
Vol.:(0123456789)

 Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

Discover Internet of Things

Research

Reinforcement learning and digital twin‑driven optimization
of production scheduling with the digital model playground

Arne Seipolt1,2 · Ralf Buschermöhle1 · Vladislav Haag1 · Wilhelm Hasselbring2 · Maximilian Höfinghoff1 ·
Marcel Schumacher1 · Henrik Wilbers1

Received: 22 August 2024 / Accepted: 13 December 2024

© The Author(s) 2024 OPEN

Abstract
The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence
(AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Rein-
forcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced
in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by
demonstrating its application in optimizing production scheduling through RL within a sample process. Although there
is potential for further development, the DMPG already enables the modeling and optimization of production processes
using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Further-
more, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance
cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable
tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of
production optimization. Currently, planned extensions include the integration of more optimization algorithms and
Process Mining techniques, to further enhance the usability of the framework.

Article Highlights

1. Open-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation
tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to
generate 2D/3D-Visualization of processes with Unreal.

2. Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The
extendable code structure allows the implementation of further simulation algorithms.

3. Ongoing Development: Future enhancements include detailed transport and process mining, broadening its appli-
cation.

Keywords Hybrid simulation · Discrete event simulation · Reinforcement learning · Digital twins · Production
scheduling

 * Arne Seipolt, a.seipolt@hs-osnabrueck.de; Ralf Buschermöhle, r.buschermoehle@hs-osnabrueck.de; Vladislav Haag, vladislav.haag@
hs-osnabrueck.de; Wilhelm Hasselbring, hasselbring@email.uni-kiel.de; Maximilian Höfinghoff, m.hoefinghoff@hs-osnabrueck.de; Marcel
Schumacher, marcel.schumacher@hs-osnabrueck.de; Henrik Wilbers, henrik.wilbers@hs-osnabrueck.de | 1Faculty of Management, Culture
and Technology, Osnabrück University of Applied Sciences, Lingen, Germany. 2Department of Computer Science, Kiel University, Kiel,
Germany.

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

1 Introduction

The increasing importance of production data utilization in manufacturing companies is undeniable, offering myriad
benefits such as enhanced visibility of manufacturing processes, easier adoption of Artificial Intelligence (AI) and Machine
Learning (ML) technologies, and streamlined production scheduling [1]. The capability to collect data from various
sources facilitates the creation of Digital Twins (DTs), digital representations of physical entities [2], which have been
proven to significantly boost operational efficiency if used in production processes by an average of 15% and are highly
valued for simulation services by 68% of organizations [3, 4]. Despite the complexity of production scheduling issues,
often classified as NP-complete, Reinforcement Learning (RL) emerges as an effective approach to solve such combi-
natorial optimization problems [5, 6]. An early adoption was done by Crites [7] and Crites and Barto [8], who used a RL
agent in a discrete event simulation to dispatch elevators. Nowadays, with more computational power and optimized
algorithms, more complex problems can be solved. For example, the definition of tasks and destinations for autonomous
guided vehicles in a modular production system [9] or to solve a dynamic job shop scheduling problem [10].

There is a significant rise of publications in the implementation of RL in production planning, which demonstrates
the increasing interest of the scientific community in this particular domain [11, 12]. Esteso et al. conducted a review
of 181 papers, spanning from 1994 to 2021, and discovered that the majority of the research is centered around the
area of production scheduling [12]. Other areas, like capacity planning, are not in the focus of the research. Panzer et al.
conducted a thorough review of 129 papers, spanning the years 2010 to 2021, and came to the conclusion that in 89%
of the benchmark papers, RL algorithms outperformed the algorithm it was compared with [11]. Nevertheless, 95% of
the studies were performed in a simulated laboratory environment. Therefore, it is challenging to draw general conclu-
sions about the reliability and sustainability of the results in real-world environments. As challenges, which still prevent
widespread adoption in production systems, they summarize missing hands-on guidelines, limited use of the available
algorithm base and the lack of evaluation in reality. According to them, future development should focus on further
refinement of the simulations, using existing, more powerful RL algorithms and the elaboration of increased generaliz-
ability, among others.

Digital Twins can be used for production scheduling [13, 14] by utilizing the real-time perception and the simula-
tion capability of the DT [15]. Additionally, several Authors combine RL and DTs for Production Scheduling [16, 17] and
Ouahabi et al. state that this combination is overshadowing traditional metaheuristics used for Production Scheduling
because of the real-time adaptability to disruptions [14]. According to Kritzinger et al. [18], there are three different types
exist under the concept of DTs: the Digital Models (DM) consist of a physical and a digital object, with no automatic
data flow between these objects. The next Level is the Digital Shadow (DS), where there is an automatic unidirectional
connection between these objects and a change of the state of the physical object leads to an automatic update of
the digital object. At the third level, the Digital Twin (DT), the automatic connection is bidirectional, so additionally the
state of the physical object is changed automatically, if the state of the digital object is changed. This categorization is
extended and formalized by Barbie and Hasselbring [2]. They define the Digital Model as the description of an object,
process or a complex aggregation, either mathematical or by computer-aided design. Furthermore, there is a Digital
Thread, which refers to the communication framework that allows a connected data flow and integrated view of the
physical twin’s data and operations throughout its life cycle. Both, Digital Shadow and Digital Twin are connected to the
Physical Twin, which refers to the physical object, via the Digital Thread, either unidirectional or bidirectional. The Digital
Shadow and the Digital twin can update the Digital Model, and the Digital Twin can also send commands to the Physical
Twin. Therefore, the Digital Model is a central component of Digital Shadows and Digital Twins and replaces the digital
object as defined by Kritzinger et al.

A concept related to Digital Twins is the smart Industrial Internet of Things, which is an integrated System that syn-
thesizes cyber operations like communication or computation and physical processes [19]. Xu et al. state that smart IIoT
systems and Digital Twins can be combined. The Digital Twin runs AI algorithms for experiments and interacts with the
smart IIoT system.

A production process can be modeled as a predictive, mathematical model, which is required to simulate the differ-
ent aspects of the production process, to improve or optimize it in a Digital Twin context [20]. This demonstrates the
need for a simulation environment that can model production processes with a high level of detail and is compatible
with common frameworks of powerful RL algorithms. Furthermore, it must be flexible enough to enable automated
unidirectional or bidirectional connection to the physical object via a Digital Thread.

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

With the Digital Model Playground (DMPG), this paper proposes a flexible, user-friendly open-source framework for
hybrid simulations, combining DES and continuous simulations. The architecture of DMPG allows fast and distributed
simulation, to enable the use of numeric optimization. Furthermore, DMPG can be used to train RL-Agents, for exam-
ple, for Production Scheduling (PS). The aim of this paper is to show, that DMPG enables researchers and practitioners
to overcome the challenges, stated by Panzer et al. [11] and to develop real-world applications with RL in the area of
production scheduling.

This paper introduces the DMPG, starting with an overview over related work for production scheduling with Rein-
forcement Learning. Then, the Framework DMPG is shown in general for basic simulation as well as to train an RL-Agent.
Here, a simple example is used, to show the functionality. Then ongoing challenges with the DMPG are discussed, fin-
ishing the Paper with a conclusion.

2 Related work

The scheduling in a production context can be defined as follows:
“Scheduling problems can be understood in general as the problems of allocating resources over time to perform a

set of tasks being parts of some processes, among which computational and manufacturing ones are most important.”
[21]. “In manufacturing, the purpose of production scheduling is to minimize production time and costs, by telling a
production facility when to make something, with which staff, and with which equipment.” [22].

An important focus in current research is the application of RL methods for production planning: Several authors
have made Literature reviews and found an increasing number of publications in solving the combinatorial optimization
problem of production scheduling with RL methods [11, 12, 23]. As stated above, Panzer et al. recommend, that future
development should focus on further refinement of the simulations, using existing, more powerful RL algorithms and
the elaboration of increased generalizability, among others.

While Commercial software for Discrete Event Simulation (DES) is available, Dagkakis and Heavey state they have
limitations regarding cost, flexibility, and reusability [24]. Regarding Open Source (OS) DES projects, they name some
critical success factors, including:

• Focus on industry: Many OS projects are outcomes of research funding, lasted for a limited timeframe and got aban-
doned.

• Addressing the needs of different Users

There are a couple of OS DES tools, which enable the use of RL for Production Scheduling. SimRLFab is a simulation
and reinforcement framework for production planning and control of complex job shop manufacturing systems, based
on Python [25]. The RL-Algorithms of the Tensorforce library are used. The last commit to this GitHub Project was in June
2020, which shows that the Project is not active anymore. Another OS RL Framework is FabricatioRL, which implements
the OpenAI Gym Standard and is therefore compatible with different State of the Art RL-Algorithms [26]. Nevertheless,
it lacks several features, which are required for industry scale simulations like machine breakdowns or personal sched-
ules. Furthermore, the last commit to the GitHub Project is from July 2023, so this project is not active either. A Third
framework is or-gym, which is a Python Library that contains environments consisting of operation research problems
which adhere to the OpenAI Gym API, enabling the use of different State of the Art RL-Algorithms [27]. It has a list of
standard applications, like the Knapsack or traveling salesman Problem, but does not support simulations of real life
systems. In Conclusion, all of these Frameworks have neither focused on industry nor addressed the need of different
users and seem to be abandoned.

3 Digital model playground

The findings mentioned before state the need for an easy to handle but adaptable simulation framework, which supports
high-fidelity simulations as well as state-of-the art RL-Algorithms and other Algorithms for combinatorial optimization.

An open-source project at the Hochschule Osnabrück is meant to create this framework and to use it for research and
teaching. It is named Digital Model Playground (DMPG) [28].

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

The DMPG is an open source discrete event-based simulation framework, based on SimPy [29]. With the library SimPy,
the programming language Python provides the basis on which DMPG is built. SimPy is chosen over other simulation
tools, since it is easy to learn, easy adaptable, is an active Project and available under a MIT-License. The DMPG is meant
to extend SimPy to provide more user-friendly functions, to make it easier to model different processes in Python. For
example, to calculate statistic measurements, graphical display of the simulation model or the use of common simulation
objects like Sources, Servers, and Sinks. Further deployed open-source frameworks include Seaborn, Graphviz, SciPy,
TF-Agents and DistFit.

DMPG it is meant to provide a Framework to implement Digital Twins and to use artificial intelligence, for example to
optimize the production planning of existing production processes with RL. Therefore, an interface to TF-Agents exists.
This chapter shows the framework of the DMPG, by first introducing the architecture for basic simulation and compar-
ing the DMPG with commercial DES-software regarding the simulation speed. Then, the training of an RL-Agent for PS
is shown on a simple example.

3.1 System architecture

The SimPy library (SimPy—Discrete event simulation for Python n.d.) served as the foundational framework for the
DMPG. It provides a process-based simulation environment, where the sequence of events is controlled through Python’s
generator functions. DMPG extends this by introducing the above-named components necessary for discrete event
simulations, mainly entities, sources, servers, and sinks. The features adopted from SimPy include:

• Environment: This is the core of any SimPy simulation, providing the context in which entities interact, and events are
scheduled. DMPG utilizes the Environment to manage the simulation timeline and ensure that all events are processed
in a timely manner.

• Timeout: SimPy’s timeout events are used in DMPG to simulate processing times or delays within the components,
managing how long an entity spends in a particular process.

• Process: This SimPy functionality is used to define the behavior of entities as they go through various simulation
stages. In DMPG, processes are used to model the operations within sources, servers, and sinks.

• Event: SimPy events are mechanisms that trigger subsequent actions in the simulation. DMPG uses these to handle
disruptions, such as machine breakdowns in servers, effectively managing the simulation’s response to operational
anomalies.

To solve differential equations for continuous elements in the simulation, the function scypy.integrate.odeint is used.
The DMPG is built around key components modeled through classes that manage different facets of a simulation. These

components include entities, sources, servers, and sinks, each playing a specific role within the simulation framework:

• Entities are dynamic units that move through the simulation, undergoing various processes and transformations
dictated by their interactions with servers and sinks.

• Sources generate entities according to specified distributions or schedules, initiating the simulation process.
• Servers represent processing stations where entities are handled. They can simulate operational constraints like

processing times, random disruptions, capacity limits and equipment failures.
• Sinks are termination points for entities, where data about the entities’ life cycles are collected and aggregated for

analysis.

The systems’ architecture is shown in Fig. 1. The components Source, Server, and Sink inherit from the ResetA-
bleNamedObject class and are managed through the Model class. The Model class in the DMPG serves as a central
registry that organizes and manages different types of simulation components, ensuring that each component
type is systematically handled and accessible within the simulation environment. The ResetAbleNamedObject class
provides a common base for all simulation objects, facilitating their initialization, state management, and reset
capabilities. This inheritance ensures that all objects can be reset to their initial state, which is critical for running
multiple simulation trials under consistent conditions. Management of these objects is further streamlined by the
ResetAbleNamedObjectManager, a utility class that handles collections of simulation objects. This manager allows
for group operations such as mass resetting of states. The flow of entities through the system is orchestrated by the
RoutingObject class to manage dynamic routing of entities between different simulation stations. This class ensures

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

that entities are directed correctly according to the simulation design. This architecture enables basic simulation
of production processes. Additionally, the implementation of the following features further extends the flexibility
of the DMPG.

The implementation of the Connections class fundamentally mirrors that of servers, differing primarily in their attrib-
utes. Connections, unlike servers, possess a probability attribute, which specifies the likelihood of the respective connec-
tion being utilized during entity routing. These enhancements empower connections between servers to route entities
not only instantaneously, but also consider temporal dynamics or incorporate supplementary expressions. Therefore, in
addition to processing entities at designated workstations, the DMPG possesses the capability to simulate pathways and
factor in inter-server distances. Thus, a real-life transportation of workpieces within a production environment between
workstations can be represented.

Moreover, entities can be directed through customizable routing expressions rather than relying solely on stochastic
methods. This implies that processed workpieces, for example, can be further processed or routed in different ways based
on various product specific work plans or characteristics. Consequently, connections operate precisely like server objects.
They independently process entities before their transfer to the respective server’s subsequent queue. In the context of
a real-life system, i.e., conveyor belts can thus be simulated to transport workpieces between individual stations.

Besides the core package, the DMPG facilitates the creation of model-specific entities through the SubEntity class,
extending the versatility of the simulation environment. Multiple sub-entities can be accommodated within the same
model, catering to diverse routing requirements, such as product differentiation between servers. Moreover, various
sub-entities, generated by one or multiple sources, can undergo distinct routing trajectories within the system. Thus, it
is possible to introduce different products into the i.e., simulated production and process them in different ways. Conse-
quently, variants of a product are usable within the same simulation model. Additionally, each entity type or workpiece
is empowered to generate its set of statistics when being processed. Custom processing statistics can be seamlessly
incorporated into the corresponding product, either as pre- or postfixes, ensuring dynamic adaptability of the calculated
results to meet specific simulation demands.

Lastly, to accurately reflect operational realities, dynamic work schedules regarding working stations can be set.
Simulation models can incorporate multiple working schedules, which can be assigned to individual servers to emulate
diverse work shifts across different stations. This comprehensive approach allows for the representation of various shift
patterns, breaks, durations, and worker capacities, thus enhancing the fidelity of the simulated environment. Moreover,

Fig. 1 Class relationships in the DMPG

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

the open-source nature of the framework enables users to create their custom simulation objects. This provides the
flexibility to model high-fidelity simulations of complex processes.

The sequence diagram (Fig. 2) outlines the operational workflow within the DMPG, starting from user interaction
and progressing through the model’s setup and execution phases. Initially, the user defines the model by specifying
configurations that shape the simulation’s structure and behavior. Once the model is defined, the run_simulation func-
tion can be invoked by the user, which acts as the driver for the entire simulation process. Within the simulation, the
EntityManager is initialized first to manage all entities created during the simulation. The manager ensures that entities
are correctly added, tracked, and their destruction times are updated as they complete their processes. Entities are then
initialized to represent the dynamic units that will pass through various simulation stages. Sources, Servers, and Sinks
are created subsequently.

Next, the connections between sources, servers, and sinks are established to define the path that entities will take
through the simulation. These connections are crucial as they dictate the flow and outcome of the simulation by deter-
mining how entities move from one component to another:

Entities are created by sources and then added to servers. Depending on the simulation’s logic, entities might be
routed to other servers or directed towards sinks, where they are ultimately processed and their lifecycle within the
simulation ends.

The simulation’s execution involves processing each entity individually through the configured routes. Servers han-
dle entities by processing them according to the defined logic, which can include handling breakdowns or continuing
processing under normal conditions. Once processing is completed, entities are either routed to another server for
further processing or sent to a sink for termination. The simulation continues this loop until all entities are processed or
the defined simulation time ends. Once the simulation concludes, statistics are calculated to analyze the performance
and results of the simulation.

These statistics include average, minimum, and maximum of times in system, number of entities created and destroyed,
as well as specific server metrics like average processing time, scheduled utilization, and total downtime. These metrics
provide insights into the efficiency, effectiveness, and dynamics of the simulated environment, offering data that can
be used to adjust the model or understand the system’s behavior.

Setting up a simulation involves configuring various parameters for sources, servers, and sinks to reflect specific
operational requirements and behaviors. Sources must be configured with parameters that define the frequency and
conditions under which entities are generated. Servers require setup details including processing time distributions to
simulate the time taken for tasks in the production process. Additional parameters might include capacity constraints
and breakdown probabilities. Sinks are configured to collect and terminate entities.

To deploy a simulation, users must define the model configuration through code. Figure 3 shows a basic setup exam-
ple, which demonstrates the initialization of a simple model where entities are created, processed, and terminated.

This code configures a source to generate entities at an exponential rate, a server to process them with a triangular
distribution of processing times, and a sink to collect and terminate the entities. Afterward, the Source is connected to
the Server and the Server to the sink, to define the routing logic. This will create the objects, shown in Fig. 4.

The setup_model consists of three ResetAbleNamedObjectManagers, each managing a single object. Connections are
routing entities between source and server, as well as between server and sink. The simulation is then run using specific
parameters set in the run_replications function, which allows for multiple replications of the model over a set time frame.

Besides the RL-Package, which is introduced in the next chapter, there is a project which makes use of a high-perfor-
mance cluster by introducing distributed computing and a package for 3D-Visualization, which is briefly introduced in
the following.

During the Software Development Project at the Osnabrueck University of Applied Sciences, a group of students devel-
oped a service to run the simulation on the High-Performance Cluster of the University [30]. The service is provided on a
Web server, where students can use their university-credentials to authenticate. Afterward, the model can be defined by
using drop-down menus. When the job is deployed to the server, an estimated remaining time is given. The results of the
simulation runs are stored in a database, to be evaluated. This provides the possibility so simulate numerous scenarios
of complex models in a short period of time.

Another Software Development Project has created a 3D-Visualization of process models with Unreal [31]. When
the tool is started, a simulation model can be chosen from a dropdown menu. Next, either automatic mapping can be
applied, or the objects can be mapped manually. Figure 5 shows screenshots of an example model.

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

Fig. 2 Sequence diagram of a DMPG-based simulation

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

Fig. 3 Example of a simulation setup for DMPG

Fig. 4 Object overview for the example model

Fig. 5 Visualization of the DMPG with unreal

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

After describing the system architecture and basic features of DMPG, the next chapter will show a performance com-
parison between DMPG and multiple commercial DES-simulation tools.

3.2 Performance comparison between DMPG and commercial DES‑tools

Since multiple replications are required to calculate statistic values of DES-Simulations, the computational performance
of the simulation environment is important. To compare DMPG with some commercial DES-tools, the process shown
in Fig. 6 is modelled in all simulation environments and different number of replications are performed. The simulation
environments Any Logic (Version 8.9.1), Plant Simulation (Version 2404.0005) and Simio (Version 16.255.34527) are used
for the Benchmark, since they are designed for DES and used to train RL-Agents [32]. The benchmark was performed on
a Windows 11 23H2 System with an Intel i7-12800H 2.4 GHz 14 Core processor and 32 GB RAM. The DMPG Version used
is available in the DMPG GitLab [28] under the commit hash 6b2bb59f. Figure 7 shows the total calculation time. Simio
and Plant Simulation need considerably more time, to finish the simulation, as DMPG. AnyLogic, on the other hand, is
much faster than DMPG. Figure 8 shows the processor utilization. While the processor utilization of Simio, AnyLogic and
Plant simulation remains constant, DMPG has a much higher utilization which is above 80% after 100 cycles. A compari-
son of the processor time, which is calculated by multiplying the calculation time with the processor utilization (Fig. 9),
shows that the efficiency of DMPG and Plant Simulation is comparable. SIMIO needs a bit more processor time, AnyLogic
considerably less. The lesser calculation time of the DMPG in comparison to SIMIO and Plant Simulation is a result of
the higher processor utilization. To distribute the simulation replications, for example with Simio, the Simio replication
runner can be used. Since this is an additional program which must be configured, multiprocessing with DMPG is much
easier because it runs automatically. The RAM utilization is shown in Fig. 10. It indicates that the RAM Utilization of all
commercial simulation environments is constant below 1000 GB, while the RAM utilization of DMPG rises from 800 MB
at 10 replications to 27,000 MB at 10,000 replications. This is because DMPG does not delete any data, until all replica-
tions are finished, to calculate statistics.

After presenting the structure of the DMPG, the integration of RL and a simple example, which proofs the functionality
of the concept of optimizing production scheduling problems with RL.

Fig. 6 Simulation model

Fig. 7 Calculation time of the
benchmark between commer-
cial tools and DMPG

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

Fig. 8 Processor utilization of
the benchmark between com-
mercial tools and DMPG

Fig. 9 Processor time of the
benchmark between commer-
cial tools and DMPG

Fig. 10 RAM utilization of the
benchmark between commer-
cial tools and DMPG

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

Fig. 11 Deployment diagram illustrating the integration within DMPG

Fig. 12 Creation of the different Processes with the abstract factory design pattern

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

3.3 RL‑based production scheduling with DMPG

The integration of RL in DMPG must be flexible and extendable enough, to leverage different RL-Frameworks. Further-
more, the simulation of process models must be independent of the simulation. This enables the testing of one or multiple
pretrained RL-agents in the simulation. The current integration of Reinforcement Learning (RL) into the Digital Model
Playground (DMPG) for enhancing production scheduling leverages TensorFlow [33], which provides TF-Agents, a popular
AI framework for Python that supports several RL-Algorithms, including Deep-Q-Learning (DQN) as highlighted by Minh
et al. [34]. In DMPG, a unique scheduler class has been introduced, incorporating a SchedulingEnv as well as a DQN-
Agent and a replay buffer from TF-Agents for efficient learning (Fig. 11). The system is designed for high performance,
with the scheduler, buffer, and agent operating in separate processes and allowing for parallel simulations to generate
extensive training data. To keep the framework extendable, these processes are created by an abstract factory design
pattern (Fig. 12). After the RLSchedulingManager is created, a concrete SchedulingFactory is defined, which implements
the abstract factory class. The TFDQNScheduling class implements operations, which are required to deploy a TensorFlow
DQN Agent to control the utilization of a server by scheduling the products. The User can define different aspects of
the RL-agent, for example the learning rate. After the Factory is assigned to the RLSchedulingManager, the run function
of the RLSchedulingManager is performed. This will create all necessary objects and start the training of the RL-Agent.

The practical application of this setup is demonstrated through a simplified process (Fig. 6), where the objective for
the RL-Agent is to manage entity creation to maintain a server utilization close to but below 80%. The source controls
the production scheduling, initiating with an empty schedule and updating it based on the RL-Agent’s decisions. The
Entities are processed at the server and destroyed in the sink. The processing time at the server is a triangular function,
with a minimum value of 8, a modal value of 10 and a maximum value of 11 time steps. Although DMPG can simulate
additional influences on the processing time like machine breakdowns, no more constraints are considered. The Simula-
tion time is 500 time steps and every 100 time steps, a new schedule is created.

To realize this, the source has a scheduling period, a list of products which have to be produced and a list of products,
which will be produced in the next scheduling period, called schedule. Initially, the schedule is empty.

If the source is called the first time by the simulation, the agent starts a new SchedulingEnv. The Observation of the
environment is a list of three integers:

1. Products in the queue:
 The first integer represents the number of products to be produced in the next scheduling period. Initially, it cor-

responds to the number of products in the queue of the subsequent server.
2. Scheduling status:
 The second integer indicates whether the scheduling for the next scheduling period is finished. Initially, this value

is 0, which indicates the scheduling is not finished.
3. Utilization:
 The third integer represents the utilization which is required to calculate the reward. If the current scheduling

period is the initial one, it is also 0.

This observation is passed to the agent to decide which action to take. The Agent can choose between the two actions
0 and 1. If the action of the agent is 1, the next product of the list of products, which should be produced, is added to the
schedule of the source. The next steps start, and the first value of the state is increased by one, since another product is
produced in the next scheduling period. As soon as the agent chooses a 0, the scheduling is finished. No product is added
to the schedule and the second value of the state is set to 1, which indicates to the agent, that the scheduling is finished.

If the scheduling is finished, the source creates the entities as scheduled and waits for the scheduling period to end.
Then, the agent makes another step. In this step, the action is irrelevant. Now, the first value of the observation states
the number of products in the queue of the next server, and therefore the number of products, which could not be pro-
duced. The second value is a 1, which indicates that the scheduling is still finished. The third one is the integer value of the
utilization of the next server. This is the final step of the episode, and the only one, in which the agent receives a reward.
The reward is calculated as follows: if the utilization U is zero or higher than the target utilization Ut the reward is zero. If
it is between the target utilization and the target utilization, it is equal to the target utilization. This describes a scenario
in which work is planned by people. However, the aim is to ensure that they are not fully utilized to prevent exhaustion.

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

The deployment of this scenario is shown in Fig. 13. After the required imports, two functions are defined. The first is
to generate a set of products, which must be scheduled. This is a very basic example, therefore no due dates, priorities
are considered yet. The second one is a custom function to schedule the epsilon for the epsilon greedy strategy of the
agent. In the main function, a scheduling manager is created by passing the simulation model. The simulation model is
created according to Fig. 3. Next, the factory is parametrized by setting a random seed and the environment data. The
q-net is defined by a list of the number of neurons for each hidden layer. Then the epsilon function and the learning rate
are defined. Both can be a constant value, a TensorFlow function or a custom function. At last, the target utilization is set
by passing the target source, the target value and the simulation duration. Lastly, the defined function is passed to the

Fig. 13 Code to deploy the training of the described DQN Agent

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

scheduling manager and the training is started. When starting the training, several worker processes can be passed to
create enough data points for computational expensive simulation models.

After the simulation is finished, the collected experiences are stored in the replay buffer. This enables to distribute
multiple worker-processes, which is necessary to generate large datasets of computation intensive simulations. The replay
buffer prepares datasets which are sent to the Agent. The agent uses these datasets to train the neural network which
predicts the q-values. The neural network, which is the core of the driver ́s policy, is distributed to the worker process, so
that new simulation runs can be performed with the updated policy.

To show the functionality of the system, the above-described model is used to train an DQN-Agent. The training is per-
formed on an Ubuntu 22.04.3 LTS system with a 12th Gen Intel® CoreTM i7-12800H × 20 Processor and NVIDIA RTX A2000
8GB Laptop GPU. The used Hyperparameters are stated in Table 1. The Optimizer, the activation of the hidden layer and
the train batch size were set initially, based on previous experience. Since the simulated scenario is not computational
expensive, a single worker process is used. Different loss functions were tested and the number of neurons per hidden
layer where increased, starting with 16 neurons in each layer.

For epsilon, a function was used to reduce it during the train process. Every train iteration s, Epsilon is calculated with:

This function allows a couple of random actions in the beginning. The fast-decaying exponential function allows a
lower epsilon after a short time and is slowly decaying further, until most of the actions are based on the agent’s policy.

� = max

(

exp
(

−
s

200

)

, 0,2 −

(

0.2

4000

)

∗ s,
1

1000

)

Table 1 Hyperparameter Parameter Value

Optimizer ADAM
Number of Neurons in first hidden layer 16
Number of Neurons in second hidden layer 32
Activation Hidden Layer ReLu
Loss Function Mean

Squared
Error

Train batch size 32
Number of Worker Proceses 1

Table 2 Ressource utilization Average CPU Average GPU Average RAM RAM (end of training)

352% 25,1% 7.355 GB 11.501 GB

Fig. 14 Reward

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

100 train steps are conducted, in which the Q-Network is trained with the TensorFlow function. Then, the updated
Q-Network is distributed to the worker. For the learning rate, a PolynomialDecay, as implemented in Tensorflow, is used
with an initial learning rate of 10 − 4, end learning rate of 10 − 8 and 500,000 decay steps. Therefore, after 5000 itera-
tions, the learning rate is decayed. If it would be higher, the training would diverge. After 4411 iterations, the training is
interrupted because the training is stable and finished. This took about 55 min. It took several runs to get this result. The
exact Code is available in DMPG [28] Gitlab under the commit hash d4be372c.

Table 2 shows the resource utilization. The average CPU load is mainly the worker process (104.5%), the train pro-
cess (179.6%) and the buffer process (114.8%). Since most of the CPU-cores are not used and the GPU-utilization is
only 25.1%, a parallelization of the train process could speed up the training, a parallelization of the worker process
is already possible. Since the RAM-utilization at the end of the training is higher than the average RAM utilization, it
can be concluded that some variables are not deleted, and storage is accumulated during the training.

Figure 14 shows the reward, Fig. 15 the utilization and Fig. 16 the loss during the train process. Every diagram shows
the moving average in 100 intervals. For the utilization, additionally the 10% and 90% percentile of the interval are
shown. While the reward is fluctuating from interval to interval, but clearly rises, the utilization is rising stable. In the
end, the utilization remains stable, at 78.5%, which is close to the optimum of 80%.

Fig. 15 Utilization

Fig. 16 Loss

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

3.4 Results

To propose DMPG as a suitable OS-DES framework, first the architecture and the capabilities are introduced. Further-
more, two extensions are shown: one, which deploys the DMPG on a high-performance cluster, another one which uses
Unreal, to create a 2D/3D-Visualization of the simulation. This shows, that the DMPG can be easily adapted, to fit the
user’s individual needs.

Next, a performance comparison between DMPG and several commercial DES-Frameworks is made. It can be shown
that the simulation speed of DMPG is comparable to the commercial frameworks. DMPG has the best utilization of avail-
able CPU-cores without additional tools. Since DMPG currently don’t delete simulation data, it accumulates RAM, which
can become critical if many simulation runs are performed on low RAM hardware.

In the end, the structure of the implementation of RL in the DMPG is shown and demonstrated. With the abstract fac-
tory design pattern, an extension with other algorithms can easily be realized. In a simple example, a RL agent is trained
to control the utilization of a server to about 80%. This shows the functionality of the framework to train an RL-Agent to
control aspects of the simulation model.

4 Discussion

As shown above, the DMPG can be used to model and simulate production processes. Nevertheless, there are still
several limitations. Notably, resources utilizing facilities pose a challenge due to the inherent simplicity of the cur-
rent implementations. Servers or simulated workstations within the framework solely depict entity processing. The
incorporation of additional processing resources cannot be modeled, thereby confining simulated workstations
to transformative activities rather than additive manufacturing. Furthermore, entities are conveyed without the
involvement of vehicles or workers, thus neglecting the transportation and logistical aspects inherent in compre-
hensive facility simulations. To address this deficiency and accurately represent the movement of products between
workstations, the integration of new simulation elements is imperative.

As the number of simulation objects expands, so does the demand for computational resources. At present,
the DMPG operates within the constraints of utilizing separate cores of a single CPU. The RL-Training also uses a
GPU, if available. However, to simulate various identical models, or, for instance, production facilities with varying
numbers of workers, requires multiprocessing capabilities facilitated through network connections to distribute
simulations across distinct computing nodes. This becomes particularly relevant when optimizing one model with
diverse parameters in parallel using a Reinforcement Learning Agent. The Framework to deploy the DMPG to the
high-performance cluster of the Osnabrueck University of Applied Sciences should be integrated into the main
repository and made compatible with other features of the DMPG, like RL. This would make it easier for users to
use this feature on their hardware. Moreover, since the GPU is only used to about 25% percent, a parallelization of
the training of the RL-Agent could increase the training speed of the Agent.

The utilization of the DMPG requires a proficient command of both Python programming language and the
framework itself. Moreover, retracing the behavior of a model necessitates debugging of the implementation, rather
than providing visual representations of workstation activities and interactions between simulated real-life objects.
On the other hand, the code-based design improves the flexibility of the framework and Python is currently one
of the most popular programming language [35]. Therefore, the advantages outweigh the disadvantages at this
point. Nevertheless, enhancing the accessibility of the DMPG is essential to broaden its user base, which can be
beneficial for an OS-project [24]. The developed Framework to leverage Unreal allows users to visualize, rewind, and
fast-forward simulation scenarios is a big improvement in this regard. It has the potential to deepen understand-
ing of intricate processes and outcomes, thus facilitating more effective utilization of the framework. Although a
user needs knowledge of the programming language and the framework, solutions can be visualized individually,
according to the specific use case.

The modeled example shows that it is possible to train a DQN-Agents in the DMPG for production scheduling.
It would also be possible, to use other RL-Algorithms: Since the optimization problem in the shown example has a
relatively small size, simpler algorithms could lead faster to better results. For example, instead of training a Neural
Network to predict the Q-Values, the Q-Values could be iterated directly and stored into a Q-Table. Besides RL-
algorithms, other classes like genetic algorithms could be promising, since they are also in the focus of the literature

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

[36]. Moreover, many aspects which complicate the Production Scheduling, were not considered, for example the
breakdowns of machines, product due dates, multiple machines which work in parallel and so on. In this case,
maybe other algorithms are required. Based on the provided framework, more algorithms should be implemented
and evaluated, so general conclusions can be drawn on which algorithm is suitable for which PS-problem.

Another planned extension of DMPG is the integration of Process Mining. Process Mining provides a compre-
hensive collection of algorithms and functions to create, check and monitor a process model based on data from
the event logs of the process itself [37]. This allows for the easy creation of a process model that accurately depicts
how the process is executed in the real world. The process model can be further enhanced with additional informa-
tion from the process data, such as production times, social networks, etc. This enhanced process model can then
be used in DMPG to create a simulation model of the process. This is possible by converting the various pieces of
information from the process model into their counterparts in the simulation. As a result, the simulation model
already contains a substantial amount of information and does not need to be modeled by hand. This saves time
and significantly reduces errors. It is also possible to monitor the process to check for any changes in the real world
which then can be reflected to the simulation model, keeping it always up to date. This moves the simulation from
a Digital Model to a Digital Shadow of the process.

5 Conclusion

As demonstrated in this paper, DMPG is an effective framework for simulating production processes and utilizing RL
agents to optimize the modeled production processes. It serves as a foundational tool already employed in research
and teaching at Osnabrueck University of Applied Sciences. In research projects, complex real-life processes can
already be modelled. Furthermore, the flexible OS-Structure of the DMPG allows adapting the framework to the
user’s specific needs, for example to connect the simulation to a Digital Thread, creating a Digital Shadow or Digital
Twin. Moreover, several enhancements are currently planned or underway, including:

• More detailed transport logic, e.g. vehicles
• Working schedules
• Process mining
• Additional optimization algorithms

These developments will further enhance the framework’s utility. The goal is to extend the use of DMPG beyond
Osnabrueck University of Applied Sciences, providing a comprehensive platform that supports both academic and
industrial users in modeling and optimizing production processes.

Acknowledgements This work is supported by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant No.
01MD22001C as part of the “edge data economy initiative”.

Author contributions A.S. is the contributing author and wrote the main manuscript text. A.S. programmed the Reinforcement Learning part
of the DMPG. M.S. conducted the comparison between SIMIO and DMPG. M.S. and M.H. supported the programming of the Reinforcement
Learning part of the DMPG. V.H. described the architecture of the DMPG. V.H. and H.W. programmed the DMPG, excluding the Reinforcement
Learning part. H.W. described current features of the DMPG, excluding Reinforcement Learning. R.B. supervised the programming of the
DMPG. W.H. and R.B. supervised the project. All authors reviewed the manuscript.

Data availability The code used to show the functionality of the framework to train an RL-Agent to control aspects of the simulation model is
available at https:// gitlab. com/ digit altwi nml/ DMPG/-/ tree/ d4be3 72c22 61166 c52bb cf5f6 aa751 df99c b96b7. The code used for the comparison
between DMPG and SIMIO is available at https:// gitlab. com/ digit altwi nml/ DMPG/-/ blob/ 48ca0 19727 978a4 c7b62 24845 c6c90 e8775 1f758/
compa rison/ test_ model. py.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in

https://gitlab.com/digitaltwinml/DMPG/-/tree/d4be372c2261166c52bbcf5f6aa751df99cb96b7
https://gitlab.com/digitaltwinml/DMPG/-/blob/48ca019727978a4c7b6224845c6c90e87751f758/comparison/test_model.py
https://gitlab.com/digitaltwinml/DMPG/-/blob/48ca019727978a4c7b6224845c6c90e87751f758/comparison/test_model.py

Vol:.(1234567890)

Research
Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0

the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Joshi S, 5 major benefits of data collection for manufacturing companies manufacturing tomorrow. 2022. https:// manuf actur ingto
morrow. com/ artic le/ 2022/ 08/5- major- benef its- of- data- colle ction- for- manuf actur ing- compa nies/ 19116.

 2. Barbie A, Hasselbring W. From digital twins to digital twin prototypes: concepts, formalization, and applications. IEEE Access.
2024;12:75337–65. https:// doi. org/ 10. 1109/ ACCESS. 2024. 34065 10.

 3. Minevich M, How to reinvent continuous improvement with intelligent digital twins in manufacturing. https:// www. forbes. com/ sites/
markm inevi ch/ 2022/ 01/ 28/ how- to- reinv ent- conti nuous- impro vement- with- intel ligent- digit al- twins- in- manuf actur ing/. Accessed
21 Sep 2023.

 4. Gya R, et al., Digital twins: adding intelligence to the real world’. 2022. https:// www. capge mini. com/ gb- en/ wp- conte nt/ uploa ds/
sites/3/ 2022/ 05/ Capge mini- Resea rch- Insti tute_ Digit alTwi ns_ Web. pdf

 5. Lenstra JK, Rinnooy Kan AHG, Brucker P. Complexity of machine scheduling problems. In: Hammer PL, Johnson EL, Korte BH, Nemhauser
GL, editors. Studies in integer programming, in annals of discrete mathematics. North-Holland: Elsevier; 1977. p. 343–62. https:// doi. org/
10. 1016/ S0167- 5060(08) 70743-X.

 6. Mazyavkina N, Sviridov S, Ivanov S, Burnaev E. Reinforcement learning for combinatorial optimization: a survey. Comput Oper Res. 2021.
https:// doi. org/ 10. 1016/j. cor. 2021. 105400.

 7. Crites RH, Large-scale dynamic optimization using teams of reinforcement learning agents.
 8. Crites RH, Barto G, ‘Elevator group control using multiple reinforcement learning agents.
 9. Feldkamp N, Bergmann S, Strassburger S, Simulation-Based Deep Reinforcement Learning For Modular Production Systems, in 2020

Winter Simulation Conference (WSC), Orlando, FL, USA: IEEE, Dec. 2020, pp. 1596–1607. https:// doi. org/ 10. 1109/ WSC48 552. 2020. 93840
89.

 10. İnal AF, Sel Ç, Aktepe A, Türker AK, Ersöz S. A multi-agent reinforcement learning approach to the dynamic job shop scheduling problem.
Sustainability. 2023;15(10):8262. https:// doi. org/ 10. 3390/ su151 08262.

 11. Panzer M, Bender B, Gronau N. Neural agent-based production planning and control: an architectural review. J Manuf Syst. 2022;65:743–66.
https:// doi. org/ 10. 1016/j. jmsy. 2022. 10. 019.

 12. Esteso A, Peidro D, Mula J, Díaz-Madroñero M. Reinforcement learning applied to production planning and control. Int J Prod Res.
2023;61(16):5772–89. https:// doi. org/ 10. 1080/ 00207 543. 2022. 21041 80.

 13. Rathore MM, Shah SA, Shukla D, Bentafat E, Bakiras S. The role of AI, machine learning, and big data in digital twinning: a systematic
literature review, challenges, and opportunities. IEEE Access. 2021;9:32030–52. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30608 63.

 14. Ouahabi N, Chebak A, Kamach O, Laayati O, Zegrari M. Leveraging digital twin into dynamic production scheduling: A review. Robot
Comput-Integr Manuf. 2024;89: 102778. https:// doi. org/ 10. 1016/j. rcim. 2024. 102778.

 15. Zhang L, Yan Y, Hu Y, Ren W. Reinforcement learning and digital twin-based real-time scheduling method in intelligent manufacturing
systems. IFAC-PapersOnLine. 2022;55(10):359–64. https:// doi. org/ 10. 1016/j. ifacol. 2022. 09. 413.

 16. Xia K, et al. A digital twin to train deep reinforcement learning agent for smart manufacturing plants: environment, interfaces and intel-
ligence. J Manuf Syst. 2021;58:210–30. https:// doi. org/ 10. 1016/j. jmsy. 2020. 06. 012.

 17. Mueller-Zhang Z, Antonino PO, Kuhn T. Integrated planning and scheduling for customized production using digital twins and reinforce-
ment learning. IFAC-PapersOnLine. 2021;54(1):408–13. https:// doi. org/ 10. 1016/j. ifacol. 2021. 08. 046.

 18. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital twin in manufacturing: a categorical literature review and classification. IFAC-
PapersOnLine. 2018;51(11):1016–22. https:// doi. org/ 10. 1016/j. ifacol. 2018. 08. 474.

 19. Xu H, Wu J, Pan Q, Guan X, Guizani M. A survey on digital twin for industrial internet of things: applications, technologies and tools. IEEE
Commun Surv Tutor. 2023;25(4):2569–98. https:// doi. org/ 10. 1109/ COMST. 2023. 32973 95.

 20. Eramo R, Bordeleau F, Combemale B, Brand MVD, Wimmer M, Wortmann A. Conceptualizing digital twins. IEEE Softw. 2022;39(2):39–46.
https:// doi. org/ 10. 1109/ MS. 2021. 31307 55.

 21. Blazewicz J, Ecker KH, Pesch E, Schmidt G, Sterna M, Weglarz J, Handbook on scheduling: from theory to applications, 2. Auflage. Springer
Nature, 2019.

 22. da Righi R. ‘Preface’, in production scheduling. InTech. 2012. https:// doi. org/ 10. 5772/ 1392.
 23. Usuga Cadavid JP, Lamouri S, Grabot B, Pellerin R, Fortin A. Machine learning applied in production planning and control: a state-of-the-

art in the era of industry 4.0. J Intell Manuf. 2020;31(6):1531–58. https:// doi. org/ 10. 1007/ s10845- 019- 01531-7.
 24. Dagkakis G, Heavey C. A review of open source discrete event simulation software for operations research. J Simul. 2016;10(3):193–206.

https:// doi. org/ 10. 1057/ jos. 2015.9.
 25. Kuhnle A, SimPyRLFab, 2020. https:// github. com/ Andre asKuh nle/ SimRL Fab.
 26. Rinciog A, Meyer A, FabricatioRL-v2, GitHub repository. GitHub, 2023. https:// github. com/ maler inc/ fabri catio- rl. git.
 27. Hubbs CD, Perez HD, Sarwar O, Sahinidis NV, Grossmann IE, Wassick JM, OR-Gym: a reinforcement learning library for operations research

problems. 2020.
 28. ‘DMPG—Digital model playground’. https:// gitlab. com/ digit altwi nml/ DMPG
 29. ‘SimPy—Discrete event simulation for Python’. https:// simpy. readt hedocs. io/ en/ latest/
 30. Staib T, SEP_DMPG, 2024. https:// github. com/ Tomst aib/ SEP_ DMPG.

http://creativecommons.org/licenses/by/4.0/
https://manufacturingtomorrow.com/article/2022/08/5-major-benefits-of-data-collection-for-manufacturing-companies/19116
https://manufacturingtomorrow.com/article/2022/08/5-major-benefits-of-data-collection-for-manufacturing-companies/19116
https://doi.org/10.1109/ACCESS.2024.3406510
https://www.forbes.com/sites/markminevich/2022/01/28/how-to-reinvent-continuous-improvement-with-intelligent-digital-twins-in-manufacturing/
https://www.forbes.com/sites/markminevich/2022/01/28/how-to-reinvent-continuous-improvement-with-intelligent-digital-twins-in-manufacturing/
https://www.capgemini.com/gb-en/wp-content/uploads/sites/3/2022/05/Capgemini-Research-Institute_DigitalTwins_Web.pdf
https://www.capgemini.com/gb-en/wp-content/uploads/sites/3/2022/05/Capgemini-Research-Institute_DigitalTwins_Web.pdf
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1109/WSC48552.2020.9384089
https://doi.org/10.1109/WSC48552.2020.9384089
https://doi.org/10.3390/su15108262
https://doi.org/10.1016/j.jmsy.2022.10.019
https://doi.org/10.1080/00207543.2022.2104180
https://doi.org/10.1109/ACCESS.2021.3060863
https://doi.org/10.1016/j.rcim.2024.102778
https://doi.org/10.1016/j.ifacol.2022.09.413
https://doi.org/10.1016/j.jmsy.2020.06.012
https://doi.org/10.1016/j.ifacol.2021.08.046
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1109/COMST.2023.3297395
https://doi.org/10.1109/MS.2021.3130755
https://doi.org/10.5772/1392
https://doi.org/10.1007/s10845-019-01531-7
https://doi.org/10.1057/jos.2015.9
https://github.com/AndreasKuhnle/SimRLFab
https://github.com/malerinc/fabricatio-rl.git
https://gitlab.com/digitaltwinml/DMPG
https://simpy.readthedocs.io/en/latest/
https://github.com/Tomstaib/SEP_DMPG

Vol.:(0123456789)

Discover Internet of Things (2024) 4:34 | https://doi.org/10.1007/s43926-024-00087-0
 Research

 31. DMPG Animated, 2024. https:// gitlab. com/ digit altwi nml/ DMPG/-/ tree/ Anima ted- stable? ref_ type= heads.
 32. Belsare S, Badilla ED, Dehghanimohammadabadi M. Reinforcement learning with discrete event simulation: the premise, reality, and

promise’, in 2022 Winter Simulation Conference (WSC), Singapore: IEEE, Dec. 2022, pp. 2724–2735. https:// doi. org/ 10. 1109/ WSC57 314.
2022. 10015 503.

 33. TensorFlow Developers, TensorFlow. (Jul. 11, 2024). Zenodo.
 34. Mnih V, et al. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529–33. https:// doi. org/ 10. 1038/ natur

e14236.
 35. ‘TIOBE Index’. https:// www. tiobe. com/ tiobe- index/.
 36. Guzman E, Andres B, Poler R. Models and algorithms for production planning, scheduling and sequencing problems: a holistic framework

and a systematic review. J Ind Inf Integr. 2022;27:100287. https:// doi. org/ 10. 1016/j. jii. 2021. 100287.
 37. Van Der Aalst W. Process mining. Berlin: Springer, Berlin Heidelberg; 2016.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://gitlab.com/digitaltwinml/DMPG/-/tree/Animated-stable?ref_type=heads
https://doi.org/10.1109/WSC57314.2022.10015503
https://doi.org/10.1109/WSC57314.2022.10015503
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1016/j.jii.2021.100287

	Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground
	Abstract
	Article Highlights
	1 Introduction
	2 Related work
	3 Digital model playground
	3.1 System architecture
	3.2 Performance comparison between DMPG and commercial DES-tools
	3.3 RL-based production scheduling with DMPG
	3.4 Results

	4 Discussion
	5 Conclusion
	Acknowledgements
	References

