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S U M M A R Y 

A key question for those who study magmatic and volcanic processes is: ‘How fast can 

a magmatic intrusion travel?’ Observations and models indicate ranges between 10 

−2 and
1 m s −1 depending on several parameters, including magma buoyancy (or driving pressure),
viscosity and rock fracture toughness ( K c ). Ho wever , K c values are difficult to constrain, as 
ef fecti ve v alues inferred from large magmatic intrusions may be 2–3 orders of magnitude 
larger than measured values from small laboratory samples. This can be attributed to non- 
elastic processes that dissipate energy at different rates, depending on factors such as the 
fracture dimension and fracture propagation velocity. Here, we aim to investigate this aspect 
and provide a scheme for estimating ef fecti ve fracture toughness values ( K eff ) by considering 

fluid-filled fracture processes across different ranges of propagation velocities. To do so, 
we combine (i) analogue laboratory experiments involving the propagation of oil- and air- 
filled cracks within a solidified gelatin block, with (ii) numerical simulations, reproducing 

the crack shape and velocity and providing an estimate of the energy dissipated by the fluid 

flow between the crack walls. We show that even at the scale of our experiments, K eff values 
exhibit significant variations spanning over an order of magnitude. Over the velocity ranges 
relative to our two sets of experiments, we identify two empirical relations for an ef fecti ve, 
velocity-dependent fracture energy ( � E f ( v )), showing that when such an empirical relation is 
implemented into the numerical model, it improves the prediction of velocities and velocity 

variations. Following a similar procedure and building empirical relations for � E f ( v ) or K eff ( v ) 
at the scale of magmatic intrusions would improve predictions on dyke propagation velocities 
in the crust. In order to do so, a considerable amount of observations on the geometry and 

propagation velocity of magmatic dykes should be gathered. 

Key wor ds: F racture and flow; Numerical modelling; Experimental volcanism; Physics of 
magma and magma bodies. 

 

1 .  I N T RO D U C T I O N  

Magma propagation through the Earth’s crust mainly occurs by dyk- 
ing, which may either feed eruptiv e v ents or stall without reaching 
the surface. Dyking processes are mainl y dri ven b y the interplay be- 
tween crustal stress orientation, rock mechanics and magma proper- 
ties. Addressing the dynamic processes involved in the propagation 
of magmatic dykes has been the focus of several volcanological 
studies using theoretical, laboratory and observational approaches 
(e.g. Ri v alta et al. 2015 ). 
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t the tip of an intrusion allows for tracking propagation velocities,
hich have been found to range from km d −1 to km hr −1 ( ≈ 10 −2 

o 1 m s −1 , e.g. Prejean et al. 2003 ; Sigmundsson et al. 2015 , 2024 ;
englin é et al. 2021 ). 
Theoretical models based on the lubrication theory describe the

elocity of fluid-filled fracture propagation under conditions where
iscous forces outweigh fracture resistance. This occurs when the
elocity is determined by the fluid viscosity (Spence et al. 1987 ;
ister 1990 ; Spence & Turcotte 1990 ; Rubin 1998 ; Roper & Lis-

er 2007 ; Davis et al. 2023 ; M öri & Lecampion 2023 ). Ho wever ,
hey fail when viscous forces are not the limiting factor for the
ropagation velocity of an intrusion, and the velocity of fracture
rowth is instead governed by rock fracture toughness ( K c ), which
epresents the resistance of the rocks to fracture (Garagash & Ger-
anovich 2014 , 2022 ; M öri & Lecampion 2022 , 2023 , and refer-

nces therein). Magma viscosity and rock fracture toughness values
pan several orders of magnitude. This suggests that dyking pro-
esses may occur at different propagation regimes, ranging from
iscous- to fracture-dominated (Ri v alta et al. 2015 ). Recentl y, ne w
-D and 3-D models have been developed to simulate buoyant fluid-
lled fracture propagation within these two limits. M öri & Lecam-
ion ( 2023 ) addressed the release of a finite-fluid volume within a
-D planar fracture. The fluid-filled fracture self-propagates when
t overcomes the hydrostatic limit, characterized by the buoyancy
nd the viscosity factors. Importantly, the viscosity factor also de-
ends on the release rate of fluid, which in turn influences the
ropagation regimes and affects the fracture shape. Noteworthy,
hey found that even in the case of a finite volume, the propaga-
ion regime is likely to switch between the two limits. On the other
and, Furst et al. ( 2023 ) implemented a new 2-D numerical ap-
roach to estimate the propagation velocity of viscous fluid-filled
racks within a regime between fracture- and viscous-dominated.
his model considers both rock fracture toughness and fluid vis-
osity, resulting in velocities and shapes that depend on both fac-
ors. 

Complementary to numerical models, analogue laboratory
xperiments—performed by injections of different fluids into so-
idified gelatin blocks—are additional powerful tools to investigate

agmatic dyke dynamics. These fluid-filled fracture experiments
hare similar physics with magmatic dykes, as they both propagate
s quasi-static fluid-filled cracks, with negligible contribution of
ner tial ter ms (Ri v alta et al. 2015 ; Kav anagh et al. 2018 ). Some
f these experiments have shown that the ratio between fracture
oughness ( K c ) and stress intensity factor ( K I )—representing the in-
ensity of the stress singularity at the crack tip—correlates with the
ropagation velocity of fluid-filled fractures (Takada 1990 ; Heim-
el & Olson 1994 ; Smittarello et al. 2021 ). These results confirm
hat non-elastic processes occurring at the propagating tip of the
rack determine its propagation velocity, as also noted by Rubin
 1993 ). Additionall y, similar analo gue e xperiments hav e been used
n the past to study velocity variations when a fluid-filled crack ap-
roaches the surface (Watanabe et al. 2002 ; Ri v alta & Dahm 2006 ),
rosses a layer with different elastic properties (Maccaferri et al.
010 ), or enters a heterogeneous stress field (Pinel et al. 2022 ).
ventuall y, pre vious theoretical and empirical results suggest that
hen the velocity of a fluid-filled fracture is not constrained by
uid viscosity, the fundamental parameter governing the propaga-

ion velocity is the fracture toughness of the host rocks (Heimpel
 Olson 1994 ; Garagash & Germanovich 2014 ; M öri & Lecam-

ion 2023 ; Furst et al. 2023 ). Theoretical and experimental studies
n mode-I fracture mechanics showed that the process of tensile
racturing—under different loading stress conditions—is governed
y velocity-dependent empirical relations for static and dynamic
ock fracture toughness, as well as crack stress intensity factor
Bhat et al. 2012 , and references therein). Ho wever , these tensile
racturing processes do not share the same driving mechanism with
uid-filled cracks, and importantly, they may occur at very differ-
nt velocity regimes, with significantly higher velocities resulting
n differences between the static and dynamic fracture toughness.

onitoring hydraulic fracture propagation rates in rocks remains
hallenging (Liu & Lecampion 2022 , and references therein), and
nly a few studies were able to highlight velocity-dependent char-
cteristics of the fracture growth process within the velocity ranges
or fluid-filled fracture propagation (Chen et al. 2021 , and refer-
nces therein). Recently, Liu & Lu ( 2023 ) investigated the effects of
elocity-dependent apparent fracture toughness on hydraulic frac-
ure propagation using a po wer-la w empirical model. They present
esults for plane strain and radial fractures, including an application
o a non-buoyant magmatic intrusion under constant magma sup-
ly. They found that both plane strain and radial fractures present
ecreasing toughness as the fracture grows. Additionally, for the
adial fracture, the energy spent in creating new fracture surfaces
ncreases as the fracture e xtends, ev entually causing the propaga-
ion to evolve towards a regime dominated by fracture toughness,
n contrast to the plane strain case. Ho wever , estimates of rock
racture toughness can v ary b y orders of magnitude depending on
he scale of the fracture process. Typically, laboratory estimates
n small, centimetre-scale rock samples return fracture toughness
alues that are 2–3 orders of magnitude smaller than those in-
erred from large, kilometre-scale, magma-filled dykes exposed in
he field (Delaney & Pollard 1981 ; Olson & Schultz 2011 ; Zhu et al.
022 ). Such different estimates are thought to be related to effec-
ive fracture toughness values resulting from non-elastic (velocity-
r scale-dependent) processes occurring at the tip of a propagat-
ng crack (Delaney et al. 1986 ; Rubin 1993 , 1995 ; Ri v alta et al.
015 ). 

In this study, we conducted two sets of analogue experiments in-
olving the injection of fluids with extremely different viscosities—
ilicon oil and air—into several gelatin blocks with very similar
lastic properties. We performed multiple injections with differ-
nt volumes for each fluid, resulting in a wide range of propa-
ation velocities spanning over 4 orders of magnitudes. We used
he experiment records to measure the crack geometries and es-
imate their stress intensity factors. We also used the numerical
ode de veloped b y Furst et al. ( 2023 ) to reproduce the propaga-
ion velocity of oil-filled fractures with different volumes and de-
ived their stress intensity factor ( K I ) accounting for the viscous
il flow between the fracture walls. In fact, during previous ana-
ogue experiments of fluid-filled crack propagation, K I values have
ften been estimated based on static crack formulae, which ne-
lect the effect of fluid viscosity (e.g. Takada 1990 ; Heimpel &
lson 1994 ; Smittarello et al. 2021 ). We used K I estimates from
il- and air-filled cracks to compute the gelatin fracture tough-
ess ( K c ) and e ventuall y showed that these two sets of experiments
ield notably different K c estimates. We interpreted our findings
n terms of velocity-dependent ef fecti ve fracture toughness values
 K eff ), with slower fracture propagation velocities requiring less
nergy to break a unit surface of gelatin at the crack tip. This is
onsistent with previous experimental results (Heimpel & Olson
994 ) and theoretical considerations (Rubin 1993 ). Our results sug-
est that introducing non-elastic, velocity- (or, in general, ‘crack-’)
ependent ef fecti ve fracture toughness is fundamental for theoret-
cal models to predict fluid-filled fracture propagation velocities
uccessfully. 
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2 .  METHODS 

2.1. Analogue model framework 

We conducted experiments using solidified gelatin as the analogue 
material for the Earth’s crust. Gelatin is transparent and brittle- 
elastic, and it is broadly used to study magma transport by injecting 
dif ferent fluids (e.g. air, w ater and silicon oils) to form fluid-filled 
fractures. These experiments are representative of intrusion mech- 
anisms that involve brittle-elastic properties of the crust, offering 
a good scaling for different types of magma (e.g. Takada 1990 ; 
Heimpel & Olson 1994 ; Watanabe et al. 2002 ). To ensure adequate 
scaling for magmatic dyke propagation studies, gelatin must be pre- 
pared at a concentration < 5 wt % and cooled down at a temperature 
below 10 ◦C (Kavanagh et al. 2013 ). 

To simulate the mechanics of magmatic dykes at toughness- and 
viscosity-dominated regimes, we respecti vel y injected air and sili- 
con oil (specifically, KORASINOL M10000 supplied by Obermeier, 
which has a viscosity 10000 times higher than water) into the gelatin, 
resulting in the formation of fluid-filled buoyant cracks. Gelatin and 
silicon oil have similar densities ( ρ ∼ 1000 kg m 

−3 and ρoil ∼ 980 
kg m 

−3 at 10 ◦C, respecti vel y); therefore, we increased the buoy- 
ancy of the oil-filled cracks by dissolving salt within the gelatin 
during preparation. While salt increases the gelatin density, im- 
proving the model scaling for buoyant magma (Brizzi et al. 2016 ), it 
also affects the gelatin structure, decreasing its rigidity (Smittarello 
et al. 2021 ). Fur ther more, pre vious studies showed that—for a gi ven 
shear modulus—salty gelatin blocks display higher values of frac- 
ture toughness with respect to non-salty gelatin (Smittarello et al. 
2021 ) . 

2.1.1. Gelatin preparation and laboratory setup 

The experiments were performed in the Volcano Lab at the Ger- 
man Research Centre for Geoscience (GFZ) in Potsdam, Germany. 
We prepared 18.4 L of solution at 1.5 wt % gelatin and 15 wt 
% salt in two steps. First, we dissolved 276 g of pigskin gelatin 
(280 bloom and 16 mesh, Italgel) in 9 L of water at 60 ◦C, stir- 
ring continuously until the gelatin reached a temperature of 50 ◦C. 
Then, in a separate pot, we poured 2760 g of salt into 9.4 L of 
cold water. To ensure a uniform salt blend in the water, stirring 
was maintained while the pot with the salty solution was heated 
to 50 ◦C. Then, after the two solutions were combined and cooled 
to approximately 30 ◦C, we poured the liquid salty-gelatin into a 
Plexiglas tank with dimensions 40 × 20 cm, reaching a height of 
23 cm. The tank was placed in a fridge for 40 hr to solidify the 
gelatin and cool it down to a stable and homogeneous temperature 
of 8 ◦C. We strictly followed the same procedure for preparing all 
the gelatin blocks used in our experiments to ensure the repeatabil- 
ity of the gelatin characteristics. In addition, the room temperature 
was maintained below 15 ◦C to preserve the gelatin’s elastic prop- 
erties during the experiments, which could last up to approximately 
3 hr. 

Before starting each experiment, we measured the gelatin density 
and rigidity. Density measurements were performed by weighing 
and measuring the volume of the gelatin block, obtaining consis- 
tent values across all the experiments, ranging between 1101–1129 
kg m 

−3 (Tables 1 and 2 ). For measuring the rigidity, we followed 
the procedure described by Pansino & Taisne ( 2019 ), using the pho- 
toelastic properties of gelatin to measure the velocity of the shear 
waves. We set two polarized sheets at the front and back of the tank 
and illuminated the tank to make visible the shear waves produced 
by striking the gelatin surface with a plastic spoon. The propaga- 
tion velocity v s of the shear wa ves allow ed us to compute the shear 
modulus G : 

G = ρv 2 s (1) 

considering a Poisson’s ratio equal to 0.5 for gelatin (Kavanagh 
et al. 2013 ). The values for G are reported in Tables 1 and 2 . 

We formed fluid-filled cracks of various sizes by injecting dif- 
ferent fluid volumes through holes at the bottom of the tank, using 
a syringe and a metal needle. The needle had a sharp bevelled tip 
that helped to control the initial crack’s orientation and was con- 
nected through a silicon hose to the syringe. For each gelatin tank, 
we performed up to three fluid-filled crack propagation experiments 
of air and oil injections. Each injection was separated by at least 
5 cm from the others to prevent mechanical interactions between a 
propagating fluid-filled crack and the cuts left behind by previous 
injections (Le Corvec et al. 2013 ). Additionally, in two experiments 
(number 04 and 11), we tested the simultaneous propagation of two 
oil-filled cracks ( cf . Fig. 1 a) and observed no differences in the out- 
comes compared to injections performed in a new—intact—gelatin 
block or compared to the injections performed successi vel y in the 
same box. To record the experiments, we set a camera in front of 
the gelatin tank and used a backlight to enhance the visibility of 
the fluid-filled cracks. The volume of oil injections ranged from 

10 to 50 mL. Given the high viscosity of the silicon oil, a single 
oil-filled crack propagation experiment could last up to about 3 hr. 
Thus, we set the camera shoot with a time lapse of 10 s. In con- 
trast, air injections were carried out in volumes ranging from 1 to 
10 mL. Due to their low viscosity, these injections display higher 
velocities, allowing us to record them using videos (Fig. 1 c). We 
ran sev eral e xperiments injecting the same amount of fluid in order 
to check the repeatability of the experiments and the stability of our 
measurements. 

2.1.2. Measurements of fluid-filled crack aspects and velocity and 
associated errors 

In order to measure the propagation velocity of an ascending fluid- 
filled crack, we monitored the crack-tip position on its trajectory 
to the surface. We created videos from image stacks (for oil-filled 
cracks) and processed them using the free software Tracker (Brown 
2012 ). We tracked the dyke tip position over time manually, and the 
software provided the velocity between two consecutive positions 
(Fig. 1 c). Additionally, we computed the mean propagation velocity 
( v mean ), its minimum ( v min ) and maximum values ( v max ), excluding 
an initial ‘crack formation’ phase (marked in grey in Fig. 1 c) and 
the final acceleration when approaching the free surface (Ri v alta 
& Dahm 2006 ). For oil-filled cracks and air injections up to 5 mL, 
this phase is characterized by an initially high velocity that quickly 
decelerates to a more stable trend. In fact, in these cases, the initial 
crack growth phase occurs at a faster rate than the buoyanc y-driv en 
propagation phase. Conversely, the larger air-filled cracks (10 mL) 
initially display an accelerating velocity. This is due to the fact 
that these cracks start the buoyant propagation before the end of 
the injection. As their volume grows, their buoyancy pro gressi vel y 
increases, accelerating their propagation velocity until the final vol- 
ume is reached. In both cases, during these initial phases of deceler- 
ation or acceleration, the velocity is significantly influenced by the 
crack nucleation phase and the rate of fluid injection. These factors 
are not accounted for in our numerical simulations; hence, their im- 
pact cannot be anal ysed. Howe ver, these observ ations are consistent 
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Table 2. Gelatin properties and experimental results for propagating air-filled cracks. The experiments are listed in order of injected volumes ( V ). The first two 
digits of the ‘Exp. ID’ indicate the ID of the gelatin block, followed by the progressive number of the air (‘ A ’) injection. The gelatin density ( ρ), shear modulus 
( G ), starting depth ( Z s ), as well as physical and geometric crack parameters such as mean-, minimum- and maximum-velocity ( v mean , v min and v max ), crack 
opening ( O ), width ( W ) and length ( L ), along with the stress intensity factor estimated from eq. ( 2 ) ( K I 

(3D) ), are reported. 

V Exp. ρ G Z s v mean v min v max O W L K I 
(3D) 

[mL] ID [kg m 

−3 ] [Pa] [cm] [mm s −1 ] [mm s −1 ] [mm s −1 ] [cm] [cm] [cm] [Pa · m 

1 / 2 ]

1 10-A1 [11.06 ± 0.28] ×10 2 [1.25 ± 0.23] ×10 2 9.7 ± 0.2 2.29 ± 0.15 2.25 ± 0.15 2.38 ± 0.15 0.65 ± 0.02 1.51 ± 0.06 2.3 ± 0.2 25 ± 2 
1 11-A1 [11.05 ± 0.28] ×10 2 [1.32 ± 0.27] ×10 2 9.3 ± 0.2 1.98 ± 0.17 1.89 ± 0.17 2.04 ± 0.17 0.66 ± 0.06 1.40 ± 0.08 2.4 ± 0.2 25 ± 2 
1 12-A1 [11.06 ± 0.24] ×10 2 [1.29 ± 0.22] ×10 2 17.1 ± 0.1 1.7 ± 0.4 0.9 ± 0.4 2.1 ± 0.4 0.62 ± 0.02 1.41 ± 0.06 2.4 ± 0.1 25 ± 1 
2 11-A2 [11.05 ± 0.28] ×10 2 [1.32 ± 0.27] ×10 2 19.9 ± 0.2 6 ± 1 5 ± 1 8 ± 1 0.75 ± 0.02 1.77 ± 0.05 2.5 ± 0.2 29 ± 2 
2 12-A2 [11.06 ± 0.24] ×10 2 [1.29 ± 0.22] ×10 2 20.3 ± 0.1 7 ± 1 5 ± 1 8 ± 1 0.81 ± 0.03 1.91 ± 0.07 2.7 ± 0.1 32 ± 2 
2 13-A1 [11.06 ± 0.28] ×10 2 [1.33 ± 0.21] ×10 2 20.4 ± 0.2 7 ± 1 5 ± 1 9 ± 1 0.97 ± 0.02 1.91 ± 0.03 2.8 ± 0.2 34 ± 3 
3 10-A2 [11.06 ± 0.28] ×10 2 [1.25 ± 0.23] ×10 2 19.2 ± 0.2 12 ± 1 9 ± 1 14 ± 1 1.05 ± 0.03 2.27 ± 0.02 2.8 ± 0.2 37 ± 3 
3 11-A3 [11.05 ± 0.28] ×10 2 [1.32 ± 0.27] ×10 2 19.2 ± 0.2 11 ± 2 9 ± 2 14 ± 2 1.01 ± 0.02 2.25 ± 0.02 2.9 ± 0.2 38 ± 3 
3 12-A3 [11.06 ± 0.24] ×10 2 [1.29 ± 0.22] ×10 2 20.3 ± 0.1 11 ± 1 9 ± 1 13 ± 1 1.10 ± 0.03 2.31 ± 0.06 2.9 ± 0.1 38 ± 2 
4 13-A2 [11.06 ± 0.28] ×10 2 [1.33 ± 0.21] ×10 2 19.3 ± 0.2 15 ± 2 13 ± 2 18 ± 2 1.35 ± 0.06 2.46 ± 0.01 3.1 ± 0.2 42 ± 3 
5 10-A3 [11.06 ± 0.28] ×10 2 [1.25 ± 0.23] ×10 2 18.4 ± 0.2 19 ± 2 17 ± 2 22 ± 2 1.35 ± 0.06 2.76 ± 0.07 3.4 ± 0.2 49 ± 3 
5 11-A4 [11.05 ± 0.28] ×10 2 [1.32 ± 0.27] ×10 2 18.3 ± 0.2 18 ± 2 15 ± 2 22 ± 2 1.32 ± 0.01 2.77 ± 0.03 3.4 ± 0.2 49 ± 3 
5 13-A3 [11.06 ± 0.28] ×10 2 [1.33 ± 0.21] ×10 2 19.0 ± 0.2 19 ± 2 16 ± 2 22 ± 2 1.39 ± 0.02 2.81 ± 0.04 3.3 ± 0.2 48 ± 3 
10 10-A4 [11.06 ± 0.28] ×10 2 [1.25 ± 0.23] ×10 2 15.4 ± 0.2 36 ± 2 32 ± 2 39 ± 2 1.79 ± 0.09 3.57 ± 0.03 3.9 ± 0.2 64 ± 4 
10 10-A5 [11.06 ± 0.28] ×10 2 [1.25 ± 0.23] ×10 2 14.9 ± 0.2 36 ± 2 34 ± 2 37 ± 2 1.69 ± 0.08 3.44 ± 0.07 3.9 ± 0.2 63 ± 4 

Figure 1. (a) Laboratory setup and image of two parallel oil-filled crack propagation corresponding to experiments 11-O2 (left) and 11-O1 (right) (see Table 1 ). 
(b) Top-view image of experiment 11-O1 highlighting the crack width ( W ) and opening ( O ) just before the arri v al at surface. (c) Crack propagation velocity
( v ) against depth ( Z ) for a 10 mL oil-filled crack experiment (11-O1) and a 10 mL air-filled crack (10-A5). Note that the velocity range for an oil-filled crack is
3 orders of magnitude smaller than for an air-filled crack for the same injected volume. The opposite behaviours (deceleration and acceleration) observed for
the 10 mL oil- and air-filled cracks during the ‘initial phase’ (marked in grey) are mainly due to the large buoyancy difference of these fluids and are discussed
in Section 2.1.2 .
with the theoretical considerations and the numerical results ob- 
tained by M öri & Lecampion ( 2022 , 2023 ), who highlight similar 
dynamics in the transition from initial radial to buoyanc y-driv en 
propagation. For each experiment, we identified the depth reached 
by the dyke tip once the crack formation phase was over ( Z s in Ta- 
ble 1 ). Crack characteristics, including its maximum opening ( O ), 
head width ( W ) and length ( L ), were measured from the recorded 
images using Tracker. We used images from the front camera to 
measure L , while O and W were measured from images taken from 

a top view. To mitigate the influence of light refraction in the gelatin 
block (Furst et al. 2024 ), measurements from top-view images were 
taken when the crack reached about 2 cm from the surface. For 
consistency, the same was applied also to length measurements ( cf . 
Fig. 1 b). Images were calibrated using transparent graduated sheets 
placed on the gelatin surface and the tank walls. Some cracks formed 
with a slight dip angle with respect to the vertical (e.g. 11-O1 in 
F ig. 1 ), w hich was due to the orientation of the injection needle 
(controlling the initial fracture orientation). Consistently producing 
e xactly v ertical cracks, as well as cracks which are perpendicular 
to the front camera, remains challenging. Therefore, we sometimes 
needed to change the view angle of the camera to capture the crack 
opening and width. This procedure introduced a distortion that had 

art/ggae396_f1.eps
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o be taken into account during the image calibration in order to
easure O and W . 
Uncertainties (Tables 1 and 2 ) were estimated from direct mea-

urement errors, taking into account the sensitivity of our instru-
ents, but also other possible error sources. In particular, the errors

ssociated with measurements taken on recorded images strongly
epend on the quality of the image, that is, its sharpness, resolution
nd possible distortion effects. For instance, when measuring the
ength L of a crack on a digital image, we considered its maximum
nd minimum estimates in pixels, accounting for the thickness of
he line marking the crack borders on our recordings. The associated
rror was taken as the difference between these two estimates. As
 consequence, the sharper the recorded image, the thinner the line
arking the crack border, and the smaller the error. Additionally,
hen scaling the pixels of an image, we accounted for distortion

ffects at its edges using transparent graduated sheets placed on the
ides of the gelatin tank. Similarly, for the manual pick of the crack
ront, we considered the midpoint of the crack borderline. These
icks were used to compute the crack propagation velocity using
he software ‘Tracker’. The errors associated with the velocity were
omputed as their standard deviation within a time interval with
elati vel y stable average velocity . Eventually , the errors associated
ith derived quantities were computed by combining the relative

rrors associated with direct measurements (for instance, the error
ssociated with the gelatin density in Tables 1 and 2 , was computed
sing σρ / ρ = σ M 

/ M + σ V / V ). 

.1.3. Fracture toughness computation 

he fracture toughness K c is a parameter used to characterize the
esistance to the fracturing of a brittle material. A fluid-filled crack
s stable (does not grow larger) when the stress intensity factor at
he crack tip is lower than the fracture toughness of the host solid.
he stress intensity factor K I depends on the fluid excess pressure
ith respect to the confining stress and the shape of the crack. 3-D

nd 2-D stress intensity factor estimates can be provided by the
ollowing static crack formulae (Secor & Pollard 1975 ; Heimpel &
lson 1994 , respecti vel y): 

K 

( 3D ) 
I = 

√ 

2 

π
�ρ · g · L

√ 

W , (2) 

K 

( 2 D ) 
I = 

√ 

π

8 
�ρ · g · L 

3 / 2 (3) 

here � ρ is the density contrast between the fluid and the solid,
nd g is the acceleration due to gravity. Using eq. ( 2 ), we computed
 I 
(3D) for fluid-filled cracks with different volumes, propagating at

ifferent velocities, and provided an estimate of the gelatin fracture
oughness K c by extrapolating K I 

(3D) ( v ) for the velocity approach-
ng zero (Smittarello et al. 2021 ). In fact, even though K I 

(3D) does
ot explicitly depend on the fluid-filled crack propagation velocity
eq. 2 ), it depends on the injected fluid volume (affecting L and
 ). In our experiments, a larger fluid volume implies a larger over-

ressure and an increased crack propagation velocity. This is gener-
lly true for toughness-dominated buoyant cracks, while during the
ransition between viscosity- to toughness-dominated regimes, the
 elocity increases ev en though the crack head volume actually de-
reases (M öri & Lecampion 2022 ). Ho wever , within the range of our
xperiments, we do not observe such a transition in the propagation
egimes. 

In the assumption that K I = K eff ( v ) during the fluid-filled crack
ropagation, extrapolating K I values for v −→ 0 is equi v alent to
omputing K c = K eff ( v −→ 0). Note that more general frameworks
or the dynamics of fracture propagation consider different (more
omple x) v elocity dependencies for K I ( v ) and K eff ( v ) (Bhat et al.
012 ), as compared to the relations used for quasi-static fluid-filled
ractures. 

Additionally, eq. ( 2 ) applies to stationary cracks, and it can be
sed for quasi-static moving cracks only when viscous forces do
ot alter their shape. This is true for air-filled cracks, as their shape
s indistinguishable from the static one (Dahm 2000a ). Several pre-
ious studies that used air- and oil-filled crack injections in gelatin
e.g. Takada 1990 ; Heimpel & Olson 1994 ; Smittarello et al. 2021 )
eglected the effect of fluid viscosity, in the assumption that ei-
her the fluid viscosity was sufficiently low (for air-filled cracks),
r the fluid-filled crack propagation velocity was slow enough (for
il-filled cracks). 

Here, we will first compute K I 
(3D) for air- and oil-filled crack

ropagation experiments using eq. ( 2 ), and we will estimate K c for
oth sets of experiments separatel y. Howe ver, we will additionally
rovide independent estimates of K I 

(3D) for the oil-filled cracks,
ccounting for the oil viscosity, since the shape of these cracks in
ur experiments differs from the static case. In order to do so, we
ill make use of 2-D numerical simulations applied to the oil-filled

racks. Finally, to compare results from 3-D experiments and 2-D
imulations, we introduce a method to convert 3-D and 2-D stress
ntensity factor estimates. 

Smittarello et al. ( 2021 ) used 3-D and 2-D stress intensity factor
ormulae to derive a relation between them, combining eqs ( 2 ) and
 3 ): 

K 

( 3D ) 
I = 

4 

π

√ 

W 

L 

· K 

( 2D )
I . (4) 

This relation will be used to consistently show on the same plots
esults from (3-D) laboratory experiments and (2-D) numerical sim-
lations. In particular, we will use W/L average values for 10, 30
nd 50 mL oil injections when converting to 3-D, the 2-D estimates
btained with the numerical simulations of those experiments, as
he numerical model is in plane strain and does not provide W val-
es. In the Discussion (Section 4.2 ), we will provide further details
bout W/L measurements and their use in eq. ( 4 ) to convert between
-D and 3-D estimates.

.2. Numerical model for viscous fluids 

n order to account for the effect of oil viscosity on the stress in-
ensity factor calculation and fracture toughness estimates, we used
he numerical model developed by Furst et al. ( 2023 ). We did not
se the numerical model to simulate the air-filled crack propagation
xperiments as the viscosity of air is so low that the dynamic-crack
hape and pressure profile coincides with the analytical static-crack
olution, confirming the validity of eq. ( 2 ) for our air-filled cracks.
he 2-D model de veloped b y Furst et al. ( 2023 ) integrates fracture
echanics with fluid flow equations to simulate the evolution of a
uid-filled crack in terms of its shape and propagation velocity. This
odel refers to a vertical cross-section of the fracture, discretized

sing dislocation elements in plane strain approximation (e.g. the
racture is considered to extend infinitely in the out-of-plane direc-
ion). The model simulates a fracture filled with a compressible fluid
owing between the crack walls in a Hagen–P oiseuille flo w regime.
he crack propagation velocity ( v ) is determined through an en-
rgy balance criterion, performed over the entire crack length, and
onsidering different energy contributions: potential energy varia-
ions ( � E ), which include elastic and gravitational energy changes
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associated with the upward propagation of a buoyant fluid-filled 
crack; fracture energy ( � E f ), the energy per unit surface required 
to fracture the host solid at the crack’s tip, multiplied by the frac- 
ture elongation ( l ); and viscous energy dissipation ( � E v ), arising 
from the flow of viscous fluid between the crack walls. Due to the 
plane strain (2-D) approximation, all energy terms are expressed as 
energy per unit length, also referred to as ‘energy density’ (Rice 
1968 ), and the energy budget equation is: 

�E = � E f · l + � E v (5) 

with � E v = ( v · η) D 

′ , where η is the fluid viscosity and D 

′ is 
a function that depends on the crack geometry and magma flow 

(Furst et al. 2023 , where D = η · D 

′ ). The energy budget equation ( 5 ) 
introduces a direct constraint on the fluid-filled crack propagation 
velocity: 

v = 

�E − � E f · l 

η · D 

′ . (6) 

Note that � E and D 

′ intrinsically depend on v , and eq. ( 6 ) must 
be solved iterati vel y (Furst et al. 2023 ). 

� E f depends on the fracture toughness K c of an elastic material
through the following relation (e.g. Rice 1968 ; Dahm 2000b ): 

� E f = K 

2 
c

1 − nu 

2 G 

. (7) 

In the numerical approach (Furst et al. 2023 ), the fracture energy 
per unit surface � E f is constant during the crack growth; therefore, 
K c also is assumed to remain constant. As a consequence, for a given 
value of K c such that � E f · l < � E , the viscous flow within the crack 
represents the only limiting factor for the propagation velocity of 
the fluid-filled crack. Ho wever , if the viscosity approaches zero, 
eq. ( 6 ) is not suitable for computing v , as the velocity would grow 

to unrealistic values (as in the case of air-filled cracks), making this 
model inapplicable for the computation of the propagation veloc- 
ity of low viscosity (fracture-dominated) fluid-filled cracks (Furst 
et al. 2023 ). Therefore, here, we perfor med numerical r uns directly 
constrained by the oil-filled crack experiments. 

The model requires several inputs: the mechanical properties of 
the fluid and the embedding medium ( ρ, G , nu , ρ f and η), an initial 
velocity guess ( v i , which is a numerical parameter needed to reach 
the algorithm convergence, without affecting the final results), the 
cross-sectional area of the fluid-filled crack at a reference pressure 
( A 0 ), and the fracture energy ( � E f ). As output, the simulations pro- 
vide the crack shape and its velocity profile during propagation. 
Although we could obtain precise measurements for most input pa- 
rameters, such as ρ, G , nu , ρ f , η and the velocity guess (taken as the 
av erage observ ed v elocity ̄v mean , Table 1 ), two parameters remained 
unknown or poorly constrained: the fracture energy ( � E f ) and the 
cross-sectional area of the crack ( A 0 ), respecti vel y. In fact, measur- 
ing the crack area is particularly challenging as the cracks are thin, 
and their orientation is not al wa ys perpendicular to the camera view 

(Smittarello et al. 2021 ). Also, estimating the 2-D cross-section 
using the actual 3-D injected volume is not straightforward, as we 
could only measure the crack head length L , its maximum open- 
ing O , and width W , but not their distributed values over the crack 
surface. As a consequence, following Furst et al. ( 2024 ), for each 
simulation we looked for the values of A 0 and � E f that provided 
the best simultaneous fit for both the maximum crack opening ( O ) 
and the observed propagation velocity (considering the v mean , v min 

and v max values averaged over all the experiments with the same 
volumes indicated as overlined variables, last three rows of Ta- 
ble 1 ). In fact, this is the combination of parameters that are deemed 
the most reliable quantities to constrain the Furst et al. ( 2023 ) 
model, as it has been shown for similar experiments in Furst et al. 
( 2024 ). 

In order to perform the fit between the simulated and observed 
velocity, here w e follow ed a simple trial-and-error approach, vary- 
ing � E f and visually adjusting the simulated velocity profiles—
excluding the initial rapid velocity decay—to the measured ve- 
locities. This procedure worked ef ficientl y as dif ferent � E f v alues 
would essentially shift the simulated velocity profile towards higher 
or lower velocity values. 

Given � E f , eq. ( 7 ) would then provide estimates of the gelatin 
fracture toughness K c for each simulated experiment. If the fluid- 
filled fracture propagation occurs as a purely brittle elastic process, 
� E f values (and the corresponding estimates of K c ) must be equal
for all simulations. Additionally, K c estimates from oil- and air- 
filled crack experiments should also be equal once we accounted 
for the oil viscosity and corrected for the 2-D approximation of the 
numerical simulations (eq. 4 , taking K c = K I ). 

Ho wever , as we will show in the results section, our numerical 
simulations provide us with different � E f estimates for different 
oil-filled crack simulations propagating with different velocities. 
Because of this, we implemented a modified version of the numer- 
ical model, introducing a velocity-dependent relation for the frac- 
ture energy � E f ( v ). Such relation will be computed by interpolating 
� E f values obtained from the different simulations characterized by
different propagation velocities. This is equivalent to considering
ef fecti ve fracture toughness values K eff ( v ), instead of a constant K c ,
and a fracture propagation condition K I = K eff ( v ). Consistently, we
should replace eq. ( 7 ) with:

� E f ( v ) = K 

2 
eff ( v ) 

1 − nu 

2 G 

. (8) 

In the next section, we will also present results obtained by in- 
troducing velocity-dependent fracture energy � E f ( v ) within the nu- 
merical code for fluid-filled fracture propagation by Furst et al. 
( 2023 ). This was achieved by implementing an empirical expres- 
sion for � E f ( v ) in the numerical code provided as input. At each 
time step, the energy balance (eq. 5 ) is solved iterati vel y, starting 
with the velocity value obtained by the crack growth at the pre- 
vious time step and updating it along with all energy terms until 
convergence is reached. 

Eventually, as our numerical model does not provide direct esti- 
mates of K I values, estimates of K I ( v ) for the oil-filled cracks will be 
provided by the values of � E f ( v ) obtained with the numerical sim- 
ulations, using eq. ( 8 ), and the propagation condition K I = K eff ( v ). 
Note that these estimates consider the effect of fluid viscosity, as 
numerical simulations account for the viscous dissipation in the 
energy budget (eq. 5 ). 

3 .  RESULTS 

In Tables 1 and 2 , we present our measurements and results for 21 
silicon oil injection experiments, with volumes ranging from 10 to 
50 mL and 15 air injections, with volumes ranging from 1 to 10 mL. 
All injections were performed within eight different gelatin blocks 
with very similar elastic properties. Oil-filled cracks display stress 
intensity factors ranging between 9 < K I 

(oil) < 41 Pa ·m 

1/2 , associated 
with av erage v elocities in the order of 10 −2 mm s −1 . For air-filled 
cracks, we obtain 24 < K I 

(air) < 64 Pa ·m 

1/2 for cracks propagating 
with a velocity between 1 and 36 mm s −1 . In Fig. 2 , we plotted the 
stress intensity factor against the mean propagation velocity ( v mean ) 
for each oil injection experiment (Fig. 2 a), and for the air injections 
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Figure 2. Stress intensity factor K I plotted against mean velocities ( v mean ) obtained from fluid-filled crack propagating in gelatin. Note that in the assumption 
of crack propagation with K I = K eff ( v ), the y -axis can also be interpreted as the gelatin’s ef fecti ve fracture toughness. (a) Cracks filled with viscous fluid 
(silicon oil) and volumes ranging from 10 to 50 mL: 10 mL in squares, 30 mL in triangles, 50 mL in diamonds and others in circles (Table 1 ). (b) Cracks filled 
with non-viscous fluid (air) and volumes ranging from 1 to 10 mL (Table 2 ). For each set of experiments, the dashed lines represent the linear regression of K I 

as a function of v mean : K I 
(oil) = 404.9 v + 2.2 and K I 

(air) = 1.2 v + 24.0. 
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Fig. 2 b). The dashed lines represent the linear regression of K I as a
unction of v mean . Assuming that the crack propagation occurs with
 stress intensity factor equal to fracture toughness, K I = K eff ( v ), the
 -intercept provides an estimate of K c = K eff ( v −→ 0) for both sets
f experiments. Although the characteristics of the gelatin blocks
re very similar across all experiments, the estimates of K c obtained
ith the two sets of experiments dif fer b y more than one order
f magnitude: K c 

(oil) = 2.2 Pa ·m 

1/2 and K c 
(air) = 24.0 Pa ·m 

1/2 for
il and air, respecti vel y. This shows that the two linear regressions
or K I ( v ), obtained over very different ranges of crack propagation
elocities (for oil- and air-filled cracks), are not adequate to extrap-
late consistent estimates of gelatin strength. Rather, considering
 I = K eff ( v ), the two regressions displayed in Fig. 2 suggest that

he ef fecti ve fracture toughness should be characterized b y dif fer-
nt velocity-dependent relations over such largel y dif ferent velocity
anges. 

Additionally, in Fig. 2 , we used eq. ( 2 ) to compute K I . How-
ver, eq. ( 2 ) neglects the effect of fluid viscosity on the fluid pressure
rofile and consequently disregards the viscous energy dissipation
ue to the internal friction caused by the viscous shear flow of a
uid, which may be important for the estimation of K I for oil-filled
racks. 

In order to overcome this limitation and find improved relations
or K eff ( v ), we used the numerical model from Furst et al. ( 2023 ),
hich accounts for the effect of fluid viscous motion, and performed

hree simulations of oil-filled crack propagation corresponding to
he experiments with 10, 30 and 50 mL oil injections. The simula-
ions were constrained by averaging the geometrical and physical
arameters measured for 10, 30 and 50 mL oil-injection experi-
ents, listed in Table 1 , and labelled as 10-AV, 30-AV and 50-AV.
he other input parameters are the oil density ρoil = 980 kg m 

−3 ,
nd viscosity η = 9.7 Pa ·s, both constant for all simulations, and the
nitial crack cross-sections: A 0 = 2.4, 4.9 and 6.7 cm 

2 , respecti vel y.
ote that these values of A 0 were constrained using the crack max-

mum openings O and velocity v , as we explained in Section 2.2 .
he approximate 3-D volume corresponding to A 0 can be estimated
 y multipl ying A 0 times the measured crack width W (not provided
y the 2-D model). Even though this represents quite a rough esti-
ate, using W mean values for 10, 30 and 50 mL oil experiments,
e obtained crack v olumes w hich are compatib le with the actual
njected volumes, with relative differences ranging between 10 and
0% (see Supporting Information, Table S1 ). In Fig. 3 , we display
he full velocity profiles (grey lines) as recorded throughout the
ntire duration of each oil-injection experiment, together with the
elocity obtained with the numerical simulations (bold lines), for
0, 30 and 50 mL injected v olumes (F igs 3 a, b and c, respecti vel y).
he observed velocity profiles show that during the initial phase
f an oil injection experiment, the velocity of the propagating tip
f the oil-filled cracks decreases relati vel y fast. This phase is gov-
rned by the formation of the fluid-filled fracture, and the velocity
bserved during this initial phase of propagation is also strongly
f fected b y the oil injection rate, as we will further discuss in Sec-
ion 4 . Ho wever , our numerical simulations do not account for the
uid injection rate because each simulation starts with all the fluid
lready in place within an initial crack length L ( cf . Table 1 , rows
0-A V, 30-A V and 50-A V). Therefore, we discard from our analysis
he initial part of the velocity profiles below the depth Z s , identified
y the fast decrease in the observed propagation velocity (areas of
ast velocity decay in Fig. 3 ).

In Fig. 3 , the horizontal lines represent the values of the mean,
aximum and minimum velocities averaged over each set of exper-

ments for depths above Z s : ̄v mean (solid line), ̄v min and ̄v max (dashed
ines), respecti vel y (Table 1 ). For each simulation, we looked for the
alue of the gelatin fracture energy � E f that provides a good overlap
etween the simulated and observed velocity profiles. In fact, de-
reasing � E f would essentially shift the simulated velocity profile
owards higher velocities and vice versa. Following the initial phase
f fast velocity decay, both laboratory experiments and numerical
imulations show velocity profiles that exhibit a stable decelerating
rend until approaching the free surface, where acceleration is ob-
er ved. A prog ressiv e v elocity decrease, following the initial crack
rowth phase, is also predicted by the lubrication theory (Spence &
urcotte 1990 ). Ho wever , our numerical simulations—that con verge
o (Spence & Turcotte 1990 ) solution in the viscous-dominated
egime (Furst et al. 2023 )—display a faster velocity decay than the
xperiments, and a larger final acceleration ( cf . Fig. 3 ). These dif-
erences cannot be reduced when using a constant value for � E f , as
e will show in more detail later in this section. 
In Fig. 3 d, we plot the values of � E f obtained from each of

he three simulations as a function of their average velocities, and
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(a) (b)

(d)(c)

Figure 3. (a), (b) and (c) Velocity variations as a function of depth for 10, 30 and 50 mL oil injections, respecti vel y. Experimental records are plotted in grey 
lines in the background; bold lines are the numerical simulations; horizontal solid lines and horizontal dashed lines are the mean, maximum and minimum 

v elocities av eraged ov er all e xperiments with 10, 30 and 50 mL injections ( ̄v mean , ̄v min and ̄v max ), (Table 1 ). The vertical dotted lines represent the end of the 
initial growing phase of the crack (depth Z > Z s ). (d) Fracture energy estimated from the numerical simulations v ersus av erage propagation v elocity ( ̄v mean ). 
Square, triangle and star markers represent 10, 30 and 50 mL numerical equi v alent cracks. The linear relationship depends on the propagation velocity ̄v mean 

expressed in mm s −1 . 

 

 

w e displa y the best-fitting linear trend across these points. Our nu- 
merical simulations suggest that a simple linear relation � E f ( v ) = 

6.14 v + 0.09 Pa ·m (which corresponds to a square root relation for 
K eff ( v ), using eq. 8), may be sufficient to describe fracture energy 
variations within the velocity range explored in our oil-filled crack 
experiments (Fig. 3 d). In general, this supports the idea that frac- 
ture energy (as well as gelatin fracture toughness) is an ef fecti ve 
parameter that depends on the fracture velocity. 

Therefore, we modified the numerical model for fluid-filled frac- 
ture propagation accounting for the linear relationship between � E f 

and v displayed in Fig. 3 d. In Fig. 4 , we show the results from the 
new numerical simulations performed for the 10, 30 and 50 mL oil 
injections, with � E f ( v ) = 6.14 v + 0.09 Pa ·m. The fit between model 
results and observed velocity profiles improves considerably within 
the range of model applicability (e.g. when the initial fast velocity 
decay ends). Particularly, the final acceleration due to the free sur- 
face obtained with the new simulations reproduces the experimental 
observations much better. 

Since the numerical simulations supported the hypothesis of 
velocity-dependent fracture energy � E f ( v ), we used � E f ( v = ̄v mean ) 
values and eq. ( 8 ), along with the propagation condition K I = K eff ( v ), 
to provide new estimates of the stress intensity factor K I for the oil- 
filled cracks. As the numerical simulations are 2-D, these estimates 
of K I are also in 2-D. To make these values directly comparable to 
previous 3-D estimates, we used eq. ( 4 ), considering average W/L 
values for each volume experiment ( W/L = 0.65, 0.64 and 0.47 for 
10, 30 and 50 mL, respecti vel y), obtaining the empty symbols dis- 
play ed in F ig. 5 a. In F ig. 5 a, we also display K I 

(oil) v alues pre viousl y
computed using eq. ( 2 ) (which does not account for the effect of fluid 
viscosity), plotted as solid symbols to the left side of the plot. Con- 
sidering K I = K eff ( v ) during propagation, the differences between 
the values computed with eq. ( 2 ) (solid symbols) and those esti- 
mated from the numerical simulations (empty symbols) are due to 
the fact that the numerical simulations account for the fluid viscosity, 
which affects the fluid pressure profile and, consequently, the crack 
stress intensity factor. The comparison between them confirms that 
the larger the velocity, the greater the difference between neglecting 
(solid symbols) or accounting for (empty symbols) the effect of fluid 
viscosity. 

F inally, in F ig. 5 a (dashed line), w e displa y the square root func- 
tion for K eff ( v ) obtained by combining � E f ( v ) = 6.14 v + 0.09
Pa ·m with eq. ( 8 ), using a Poisson’s ratio nu ≈ 0.5, and the 2-D 

to 3-D conversion function (eq. 4 ) with W/L = 0.56, an averaged 
value over all the oil-filled injections. In this plot, K eff ( v ) is ex- 
trapolated to the velocity domain of the air-filled fracture propa- 
gation experiments, shown as solid symbols to the right side of 
Fig. 5 a. Note that since air is essentiall y inviscid, K I 

(air) v alues 
(obtained with eq. 2 ) should not be significantl y af fected b y ne- 
glecting the fluid viscosity. Ho wever , it is evident that the relation 
for K eff ( v ) still does not match K I 

(air) values. This suggests that 
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(a) (b) (c)

Figure 4. (a)–(c) are the same as Figs 3 a–c, but with the numerical simulations (bold lines) accounting for a velocity-dependent fracture energy � E f ( v ) = 6 . 14 
v + 0 . 09 Pa ·m. 
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Figure 5. (a) Log plot of the effective fracture toughness K eff versus mean velocity v mean for air- and oil-filled fracture experiments (solid symbols to the left 
and right side of the plot, respecti vel y) and for oil-filled fracture simulations (empty symbols). The dashed line represents the square root regression of K eff as 
function of v , obtained by combining the linear regression for � E f ( v ) from numerical simulations (Fig. 3 d) with eq. ( 8 ) for ν = 0 . 5, and C being a 2-D–3-D 

conversion factor obtained from eq. ( 4 ). (b) Semi-log plot of the fracture energy � E f obtained for oil-filled fracture simulations (empty symbols) and air-filled 
fracture experiments (solid symbols). The vertical bars represent the errors. For each set of � E f values (for oil- and air-filled cracks), the dashed lines represent 
the linear regressions as a function of the mean velocity v mean . Symbols stand for different volumes: squares represent 10 mL injections, triangles are for 
30 mL, diamonds for 50 mL and circles represent other volumes. 
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he linear relation for � E f ( v ) also cannot be extrapolated over sig-
ificantl y dif ferent ranges of propagation velocities, such as those
elative to our oil- and air-filled sets of experiments. The linear
rend we computed for � E f ( v ) improves our numerical simula-
ions (and their fit with the experiments) when applied to a lim-
ted velocity range, but extending it over a largely different veloc-
ty range does not appear to be appropriated (the fastest oil-filled
rack, ≈ 0.1 mm s −1 , propagates at a velocity that is more than
ne order of magnitude smaller than the slowest air-filled crack,

2 mm s −1 ). 
In order to show this, we calculated the ef fecti ve fracture en-

rgy, � E f ( v ), for the air-filled crack experiments, first converting
 I 
3D(air) to 2-D values using eq. ( 4 ) (with W/L values relative to each

ir injection), and then applying eq. ( 8 ). We plotted these values
longside those from numerical simulations on Fig. 5 b, also dis-
laying the best-fitting linear regressions for both data sets: for the
ir-filled fracture experiments, we obtained � E f 

(air) = 0.13 v + 0.82
a ·m (dashed line interpolating solid symbols), while for the oil-
lled fracture simulations � E f 

(oil) = 6.14 v + 0.09 Pa ·m (dashed
ine interpolating empty symbols). These linear regressions rep-
esent an empirical relationship for the ‘ef fecti ve fracture energy’
f our gelatin blocks across various velocities and velocity ranges.
otably, at the lower velocities that we tested (the oil-filled frac-

ure experiments and their simulations), the slope of the regres-
ion line is significantly steeper than that for the air-filled fracture
xperiments. 
t  
.  DISCUSSION 

.1. Effecti ve fr acture toughness and fracture energy 

ur results revealed a significant discrepancy in fracture toughness
stimates derived from oil- ( K c 

(oil) = 2.2 Pa ·m 

1/2 ) and air-filled crack
xperiments ( K c 

(air) = 24.0 Pa ·m 

1/2 ). These estimates were obtained
y extrapolating K I = K eff ( v ) for a vanishing fracture propagation
elocity using linear regressions (Fig. 2 ), applied separately to our
ata sets of air- and oil-filled cracks. Despite two distinct linear
egressions providing a good fit for K eff ( v ) values within their re-
pectiv e v elocity ranges, the K c estimates dif fered b y an order of
agnitude. To account for the effect of fluid viscosity, we used
 numerical model for fluid-filled fracture propagation applied to
he oil experiments. The numerical simulations provided a different
elationship for K eff ( v ) (a square root function), deri ved b y combin-
ng a linear regression of � E f ( v ) with eq. ( 8 ). Ho wever , even this
quare root function for K eff ( v ), obtained from oil-filled crack simu-
ations, did not match K eff values in the velocity range relative to the
ir-filled crack experiments ( cf . Fig. 5 a), suggesting that also this
elationship for K eff ( v ) cannot be e xtrapolated ov er sev eral orders
f magnitude of velocity. 

In fact, one of the main differences between air- and oil-filled frac-
ure propagation e xperiments—be yond the effects of oil viscosity—
s the velocity range of the fracturing process, as air-filled fractures
ropagate at velocities between 1 and 3 orders of magnitude larger
han oil-filled fractures. Additionally, K eff estimates may depend not
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only on fracture propagation velocities but also on fracture lengths, 
as already suggested by previous studies on hydraulic fracturing 
(e.g. Papanastasiou 1999 ), and magmatic dykes (Rubin 1993 ; Ri- 
valta et al. 2015 , and references therein). Ho wever , in our data sets, 
a dependence of K eff on crack length might be obscured by the 
more pronounced effect of v elocity, giv en that our crack lengths 
vary over roughly one order of magnitude ( cf . L values in Tables 1 
and 2 ), whereas velocities span almost four (Fig. 5 c). 

But how rele v ant are these results for crustal rocks and magmatic 
intrusions? The large differences that have been observed between 
fracture toughness values measured from rock samples in the lab 
and magmatic dykes in the field may be due to a similar effect, 
which already led Rubin ( 1993 ) to suggest that fracture toughness 
is unlikely a characteristic purely dependent on the rock properties. 
Laboratory measurements have empirically shown that fracture size 
may significantly influence fracture toughness. For instance, Aya- 
tollahi & Akbardoost ( 2014 ) performed several fracture tests on 
rock disks with an initial circular crack sized 0.3 times the rock 
sample diameter. They found that K c measurements highly depend 
on the rock sample diameter and, therefore, the initial crack size. 
Additionall y, Ri v alta et al. ( 2015 ) calculated the ‘critical’ dimen- 
sions for the propagation of a magmatic dyke using a field-based 
estimate for the ef fecti ve fracture toughness of the crust ( K eff ≈ 100 
MPa ·m 

1/2 ), which is 2 orders of magnitude larger than values from 

laboratory measurements, resulting in a critical length and thick- 
ness in the order of 2 km and 0.5 m, respecti vel y. Gi ven that these 
values align with those observed for magmatic dykes, Ri v alta et al. 
( 2015 ) propose a scale-dependency of fracture toughness on dyke 
dimensions. Ri v alta et al. ( 2015 ) also showed that the propagation 
distance travelled by magmatic intrusions displays a dependency 
on their velocity, with low viscosity magmas propagating longer 
distances in shorter time ranges (from a few hours to days) under a 
K eff in the order of ≈ 1000 MPa ·m 

1/2 . 
The point made for the ef fecti ve fracture toughness also applies 

to the energy required to generate a new fracture surface, as K c and 
� E f are linked by eq. ( 7 ). Hence, the fracture energy should also
be a function of the fracture growth velocity rather than a constant
parameter, implying that gelatin should not be considered as a lin- 
ear brittle elastic material over a large range of crack propagation 
velocities. 

Similar arguments may apply to crustal rocks: Zhu et al. ( 2022 ) 
suggested that in addition to the energy dissipation due to viscous 
flow, a fracture process zone at the crack tip can explain the orders 
of magnitude difference between laboratory tests on rock samples 
and field measurements. They found that a fracture process zone 
can vary from 10 −2 to 10 −1 m in rock samples, which is expected 
to scale up to 10 1 m, for magmatic intrusions. In gelatin experi- 
ments, a similar effect may be due to a zone undergoing plastic 
or viscoelastic deformation in the vicinity of the crack tip. Even 
though our findings for air- and oil-filled cracks cannot be readily 
scaled up to rock fracture toughness values, we suggest that a sim- 
ilar procedure to the one followed in this study may be applied to 
magmatic dykes, and help better constrain ef fecti ve fracture tough- 
ness values for magmatic intrusions, if enough observations can be 
gathered. 

We showed that two distinct linear regressions fit our � E f values 
at best, within different velocity ranges (e.g. the slower oil-filled 
crack simulations and the faster air-filled crack injections), dis- 
playing an increased � E f ( v ) slope at lower velocities (Fig. 5 ). This 
suggests that a more general and comprehensive relationship link- 
ing � E f and v should also be able to reproduce such a change in 
slope. Ho wever , to better understand the relationship between the 
two observed trends of � E f ( v ), new experiments using a fluid with 
intermediate viscosity are necessary to bridge the gap between the 
two velocity ranges covered by our sets of experiments. Additional 
experiments may also highlight the effect of other crack charac- 
teristics on � E f , such as crack lengths and overpressure gradients 
(buoyancy). 

4.2. Experimental errors and differences between 

experiments and numerical simulations 

We estimated the gelatin fracture energy � E f at different propa- 
gation velocities using a numerical model and fitting the velocity 
profiles recorded during oil-filled crack propagation experiments 
with three different volumes: 10, 30 and 50 mL. For the larger vol- 
umes (30 and 50 mL), the crack propagation velocity during the 
initial phase of the experiment may be more affected by the oil in- 
jection rate than the 10 mL injections. Indeed, the duration and the 
velocity profile during the initial crack growth phase depend on the 
time required to manually inject the viscous oil through the needle. 
This resulted in a greater dispersion among the velocity profiles rel- 
ative to the larger volume injections, compared to others ( cf . 50 mL 

velocity profiles, in Fig. 3 c). 
In order to highlight the impact of this effect on our experimental 

velocity profiles, we used a thicker needle in experiments 14-O1, 14- 
O2 and 14-O3, drastically reducing the time needed to inject the oil. 
By comparing the velocity profiles for experiments 14-O1, 14-O2 
and 14-O3 with the others, it is possible to appreciate a larger initial 
velocity and a faster velocity decay during the injection phase of 
the experiments performed with a thicker needle, particularly for 30 
and 50 mL injections ( Fig. S1 , Supporting Information). Hence, to 
ensure that our results are not influenced by the initial velocity decay, 
we excluded the initial part of the propagation for the fit with the 
numerical simulations (vertical dotted lines in Fig. 3 ). Additionally, 
we noted another difference in the experiments performed with 
thicker needles: oil-filled cracks developed under higher injection 
rates, particularly 30 and 50 mL injections, consistently had larger 
aspect ratios ( W/L ), mainly due to slightly shorter head lengths L , 
compared to the cracks developed under slower injection rates ( cf . W 

and L values for exp 14-O1-O2-O3, compared to other experiments 
with the same volumes). This observation is compatible with the fact 
that cracks formed under a slower injection rate may have developed 
in height (due to buoyancy) for a longer time before the injection 
was finished. Therefore, they accommodated the oil volume along a 
longer head length with respect to the oil-filled cracks that formed 
more rapidly under a higher injection rate. Ho wever , this difference 
did not significantly impact velocity values after the initial ‘crack 
formation phase’, at least within our error estimates ( cf . Fig. S1 , 
Suppor ting Infor mation, and Table 1 ). 

We used eq. ( 8 ) to calculate � E f values for air-filled crack experi- 
ments, assuming that the crack propagation occurs with K I = K eff ( v ) 
(Dahm 2000b ), and the viscous dissipation is negligible for air-filled 
fracture propagation. We also used eq. ( 8 ) to compute K I given the 
� E f values obtained from numerical simulations of oil-filled cracks.
In both cases, we must consider that values for air-filled crack ex- 
periments are in 3-D and numerical simulations for oil-filled cracks 
are in 2-D. In order to account for the difference introduced by the 
2-D approximation of the numerical model and compare numerical
simulations and experiments, we used eq. ( 4 ) with measured values
for W/L .

In particular, we used the averaged W/L values for 10, 30 and 
50 mL oil injections when computing 3-D estimates of K eff based 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae396#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae396#supplementary-data
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Table 3. Average parameter values used to constrain the numerical simulations, their standard deviation 
(assuming that they follow a Gaussian distribution), and the ratio between their average and standard 
deviation. 

Vol ID ρ σρ σρ / ρ [%] G σG σG /G [%] O σO σO /O [%] 

10 10-AV 1110 10.6 0.96 135 7.3 5.4 0.45 0.06 13.3 
30 30-AV 1107 1.5 0.13 133 8.0 6.0 0.78 0.07 9.0 
50 50-AV 1106 3.0 0.27 134 8.3 6.2 0.98 0.03 3.1 
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a  
n � E f values from 2-D numerical simulations. Similarly, to provide
-D estimates for � E f based on 3-D values of K eff from air-filled
rack experiments, we used the W/L ratios from each of those exper-
ments. Finally, for plotting a 3-D estimate for the ef fecti ve fracture
oughness K eff ( v ) = 

√ 

4 G · (6 . 14 v + 0 . 09) derived from the 2-D nu-
erical simulations, we used the average W/L ratio over all oil-filled

racks. Such average value does not capture the trends exhibited by
/L ratios as a function of L , shown in the Supporting Information,
 ig. S2 , w here we plot W ( L ) for both sets of experiments. These
ifferent W ( L ) trends for oil- and air-filled cracks are not trivial
o interpret and may suggest additional dependencies on the crack
eometry that have not been fully considered in our analysis, such
s effects related to injection rates. Ho wever , within the range of
ariability of W/L values, our results remain robust, as evidenced
y the small differences between the dashed line and symbols in
ig. 5 a. 
As we mentioned in Section 2.1.2 , errors associated with length
easurements may vary according to the sharpness and possible

istortion effects of the recorded images. Particularly, since the
amera used to capture crack opening and width was not fixed to
he experimental setup, the reference scale sometimes suffered from
istortion effects that increased measurement errors. This mainly
ffected the errors in K I , which are strongly influenced by inaccura-
ies in crack length and width measurements (eq. 2 ). In general, the
elative errors associated with parameter estimates can range from a
ew per cent to approximately 50%, or—in exceptional cases—even
igher, particularly for the lowest values of propagation velocities
Table 1 ). These relati vel y large errors primarily stem from manu-
lly picking the crack tip positions and the sharpness of the images
sed for this purpose. 

Smittarello et al. ( 2021 ) compared dynamic Young’s modulus es-
imates obtained with shear wave velocity measurements in gelatin
ith static estimates obtained with deformation measurements in-
uced by a load placed at the gelatin’s surface. Their results showed
hat Young’s modulus estimates with these two methods may some-
imes display large differences, but they could not highlight any
ystematic trend. In their study, the measurements were performed
n gelatin with different concentrations, making it difficult to un-
erstand which of the two methods provided more stable results.
n the other hand, our experiments are performed using al wa ys the

ame gelatin concentration, and the fact that our shear modulus esti-
ates are consistent (within errors) indicates that the technique we

sed provided robust estimates. Smittarello et al. ( 2021 ) also noted
hat the shear wave method reflects the gelatin condition within the
lock. In contrast, estimates obtained using the surface load method
nly provide information about the gelatin’s shallow portion, fail-
ng to offer insights into the gelatin’s condition at greater depths.
dditionally, surface load estimates may be significantly influenced
y the ratio of the load surface to the distance from the walls,
nd they exhibit stiffness gradients depending on where the load
s placed. For these reasons, we consider the shear wave method
referable for our modelling purpose. Eventually, we note that the
hear modulus of our gelatin blocks ( ≈ 100 Pa) would correspond to
pproximately 100 MPa in nature ( cf . Kavanagh et al. 2013 ), which
ay be 1 to 2 orders of magnitude lower than crustal rocks. How-

ver, increasing the gelatin rigidity would also increase its strength,
aking oil-filled crack propagation more difficult, requiring larger

rack lengths that would not be manageable with our laboratory
etup. 

In order to constrain the numerical simulations, we computed av-
rage values for several parameters relative to the oil-filled fracture
xperiments for 10, 30 and 50 mL injections (10-AV, 30-AV and
0-AV rows in Table 1 ). The uncertainties associated with these av-
rage parameters were determined by taking the greater of the two
alues: (1) the standard deviation of the parameter measurements
or each set of experiments with the same injected volume, and (2)
he average measurement error for each set of experiments with
he same injected volume. This approach ensures that the reported
ncertainty reflects the actual variability of each parameter across
ifferent experiments, as indicated by the standard deviation unless
his variability is smaller than the average instrumental error asso-
iated with those measurements. This conserv ati ve approach was
hosen because a low standard deviation may sometimes be merely
ue to the relati vel y small number of experiments performed with
he same injected volume. 

Eventually, in order to provide uncertainties on the � E f values
btained from the numerical simulations, we performed additional
imulations constrained by the values of the maximum fracture
pening plus and minus their associated uncertainties ( O and σ O 

n 10-A V, 30-A V and 50-A V rows of Table 1 ). Among the input
arameters for the numerical simulations—gelatin and oil densities,
elatin rigidity and maximum fracture opening ( O )—we chose to
ary O , as it displayed the larger variability among experiments
ith the same injected volumes (Table 3 ). 

.  CONCLUSION 

e used two sets of experiments with two different fluid viscosi-
ies to estimate the fracture toughness of gelatin blocks with the
ame elastic properties. We first provided these fracture toughness
stimates using static crack formulae that neglect the effect of fluid
iscosity (e.g. Weertman 1971 ). Through this approach, we found
hat fracture toughness estimates obtained from air- and oil-filled
rack experiments dif fer b y more than 1 order of magnitude. The
quation used to derive these estimates does not account for the
viscosity-dependent) dynamic fluid-pressure profile, making it less
uitable for high-viscosity oil-filled cracks. To address this limita-
ion, we used the numerical model from Furst et al. ( 2023 ), which
ccounts for the effect of fluid viscosity and allowed us to provide
ew estimates of the crack stress intensity factor based on the sim-
lations of three different volumes of oil-filled crack experiments.
ur results show that when the fluid viscosity is considered, the

aster the crack, the larger the difference between stress intensity
actor estimates that neglect or account for the fluid viscosity (solid
nd empty symbols to the left side of Fig. 5 a). Fur ther more, our

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae396#supplementary-data
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analysis demonstrates that the estimates of � E f ( v ) derived from 

the numerical simulations of oil-filled experiments and those from 

air-filled experiments cannot be adequately described by a single 
linear regression across a velocity range spanning several orders of 
magnitude (Fig. 5 b). This may be partly attributed to the fracture 
energy and, therefore, the ef fecti ve fracture toughness of gelatin, 
which may not only depend on the propagation velocity but also 
on other crack characteristics such as its dimension and/or internal 
pressure gradient (buoyancy). These findings may be very rele v ant 
for magmatic dykes, with similar arguments for the ef fecti ve frac- 
ture toughness applying to crustal rocks, as it has been pre viousl y 
proposed and discussed b y se veral authors (e.g. Heimpel & Olson 
1994 ; Rubin 1998 ; Ri v alta et al. 2015 ; Zhu et al. 2022 ). We conclude 
that introducing an ef fecti v e, v elocity-dependent fracture toughness 
in theoretical frameworks is necessary when aiming to describe 
fluid-filled fracture propagation velocities across various regimes. 
The main challenge lies in establishing empirical relationships for 
K eff ( v ) at the scale of magmatic intrusions, similar to our approach 
in analo gue experiments. Achie ving this would require extensi ve 
direct observations of the propagation velocity and characteristics 
of magmatic dykes within crustal rocks. Such comprehensive data 
collection would necessarily involve monitoring observations from 

se veral acti ve volcanic systems. 
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