
Collaborative Design and Planning
of Software Architecture Changes

via Software City Visualization
Alexander Krause-Glau∗, Malte Hansen† and Wilhelm Hasselbring‡

Department of Computer Science, Kiel University
Kiel, Germany

Email: ∗alexander@krause-glau.de, †malte.hansen@email.uni-kiel.de, ‡hasselbring@email.uni-kiel.de

Abstract—Developers usually use diagrams and source code
to jointly discuss and plan software architecture changes. With
this poster, we present our on-going work on a novel approach
that enables developers to collaboratively use software city
visualization to design and plan software architecture changes.

Index Terms—software visualization, program comprehension,
dynamic analysis, software architecture changes

Introduction: Software systems are continuously
changed to meet and improve both functional and non-
functional requirements [1], [2]. These changes range from
initial development concerns to subsequent refactorings [3] or
potential modernization [4] and maintenance [5]. Due to the
size, scope, and complexity, effective and efficient planning
of software architecture changes (SAC) often requires a deep
understanding of the existing structures and behavior of the
software systems. Although collaboration is helpful for the
underlying task of program comprehension [6], the actual
designing and planning of SAC still require additional tools.
In this context, developers usually rely on familiar means
such as diagrams, documentation, experience, conversation,
and the actual source code [6], [7]. However, diagrams and
documentation tend to present a static, notationally different or
unknown [8], and most often non-interactive view of software
systems, i.e., they only show one level of detail [9]. Source
code, on the other hand, does not easily convey high-level
views or (distributed) communication [10], [11]. In addition,
gaining and maintaining a necessary understanding of the
software structure in this context, such as through program
comprehension, presents a time-consuming challenge [7],
[12]. This is especially the case for new developers and also
generally in the context of distributed software systems with
frequent changes of the developers’ mental models [13]. With
this poster, we present our on-going work of a novel approach
that enables developers to collaboratively use software cities
for designing and planning SAC. To achieve that, we extend
ExplorViz [14]–[16] and its collaboration mode [17] with
modifiable software cities.

Approach: Figure 1 depicts a screenshot of our current
implementation. Here, we see multiple software cities visual-
izing an extended version of the distributed Spring PetClinic.1

The foundation for this visualization is a dynamic analysis

1https://github.com/spring-petclinic/spring-petclinic-microservices

of the PetClinic’s runtime behavior. Owing to ExplorViz’s
architecture [18], this dynamic analysis can be executed within
continuous integration pipelines. This enables users to au-
tomatically update the visual representation of the software
system, specifically the software city visualizations, in contrast
to most diagram tools.

Regarding the design of SAC, users primarily interact with
ExplorViz through extended popups. These appear when an
entity, e.g., a class depicted as blue building, is hovered
over (Figure 1-A). The popups provide a set of options for
manipulating the software city entities. Each popup is context-
sensitive, meaning that the available buttons and actions are
tailored to the specific type of entity being hovered over. Mod-
ifications are highlighted via textures, e.g., plus signs, instead
of color strategies to reduce noise and facilitate comprehension
(Figure 1-B and Figure 1-C). Each modification is recorded
in a changelog window as shown in Figure 1-D. Here, users
have an overview of all modifications. Clicking on an entry’s
number highlights the corresponding modification within the
visualization. This feature is intended to mitigate potential
scalability issues related to the visualization. Furthermore, the
changelog provides users with the capability to undo each
modification.

Eventually, users can generate GitLab issues directly from
within the software visualization tool using the issue form in
Figure 1-E. In this process, users can select specific changelog
entries to include in an issue. Additionally, the issue can
be named and supplemented with additional comments and
screenshots. In this instance, we also utilized GitLab user-
names, which highlight the issue for the respective users in
GitLab.

Acknowledgment: The authors would like to thank Arash
Giv for his contributions to the implementation.

REFERENCES

[1] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Information and Software Technology,
vol. 52, no. 1, pp. 31–51, 2010. DOI: 10.1016/j.infsof.2009.07.002

[2] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of the 28th Inter-
national Conference on Software Engineering, ser. ICSE ’06. New
York, NY, USA: Association for Computing Machinery, 2006. DOI:
10.1145/1134285.1134355. ISBN 1595933751 p. 492–501.

ar
X

iv
:2

40
8.

16
77

7v
1 

 [
cs

.S
E

] 
 1

5 
A

ug
 2

02
4

https://github.com/spring-petclinic/spring-petclinic-microservices
https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1145/1134285.1134355


A

B

C

D

E

Fig. 1. Screenshot of our prototype using an exemplary software city visualization encompassing multiple applications. When a user hovers the mouse over
an entity, a popup emerges, displaying buttons for modifying the entity. Textures are utilized to highlight modified entities, while non-default colors indicate
the entities selected by collaborators. The right sidebar features a changelog of modifications, allowing users to insert selected entries into the issue form.
Additionally, users have the option to append comments or screenshots prior to uploading the issue to GitLab.

[3] Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, and M. W.
Mkaouer, “One thousand and one stories: a large-scale survey of
software refactoring,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2021, New York,
NY, USA, 2021. DOI: 10.1145/3468264.3473924 p. 1303–1313.

[4] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage,
“How do professionals perceive legacy systems and software mod-
ernization?” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014, New York, NY, USA, 2014. DOI:
10.1145/2568225.2568318 p. 36–47.

[5] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics of
application software maintenance,” Commun. ACM, vol. 21, no. 6, p.
466–471, 1978. DOI: 10.1145/359511.359522

[6] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehen-
sion of program comprehension,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, sep 2014. DOI: 10.1145/2622669

[7] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2018. DOI: 10.1109/TSE.2017.2734091

[8] H. C. Purchase, L. Colpoys, D. Carrington, and M. McGill, UML
Class Diagrams: An Empirical Study of Comprehension. Boston, MA:
Springer US, 2003, pp. 149–178. ISBN 978-1-4615-0457-3

[9] A. Fernández-Sáez, M. Genero, D. Caivano, and M. Chaudron, “Does
the level of detail of uml diagrams affect the maintainability of source
code?: a family of experiments,” Empirical Software Engineering, pp.
1–48, 12 2014. DOI: 10.1007/s10664-014-9354-4

[10] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled ex-
periment for program comprehension through trace visualization,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 341–355, 2011.
DOI: 10.1109/TSE.2010.47

[11] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller, “Compar-

ing trace visualizations for program comprehension through con-
trolled experiments,” in Proceedings of the 23rd IEEE International
Conference on Program Comprehension (ICPC 2015), 2015. DOI:
10.1109/ICPC.2015.37 pp. 266–276.

[12] R. Tiarks, “What maintenance programmers really do: An observational
study,” Softwaretechnik-Trends, vol. 31, no. 2, 2011. [Online]. Available:
https://dl.gi.de/handle/20.500.12116/40982

[13] R. Tiarks and T. Roehm, “Challenges in program com-
prehension,” Softwaretechnik-Trends, vol. 32, no. 2, 2012.
[Online]. Available: http://pi.informatik.uni-siegen.de/stt/32 2/01
Fachgruppenberichte/SRE TAV/02-tiarks.pdf

[14] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visual-
ization for comprehending large software landscapes: The ExplorViz
approach,” in 1st IEEE International Working Conference on Soft-
ware Visualization (VISSOFT 2013), Sep. 2013. DOI: 10.1109/VIS-
SOFT.2013.6650536 pp. 1–4.

[15] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and
application visualization for system comprehension with ExplorViz,”
Information and Software Technology, vol. 87, pp. 259–277, Juli 2017.
DOI: 10.1016/j.infsof.2016.07.004

[16] W. Hasselbring, A. Krause, and C. Zirkelbach, “ExplorViz: Research
on software visualization, comprehension and collaboration,” Software
Impacts, vol. 6, Nov. 2020. DOI: 10.1016/j.simpa.2020.100034

[17] A. Krause-Glau, M. Bader, and W. Hasselbring, “Collaborative software
visualization for program comprehension,” in Proceedings of the 10th
IEEE Working Conference on Software Visualization (VISSOFT 2022),
2022. DOI: 10.1109/VISSOFT55257.2022.00016 pp. 75–86.

[18] A. Krause-Glau and W. Hasselbring, “Scalable collaborative software
visualization as a service: Short industry and experience paper,” in
Proceedings of the 10th IEEE International Conference on Cloud
Engineering (IC2E 2022), 2022. DOI: 10.1109/IC2E55432.2022.00026
pp. 182–187.

https://doi.org/10.1145/3468264.3473924
https://doi.org/10.1145/2568225.2568318
https://doi.org/10.1145/359511.359522
https://doi.org/10.1145/2622669
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1007/s10664-014-9354-4
https://doi.org/10.1109/TSE.2010.47
https://doi.org/10.1109/ICPC.2015.37
https://dl.gi.de/handle/20.500.12116/40982
http://pi.informatik.uni-siegen.de/stt/32_2/01_Fachgruppenberichte/SRE_TAV/02-tiarks.pdf
http://pi.informatik.uni-siegen.de/stt/32_2/01_Fachgruppenberichte/SRE_TAV/02-tiarks.pdf
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1109/IC2E55432.2022.00026

	References

