
Visual Integration of
Static and Dynamic Software Analysis in

Code Reviews via Software City Visualization
Alexander Krause-Glau∗, Lukas Damerau†, Malte Hansen† and Wilhelm Hasselbring‡

Department of Computer Science, Kiel University
Kiel, Germany

Email: ∗alexander@krause-glau.de, †{forename}.{surname}@email.uni-kiel.de ‡hasselbring@email.uni-kiel.de

Abstract—Software visualization approaches for code reviews
are often implemented as standalone applications, which use
static code analysis. The goal is to visualize the structural
changes introduced by a pull / merge request to facilitate the
review process. In this way, for example, structural changes
that hinder code evolution can be more easily identified, but
understanding the changed program behavior is still mainly
done by reading the code. For software visualization to be
successful in code review, tools must be provided that go beyond
an alternative representation of code changes and integrate well
into the developers’ daily workflow.

In this paper, we report on the novel and in-progress de-
sign and implementation of a web-based approach capable of
combining static and dynamic analysis data in software city
visualizations. Our architectural tool design incorporates modern
web technologies such as the integration into common Git hosting
services. As a result, code reviewers can explore how the modified
software evolves and execute its use cases, which is especially
helpful for distributed software systems. In this context, devel-
opers can be directly linked from the Git hosting service’s issue
tracking system to the corresponding software city visualization.
This approach eliminates the recurring action of manual data
collection and setup. We implement our design by extending the
web-based software visualization tool ExplorViz. We invite other
researchers to extend our open source software and jointly re-
search this approach. Video URL: https://youtu.be/DYxijdCEdrY

Index Terms—software visualization, program comprehension,
static analysis, dynamic analysis, code review, continuous inte-
gration

I. INTRODUCTION

Code reviewing has a long history of research [1]–[4] and is
nowadays a standard activity in professional software devel-
opment. It is an effective method for finding non-functional
defects, such as those that affect code evolution [5], [6]
in upcoming changes to the code base. With a focus on
the change-based style [7], developers spend an average of
almost six and a half hours a week in reviewing [8]. As
software becomes more complex and may be generated by
generative AI such as GitHub Copilot, the time required for
code reviews can be expected to increase. Researchers are
therefore investigating how this task can be facilitated.

A promising approach is the use of software visualization
(SV) in the reviewing process. The reason for this is that SV
can facilitate the underlying task of program comprehension
(PC) [9], [10]. To this end, SV approaches for PC commonly

use static code analysis to visualize structural properties of
the code base. In the context of code review, for example, this
means that structural code changes are visualized differently
and therefore represent an alternative or supplement to the
usual textual representation. However, additional presentations
of the changes introduced by a pull / merge request (from
now on called change request or CR) are not sufficient for
reviewers. In fact, discrepancies have been observed between
code review tools and functional defect detection [11], as well
as between tooling and the information needed for the review
process [4]. Therefore, developers tend to use their familiar
development environment for PC instead of using specific
tools such as SV [12]. Overall, we expect that the usefulness
of SV in code reviews depends, among other things, on the
ability to visualize potential behavioral changes at runtime, as
well as on the ease of integration into the developers’ daily
workflow. As there exist already well-established procedures
and tools for code review [1], SV approaches should expand
on these procedures rather than introducing a completely new
review process in a standalone tool.

In this paper, we report on the novel and in-progress
design and implementation of a web-based approach capable
of combining static and dynamic analysis data in software city
visualizations. To achieve that, we extend ExplorViz [13]–
[15], which so far only used dynamic analysis data. The
result is a visualization of the changes of a software systems’
structural evolution and dynamic runtime behavior. Our web-
based approach is designed to supplement the process of code
review in common Git hosting services (GHS). In this way,
reviewers are able to explore a software system’s visualized
changed runtime behavior and code structure introduced by a
CR. We expect this to facilitate the comprehension of changes,
especially for runtime behavior modifications, which is rather
difficult by reading the source code alone.

The remainder of this paper is structured as follows. Sec-
tion II introduces the design of our approach. The implemen-
tation of this design is presented in Section III. Section IV
illustrates the visual integration of static and dynamic analysis
within our approach. Scalability and limitation concerns are
discussed in Section V. Section VI differentiates this work
from related approaches. Finally, Section VII concludes the
paper and outlines directions for future research.

ar
X

iv
:2

40
8.

08
14

1v
1 

 [
cs

.S
E

] 
 1

5 
A

ug
 2

02
4

https://youtu.be/DYxijdCEdrY


Explore evolution /
runtime changes

Build application
Docker image

CI job

Run Static
Analysis

CI job

C

Funct. behavior test
(load generator) updates 

Process and persist
data

Backend

Frontend

  insert frontend / IDE URL  

  uses  

 explore changes 

Create / Update
Change Request

GHS UI

Git Hosting Service (GHS) Self-hosted
Legend

User flow

Data flow

User action

Autom. action

A
B

E

F

G

Repo e.g. Run unit tests
CI jobs

 uses 

D
Run Dynamic

Analysis

CI job

Fig. 1: Conceptual data flow and architecture of our approach.

II. DESIGN

We introduce the (architectural) design of our approach by
explaining its data flow illustrated in Figure 1. In this context,
we distinguish between actions occurring within the GHS
and those executed within the self-hosted components of our
approach, as indicated by the green dashed boxes. User actions
are denoted by blue-colored entities, while solid black entities
represent automatically executed actions. These automated
actions operate as stateless CI jobs and as operations within
the stateful backend component. As is standard practice, the CI
jobs require initial configuration and adaptation to the specific
application, particularly concerning dynamic analysis, e.g., the
scope of instrumentation.

A. Initiation of the CI Pipeline

The creation of a CR and its subsequent updates (repre-
sented as new Git commits for the repository) initiate a CI
pipeline execution and the corresponding data flow (Figure 1-
A). Within the context of CI, multiple lightweight build and
verification jobs must typically succeed prior to the execution
of more time-intensive tasks (Figure 1-B). Consequently, the
static and dynamic analyses in our approach are executed
in separate CI jobs and only proceed after the successful
completion of the preceding jobs.

B. Static Analysis

The static analysis (Figure 1-C) produces a comprehensive
snapshot that outlines the structure and the changes of the
source code, based on the Git repository, i.e., the Git branch,
associated with the CR. Additionally, it computes a range of
metrics for each source code file, as well as for the classes
and their methods.

C. Dynamic Analysis

For the dynamic analysis (Figure 1-D), it is required to
instrument and execute the target software system. Since
Docker1 is the de-facto standard for deploying applications
in professional software development, we run both the target
application and the dynamic analysis inside Docker containers.

1https://www.docker.com

However, it is also necessary for the target software to perform
meaningful operations during its execution. For instance, web
services are often inactive after their initial setup phase so
that the instrumented code is not executed. Developers must
therefore define a load generator (Figure 1-E) that triggers the
execution of the (desired) use cases in the target software,
for example with (dockerized) JMeter2 or Playwright.3 This is
similar to writing API or end-to-end tests; i.e., if they already
exist, they can be reused here. Both, the load generator and
the instrumented target application are then executed within
the CI job to start the recording of execution traces.

D. Data Processing

The data resulting from the static and dynamic analyses
is forwarded to the backend component, which is self-hosted
outside of the GHS (Figure 1-F). Within the backend, all
static and dynamic analysis data is processed, persisted, and
provided for later visualization. In addition, the backend inserts
a URL of the web-based frontend component into the CR
description, allowing reviewers to access the corresponding
visualization with a single click from within the CR.

E. Visualization

The frontend (Figure 1-G) combines and renders the appli-
cation structure and runtime behavior in a single visualization.
At the same time, the changes introduced by the CR in both the
application structure and the runtime behavior are highlighted.
This will be further explained and visualized in the upcoming
Section IV.

III. IMPLEMENTATION

We implemented the design introduced in Section II by
extending ExplorViz [13]–[15]. ExplorViz comprises several
applications, which are publicly developed on GitHub4 and
available as Docker images.5 Due to space constraints, we will
focus on the newly developed and most important features of

2https://jmeter.apache.org
3https://playwright.dev
4https://github.com/explorviz
5https://hub.docker.com/u/explorviz

https://www.docker.com
https://jmeter.apache.org
https://playwright.dev
https://github.com/explorviz
https://hub.docker.com/u/explorviz


A

Fig. 2: Excerpt of an example GitLab issue. Code reviewers
can click on the ExplorViz frontend link to access the related
visualization.

our approach below. For further implementation details readers
are kindly referred to previous works [16]–[18].

Prior to this extension, ExplorViz only provided live-
trace visualization for Java applications based on dynamic
analysis, which is usually performed outside of CI envi-
ronments. To address this limitation, we implemented our
design for target applications developed and built on the
GitLab GHS. Consequently, we adapted ExplorViz’s dynamic
analysis approach to be executed as a CI job (Figure 1-
D). In this context, ExplorViz utilizes NovaTec’s inspectIT
Ocelot (hereafter: Ocelot).6 Ocelot is a Java agent that uses
bytecode weaving to instrument and monitor Java applications.
It supports distributed tracing and offers various exporters,
including exporters for the industry standard OpenTelemetry,7

which is used by ExplorViz. To realize our new design for the
dynamic analysis, we employ a dockerized version of Ocelot in
CI. Additionally, we leverage GitLab CI environment variables
to incorporate the hash (as a unique identifier) of the current
Git commit into each execution trace recorded by Ocelot.
This approach enables us to later find the correct instances
of runtime behavior for a given Git commit. Consequently, it
allows us to map runtime behavior to structural evolution data,
the latter being the outcome of the static code analysis.

To realize the static code analysis outlined in our design
(Figure 1-C), we developed a static code analyzer for Java
source code. This tool, referred to as the code agent, is written
in Java and can be used in or outside of CI environments.
When executed in a CI job for a Git commit, the code agent
creates a list of all Java classes that are contained in the
Git branch associated with the relevant CR. Additionally, it
analyzes the changed Java classes of the Git commit via the
JavaParser library.8 As a result, the static analysis includes,
for example, the recognition of (abstract) classes, inheritance,
interfaces, and method declarations.

Both, the static code analysis data and the runtime data are
then sent to the ExplorViz backend (Figure 1-F) via gRPC,9

6https://www.inspectit.rocks
7https://opentelemetry.io
8https://javaparser.org
9https://grpc.io

C

A

D

B

Fig. 3: Software cities visualize the distributed Spring Pet-
Clinic. In this color scheme, the packages are light and dark
gray. The height of the blue buildings (classes) indicates
the current number of instances for a class based on the
runtime behavior. Orange pipes show method calls captured
by dynamic analysis. Textures, e.g. plus signs, mark changes
between the selected Git commits and their runtime snapshots.

which completes the CI jobs. Here, the code service and the
span service receive the static analysis data and the runtime
data, respectively. Each service processes, persists, and pro-
vides the prepared visualization data via an HTTP API. Storing
the data allows users to select / compare previously analyzed
Git commits to examine, for example, the evolution of a
software system in terms of structural and behavioral changes.
The commit comparison described here is related to other SV
approaches that address code evolution [19]–[21]. Eventually,
all data will be made available to the extended ExplorViz
frontend component, a web-based WebGL application [22].
Here, users can select analyzed applications and explore the
changes introduced by the CR. In the upcoming Section IV,
we will demonstrate this process by exploring the software
city visualization of our approach using an example software
system.

IV. VISUAL INTEGRATION OF STATIC AND DYNAMIC
SOFTWARE ANALYSIS

In this section, we present the visual integration of static
and dynamic analysis data in our approach. To illustrate this,
we introduce ExplorViz’s extended software city visualization
using an example software system.

The extended ExplorViz frontend is accessible via a web
browser, either directly or via a link from within a CR as illus-
trated by Figure 2-A. By utilizing query parameters, users can

https://www.inspectit.rocks
https://opentelemetry.io
https://javaparser.org
https://grpc.io


(a) Unfiltered comparison showing all
commit-related data. Four data sets are dy-
namically combined for this visualization.

(b) Filtered comparison visualizing the
compared static analysis data without any
runtime information.

(c) Filtered comparison emphasizing only
the code differences. Comparison details
are displayed upon hovering over an entity.

Fig. 4: Software city visualizations comparing two commits of PlantUML at varying levels of detail. Users can select a
combination of analysis data types to be visualized using toggle buttons.

specify which particular Git commit or which comparison of
Git commits of an analyzed application should be visualized.
By default, applications that are not configured via a query
parameter are rendered using their last known Git commit.
This feature is utilized by the extended ExplorViz backend
when updating the CR description. As a result, reviewers
are presented with the correct visualization when clicking the
ExplorViz frontend link in the CR description (Figure 1-G).

Figure 3 depicts the software city visualization of our
approach. ExplorViz currently visualizes all data using the city
metaphor, as this has a positive effect in the context of program
understanding [10], [23]. For the sample application, we
use the distributed version of the Spring PetClinic (hereafter
PetClinic).10 The PetClinic consists of multiple microservices
and a frontend component that communicates with all services
depending on the executed use case, such as booking a visit to
the veterinarian for a user’s pet. The accompanying screenshot
illustrates the visualization of both the runtime behavior and
code structure for the PetClinic. In this context, multiple
software cities, i.e., one for each service of the PetClinic, are
visualized simultaneously. Additionally, a specific Git commit
comparison for the service in the foreground has already been
selected.

This can be changed at any time via the code tab (Figure 3-
A). In the example shown Figure 3, the two compared Git
commits also have associated runtime behavior for the encom-
passing service, as illustrated by the runtime tab. Two runtime
snapshots, i.e., aggregated runtime behavior over ten seconds,
are selected and compared (Figure 3-B). For this comparison,
we use textures because colors are already associated with
other meanings in our visualization approach. Figure 3-C
depicts a new Java package with a new class, indicated by
a plus sign texture. The new entities were identified based
on the comparison of the code structure between the two
selected Git commits. Additionally, Figure 3-C shows a new
communication line, using the same texture, derived from the

10https://github.com/spring-petclinic/spring-petclinic-microservices

comparison of the runtime behavior for the selected runtime
snapshots. This indicates a new method call during the runtime
behavior which could be caused by the proposed code changes
of the CR. Removed or modified entities are represented by
other textures, as illustrated in Figure 3-D, while hovering with
a mouse over an entity displays additional information.

V. SCALABILITY & LIMITATIONS

In the context of data visualization, an excess of informa-
tion within a single visualization can impede comprehension.
Therefore, tools such as SV must account for the scalability of
information [24]. Prior to this work, ExplorViz already allowed
users to interactively filter entities in software cities. This
feature allows users to more easily locate specific entities, such
as classes with a particular instance count, thereby enhancing
the users’ ability to understand complex software structures.
With the introduced extension of ExplorViz in this work, we
expand the filtering feature.

Figure 4 depicts the same software city visualization com-
paring two commits of PlantUML11 with selected runtime
snapshots (see Section IV) at varying levels of detail. In such
situations, the ExplorViz frontend, by default, combines all
four data sets, i.e., processed code and runtime data for each
of the two commits, into a single visualization. The resulting
unfiltered comparison can be seen in Figure 4a. Although
applied textures indicate if classes and packages have been
added, deleted, or modified, these changes are not easily
visible in the unfiltered view. To address this, the visualization
can be dynamically adjusted using a set of toggle buttons
that allow users to select the type of data to be visualized.
For instance, Figure 4b displays a filtered comparison where
the software city visualization includes only the combined
code structures of the two commits. In this view, certain
packages and classes are absent as they were present only in
the runtime behavior. Differences in packages and classes are
still indicated with textures. Furthermore, users have the option

11https://plantuml.com

https://github.com/spring-petclinic/spring-petclinic-microservices
https://plantuml.com


to visualize only the differences between the two commits.
This is demonstrated in Figure 4c, which shows the actual
code differences in the visualization. Detailed comparison
information, such as the lines of code for a class between
the two commits, is displayed upon hovering over an entity.

Beyond information scalability, rendering scalability, de-
fined as the capability to scale the visualization performance
to manage increasing amounts of data, is a critical requirement
for SV tools [24]. This is one of the current limitations
of ExplorViz. Although users can dynamically change the
visualized commits and related runtime snapshots in the fron-
tend, these actions currently trigger on-demand processing of
the desired data without employing any reduction techniques.
Consequently, visualizations for larger datasets, such as the
PlantUML example depicted in Figure 4, experience signif-
icant delays when updating upon the selection of different
commits or runtime snapshots.

Another limitation is the current capability of the code agent
(see Section III) to resolve Java import paths in analyzed
class files. For instance, the code agent successfully identified
over 2,400 Java classes. However, the logs of the code agent
indicated that classes were skipped due to incomplete analysis
of their source code.

VI. RELATED WORK & NOVELTY

The combination of static and dynamic analysis has a wide
range of applications [25]–[28]. However, in the context of
modern code review, related SV approaches generally only use
static code analysis [29]–[31]. Dynamic analysis, on the other
hand, is often used by code coverage tools for CRs [32]12

or SV approaches that are not concerned about the review
process [33]. Below we present the work that we consider to
be the most related to ours in terms of system integration,
perceived degree of maturity, and using SV to facilitate the
review task.

In 2022, Fregnan et al. introduced ReviewVis [34], a tool
aimed at facilitating the comprehension of Java code changes
introduced by CRs. ReviewVis enhances GitLab’s merge re-
quest (MR) interface with interactive 2D force-directed graphs.
These graphs feature nodes representing classes, interfaces,
methods, or non-Java files, colored to indicate their change
status (e.g., added, deleted, or changed). A backend component
performs static analysis on the changed source code, creating
and comparing abstract syntax trees for both the source and
target branches to determine the change status of each file.
The visualization is displayed via a Google Chrome extension,
which allows users to navigate between the graph and the
related code in the GitLab MR view. Surveys with professional
developers indicate that ReviewVis aids in comprehending and
navigating code changes, though it offers limited help for small
MRs and requires improvements for larger MRs. Although
ReviewVis and our approach share the goal of facilitating code
review through SV, they differ in several design aspects. Our
approach integrates both static and dynamic analysis within

12https://cobertura.github.io/cobertura

software cities, whereas ReviewVis relies solely on static
analysis. Additionally, our use of the city metaphor contrasts
with ReviewVis’s graph rendering using D3.js13. The authors
of ReviewVis also consider the potential application of the city
metaphor for large MRs based on participant feedback.

Recently, Augustinowski et al. presented their ongoing study
to determine the necessary features for their SV tool SEE to
enhance the code review process [35]. SEE and ExplorViz
share concepts such as the SV metaphor and support for
collaborative use [17]. Currently, SEE is in an early de-
velopment stage, with potential CI integration concepts that
are comparable to our approach not yet formulated. At this
stage, SEE includes an in-tool web browser, likely for CR
description access, whereas ExplorViz automatically links to
the corresponding CR visualization in the description.

VII. CONCLUSIONS

In this paper, we report on the novel and in-progress
design and implementation of a web-based approach capable
of combining static and dynamic analysis data in software city
visualizations. In comparison to related works, our approach
incorporates the collection and visualization of both (changed)
runtime behavior and code structure introduced by a pull
/ merge request. Our architectural tool design incorporates
modern web technologies such as the integration into common
Git hosting services. As a result, code reviewers can see how
the modified software evolves and executes its use cases,
which is especially helpful for the underlying task of program
comprehension. We have presented the implementation of our
design through the extension of ExplorViz [13]–[15], which
so far only used dynamic analysis data. The resulting source
code can be found on GitHub.14 Additionally, we presented
and discussed ExplorViz’s extended software city visualization
using an example software system. We provide a video of our
approach online, which showcases the implementation of our
design.

We expect that the visual integration of both static and
dynamic software analysis facilitates the task of code re-
view, particularly within the context of distributed software
systems. We plan to investigate this assumption in future
research, subsequent to addressing current limitations of our
approach. Additionally, we aim to support the new code
review mode in ExplorViz’s collaborative [17] and code-
proximal approaches [18]. For instance, ExplorViz’s Visual
Studio Code extension could automatically leverage the code
editor’s internal Git feature. Consequently, users would be
presented not only with the comparison visualization but also
with the associated code changes in a predefined web-based
development environment.

ACKNOWLEDGMENT

The authors would like to thank Julian Pleines, Lennart
Ideler, and Arash Giv for their contributions with implement-
ing and evaluating some of the features presented in this paper.

13https://d3js.org
14https://github.com/explorviz

https://cobertura.github.io/cobertura
https://d3js.org
https://github.com/explorviz


REFERENCES

[1] D. Badampudi, M. Unterkalmsteiner, and R. Britto, “Modern code
reviews—survey of literature and practice,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 4, 2023. DOI: 10.1145/3585004

[2] V. Basili and R. Selby, “Comparing the effectiveness of software testing
strategies,” IEEE Transactions on Software Engineering, vol. SE-13,
no. 12, pp. 1278–1296, 1987. DOI: 10.1109/TSE.1987.232881

[3] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.
DOI: 10.1147/sj.153.0182

[4] E. Söderberg, L. Church, J. Börstler, D. Niehorster, and C. Rydenfält,
“Understanding the experience of code review: Misalignments, at-
tention, and units of analysis,” in Proceedings of the 26th Interna-
tional Conference on Evaluation and Assessment in Software Engi-
neering, ser. EASE ’22. New York, NY, USA: ACM, 2022. DOI:
10.1145/3530019.3530037 p. 170–179.

[5] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE 2013), ser. ICSE ’13. IEEE
Press, 2013. DOI: 10.1109/ICSE.2013.6606617 p. 712–721.

[6] M. V. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2009. DOI: 10.1109/TSE.2008.71

[7] T. Baum, H. Leßmann, and K. Schneider, “The Choice of Code Review
Process: A Survey on the State of the Practice,” in Product-Focused
Software Process Improvement, vol. 10611. Springer, 2017. DOI:
10.1007/978-3-319-69926-4 9 pp. 111–127.

[8] A. Bosu and J. C. Carver, “Impact of peer code review on peer
impression formation: A survey,” in Proceedings of the seventh ACM
/ IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2013), 2013. DOI: 10.1109/ESEM.2013.23
pp. 133–142.

[9] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled ex-
periment for program comprehension through trace visualization,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 341–355, 2011.
DOI: 10.1109/TSE.2010.47

[10] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
a controlled experiment,” in Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011), 2011. DOI:
10.1145/1985793.1985868 pp. 551–560.

[11] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find bugs.
how the current code review best practice slows us down,” in Proceed-
ings of the 37th IEEE/ACM IEEE International Conference on Software
Engineering (ICSE 2015), vol. 2, 2015. DOI: 10.1109/ICSE.2015.131
pp. 27–28.

[12] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2018. DOI: 10.1109/TSE.2017.2734091

[13] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visual-
ization for comprehending large software landscapes: The ExplorViz
approach,” in Proceedings of the first IEEE International Working
Conference on Software Visualization (VISSOFT 2013), Sep. 2013. DOI:
10.1109/VISSOFT.2013.6650536 pp. 1–4.

[14] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and
application visualization for system comprehension with ExplorViz,”
Information and Software Technology, vol. 87, pp. 259–277, Juli 2017.
DOI: 10.1016/j.infsof.2016.07.004

[15] W. Hasselbring, A. Krause, and C. Zirkelbach, “ExplorViz: Research
on software visualization, comprehension and collaboration,” Software
Impacts, vol. 6, Nov. 2020. DOI: 10.1016/j.simpa.2020.100034

[16] A. Krause-Glau and W. Hasselbring, “Scalable collaborative software
visualization as a service: Short industry and experience paper,” in
Proceedings of the 10th IEEE International Conference on Cloud
Engineering (IC2E 2022), 2022. DOI: 10.1109/IC2E55432.2022.00026
pp. 182–187.

[17] A. Krause-Glau, M. Bader, and W. Hasselbring, “Collaborative software
visualization for program comprehension,” in Proceedings of the 10th
IEEE Working Conference on Software Visualization (VISSOFT 2022),
2022. DOI: 10.1109/VISSOFT55257.2022.00016 pp. 75–86.

[18] A. Krause-Glau and W. Hasselbring, “Collaborative, code-proximal
dynamic software visualization within code editors,” in Proceedings

of the 11th Working Conference on Software Visualization (VISSOFT
2023), 2023.

[19] S. Ardigò, C. Nagy, R. Minelli, and M. Lanza, “M3tricity: Visualizing
evolving software & data cities,” in Companion Proceedings of the
IEEE/ACM 44th International Conference on Software Engineering
(ICSE-Companion 2022), 2022. DOI: 10.1145/3510454.3516831 pp.
130–133.

[20] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “Urbanit: Visualizing
repositories everywhere,” in Proceedings of the IEEE International
Conference on Software Maintenance and Evolution (ICSME 2015),
2015. DOI: 10.1109/ICSM.2015.7332479 pp. 324–326.

[21] G. Occhipinti, C. Nagy, R. Minelli, and M. Lanza, “Syn: Ultra-
scale software evolution comprehension,” in Proceedings of the 31st
IEEE/ACM International Conference on Program Comprehension (ICPC
2023), 2023. DOI: 10.1109/ICPC58990.2023.00020 pp. 69–73.

[22] A. Krause-Glau, M. Hansen, and W. Hasselbring, “Collaborative pro-
gram comprehension via software visualization in extended reality,”
Information and Software Technology, vol. 151, p. 107007, 2022. DOI:
10.1016/j.infsof.2022.107007

[23] F. Galperin, R. Koschke, and M. Steinbeck, “Visualizing code smells:
Tables or code cities? a controlled experiment,” in Proceedings of the
10th IEEE Working Conference on Software Visualization (VISSOFT
2022), 2022. DOI: 10.1109/VISSOFT55257.2022.00014 pp. 51–62.

[24] H. M. Kienle and H. A. Muller, “Requirements of software visual-
ization tools: A literature survey,” in Proceedings of the fourth IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2007. DOI: 10.1109/VISSOF.2007.4290693 pp. 2–9.

[25] D. Heuzeroth, T. Holl, and W. Loewe, Combining static and
dynamic analyses to detect interaction patterns, 2001. DOI:
10.5445/IR/18272001 Karlsruhe 2001. (Interner Bericht. Fakultät für
Informatik, Universität Karlsruhe. 2001,21.).

[26] F. Li, Q.-s. Li, Y. Su, and P. Chen, “Detection of design patterns by
combining static and dynamic analyses,” Journal of Shanghai Uni-
versity (English Edition), vol. 11, no. 2, pp. 156–162, 2007. DOI:
10.1007/s11741-007-0213-z

[27] K. Sellami, M. A. Saied, A. Ouni, and R. Abdalkareem, “Combin-
ing static and dynamic analysis to decompose monolithic application
into microservices,” in Service-Oriented Computing. Springer Nature
Switzerland, 2022. DOI: 10.1007/978-3-031-20984-0 14 pp. 203–218.

[28] A. Tahir and S. G. MacDonell, “Combining dynamic analysis and visu-
alization to explore the distribution of unit test suites,” in Proceedings
of the sixth IEEE/ACM International Workshop on Emerging Trends in
Software Metrics, 2015. DOI: 10.1109/WETSoM.2015.12

[29] F. Balci, D. Haliloglu, O. Sahin, C. Tilki, M. Yurtsever, and E. Tuzun,
“Augmenting code review experience through visualization,” in Proceed-
ings of the ninth IEEE Working Conference on Software Visualization
(VISSOFT 2021), 2021. DOI: 10.1109/VISSOFT52517.2021.00021 pp.
110–114.

[30] L. Gasparini, E. Fregnan, L. Braz, T. Baum, and A. Bacchelli,
“Changeviz: Enhancing the github pull request interface with method
call information,” in Proceedings of the ninth IEEE Working Conference
on Software Visualization (VISSOFT 2021), 2021. DOI: 10.1109/VIS-
SOFT52517.2021.00022

[31] Y. Tymchuk, A. Mocci, and M. Lanza, “Code review: Veni, vidi, vici,”
in Proceedings of the 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2015), 2015. DOI:
10.1109/SANER.2015.7081825

[32] S. Oosterwaal, A. v. Deursen, R. Coelho, A. A. Sawant, and A. Bac-
chelli, “Visualizing code and coverage changes for code review,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2016). Association for
Computing Machinery, 2016. DOI: 10.1145/2950290.2983929

[33] V. Dashuber and M. Philippsen, “Trace visualization within the soft-
ware city metaphor: Controlled experiments on program comprehen-
sion,” Information and Software Technology, vol. 150, 2022. DOI:
10.1016/j.infsof.2022.106989

[34] E. Fregnan, J. Fröhlich, D. Spadini, and A. Bacchelli, “Graph-based
visualization of merge requests for code review,” Journal of Systems
and Software, vol. 195, 2023. DOI: 10.1016/j.jss.2022.111506

[35] S. Augustinowski, A. Cheema, and L. Gawenda, “Transforming code-
review practices: An action research study with collaborative software
visualization in SEE,” Softwaretechnik-Trends, vol. 44, no. 2, pp. 49–50,
2024. [Online]. Available: https://dl.gi.de/handle/20.500.12116/44185

https://doi.org/10.1145/3585004
https://doi.org/10.1109/TSE.1987.232881
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1145/3530019.3530037
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1007/978-3-319-69926-4_9
https://doi.org/10.1109/ESEM.2013.23
https://doi.org/10.1109/TSE.2010.47
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/ICSE.2015.131
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/IC2E55432.2022.00026
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1145/3510454.3516831
https://doi.org/10.1109/ICSM.2015.7332479
https://doi.org/10.1109/ICPC58990.2023.00020
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1109/VISSOFT55257.2022.00014
https://doi.org/10.1109/VISSOF.2007.4290693
https://doi.org/10.5445/IR/18272001
https://doi.org/10.1007/s11741-007-0213-z
https://doi.org/10.1007/978-3-031-20984-0_14
https://doi.org/10.1109/WETSoM.2015.12
https://doi.org/10.1109/VISSOFT52517.2021.00021
https://doi.org/10.1109/VISSOFT52517.2021.00022
https://doi.org/10.1109/VISSOFT52517.2021.00022
https://doi.org/10.1109/SANER.2015.7081825
https://doi.org/10.1145/2950290.2983929
https://doi.org/10.1016/j.infsof.2022.106989
https://doi.org/10.1016/j.jss.2022.111506
https://dl.gi.de/handle/20.500.12116/44185

	Introduction
	Design
	Initiation of the CI Pipeline
	Static Analysis
	Dynamic Analysis
	Data Processing
	Visualization

	Implementation
	Visual Integration of Static and Dynamic Software Analysis
	Scalability & Limitations
	Related Work & Novelty
	Conclusions
	References

