest and
largest element in every group is calculated. The most computationally demanding aspect
of this process is the extraction of the smallest and largest objects within each category of
3D objects. This is achieved through a looping operation over all registered objects.

Algorithm 1 Build process for the Zoom-Level-Array
Require: objects: Array
Require: camera: THREE.Camera
Require: DiscreteLevels: Array<number>

zoomLevelMap Ð [inf]
distinctMeshClassNames Ð Set<string>
smallestMap Ð Map<string,number>
biggestMap Ð Map<string,number>
for index Ð 0 to |objects| ´ 1 do

add name of objects[index] to distinctMeshClassNames
if objects[index] is smallest so far then

smallestMap.set(name of objects[index], size of objects[index])
end if
if objects[index] is largest so far then

biggestMap.set(name of objects[index], size of objects[index])
end if

end for
for index Ð 0 to |DiscreteLevels| ´ 1 do

summedTotal Ð 0
for indexmeshname Ð 0 to |distinctMeshClassNames| ´ 1 do

distanceS Ð calculateDistancesForCoveragePercent-
age(smallestMap.get(distinctMeshClassNames[indexmeshname]), camera, Dis-
creteLevels[index])

distanceL Ð calculateDistancesForCoveragePercent-
age(smallestMap.get(distinctMeshClassNames[indexmeshname]), camera, Dis-
creteLevels[index])

summedTotal Ð summedTotal + distanceS + distanceL
end for
average Ð summedTotal / |distances|

zoomLevelMap.push(average)
end for

The resulting Zoom-Level-Array of Algorithm 1 contains the distances between which
an appearance level trigger should be initiated. The index of the array serves to indicate the

28

5.5. Implementation of Semantic Zoom

0 1 2 3 4 5

inf 2.19 2.01 1.89 1.47 1.11

O 1 2 3 4 5

Figure 5.6. Example Zoom-Level-Array with the index of the array (top), the value of each position in
the array (middle), and the final discrete LoD selection (bottom).

appearance level, while the value of that index represents the distance. The array begins
with an index of i = 0, and the subsequent value of i = 1 serves as the demarcation
point for appearance level 1. The value of in f for index 0 is triggered when the camera
is located at a distance between infinity and i = 1. Consequently, the value in question
must fall within the range defined by the values of i = 0 and i = 1. In general, the values
decrease as the index i increases. The lowest value that can be stored in the array is 0, as
there is no negative distance that can be assigned to an object. Refer to Figure 5.6 for an
overview of the array structure. The circled numbers in the upper row represent the array
index. The values represented in the rectangle (middle row) are the values of the array and
indicate the distance at which the respective value is triggered. The bottom row, comprising
diamonds, represents the appearance level that is displayed. The process is initiated with a
value of zero, which represents the original appearance. To illustrate, a distance value of
3.0 is sorted between the array index (top row) 0 and 1, thereby resulting in the original
appearance, as evidenced in Figure 5.6, marked by the first diamond on the left bottom row.
This implementation draws inspiration from reference [De Carlo et al. 2022] in chapter 3,
yet it employs a distinct approach, omitting the use of tuples spanning from "from" to "to."

The utilization of a reduction function to identify the nearest and yet smallest value
relative to an appearance is illustrated in Algorithm 2.

Interface SemanticZoomableObject

All 3D meshes that are intended to be alterable in terms of their visual representation must
incorporate an interface called "semanticZoomableObject." For this purpose, a preexisting
class is available that has already been designed to implement the specified interface and
can be enhanced through the use of JavaScript’s mixin technology. The interface offers a
range of methods and properties that facilitate the manipulation of a provided recipe. It
enables the alteration of the appearance to a more refined level, the retrieval of the current
level, and the registration of any novel appearance level. Additionally, it provides callback
functions that can be overridden. A function may be registered for the purpose of executing
code both before and after an alteration of the visual shape has occurred. An excerpt of
the relevant interface is provided in Listing 5.1. The function "getPoI()" is employed by

29

5. Semantic Zoom

Algorithm 2 Distance to Level Function
Require: distanceCamToCluster > 0
Require: zoomLevelArray: Array

target Ð Reduce of zoomLevelArray with the anonymous function and the startvalue of
zoomLevelArray[0]
(closestSoFar, CurrentValue) =>
if closestSoFar ą currentValue && currentValue ą distanceCamToCluster then

return currentValue
else

return closestSoFar
end if
targetLevel Ð Find index of target in zoomLevelArray
return targetLevel

the clustering algorithm to incorporate multiple instances of the object within multiple
clusters.

Listing 5.1. Excerpt of the SemanticZoomableObject interface

1 export interface SemanticZoomableObject {

2 callBeforeAppearenceAboveZero: (currentMesh: Mesh | undefined) => void;

3 callBeforeAppearenceZero: (currentMesh: Mesh | undefined) => void;

4 showAppearence(

5 i: number,

6 fromBeginning: boolean,

7 includeOrignal: boolean

8): boolean;

9 getCurrentAppearenceLevel(): number;

10 setAppearence(i: number, ap: Appearence | (() => void)): void;

11 getNumberOfLevels(): number;

12 saveOriginalAppearence(): void;

13 setCallBeforeAppearenceAboveZero(

14 fn: (currentMesh: Mesh | undefined) => void

15): void;

16 setCallBeforeAppearenceZero(

17 fn: (currentMesh: Mesh | undefined) => void

18): void;

19 useOrignalAppearence(yesno: boolean): void;

20 getPoI(): Array<THREE.Vector3>;

21 }

30

5.5. Implementation of Semantic Zoom

Semantic Zoom Manager

The cumulative result is the generation of a function that is triggered with each update to
the camera. For further information, refer to Algorithm 3. The function is invoked with
the Three.js camera object as a parameter. The initial assessment is to verify whether the
zoom functionality is enabled. Subsequently, the Zoom Level Array is queried. In the
event that the array was not constructed in a preceding phase, it is constructed at this
juncture. The subsequent step involves a process of iteration over all clusters. It is also
necessary to define the clusters in advance. The distance between the camera and the
cluster center point is used to determine the level of appearance for the cluster members
(see Algorithm 3). Only if an object in the cluster is visible, it will receive the command to
change its appearance to the corresponding level. This function relies on the distance of
clusters to the camera; it does not involve the angle between the camera and the cluster
centroid. The whole process is illustrated in Figure 5.7. In a preprocessing step, the clustered
vectors are sorted by their y-axis coordinate, such that the values of the lower objects trigger
their appearance change at the beginning. This is of significant importance with regard to
the "auto open/close" feature for packages. The function responsible for returning Point
of Interests within Section 5.5.2 has the potential to result in the 3D object undergoing
a process of adaptation, whereby it assumes two distinct appearances simultaneously.
This can lead to an undefined state, which must be avoided. The manager is responsible
for monitoring this process and ensuring that the most appropriate appearance level is
consistently displayed, either that of the closer view or, in the majority of cases, the more
detailed view.

Frustum

The frustum in Three.js can be employed to ascertain whether an object is within the field of
view of a designated camera. Once an object is outside the field of view, no further updates
are required with regard to its appearance level. This feature is beneficial when processing
each object individually. However, this approach entails a pre-processing clustering step
that can yield suboptimal results when clustering and frustum detection are employed
concurrently. Once the center point of a cluster is outside of the frustum, the entire cluster
is no longer updated. If the camera is positioned in close proximity to a few objects, it
is highly probable that the cluster center point of the clustered objects will be outside of
the view. Consequently, the user may not perceive any changes in appearance, despite the
anticipated change. In light of these observations, the frustum section was found to be
unsuitable for further consideration.

31

5. Semantic Zoom

Update of camera position

Calculation still running?

System enabled?

Zoom Level Array available?

For each cluster
determine

distance level

Trigger ap-
pearance level
for objects in
cluster succes-
sively to avoid

stuck rendering

Calculate Zoom
Level Array

Visualize Stop

yes

no

yes

no

yes

no

Figure 5.7. Flowchart, demonstrating the Semantic Zoom manager’s action when the camera position
receives an update.

32

5.5. Implementation of Semantic Zoom

Keeping the Manager Clean

Upon the creation of a new mesh, it is appended to the Semantic Zoom manager. As the
insertion of a mesh without the removal of existing ones would result in a memory issue,
any mesh that is removed via the dispose function is automatically removed from the
manager. The removal of non-existent items from the manager also enhances performance,
as the list of objects can be iterated more rapidly. If the manager is enabled and the user
switches to another landscape, all objects are removed from the manager.

Algorithm 3 Decision on Level of Appearance
Require: cam: THREE.Camera

if Semantic Zoom Manager is not enabled then
Return

end if
if alreadyCreatedZoomLevelMap == False then

Create Zoom Level Array
alreadyCreatedZoomLevelMap = True

end if
for each cluster in clusters do

if Check if cluster center point in close proximity to the camera then
Continue

end if
X Ð Distance between Camera and cluster
Y Ð find corresponding appearence level for distance X
for each object3D in cluster do

if object3D is visible then
Trigger Appearence Level Y

end if
end for

end for

5.5.3 Programmer Interface

The developer has the option of extending any new mesh by calling certain functions
in the constructor of the new object. The example in Listing 5.2 illustrates the setting of
another shape/function call that is triggered when the object receives a request to change
its appearance level to 1:

Listing 5.2. Register New Appearance Altering Function for Level 1

1 this.setAppearence(1, <function>);

The function call in Listing 5.3 saves the current shape of the object:

33

5. Semantic Zoom

Listing 5.3. Save the Current Shape and Texture

1 this.saveOriginalAppearence();

It is mandatory for the new object to be inherited from the original BaseMesh. In the event
that there is already another inheritance, the use of JavaScript mixins can be employed to
assist in this process.

5.5.4 Known Problems and Limitations

It is acknowledged that there are constraints associated with the nesting of semantic
zoomable objects. Consequently, if a mesh is generated by one object that is also capable
of the Semantic Zoom feature, it will be registered at the manager as well. However, there
is no immediate trigger for the newly created mesh and its target appearance. Following
an update of the camera, the newly created mesh will assume the same appearance as the
original object. However, that level may already have been reached. Therefore, it is not
possible to descend below that level. This behavior is observed only when the new object is
in close spatial proximity to the original object. If the newly created object is situated at a
considerable distance, this behaviour does not manifest. However, it is still possible that a
specific requested appearance level may never be triggered.

Another challenge is the immediate incorporation of new objects into the process. In
some instances, the opening of a component results in the generation of new objects that
are not directly registered within the Semantic Zoom manager. Consequently, these objects
do not undergo the visual alterations that would otherwise be expected.

5.6 User Settings and Parameters

Figure 5.8a illustrates the configurations for the various discrete levels and parameters
for the clustering algorithm. The initial switch activates the Semantic Zoom functionality,
which is analogous to the switch in the context menu. The second switch enables the auto
open/close feature. When this option is selected, the "open all components" feature is
deactivated. The third option allows the user to select between the k-means clustering and
the shift mean clustering. The initial slider, labeled "Predefined Zoom Sets," incorporates
six preset configurations that modify the levels below. Once set, the switch above turns
on and only turns off again if any custom level slider is changed. In this instance, a fixed
number of five levels have been defined. The percentage of the preceding level is increased
for each subsequent level. The values represent the average dimensions of objects required
to occupy a specified percentage of the screen. This percentage is represented by the value
of a slider in the settings, denoted by the value X. If the values assigned to the levels are
not increasing monotonically, the frontend performs a correction. In this case, the previous
value is simply set to X ´ 1. If the current value is zero, the value is incremented to prevent

34

5.6. User Settings and Parameters

any level from having a value of zero or below. The same approach is applied to values
above 100.

The last option in Figure 5.8a is used by the k-means clustering algorithm. It calculates
the number of clusters by simply using all objects, that are part of the semantic zoom
feature and takes a percentage of Y. The value Y is set by the settings option "Relative #
of clusters". Using a value of 100% leads to the same count of clusters as there are objects
in the view. These clusters can still have different center points other than the original
center point of each object. So there is no option to get exactly the position of each 3D
object and provide the level of detail based on each object’s position. It is always only an
approximation.

The Figure 5.8b illustrates the provided context menu. The final two options have been
included to facilitate the activation of the system, which can be enabled via "Semantic Zoom
enable". The last option, "Show SemanticZoom Center Points", is employed for debugging
purposes and displays a red X at the centroid positions of the clusters.

35

5. Semantic Zoom

(a) Semantic Zoom settings in ExplorViz frontend, which can be ac-
cessed via the gear icon on the top right corner.

(b) Available options in the right-
click context-menu of ExplorViz.

Figure 5.8. Illustration of the various settings available for the Semantic Zoom features within the
ExplorViz UI.

36

Chapter 6

Immersive View

The visual information-seeking mantra proposed by Shneiderman is used as the baseline.
The objective is to create a visualization of the interior of a class or file in a manner
similar to that of Google Street View. As with the transition from Google Maps to Google
Street View, the immersive view will be initiated when zooming in on a class or file. The
concept of an immersive view is a general one, designed to provide a focused view. In this
implementation, it is combined with the structure of a "class", resulting in the creation of
an "Immersive Class View".

6.1 General Concept

A new scene is created, replacing the previous main scene. Given that the camera control
object in Three.js is constrained by a maximum zoom level, it is necessary to utilize the
specified point in order to gain access to another scene. Upon reaching the maximum zoom
level and subsequent scrolling, the initial stage of the two-stage process is completed. In
the event of another scroll occurring without any other movement, the preceding scene
will fade out and the subsequent scene will appear. In addition, the outcome is influenced
by the area in which the cursor is positioned. To alert the user to an upcoming change, the
object in question begins to flash. The object should transition into an Immersive View, which
is supported by the system and is in closest proximity to the cursor. To facilitate a prompt
return to the preceding scene, the original scene is retained in parallel with the new scene.
The new scene and camera can be employed for a variety of visualizations. However, in the
case of the "Immersive Class View", the new scene is a view from within a sphere. With
the exception of rotation around the fixed camera position, the camera remains stationary.
Accordingly, the information must be organized in a circular configuration surrounding
the camera.

Once within the Immersive View, the user is able to utilize the mouse wheel to zoom and
enlarge objects. Should the user employ a negative zoom factor that is beyond the limits of
the system, the camera will be halted at a virtual barrier. At this point, another scroll out
will result in the user exiting the immersive view and returning to the previous scene. This
concept enables the user to scroll into an Immersive View of an Immersive View. The entire
process can be completed with the mouse alone. The process of entering an Immersive View
is both rapid and seamless. A double click on any Immersive View-enabled object serves as

37

6. Immersive View

an alternative means of initiating the process. Furthermore, the escape key on the keyboard
can be utilized to exit the view. The current work does not prioritize the integration of a
touchscreen control mechanism.

As illustrated in Figure 6.1, the Immersive Class View provides an overview of the internal
structure of an object-oriented class. The upper section of the diagram contains informa-
tion about the name, implemented interfaces, and extended classes. The subsequent row
incorporates the class variables, highlighting extended classes or implemented variables.
The lower section of the diagram contains the class methods, along with their parameters
and return types. Any extended method is indicated by a black box in the background if it
is a method. A method that is enforced by an interface is boxed by a green rectangle.

Figure 6.1. Preview of the Immersive Class View as a base concept.

6.2 Analyze of Attachment Point for ExplorViz

As mainly described in Section 5.1, the new feature extends the code in the following
sections:

1. Any "BaseMesh" can be extended by an immersive viewable object

2. The scene renderer can replace its current scene and camera

3. Another camera control can be installed

38

6.3. Implementation of Immersive View

4. Tracking the mouse actions in the original scene

6.3 Implementation of Immersive View

The initial step is to examine and expand the data model which serves as the foundation
for the project. The second section addresses the initiation of the immersive visualization of
an object. The fundamental functionality is limited to the actions necessary for navigation
within a Web Browser environment, utilizing conventional input devices such as a mouse or
keyboard. It does not consider the specific input modalities of touchpads or touchscreens.
Once the mouse cursor has been positioned over an object that is capable of the Immersive
View and three consecutive zoom actions have been initiated, the view is triggered. All
three steps are visually highlighted, indicating to the user that the view is about to change.
The third section addresses the construction of an Immersive View, illustrated through the
example of a class. Here, the camera control has been updated to a PointerLock control,
enhancing the Immersive View experience. The final section covers the steps involved in
entering and exiting an Immersive View. The source code of this implementation alongside
the Semantic Zoom implementation is available for review in this archive: [Bamberg 2024b].

6.3.1 Current Data Model

The existing model is illustrated in Figure 6.2 using white boxes only. At this stage, it is
only capable of storing the methods of a class; there is no further indication as to whether
these methods are public or private. In addition, it lacks information about class variables.

As illustrated in the Figure 6.2, the data model has been expanded to include both gray
and white boxes. This process is part of the preprocessing stage. At this point in time, the
extended data set is not yet available; therefore, dummy data is employed in its place. The
addition of class variables and the protection type allows for a more detailed view of a class.
The use of the LoC per method indicates the modularization of code. For each method, the
following information is stored: the parameter names and corresponding types, the return
value, and, in addition, data about the extended classes and the implemented interfaces.
A method can be marked as overridden or abstract. The overloading of a method can be
stored by referencing the others using a linked list.

6.3.2 Example Implementation Based on the Immersive Class View

The initial primary component is an interface that must be incorporated into each class,
which displays a 3D object and aims to provide an Immersive View. The interface seen
in Listing 6.1 provides the necessary methods for entering, exiting, and constructing an
Immersive View. To facilitate the development process, a pre-existing class that implements
the required interface has been provided, thus eliminating the need for developers to
implement the interface themselves. Instead, they must only define the build method.

39

6. Immersive View

TypeScript Interfaces Visualization

Method Variable Parameter Interface

Application Class Package

name: string

methods: Method[]

variables: Variable[]

name: string

type: string

name: string

type: string

private: boolean

id: string

name: string

methodHash: string

private: boolean

methodHash: string

parameters: Parameter[]

id: string

name: string

methods: Method[]

parent: Package

variables: Variable[]

extends: Class[]

implements: Interface[]

id: string

name: string

subPackages: Package[]

classes: Class[]

parent?: Package

id: string

name: string

language: string

instanceId: string

parentId: string

packages: Package[]

instanceId: string

Figure 6.2. The data structure of ExplorViz is populated by both the dynamic and static data analysis
services. The grey-highlighted boxes represent a novel addition for the Immersive Class View.

40

6.3. Implementation of Immersive View

The build method accepts two parameters. The initial parameter is the camera, and the
subsequent parameter is the scene. As every utilized 3D object in ExplorViz is derived
from the BaseMesh class, further inheritance was not feasible. However, a method known
as "mixin" enables multiple inheritances. Consequently, any class capable of displaying
a 3D object can inherit from the class and construct an Immersive View. The mixin class
has already prepared the scene and mirrored the original cameras’ properties. The scene
is initially empty, except for a light source. The Immersive View manager is responsible
for maintaining a record of the original camera and camera control, and for initiating the
Immersive View of any registered 3D object. The Immersive View is tasked with triggering
the exit process at the manager class.

Listing 6.1. Excerpt of the ImmersiveViewCapable interface

1 interface ImmersiveViewCapable {

2 buildSceneandCamera(

3 Ocamera: THREE.Camera,

4 Oscene: THREE.Scene

5): Array<THREE.Camera | THREE.Scene>;

6 enterImmersiveView(camera: THREE.Camera, scene: THREE.Scene): void;

7 exitImmersiveView(camera: THREE.Camera, scene: THREE.Scene): void;

8 }

The example view is currently an Augmented 2D representation, with the 3D effect
employed primarily for aesthetic purposes [Teyseyre and Campo 2009]. However, this may
evolve in the future, with the incorporation of historical data.

The utilization of this script1 facilitates the bending of objects for enhanced visibility
within the sphere.

6.3.3 Entering/Exiting

The scene is generated each time the user attempts to access the Immersive View. Two
methods are provided as the default means of entry. One possible method for entering
the Immersive View is to hover the cursor over an object that is capable of displaying an
Immersive View and scroll into it, with the mouse positioned on top. To provide some visual
feedback, the object begins to pulse in a predefined color. This feature serves to alert the
user that they are in the process of entering another view. By using the mouse to rotate or
pan, the user can simply cancel the process. The other possibility for entering a view is a
simple double click on the object. It should be noted that all methods mentioned so far are
only usable in the Web Browser using mouse and keyboard.

The exit is seamlessly integrated into the mouse control and may be executed with a
simple zoom-out command by rotating the mouse wheel, or by pressing the escape button.

1https://github.com/Sean-Bradley/Bender/blob/main/src/client/bender.ts

41

Chapter 7

Evaluation

The evaluation is subdivided into 3 categories. The first category is a performance evalua-
tion of Semantic Zoom compared to the version without Semantic Zoom. The last two are
used for the user experience evaluation of Semantic Zoom and Immersive View.

7.1 Goals

1. Does using Semantic Zoom affect system performance?

2. Does the Semantic Zoom feature improve the user experience and increase productivity?

3. Is the Immersive View that is provided useful in the sense that it provides new information
that is not otherwise available?

4. Can the user relate to the approach mentioned in a paper “overview first, zoom and
filter, then details-on-demand"?

7.2 Performance Evaluation

In order to evaluate the impact of the Semantic Zoom feature on performance, a performance
evaluation was conducted, comparing the version with and without Semantic Zoom. In the
majority of cases [Shariff et al. 2019], performance is assessed through the use of Frames per
Second [Hamzaturrazak et al. 2023], CPU usage, and RAM measurements. A Web Browser
automated by Selenium is used to perform a series of actions with the Semantic Zoom feature
enabled and disabled, and records a time series of data. Despite Selenium’s self-definition
as a tool for other purposes and its referral to JMeter for performance analysis, it remains a
suitable tool for testing a 3D application. In contrast to Selenium, JMeter does not execute
any browser code, such as JavaScript, or render applications. Instead, it is designed to test
the connection and the backend performance.

7.2.1 Setup

A computer which runs Microsoft Windows 11 with an Intel(R) Core(TM) i7-8650U CPU
@ 1.90GHz with 4 cores was utilized for the performance evaluation. The computer has

43

7. Evaluation

an L1 cache of 256 KB, L2 cache of 1 MB and a L3 cache with 8 MB. The built-in GPU
is an Intel(R) UHD Graphics 620. The Selenium setup consists of a Python 3.13.0 and a
Selenium 4.25.0 installation. The controlled Google Chrome Web Browser runs on version
129.0.6668.90. To eliminate the 60 FPS limit enforced by Chrome in the default mode, the
parameter in Listing 7.1 is passed to Chrome prior to the test by Selenium.

Listing 7.1. Chrome Parameter To Disable Frame Rate Limit

1 --disable-gpu-vsync --disable-frame-rate-limit

In order to have a more diverse selection of landscapes, the tool developed by [Bugla 2024]
at Kiel University was employed to generate landscapes of varying dimensions. These
landscapes can be found on GitHub 1. The provider for these landscapes is a Node.js Server
running in a Docker container.

The FPS is calculated by determining the interval between render calls. In JavaScript, an
array of all render call occurrences is stored in memory. This list is subsequently retrieved
by Selenium. The heap size measurement is obtained directly from Selenium by retrieving
the variable in Listing 7.2

Listing 7.2. JavaScript Access Memory

1 performance.memory

It contains a JSON object with totalJSHeapSize, usedJSHeapSize and jsHeapSizeLimit. The
usedJSHeapSize is used in the evaluation process.

The Selenium test executes operations within the context of the landscape "XXXL world
with high communication." This landscape consists of numerous application foundations
and a substantial volume of communication between applications. The trace generator was
utilized with the following settings:

Ź 35 apps,

Ź max package depth of 5,

Ź 200 classes,

Ź 10 methods,

Ź 200 communication calls,

Ź 2411 seed,

Ź true random communication style

The following list enumerates the actions performed by Selenium.

1https://github.com/ExplorViz/deployment/blob/main/demo-supplier/demo-data/petclinic-distributed-
structure.json

44

7.2. Performance Evaluation

1. Zoom-In 100px for 10 times

2. Zoom-In 100px for 20 times

3. Move Camera Left by 500px

4. Rotate Camera Left by 100px for 2 times

5. Wait for 1 Second

6. Zoom-Out 100px for 10 times

7. Wait for 1 Second

8. Zoom-In 100px for 10 times

9. Wait for 1 Second

10. Rotate Camera Up by 25px for 2 times

11. Wait for 1 Second

12. Move Camera Left by 500px

13. Rotate Camera Left by 100px for 2 times

All of the described actions are carried out by the Selenium driver at a resolution of
1680x1050 pixels. The mouse movements that are included in these actions are always
initiated from the center point of the canvas and then directed toward the desired direction.
The actions are initiated at the starting point designated by ExplorViz. In the subsequent
action, the camera is zoomed in on the packages. Once the camera is positioned between
the packages, a series of camera movements are executed. The next step involves zooming
out and then back in again. This step represents a relatively minor zooming action in
comparison to the initial zooming in. The final step comprises further camera movement
and rotation. The final position of the camera is in close proximity to the packages, in
contrast to the initial position where the packages were distant.

The tests are conducted with either the Semantic Zoom feature or the "open all compo-
nents" functionality. The predefined zoom level sets are set to 3 with the auto open/close
functionality. The FOV is set to 75 on the perspective camera. The communication line
thickness is set to 0.5 with an arrow size of 1. The curviness factor is set to 1. No debug-
ging feature is activated, including FPS counter, axes helper, or light helper is activated.
The remaining settings are set to their default value, as they do not impact the render
performance.

The Python script and the CSV results can be accessed via the following archive:
[Bamberg 2024a].

45

7. Evaluation

7.2.2 Evaluation Results

The Figure 7.1a and Figure 7.1b contain the FPS data over time of both tests. The memory
consumption over time is displayed in Figure 7.2a and Figure 7.2b. The data recordings
in question represent a single observation of the system’s behavior and, as such, do not
constitute a definitive representation of the system’s overall trend.

0 10 20 30 40

0

50

100

150

200

Time in seconds

Fr
am

es
pe

r
Se

co
nd

(F
PS

)

(a) FPS scatter plot of Selenium’s interaction with the
landscape "XXXL world with high communication"
with Semantic Zoom enabled.

0 10 20 30 40

0

50

100

150

200

Time in seconds
Fr

am
es

pe
r

Se
co

nd
(F

PS
)

(b) FPS scatter plot of Selenium’s interaction with the
landscape "XXXL world with high communication"
without Semantic Zoom enabled.

Figure 7.1. Comparison of FPS scatter plots with and without Semantic Zoom enabled.

7.2.3 Discussion

The data set obtained from the recorded performance evaluation demonstrates notable
discrepancies. In the initial startup phase, the version without Semantic Zoom displays supe-
rior performance in comparison to the other version. This phenomenon can be explained
by the removal of the communication direction indicator, which significantly impacts the
computational resources required for processing. Upon further interaction with ExplorViz,
the version with Semantic Zoom was observed to have a higher frame rate, on average,
in comparison to the version without. The version without Semantic Zoom maintains a
relatively FPS throughout the entire interaction, although it does not exceed 50 FPS. Only
on rare occasions. In contrast, the versions with Semantic Zoom exhibit a notable decline
in FPS, reaching nearly zero, and a surge to almost 200 fps. These fluctuations can be
attributed to the auto open/close feature, as each open/close call demands a substantial
computational burden. This was identified during the development phase. On exceptionally
large landscapes, the Semantic Zoom version is capable of elevating the FPS counter to a
level that is visually acceptable for the human eye. The memory consumption is marginally
higher when the Semantic Zoom feature is in use, with a greater degree of fluctuation.

46

7.3. User Evaluation

0 20 40 60 80 10
0

12
00

200

400

600

Time in seconds

Ja
va

Sc
ri

pt
us

ed
he

ap
si

ze
in

m
eg

ab
yt

es

(a) Memory scatter plot of Selenium’s interaction with
the landscape "XXXL world with high communication"
with Semantic Zoom enabled.

0 20 40 60 80 10
0

12
00

200

400

600

Time in seconds

Ja
va

Sc
ri

pt
us

ed
he

ap
si

ze
in

m
eg

ab
yt

es

(b) Memory scatter plot of Selenium’s interaction with
the landscape "XXXL world with high communication"
without Semantic Zoom enabled.

Figure 7.2. Comparison of memory scatter plots with and without Semantic Zoom enabled.

In the version without Semantic Zoom enabled, the memory consumption is increasing
steadily, followed by a sudden drop. This phenomenon is likely associated with the garbage
collector.

7.2.4 Threats to Validity

Performance Test The performance test was running on the same computer that also
ran the demo supplier, which fed the frontend with pre-recorded data, and the node
developer environment. The performance might be affected by that. The Javascript function
"performance.memory" is considered to be not an accurate measurement tool, as it can
overestimate the memory usage2. It should be noted that the performance test was only
conducted on a single occasion; consequently, there is some potential for variation in the
results.

7.3 User Evaluation

In order to evaluate the usability and efficacy of the system in relation to specific tasks,
a user evaluation is conducted. The user evaluation is open to all interested parties. To
evaluate the system, users are presented with a task that they must complete. This task

2https://developer.mozilla.org/en-US/docs/Web/API/Performance/memory

47

https://developer.mozilla.org/en-US/docs/Web/API/Performance/memory

7. Evaluation

primarily entails searching for a property within the 3D environment. As proposed by
[Wiens et al. 2017], participants are divided into groups to compare the versions with and
without Semantic Zoom. In addition to fulfilling the assigned tasks, participants are required
to record the time required to complete them [Hansen et al. 2013]. Furthermore, users are
invited to complete a survey describing their experience with the software. The complete
survey and the results can be found in the archive: [Bamberg 2024a].

7.3.1 Setup

All participants completed the evaluation in a laboratory facility at Kiel University on
the following system. A Windows 10 computer equipped with an Intel Core i5-6500 CPU
at 3.2GHz providing 4 cores and 16GB of DDR3 memory. For 3D rendering, it uses the
NVIDIA GeForce GTX 1070 with 8GB memory. The system SSD is a Samsung 850EVO
500GB model. The browser is Google Chrome in version 130.0.6723.92. The input device is a
QWERTZ keyboard and a default mouse. Two NEC MultiSync EA243WM 24-inch displays
with a resolution of 1920x1200 each were utilized to facilitate the simultaneous observation
of the survey and ExplorViz by the participants. The LimeSurvey tool is employed to
document the responses of each participant. This tool is an online platform for developing
surveys, hosted by the university As previously outlined in Section 7.2.1, the use of diverse
landscape sizes was employed to afford the user a multitude of potential scenarios.

7.3.2 Pretest

In order to ascertain whether there are any logical or system failures prior to the actual
evaluation, an external party has been designated to run the evaluation and provide
feedback. One of the most strongly recommended features to be implemented was the
automatic updating of the content following a change in the settings. It is essential that all
tasks include concrete instructions, ensuring that all participants have a uniform underlying
basis. The settings have been updated with the objective of enhancing the user experience. It
is recommended that the implementation of a visual indicator be considered to demonstrate
the current state of the Semantic Zoom feature. One proposed solution is the inclusion of an
icon in the top right corner of the screen. A bug that randomly displayed pop-ups while in
the Immersive View needed to be fixed, as it obstructed the central view of the user.

7.3.3 Introduction to ExplorViz

As part of the preparatory process, each participant is provided with a brief introduction
to ExplorViz. This is necessary to ensure that all participants possess a similar level of
knowledge, thereby facilitating more accurate results during the time-based tasks. The
initial stage comprises a summary of essential functions and settings, presented in the form
of a cheat sheet. This document is included in the appendix, referenced as Figure A.1. The
subsequent stage involves a brief tutorial, during which the participant becomes acquainted

48

7.3. User Evaluation

with the environment through exploration of the original version and, subsequently,
the extended version of ExplorViz with Semantic Zoom. The designated landscape is the
"VISSOFT 23 - Study Sample."

7.3.4 General Questions

The objective of the general questions was to be able to differentiate between test results
based on the participant’s level of experience.

1. Do you have experience in computer programming?

2. Have you used ExplorViz before?

7.3.5 Questions and Assignments for Semantic Zoom

The participants are divided into two groups based on the tasks they are assigned. One
task requires the use of Semantic Zoom, whereas the other does not permit its use. The
assignments are mixed, such that every participant experiences the Semantic Zoom feature.
The time taken to complete a task is recorded.

In the final stage of the introduction, the participant is required to describe the differ-
ences between the two versions. The response provides an insight into what the participant
initially noticed, and therefore carries greater value.

All assignments have a preparation stage that is not included in the time recording. This
stage involves loading the appropriate landscape and adjusting the settings as described.

1. Group A: Find the class ‘PetDetails‘ and name the underlying application name in
landscape Distributed Petclinic Sample with semantic zoom.

2. Group B: Find the class ‘PetDetails‘ and name the underlying application name in
landscape Distributed Petclinic Sample without semantic zoom.

3. Group A: Name all classes (full name) in the sub package "model" of the application
"app-4" in landscape Artificial Software Landscape with semantic zoom.

4. Group B: Name all classes (full name) in the sub package "model" of the application
"app-4" in landscape Artificial Software Landscape without semantic zoom.

5. Group A: There is a major update of class Vet in package vet of Application app-4.
Which classes might be affected by that? Name all potentially affected classes by
looking at the communication lines. Use the Artificial Software Landscape without
semantic zoom.

6. Group B: There is a major update of class Vet in package vet of Application app-4.

49

7. Evaluation

Which classes might be affected by that? Name all potentially affected classes by
looking at the communication lines. Use the Artificial Software Landscape with
semantic zoom.

7. Group A: Look out for the application nexus-code. There is a class called CacheIn-
validator on the highest level. Only one communication line should be visible from
and to the class CacheInvalidator . What direction is the communication? Inbound
or outbound? Use the landscape Tracegen - XL world with high communication
and disabled semantic zoom.

8. Group B: Look out for the application nexus-code. There is a class called CacheIn-
validator on the highest level. Only one communication line should be visible from
and to the class CacheInvalidator. What direction is the communication? Inbound
or outbound? Use the landscape Tracegen - XL world with high communication
and enabled semantic zoom.

The following questions are free text questions.

1. What changes did you notice between the version with and without semantic zoom?

2. Do you have any suggestions for improving the user experience while using the
semantic zoom feature?

The following questions can be rated from Haven’t noticed/No answer, 0 No advantage/No, 1
Very low, 2, 3, 4, 5 Very high.

1. How useful is the change of height of classes to indicate the request count?

2. How useful is the change of the font size on the class labels?

3. How useful is the indicator of the number of methods at the class object?

4. How much did you like the shrinking of the communication lines while zooming
in?

5. How much did you like the feature where packets open and close automatically
depending on the zoom level?

6. Did the objects you zoomed into change? Did you expect them to be triggered?

7. Do you think the semantic zoom feature is useful in daily life?

8. Do you like the overall reduced view compared to the regular view (all components
open) without semantic zoom?

The following questions can be answered with with semantic zoom, without semantic zoom,
or no difference.

50

7.3. User Evaluation

1. Which version (with or without semantic zoom) was a smoother experience for the
eye regarding steady FPS?

2. Which version do you prefer in terms of interacting with the 3D world?

7.3.6 Questions and Assignments for Immersive View

The assignments in this chapter are not subject to a specified time frame. They begin with
the following question:

How intuitive is the entering? Try to "enter" a class (Hint: there are 2 methods)

Which can be answered with yes or no. The next question was only shown if the participant
failed to enter a class. It is a free text question:

If you found a way, describe the method. If you did not find a way, skip it. The next
question targeted the exiting of the view:

Did you find a way to exit the immersive view?

With the answer options: yes or no The following question is gaming towards the user
experience while interacting with the view. As a hint, it stated two ways to enter the view.

Try both methods to enter the immersive view. Which method felt more natural to
you?

Possible answer options: scroll, double click. The following questions are split into 3 parts:

Is the data provided in a structured way? Provide a suitable topic for each section to
the best of your knowledge.

The answer should describe top, middle, and bottom row. The next question is a free text
question again and focuses on future works:

Do you know any other object where an immersive view can be helpful to get more
information?

The question:

51

7. Evaluation

How useful is the immersive view in your opinion?

could be answered with one of the following options: Haven’t noticed/No answer, 0 No
advantage/No, 1 Very low, 2, 3, 4, 5 Very high. The final free text question targeted the general
feedback:

Do you have any suggestions to improve the immersive view? Entering/Display/Exit-
ing?

7.3.7 Evaluation Results

The evaluation results are divided into three sections. The first section concerns the general
knowledge of the participants, while the second section concerns Semantic Zoom related
questions. The third section concerns the Immersive View. The answers to the free text
questions have been shortened and/or summarized. The complete results can be found in
the following archive: [Bamberg 2024a].

General

A total of 17 individuals participated in the evaluation. One participant was unable to
complete the evaluation due to a timeout of the survey tool. The issue was subsequently
addressed by modifying the structure of the survey, thereby facilitating greater interactivity
with the tool. Of the remaining 16 participants, nine selected Group A, and seven selected
Group B. The distribution of users who had previously utilized ExplorViz was nearly
balanced. 9 of the 16 participants had previously used ExplorViz, while the remaining seven
had no prior experience with it.

The majority of participants have a background in computer science, which is reflected
in the higher level of advanced knowledge compared to other values, as illustrated in
Figure 7.3. The participants self-identified their category based on their own understanding,
without any pre-defined criteria.

Semantic Zoom

Each participant was required to complete four tasks, two of which were conducted with
the Semantic Zoom feature enabled and two without. The Semantic Zoom feature was either
enabled or disabled based on the selected group. The following Figure 7.4 presents the
mean time required to complete the task without checking for correct answers. It should be
noted that no participants skipped the answering process. The number of incorrect answers
was only relevant for Tasks 2 and 3 and did not affect the overall outcome; therefore, it is
not displayed in any chart.

52

7.3. User Evaluation

None Basic Advanced

2

4

6

8

10

12

1

3

12

Knowledge

N
um

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.3. Self-rated programming knowledge of the participants.

Task 1 Task 2 Task 3 Task 4

0

50

100

150

200

250

Individual tasks with or without Semantic Zoom assisting

Ti
m

e
ne

ed
ed

to
fu

lfi
ll

th
e

ta
sk

in
se

co
nd

s

With Semantic Zoom Without Semantic Zoom

Figure 7.4. Avg time needed for each task.

53

7. Evaluation

A B C D E F G H

2

4

6

8

4

3

6

1

8

5

2

3

A letter represents a noted visual appearance change

N
um

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.5. First noticed differences by the participants before the tasks begin.

The objective of the inquiry was to ascertain the initial impression of the participants
when presented with the two versions, one with and one without the inclusion of the
Semantic Zoom.

What changes did you notice between the version with semantic zoom and without,
while zooming in and out? Describe them as best as you can. You can still use the two
browser tabs to compare them.

The results are interpreted and cumulated in order to provide a brief overview of the
findings. Each finding gets a unique letter to trace the value in the presented Figure 7.5.

Participants 7, 5, 12, (13) noticed the change of the thickness of a communication
line (A). Participants 7, 2, and 9 observed the absence of the direction indicator on the
communication lines (B). Participants 7, 3, 4, 8, 10, and 16 mentioned the automatic open
and closing of packages (C). The Immersive View was already noticed by participant 3 (D).
MethodMesh indicators at the classes were observed by participants 7, 6, 8, 9, 11, 12, 13,
and 15 (E). The use of ellipses to abbreviate class names has been identified by participants
7, 8, 11, 12, and 15 (F). The alteration in height of the class is documented by participants 7
and 15 (G). The Immersive View was referenced by participants 13, 14, and 15. (H).

Another question focused on suggestions to improve the Semantic Zoom feature.

Do you have any suggestions for improving the user experience while using the
semantic zoom feature?

One participant observed that the packages were opened and closed in a manner

54

7.3. User Evaluation

that was not foreseen. One participant expressed disapproval of the hiding of direction
indicators on communication lines. The abrupt transition between two discrete levels
proved overwhelming for the eye, necessitating a gradual and seamless integration. A
technical issue has been identified with the custom selection of the individual LoD setting,
whereby the sliders are capable of accepting values that fall outside the specified range.
One participant expressed concern about the numerous changes between the zoom levels.
Another participant requested the full name of the class instead of a partially visible
abbreviation. In the closed application state, the font size should be adapted to the distance
of the camera to enhance readability.

As illustrated in Figure 7.8, the majority of participants expressed a preference for the
version that included the Semantic Zoom feature over the version that did not. However,
the display performance did not yield a definitive outcome, with a balanced distribution
of responses across the three options, with four participants indicating a preference for
each option and eight participants indicating that they could not distinguish between the
versions.

The results for the ratings of the third list in Section 7.3.5 can be found in Figure 7.6
and Figure 7.7.

Immersive View

All participants indicated that they were able to gain access to the Immersive View. However,
one participant did not provide a description of the method used to gain access. Thus, 15
out of 16 participants were able to access the view independently, without the assistance of
the provided hint. Of the participants, 13 were able to successfully navigate to the Immersive
View via the zoom method. However, it should be noted that not all of them accurately
described the precise steps required to achieve this. In some instances, participants were
initially misled by clicking on the object before following the correct procedure. In terms of
the double-click method, seven participants were able to successfully access the Immersive
View through this approach. However, it should be noted that this method may not
be entirely accurate, as one participant stated, "I clicked on the class and zoomed in."
This suggests that the double-click may not be the optimal solution for all users. Every
participant was able to exit the Immersive View. The preferred enter and exit method can be
found in Figure 7.9 and the overall rating for the Immersive View is shown in Figure 7.10.

The participants were asked for further usability of the Immersive View regarding other
objects.

Do you know any other object where an immersive view can be helpful to get more
information?

Some responses concentrate on the implementation of an immersive perspective for a
different object, whereas other responses prioritize the expansion of the existing Immer-
sive Class View. Two responses indicated an interest in developing an Immersive View at
the package/application level. Another respondent expressed interest in developing an

55

7. Evaluation

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

7

0 0

1

0

5

3

N
um

be
r

of
pa

rt
ic

ip
an

ts

(a) How useful is the change of height of classes to
indicate the request count?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

1

2

3

4

5

4

0 0 0

3

4

5

N
um

be
r

of
pa

rt
ic

ip
an

ts

(b) How useful is the change of the font size on the
class labels?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

3

1

0 0

4

6

2

N
um

be
r

of
pa

rt
ic

ip
an

ts

(c) How useful is the indicator of the number of
methods at the class object?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

8

1

0 0

1 1

5

8

N
um

be
r

of
pa

rt
ic

ip
an

ts

(d) How much did you like the shrinking of the
communication lines while zooming in?

Figure 7.6. First set of ratings.

56

7.3. User Evaluation

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

8

10

12

0 0 0 0
1

3

12

N
um

be
r

of
pa

rt
ic

ip
an

ts

(a) How much did you like the feature where pack-
ets open and close automatically depending on the
zoom level?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

0 0

1 1

3

4

7

N
um

be
r

of
pa

rt
ic

ip
an

ts

(b) Did the objects you zoomed into change? Did
you expect them to be triggered?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

8

10

0 0 0 0

4

2

10

N
um

be
r

of
pa

rt
ic

ip
an

ts

(c) Do you think the semantic zoom feature is useful
in daily life?

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

2

0

1 1

2

4

6

N
um

be
r

of
pa

rt
ic

ip
an

ts

(d) Do you like the overall reduced view compared
to the regular view (all components open) without
semantic zoom?

Figure 7.7. Second set of ratings. 57

7. Evaluation

W
it

h
Se

m
an

ti
c

Z
oo

m

W
it

ho
ut

Se
m

an
ti

c
Z

oo
m

N
o

di
ff

er
en

ce

0

2

4

6

8

10

12

14

16

4 4

8

15

1

N
um

be
r

of
pa

rt
ic

ip
an

ts

Steady FPS Experience 3D Interaction Preference

Figure 7.8. FPS and interaction preference between ExplorViz with Semantic Zoom and without.

58

7.3. User Evaluation

Immersive View for communication lines. Some respondents proposed enhancements to the
Immersive Class View. Based on the communication, the classes should display links to other
classes that can be triggered. This would enable the user to transition from one Immersive
Class View to another without having to return to the original view. Another improvement,
based on a polymorphism indicator in the Immersive Class View, was suggested. This could
indicate a method that has been overloaded during the compilation process or overridden
during runtime.

Those participating in the study were invited to propose enhancements to the process
of entering, displaying, and exiting the Immersive View.

Do you have any suggestions to improve the immersive view? Entering/Display/Exit-
ing?

The responses encompass all three options. With regard to enhancements for the entry of
the immersive view, the following points have been identified:

Ź The transition between the original view and the immersive view should be smooth and
seamless.

Ź The distance between the user and the object should be taken into account, with the
entering process only initiated when the appropriate proximity has been reached.

The view or functionality could be improved in the following cases:

Ź Enhancements to the table representation of the data.

Ź The ability to switch between windows (disable mouse catch).

Ź An improved design.

Ź The option to automatically open a code editor when zooming into a function.

Ź The display of source code within the immersive view.

Ź The presentation of all values within the field of view of the camera.

Improvements for exiting:

Ź Reduce the timeout of the virtual barrier to enable the user to exit the view in a more
expedient manner.

Ź Remove the stopper in its entirety.

59

7. Evaluation

Es
ca

pe
bu

tt
on

Z
oo

m
in

g
ou

t

N
o

an
sw

er

0

2

4

6

8

9

7

0N
um

be
r

of
pa

rt
ic

ip
an

ts

(a) Which exit method of an Immersive View felt
more natural?

D
ou

bl
e

cl
ic

k

Z
oo

m
in

g
in

N
o

an
sw

er

5

10

12

3

1N
um

be
r

of
pa

rt
ic

ip
an

ts

(b) Which enter method of an Immersive View felt
more natural?

Figure 7.9. Prefered way to exit or enter the Immersive View.

7.3.8 Discussion

In the user evaluation of the Semantic Zoom tasks, the mean time required by participants
with and without Semantic Zoom differed in favor of the Semantic Zoom feature for tasks 1
and 2. The mean completion time for task 1 with the use of Semantic Zoom was 53 seconds,
whereas the mean completion time for the group without was 72 seconds. This represents
a difference of 19 seconds, or an increase of 35%. A similar trend was observed in the case
of Task 2. The group utilizing the Semantic Zoom feature completed the task in an average
of 24 seconds, while the other group required 46 seconds, resulting in a difference of 22
seconds or 91%.

The results for tasks 3 and 4 are reversed. The group utilizing Semantic Zoom required
125 seconds to complete task 3, whereas the other group only required 90 seconds. This
yields a difference of 35 seconds, or 38%. Task 4 yielded comparable outcomes, with the
group utilizing Semantic Zoom requiring 46 seconds, in contrast to the group without this
feature, which required only 36 seconds. The discrepancy is 10 seconds, or 27%. After two
tasks, the parties swapped the groups, as evidenced by the results. There is a correlation
between the time needed and the participants. One party consisted of participants who
completed the tasks more rapidly than the other party. There is no evidence that the
Semantic Zoom feature enhances user performance when using ExplorViz.

The results of the question "Which version do you prefer in terms of interacting with
the 3D world?" demonstrated a notable trend indicating that Semantic Zoom enhances

60

7.3. User Evaluation

U
nn

ot
ic

ed

N
o

ad
va

nt
ag

e

1
Ve

ry
lo

w 2 3 4

5
Ve

ry
hi

gh

0

2

4

6

8

0 0 0 0

2

6

8

N
um

be
r

of
Pa

rt
ic

ip
an

ts

Figure 7.10. How useful is the immersive view in your opinion?

user usability when utilized with ExplorViz. 15 participants indicated a preference for the
version incorporating Semantic Zoom, while only 1 participant expressed a preference for
the version without this functionality.

8 of the 16 participants were able to identify the introduction of method indicators
at the class objects at first glance. The change in the class height indicating the request
count was only noted by 1 participant, which suggests that either the height scale was
insufficiently large or that participants are unable to discriminate between size differences
effectively. In such instances, a continuous LoD may prove beneficial, as it would permit a
moderate scaling of the height.

These related results can be observed in the following question: "How useful is the
change of height of classes to indicate the request count?" 7 of the 16 participants did not
notice the change, while 8 ranked it between 4 and 5 (very high).

The question regarding the change of the font size was either not noted (4) or was
noted and identified as useful (12). In combination with the written feedback, further
development in optimizing font size and abbreviations is advised. This helps the user to
obtain the full information at once, which is beneficial in terms of efficiency.

Although the method indicator on a class was initially identified by a significant number
of participants, only 2 rated it with 5, 6 rated it with a 4, and 4 rated it with a 3. 4 did not
notice it or identified no advantage for the visualization. It is possible that this feature may

61

7. Evaluation

not be useful enough to progress to the next stage of development.
The reduction of the thickness of the communication lines was met with considerable

approval, as evidenced by the 13 participants who rated it with a 4 or 5. Only one individual
did not take note of the alteration. The reduction of the line thickness proved beneficial in
situations where navigation was required in a dense area, as it facilitated better orientation.

15 participants rated the automatic opening and closing of packets with either a 4 or a 5.
This feature was the most highly rated by participants. Nevertheless, the feedback indicated
that there is still room for improvement. In some instances, participants anticipated the
opening of other packages, rather than the ones that did open. The clustering algorithm,
which serves as an abstraction layer, constrained the options to create a system with
100% accuracy. The system’s reliability was evaluated by examining whether the targeted
packages altered their appearance as anticipated. The majority of participants rated the
system with a 4 or 5 (11), followed by 3 who rated it with a 3, and 2 who rated it with
either a 1 (very low) or 2.

The proposed enhancements for ExplorViz vary considerably, ranging from unexpected
behavior and bugs to feature requests and visual improvements. It is notable that each
suggestion is distinctly different from the others, which is somewhat unexpected.

The majority of participants indicated that the Immersive View was a useful feature.
14 out of the 16 participants rated the feature in question a 4 or a 5. This indicates that
the development of the Immersive View can be continued and enhanced. The majority of
participants designated the double click as the preferred method for entering the Immersive
View. However, while a clear preference was observed with regard to entering the Immersive
View, no majority was reached with respect to the preferred exit method. 9 out of 16
participants voted for the escape button, while 7 out of 16 voted for the zooming out
method.

The participants identified the communication lines as a potential candidate for a further
Immersive View object. However, they did not provide any information regarding the type
of content that could be displayed within the view. The blocking barrier that prevents users
from unintentionally exiting the view while zooming out requires a shorter timeout period,
as it was perceived negatively by multiple participants. The context switch confuses users
due to the absence of a transition. Therefore, a feature that facilitates a smooth transition is
necessary. One potential solution is to initiate the transition by moving the camera into the
objects.

7.3.9 Threats to Validity

It is important to mention the threats to validity as there a multiple factors that can cause
validity problems.

Probands The number of 16 participants is considered very low. It might show a trend
regarding the user performance using ExplorViz with or without Semantic Zoom. To show if

62

7.3. User Evaluation

the tasks can be performed faster, we need multiple hundreds of participants. 9 out of 16
participants had used ExplorViz before and therefore had an advantage compared to the
other participants. The distribution among the groups with ExplorViz knowledge is 4 (A)
against 5 (B), which is very well distributed.

Evaluation Setup All participants had access to a two screen setup, yet not all of the
participants took the advantage and therefore lost precious time while performing time
critical tasks. The participants need a pretask where the time is recorded but dropped, to
get insight of how a task looks like. Some participants might improve in how to control the
systems after performing the first tasks. The tutorial beforehand was used as such a buffer,
but there was no pressure regarding the time.

Relevance of the Assignments All assignments focused on the fulfillment of a small task,
where the user had to extract up to 6 objects. All participants required less than 5 minutes
per task.

63

Chapter 8

Conclusion

This work aims to enhance the usability and performance of the ExplorViz tool by reducing
the amount of information presented depending on the position in the visualization, in
consideration of the restrictions of the human brain and visual processing. To address these
issues, the Semantic Zoom and Immersive View features were developed. The Semantic Zoom
enables the concealment and revelation of information based on the distance between the
camera and the object in question. In contrast, the Immersive View facilitates a comprehen-
sive and undistracted representation of the object, presenting information in a clear and
structured manner.

The implementation process of Semantic Zoom involved extending the available 3D
object with additional metrics and developing a user-friendly programmer interface for
modifying 3D objects. Two clustering algorithms were employed to reduce computational
complexity and shift the majority of the computational workload to a preprocessing step.
Both the k-means and mean shift clustering algorithms are centroid-based. A manager
instance was utilized to switch between the discrete Level of Details (LoDs) based on the
camera distance to the cluster centroids. Each cluster contains 3D objects that are capable
of adjusting their visual presentation. The Semantic Zoom feature represents a non-invasive
extension to ExplorViz, which can be enabled or disabled. Further detailed settings, such
as those concerning sensitivity and clustering, may be configured according to the user’s
preferences.

The Immersive View was implemented by creating a new scene that is decoupled from
the regular ExplorViz view in order to eliminate distracting factors. Each 3D object that is
visible in the original scene can be extended by an Immersive View. Software developers
have access to an easy-to-use API that allows them to create their own Immersive View for
further objects. All 3D objects in ExplorViz are capable of being extended if they extend the
"BaseMesh". The Immersive Class View is employed as a proof of concept for the Immersive
View. It displays inner class details such as the name, inheritance, variables, and functions
with their respective parameters and return types. The data is presented in a structured
manner around a sphere, with the user located at the center point of the sphere. The camera
control was changed to a first-person view.

An evaluation was conducted with the objective of assessing the performance of the
system and its usability, with the latter being evaluated utilizing a user evaluation. The
results for the Semantic Zoom feature demonstrate no statistically significant impact on
user performance when completing tasks. However, the survey indicated positive results

65

8. Conclusion

regarding usability improvements. Of the 16 respondents, 15 expressed a preference for
interacting with ExplorViz using Semantic Zoom, while only 1 indicated a preference for
the version without Semantic Zoom. Participants were able to distinguish between versions
with and without Semantic Zoom and rated most newly-introduced features positively. The
feedback included requests for bug fixes, stylistic improvements, and new features, such as
modifying the font sizes on all 3D objects. The same ratings were observed for the Immersive
View. Participants reported no difficulty interacting with the Immersive View, which includes
entering, moving around, and exiting.

8.1 Future Work

The received feedback outlines potential opportunities for enhancement of the new Ex-
plorViz features. Additionally, it includes ideas that emerged during the development
process but were not incorporated due to time constraints.

Extend pool of Semantic Zoom objects In the context of the work, only a few potential
3D objects were identified that are suitable for the Semantic Zoom feature. To enhance the
functionality further, it would be beneficial to integrate additional 3D objects and discrete
LoDs.

Non-Linear Magnification The paper [Keahey 1998] introduced the concept of non-linear
magnification, which enables the user to focus on a specific area within the 3D environment
without magnifying the entire scene to the same degree. This approach allows for a more
detailed spatial view of a particular region while maintaining the contextual information
surrounding it. The newly acquired spatial area can then be utilized with Semantic Zoom to
provide additional 3D object data and insights into the system.

Continuous Level of Detail Another proposal is to introduce a continuous LoD in place
of a discrete LoD, as this is perceived as a more naturalistic approach compared to the
sudden appearance of objects, as suggested by a participant in the evaluation process. The
continuous LoD can facilitate the blending in and out of objects, rather than an abrupt
manifestation. A different implementation approach is required for this feature, as the
current approach is based on a discrete LoD and therefore cannot be altered without making
significant changes to the implemented structure.

Real Data in the Immersive Class View The Immersive Class View employs synthetic data
to illustrate the functionalities of the view. The necessary data are not yet supplied by the
backend. To obtain this data, the static analysis must extract this type of information and
transmit it to the frontend. The frontend has already been expanded by a minor amount of
class-specific data, as evidenced in Section 6.3.1.

66

8.1. Future Work

Immersive View With Context The current approach of presenting an Immersive View in
isolation from the original scene results in a sudden and disruptive shift in context. An
alternative strategy is to integrate the Immersive View into the original scene as a miniature
version, effectively blurring the context while assisting in orientation and minimizing
distractions from surrounding information.

View Code in the Immersive View Once the static analysis has provided information
about the code of a class, it can also be used to display the code. For example, the code of
the method can be displayed when the user is in the Immersive View and looks directly at
the method.

67

Appendix A

Cheat Sheet

69

A. Cheat Sheet

ExplorViz

Application

Closed
Component/Package

Communication Line
with direction indicator

Opened Application
with is Components

and Classes

Classes,
hight indicate the

request count

Method idicator

Context menu available
via right click in the

landscape

Settings available via
the gear at the top

right corner

Show more details:
1: Very early
6: Very late

Set a custom trigger
point for each level

Low: Very early
High: very late

Change cluster number k
when using k-means

Low: a few trigger points
High: very concrete trigger

point

Name of the current
landscape

Main menu button

List of different landscapes Landscape

Enable/disable
semantic zoom

Show trigger points
(for debugging)

Figure A.1. Cheat sheet used during the user evaluation.

70

Glossary

Apache Kafka Apache Kafka is a distributed event streaming platform, that can store, process
and export datastreams. 10

backend The backend of software typically operates on a server in the background and
provides data. 10, 19, 43, 66

Docker Docker is a platform that facilitates the packaging and distribution of applications
as containerized software. 44

Ember.js Single-page web app written in JavaScript. 8, 10, 19

ExplorViz ExplorViz software visualization tool. 1, 2, 5, 10, 13, 15, 19, 22, 23, 25, 26, 36, 40,
41, 45, 46, 48, 49, 52, 58, 60–63, 65, 66

frontend Software’s frontend that is communicating with the user. 1, 5, 10, 19, 23, 34, 36, 47,
66

GitHub Online Service for Software development using Git. 44

gRPC gRPC is a highly efficient Remote Procedure Call Framework initially developed by
Google. 10

Immersive Class View An Immersive View for an object-oriented class. viii, 37–40, 55, 59, 65,
66

Immersive View Immersive View provides a focused perspective of a specific part of the
overall system without contextual distractions. viii, 2, 3, 6, 13, 15, 37, 39, 41, 43, 48, 51,
52, 54, 55, 59, 60, 62, 65–67

Jaeger Jaeger is a distributed tracing platform. 10

JavaScript A scripting language used to develop interactive websites for web browsers. 8,
29, 34, 43, 44, 47

Node.js Open-Source JavaScript runtime outside the Browser. 44

OpenTelemetry OpenTelemetry collects logs, metrics and traces. 9–11

71

Glossary

Prometheus Prometheus is a monitoring system with a time series database. 10

Semantic Zoom Semantic Zoom displays different features on different zoom levels. vii, viii,
2, 3, 5, 7, 13, 14, 16, 17, 23, 32–34, 36, 39, 43, 45–49, 52–55, 58, 60–62, 65, 66

Three.js A JavaScript library for rendering 3D environments in the browser using WebGL.
vii, 7–10, 19, 22, 27, 31, 37

Web Browser Software designed to display web pages accessed through HTTP. 7, 8, 39, 41,
43, 44

WebAssembly Binary code that can be executed by the web browser. 6

WebXR WebXR provides an API for developers of web applications to access augmented
reality or virtual reality. 10

72

Acronyms

API Application Programming Interface. 8, 19, 65

CPU Central Processing Unit. 6, 43

FOV Field of View. 6, 28, 45

FPS Frames per Second. 5, 6, 43–46, 58

HTML Hypertext Markup Language. 8

LoC Lines of Code. 21, 39

LoD Level of Detail. vii, 7, 14, 16, 22, 23, 29, 55, 61, 65, 66

OTLP OpenTelemetry protocol. 9, 10

PoI Point of Interest. 17, 26, 27, 31

RAM Random Access Memory. 43

UI User Interface. 8, 10, 19, 36

VWM Visual Working Memory. 2

73

Bibliography

[Alam and Dugerdil 2007] S. Alam and P. Dugerdil. Evospaces visualization tool: exploring
software architecture in 3d. In: 14th Working Conference on Reverse Engineering (WCRE
2007). 2007, pages 269–270. doi: 10.1109/WCRE.2007.26. (Cited on page 15)

[Alnabhan et al. 2018] M. Alnabhan, A. Hammouri, M. Hammad, M. Atoum, and O.
Al-Thnebat. 2d visualization for object-oriented software systems. In: 2018 International
Conference on Intelligent Systems and Computer Vision (ISCV). 2018, pages 1–6. doi:
10.1109/ISACV.2018.8354085. (Cited on page 1)

[Bach et al. 2011] B. Bach, E. Pietriga, I. Liccardi, and G. Legostaev. Ontotrix: a hybrid
visualization for populated ontologies. In: Proceedings of the 20th International Conference
Companion on World Wide Web. WWW ’11. Hyderabad, India: Association for Computing
Machinery, 2011, pages 177–180. doi: 10.1145/1963192.1963283. (Cited on page 15)

[Balogh et al. 2016] G. Balogh, T. Gergely, Á. Beszédes, and T. Gyimóthy. Using the city
metaphor for visualizing test-related metrics. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). Volume 2. 2016, pages 17–20.
doi: 10.1109/SANER.2016.48. (Cited on page 1)

[Bamberg 2024a] J. Bamberg. Evaluation Results - Semantic Zoom With Immersive Detail View
for ExplorViz. Zenodo, Nov. 2024. doi: 10.5281/zenodo.14228962. (Cited on pages 45, 48, 52)

[Bamberg 2024b] J. Bamberg. Explorviz-frontend with semantic zoom feature. Nov. 2024. doi:
10.5281/zenodo.14229523. (Cited on pages 23, 39)

[Buering et al. 2006] T. Buering, J. Gerken, and H. Reiterer. User interaction with scatterplots
on small screens - a comparative evaluation of geometric-semantic zoom and fisheye
distortion. IEEE Transactions on Visualization and Computer Graphics 12.5 (2006), pages 829–
836. doi: 10.1109/TVCG.2006.187. (Cited on pages 7, 16)

[Bugla 2024] M. M. Bugla. Ein ansatz zur generierung von opentelemetry-traces auf
grundlage von synthetischen anwendungsstrukturen. Bachelor’s Thesis. Kiel University,
Sept. 2024. url: https://oceanrep.geomar.de/id/eprint/60834/. (Cited on page 44)

[De Carlo et al. 2022] G. De Carlo, P. Langer, and D. Bork. Advanced visualization
and interaction in glsp-based web modeling: realizing semantic zoom and off-screen
elements. In: Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems. MODELS ’22. Montreal, Quebec, Canada: Association for
Computing Machinery, 2022, pages 221–231. doi: 10.1145/3550355.3552412. (Cited on page 29)

[Dirksen et al. 2014] J. Dirksen et al. Three. js essentials. Packt Publishing, 2014. (Cited on
pages 7, 8)

75

https://doi.org/10.1109/WCRE.2007.26
https://doi.org/10.1109/ISACV.2018.8354085
https://doi.org/10.1145/1963192.1963283
https://doi.org/10.1109/SANER.2016.48
https://doi.org/10.5281/zenodo.14228962
https://doi.org/10.5281/zenodo.14229523
https://doi.org/10.1109/TVCG.2006.187
https://oceanrep.geomar.de/id/eprint/60834/
https://doi.org/10.1145/3550355.3552412

Bibliography

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with explorviz. Information and
Software Technology 87 (2017). doi: https://doi.org/10.1016/j.infsof.2016.07.004. (Cited on page 10)

[Hamzaturrazak et al. 2023] M. Hamzaturrazak, E. M. A. Jonemaro, and A. Pinandito.
Performance analysis of 3d rendering method on web-based augmented reality applica-
tion using webgl and opengl shading language. In: Proceedings of the 8th International
Conference on Sustainable Information Engineering and Technology. SIET ’23. Badung,
Bali, Indonesia: Association for Computing Machinery, 2023, pages 637–643. doi:
10.1145/3626641.3626949. url: https://doi.org/10.1145/3626641.3626949. (Cited on page 43)

[Hansen and Hasselbring 2024] M. Hansen and W. Hasselbring. Instrumentation of software
systems with opentelemetry for software visualization. 2024. url: https://arxiv.org/abs/2411.

12380. (Cited on page 10)

[Hansen et al. 2013] M. Hansen, R. L. Goldstone, and A. Lumsdaine. What makes code hard
to understand? 2013. url: https://arxiv.org/abs/1304.5257. (Cited on page 48)

[Hasselbring et al. 2020] W. Hasselbring, A. Krause, and C. Zirkelbach. Explorviz: research
on software visualization, comprehension and collaboration. Software Impacts 6 (2020).
doi: https://doi.org/10.1016/j.simpa.2020.100034. (Cited on page 10)

[Keahey 1998] T. Keahey. The generalized detail in-context problem. In: Proceedings IEEE
Symposium on Information Visualization (Cat. No.98TB100258). 1998, pages 44–51. doi:
10.1109/INFVIS.1998.729558. (Cited on pages 15, 16, 66)

[Krause-Glau et al. 2022] A. Krause-Glau, M. Hansen, and W. Hasselbring. Collaborative
program comprehension via software visualization in extended reality. Information and
Software Technology 151 (2022), page 107007. doi: https://doi.org/10.1016/j.infsof.2022.107007.
(Cited on page 10)

[Liverence and Franconeri 2015] B. M. Liverence and S. L. Franconeri. Resource limitations
in visual cognition. In: Emerging Trends in the Social and Behavioral Sciences. John Wiley
Sons, Ltd, 2015, pages 1–13. doi: https://doi.org/10.1002/9781118900772.etrds0287. (Cited on page 2)

[Luca et al. 2019] F. D. Luca, I. Hossain, K. Gray, S. Kobourov, and K. Börner. Multi-
level tree based approach for interactive graph visualization with semantic zoom. 2019. url:
https://arxiv.org/abs/1906.05996. (Cited on page 14)

[Luebke 2003] D. Luebke. Level of detail for 3d graphics. Morgan Kaufmann, 2003. (Cited on
page 7)

[Misiak et al. 2018] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, and L. Nafeie.
Islandviz: a tool for visualizing modular software systems in virtual reality. In: 2018
IEEE Working Conference on Software Visualization (VISSOFT). 2018, pages 112–116. doi:
10.1109/VISSOFT.2018.00020. (Cited on page 13)

[Parisi 2012] T. Parisi. Webgl: up and running. " O’Reilly Media, Inc.", 2012. (Cited on page 7)

76

https://doi.org/https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1145/3626641.3626949
https://doi.org/10.1145/3626641.3626949
https://arxiv.org/abs/2411.12380
https://arxiv.org/abs/2411.12380
https://arxiv.org/abs/1304.5257
https://doi.org/https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/INFVIS.1998.729558
https://doi.org/https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/https://doi.org/10.1002/9781118900772.etrds0287
https://arxiv.org/abs/1906.05996
https://doi.org/10.1109/VISSOFT.2018.00020

Bibliography

[Ren et al. 2014] Y. Ren, U. Kamath, C. Domeniconi, and G. Zhang. Boosted mean shift
clustering. In: Machine Learning and Knowledge Discovery in Databases. Edited by T.
Calders, F. Esposito, E. Hüllermeier, and R. Meo. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pages 646–661. (Cited on page 26)

[Roth 2017] R. E. Roth. Visual variables. International encyclopedia of geography: People, the
earth, environment and technology (2017), pages 1–11. (Cited on pages 19, 21)

[Al-Saiyd 2017] N. A. Al-Saiyd. Source code comprehension analysis in software main-
tenance. In: 2017 2nd International Conference on Computer and Communication Systems
(ICCCS). 2017, pages 1–5. doi: 10.1109/CCOMS.2017.8075175. (Cited on page 1)

[Scalabrino et al. 2018] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk.
A comprehensive model for code readability. Journal of Software: Evolution and Process
30.6 (2018). e1958 smr.1958, e1958. doi: https://doi.org/10.1002/smr.1958. (Cited on page 1)

[Shariff et al. 2019] S. M. Shariff, H. Li, C.-P. Bezemer, A. E. Hassan, T. H. Nguyen, and P.
Flora. Improving the testing efficiency of selenium-based load tests. In: 2019 IEEE/ACM
14th International Workshop on Automation of Software Test (AST). 2019, pages 14–20. doi:
10.1109/AST.2019.00008. (Cited on page 43)

[Teyseyre and Campo 2009] A. R. Teyseyre and M. R. Campo. An overview of 3d software
visualization. IEEE Transactions on Visualization and Computer Graphics 15.1 (2009),
pages 87–105. doi: 10.1109/TVCG.2008.86. (Cited on pages 1, 41)

[Victor 2000] J. D. Victor. How the brain uses time to represent and process visual
information11published on the world wide web on 16 august 2000. Brain Research 886.1
(2000). Towards 2010, A brain Odyssey, The 3rd Brain Research Interactive, pages 33–46.
doi: https://doi.org/10.1016/S0006-8993(00)02751-7. (Cited on page 2)

[Voinea and Telea 2006] L. Voinea and A. Telea. Multiscale and multivariate visualizations
of software evolution. In: Proceedings of the 2006 ACM Symposium on Software Visualization.
SoftVis ’06. Brighton, United Kingdom: Association for Computing Machinery, 2006,
pages 115–124. doi: 10.1145/1148493.1148510. (Cited on page 2)

[Wiens et al. 2017] V. Wiens, S. Lohmann, and S. Auer. Semantic zooming for ontology
graph visualizations. In: Proceedings of the 9th Knowledge Capture Conference. K-CAP ’17.
Austin, TX, USA: Association for Computing Machinery, 2017. doi: 10.1145/3148011.3148015.
(Cited on pages 1, 7, 13, 14, 48)

77

https://doi.org/10.1109/CCOMS.2017.8075175
https://doi.org/https://doi.org/10.1002/smr.1958
https://doi.org/10.1109/AST.2019.00008
https://doi.org/10.1109/TVCG.2008.86
https://doi.org/https://doi.org/10.1016/S0006-8993(00)02751-7
https://doi.org/10.1145/1148493.1148510
https://doi.org/10.1145/3148011.3148015

	Introduction
	Motivation
	Document Structure

	Goals
	G1: Integration of Semantic Zoom and Level of Detail
	G1.1: Identification of Objects and Metrics That Are Suitable for Semantic Zoom and Level of Detail
	G1.2: Addition of Different Levels of Detail
	G1.3: Implementation of Semantic Zoom for Appropriate Objects
	G1.4 Optional: Improve Performance Using WASM for [goal13]Goal 1.3

	G2: Adding an Immersive View
	G2.1: Structuring and Designing of an Immersive View
	G2.2: Immersive View Implementation

	G3: Performance Evaluation of Goal 1
	G4: Usability Evaluation by Users for [goal1]Goal 1 and [goal2]Goal 2

	Foundations and Technologies
	semanticzoom and lod
	threejs
	Ember.js
	OpenTelemetry
	ExplorViz

	Related Work
	Semantic Zoom
	Analysis of the Current ExplorViz State
	Fundamental Appearance Options
	New Designs, Metrics and Aggregations
	Concept and Pre-Implementation Thoughts
	Implementation of Semantic Zoom
	Appearences
	Algorithms To Decide on Level of Detail
	Programmer Interface
	Known Problems and Limitations

	User Settings and Parameters

	Immersive View
	General Concept
	Analyze of Attachment Point for ExplorViz
	Implementation of Immersive View
	Current Data Model
	Example Implementation Based on the immersiveclassview
	Entering/Exiting

	Evaluation
	Goals
	Performance Evaluation
	Setup
	Evaluation Results
	Discussion
	Threats to Validity

	User Evaluation
	Setup
	Pretest
	Introduction to ExplorViz
	General Questions
	Questions and Assignments for semanticzoom
	Questions and Assignments for immersiveview
	Evaluation Results
	Discussion
	Threats to Validity

	Conclusion
	Future Work

	Cheat Sheet
	Bibliography

