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Abstract (max 250 words) 39 

Predictions of how the biogeochemical reservoir of marine dissolved organic matter (DOM) will 40 
respond to future ocean changes require an improved understanding of the thousands of individual 41 
microbe-molecule interactions which regulate the transformation and fate of DOM. Bulk 42 
characterizations of organic matter can mask this complex network of interactions comprised of 43 
rich chemical and taxonomic diversity. Here, we present a three-year, depth-resolved time-series 44 
of the seasonal dynamics of the exometabolome and the bacterioplankton community at the 45 
Bermuda Atlantic Time-series Study (BATS) site. We find both time-series to be highly structured 46 
and compositionally distinct across sampling depths. Putative exometabolite identifications 47 
(gonyol, glucose 6-sulfate, succinate, and trehalose) indicate that at least a portion of the 48 
exometabolome contains rapidly remineralized, labile molecules. We hypothesize that apparent 49 
seasonal accumulation of these labile molecules could result from environmental conditions that 50 
alter community composition on a seasonal timescale and thus shift the relative proportions of 51 
microbial functions that produce and consume the substrates. Critically, we found the composition 52 
of seasonal DOM features was more stable interannually than the microbial community structure. 53 
By estimating redundancy of metabolic functions responsible for cycling these molecules in BATS 54 
metagenomes, we propose a paradigm whereby core microbial metabolisms, either those utilized 55 
by all or by a subset of marine microbes, are better predictors of DOM composition than microbial 56 
taxonomies. The molecular-level characterization of DOM achieved herein highlights the 57 
metabolic imprint of microbial activity in DOM composition and greatly enhances our 58 
understanding of the dynamics regulating Earth’s largest reservoir of organic carbon.  59 

 60 

Significance statement (max 120 words) 61 

Marine dissolved organic matter (DOM) is a major carbon reservoir that acts as a critical control 62 
on Earth’s climate. DOM dynamics are largely regulated by a complex web of microbial 63 
interactions, but the mechanisms underpinning these processes are not well understood. In a three-64 
year time-series, we found thousands of DOM molecules and microbial taxa exhibited seasonal 65 
patterns. Critically, the identity of the microbes was more variable between years than the 66 
composition of the DOM molecules. We suggest that shared metabolisms encoded by genes that 67 
conduct core microbial functions are responsible for the more stable composition of DOM. This 68 
work links DOM molecules with microbial biodiversity, and presents testable predictors of DOM 69 
composition in our changing oceans.   70 
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Introduction 77 

In the global ocean, thousands of chemically diverse organic molecules are cycled by a rich and 78 
diverse microbial community. These interactions regulate the flux and storage of carbon in the 79 
biogeochemical cycling of marine dissolved organic matter (DOM) and thus exert critical controls 80 
on Earth’s climate (1). Both the chemical nature of DOM molecules (e.g., aromaticity, heteroatom 81 
content, size) and environmental conditions (e.g., community composition, microbial interactions, 82 
nutrient dynamics, temperature) have been proposed to control DOM flux (2–5). Disentangling 83 
the contributions of the different controlling mechanisms is key for predicting changes to DOM 84 
carbon flux in future oceans. To date, these mechanisms have most often been described by a 85 
framework of reactivity that condenses the thousands of DOM molecules into well-defined sub-86 
pools. Labile and semi-labile DOM represent the most rapidly cycled substrates that sustain the 87 
microbial loop and result in carbon remineralization, whereas refractory DOM represents 88 
molecules that evade microbial degradation and sequester carbon in the oceans for thousands of 89 
years (1). However, critical dynamics of DOM are masked by bulk quantification (e.g., 6, 7).  90 

Hundreds of thousands of individual microbe-molecule interactions leave a metabolic imprint on 91 
the standing stocks of DOM composition. These interactions form the fabric of the microbial web, 92 
supporting the relationships required to fix, exchange, metabolize, and ultimately remineralize 93 
carbon within the marine microbiome (8, 9). Thus, marine microbes act as the source and sink 94 
mechanisms of labile DOM flux. However, the cryptic nature of the DOM-microbe network 95 
inhibits our ability to predict when DOM composition will force a change in the microbial 96 
community or when microbial activity will alter the composition of DOM (10–12). This is further 97 
complicated by the vast diversity of DOM molecules and microbial taxa, but also their 98 
redundancies, where many different microbes can produce and consume the same DOM molecule. 99 
Nevertheless, key biogeochemical functions performed by marine microbes depend on the 100 
exchange of DOM molecules, and thus microbial taxonomy and metabolisms should be, at least 101 
partially, predictive of DOM molecular composition. 102 

Previous culture experiments, as well as biogeochemical models, suggest that in similar 103 
environmental settings, the metabolic functions of microbial communities are more predictable 104 
than taxonomic composition (13, 14). This work reflects the fundamental nature of the core gene 105 
sets that encode the common metabolic functions of a taxonomic group. Overlayed on top of this 106 
is species or strain diversity that is created by adaptive traits not easily discerned in metabolic 107 
functions. While our understanding of microbial community assembly advances, a quantitative 108 
understanding of the relationship between these microbial drivers with their resulting metabolic 109 
by-products, or metabolites, that are released as DOM is lagging (15–19). Very recent marine 110 
metabolomics studies suggest that a limited number of marine metabolites are conserved across 111 
phylogenies, while others are taxonomically-specific (20–22). Parameterizing the relationships 112 
between DOM molecules and microbial community functions requires experimental efforts that 113 
simultaneously probe both the marine microbial community and DOM molecules and is essential 114 
for better-informed predictions of future ocean carbon cycling (23, 24).  115 
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To address this core challenge within marine biogeochemistry, we analyzed dynamics across a 116 
three-year, depth-resolved time-series of both DOM molecules and free-living microbial 117 
prokaryotic bacterioplankton in the seasonally oligotrophic northwestern Sargasso Sea at the 118 
Bermuda Atlantic Time-series Study (BATS) site. We present an unprecedented perspective into 119 
the seasonal variability of these two critical components of microbial-DOM interactions by 120 
disentangling bulk DOM into individual DOM molecules with untargeted exometabolomics 121 
analysis. Seasonal environmental changes represent recurring disturbances that induce shifts in the 122 
taxonomy and function of microbial assemblages (25), and thus create a natural perturbation ideal 123 
for testing the reproducibility of the resulting transformations in DOM composition. We assessed 124 
the seasonality and variability of both the exometabolome and bacterioplankton time-series with 125 
wavelet analysis. We show that within the BATS microbial community, the interannual variability 126 
of bacterioplankton taxonomy is greater than that of molecular-level DOM composition. This 127 
suggests that microbial assemblage mechanisms are functionally redundant so that the resulting 128 
DOM biogeochemistry remains consistent. With a targeted investigation of surface BATS 129 
metagenomes, we find that there can be a wide range in the degree of functional redundancy for 130 
enzymes responsible for producing and consuming seasonal exometabolites. Our work suggests 131 
that the presence and composition of exometabolites in the oligotrophic ocean will be determined 132 
by the presence of core metabolisms rather than by the presence of specific microbial taxa. 133 

Results and Discussion 134 

With more than three decades of sustained observations, the large-scale biogeochemical and 135 
physical fields of the water column at the BATS site are well-defined (26–29). The BATS site is 136 
seasonally oligotrophic with recurring annual patterns of temperature and mixing in the epipelagic 137 
and upper mesopelagic.  In winter and early spring, the system experiences convective mixing as 138 
deep as 200 – 300 m, where inorganic nutrients entrained from depth trigger an annual spring 139 
phytoplankton bloom (28, 29). Following the mixing period, a quiescent and stratified period 140 
develops in late spring and persists into mid-autumn, in which the surface 100 m becomes highly 141 
oligotrophic. These physical dynamics also drive seasonal dynamics of dissolved organic carbon 142 
(DOC), which is used as a proxy for bulk DOM, in the top 300 m at BATS (30, 31). During the 143 
stratified season (typically May – October), DOM accumulates in the euphotic zone (0 - 120 m).  144 
A portion of the seasonally accumulated, residual DOM is redistributed throughout the mixed layer 145 
and exported to the upper mesopelagic by deep convective overturning during the mixing season 146 
(typically January – March). Following re-stratification, the exported DOC becomes trapped in the 147 
mesopelagic, where it is subsequently remineralized by the resident microbial community (30–148 
32). This physical framework guided our time-series sampling to capture the major water column 149 
states for the epipelagic and upper mesopelagic zones during all four major seasons (summer 150 
stratified, fall transition, winter mixed, and spring transition) (Fig 1A).  151 

Wavelet analysis detects seasonality in the exometabolome and bacterioplankton time-series 152 
With the physical framework in mind, we collected a depth-resolved time-series of both the 153 
untargeted exometabolome, which represents a global overview of all DOM features detectable by 154 
solid phase extraction and liquid chromatography coupled to mass spectrometry, and the 155 
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microbiome, using bacterioplankton V1-V2 16S rRNA gene amplicon sequence variants (ASVs). 156 
Parallel samples of DOM features and ASVs were collected bi-monthly for three-years from July 157 
2016 to July 2019 at the surface (1 m), in the mixed layer (40 m), the base of the euphotic zone 158 
(120 m), and the upper mesopelagic zone (200 m) (Fig 1A) so that each DOM feature or ASV has 159 
an associated time-series at every sampling depth (e.g. Fig 1B). We detected 6293 DOM features, 160 
each defined by a unique mass-to-charge ratio and retention time. These DOM features were pre-161 
filtered for peak quality, blank contaminants, isotopes, and adducts, and thus represent, to the best 162 
of our ability, a unique set of molecules. We compared the DOM features with patterns of 3158 163 
bacterioplankton, defined as ASVs across the time-series which were pre-filtered to require 164 
presence in more than 5% of all samples. Key seasonal taxonomic trends in bacterioplankton 165 
succession at the BATS site have been previously described (33). Here we analyzed the temporal 166 
dynamics of the bacterioplankton dataset to compare with those of the untargeted exometabolome. 167 

Due to the inherent challenges of comparing different data types across a time-series, we classified 168 
the temporal dynamics of DOM features and bacterioplankton ASVs using wavelet analysis to 169 
decompose each time-series at every sampling depth into the frequency domain (34) (Fig S1). 170 
Unlike clustering and correlation networks which can be used to group unknown DOM features 171 
based on temporal or spatial patterns (35, 36), wavelet analysis allows us to extract temporal 172 
insights of DOM molecules and ASVs that are concealed by these techniques, including the 173 
dominant periods (e.g., seasonal, 12 months), and the timing of period peaks (e.g., winter or 174 
summer). In addition, unlike some other time-series approaches, wavelet analysis can extract 175 
localized temporal information. This means that a period of interest does not have to occur globally 176 
across the entire time-series in order to be detected (37), and thus wavelet analysis can be valuable 177 
for detecting interannual differences in patterns of plankton communities (38). Here we compare 178 
the time-series of the untargeted exometabolome and bacterioplankton microbiome using wavelet 179 
analysis to analyze the spatial and temporal dynamics resulting from this complex network of 180 
microbe-DOM interactions. 181 

The dominant period of a DOM feature or bacterioplankton ASV within the time-series was 182 
assigned based on the highest median power, an estimate of best fit, across all calculated periods 183 
(2-12 months). The best fit was required to be significantly different from a null hypothesis test of 184 
‘no periodicity’ (median p-value ≤ 0.01) (Fig S2). We also required all time-series classified as 185 
having significant wavelets to have a relative standard deviation that represents a threshold for 186 
which environmental variability should be greater than analytical variability (> 25%) (39). 187 
Significant wavelets were found for 74% of DOM features (n = 4679) and 67% of ASVs (n = 188 
2102) across the four sampling depths. The median powers ranged from 0.32 to 1.4, and the 189 
dominant periods ranged from 5 to 12 months (Fig S2). Almost all significant wavelets exhibited 190 
periods greater than 6 months, indicating that DOM features and bacterioplankton with shorter 191 
frequency periods were more stochastic and too similar to random white noise to be significant 192 
(Fig S2). Higher-resolution sampling and a longer time-series would be required to detect 193 
significant patterns with shorter frequencies. At almost every sampling depth, a majority of DOM 194 
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features and ASVs exhibited a dominant period of 12 months, underscoring the important 195 
influence of seasonal environmental conditions (Fig S3).  196 

DOM features are differentiated by depth and season 197 
A seasonal period of 12 months emerged as a dominant period across our time-series of the 198 
thousands of unknown DOM features that comprise bulk DOM, and the thousands of 199 
bacterioplankton ASVs that are, at least in part, responsible for the cycling of these molecules. A 200 
total of 2611 unique DOM features (41% of all) exhibited seasonality at one or more sampling 201 
depths (Fig 1C). Approximately two-fold more DOM features exhibited seasonality at 1 m and 40 202 
m compared to DOM features at 120 m and 200 m (n = 1098, 1127, 700, and 665 seasonal DOM 203 
features, respectively). A total of 1385 unique ASVs (44% of all) exhibited seasonality at one or 204 
more sampling depths, and the greatest number of seasonal bacterioplankton was found at 200 m 205 
(n = 576, 291, 313, and 698 seasonal bacterioplankton at 1, 40, 120, and 200 m, respectively) (Fig 206 
1C). To predict the season in which a seasonal DOM feature or bacterioplankton ASV time-series 207 
reached a maximum, wavelets were reconstructed with a period of 12 months and the season was 208 
assigned based on the month in which the maximum occurred (Fig S1C). Most seasonal DOM 209 
features (~33-49%) and seasonal ASVs (83-95%) peaked in the summer stratified season at every 210 
sampling depth (Fig S4). The stratified periods encompass a large portion of the annual physical 211 
regime at BATS (Fig 1A), increasing the chances that our sampling would capture DOM features 212 
that exhibited a maximum during this period of elevated bulk DOM. However, we also found 213 
seasonal DOM features and bacterioplankton ASVs at each sampling depth in the time-series that 214 
peaked in the other seasons (fall transition, winter mixed, and spring transition) (Fig S4). The 215 
fewest seasonal DOM features peaked in the spring, though this is likely because more frequent 216 
sampling is required to capture the short-lived spring transition (Fig 1A). Bulk DOC exhibits a 217 
consistent seasonal cycle at BATS (4, 30). The exometabolome at BATS demonstrates that 218 
molecular patterns can reflect this bulk signal, as well as independent mechanisms. For example, 219 
a large majority of seasonal DOM features at 1 m (Fig S4) peaked during the summer stratified 220 
season, but an almost equal number of DOM features at this sampling depth exhibited peaks during 221 
the winter mixed season (e.g., Fig 1B). These peaks in winter correspond with the lowest DOC 222 
concentrations and thus represent new seasonal molecular signatures not detected by bulk methods. 223 

DOM export can contribute significantly to carbon export in the subtropical oligotrophic ocean 224 
where deep convective mixing or subduction occurs (32, 40). For this reason, the connectivity of 225 
DOM features that exhibited seasonality at more than one sampling depth was of interest, 226 
particularly features that exhibited seasonality in both the surface (1 m or 40 m) and the deeper 227 
(120 m or 200 m) sampling depths as these DOM features could comprise a portion of DOC export. 228 
For example, the DOM feature in Figure 1B exhibited significant seasonality at both 40 m and 120 229 
m. Although a small portion of DOM features exhibited seasonality in both the surface and deeper 230 
samples, the composition of the overall exometabolome was strongly vertically stratified and the 231 
transfer of seasonal DOM features between depths was limited (Fig 1C). The majority of the 232 
seasonal DOM features (n = 1840) exhibited seasonality at only one sampling depth (n = 540, 577, 233 
366, and 357 seasonal DOM features were unique to the sampling depths of 1, 40, 120, and 200 234 
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m, respectively). A smaller subset of seasonal DOM features exhibited connectivity across depths, 235 
where the same DOM feature exhibited seasonality at two (n = 593), three (n = 148), or all four (n 236 
= 30) sampling depths. The greatest connectivity was found in DOM features exhibiting 237 
seasonality at both 1 m and 40 m (n = 239). Connectivity between the surface and deeper depths 238 
was minimal. Similar to the exometabolome, 85% of seasonal bacterioplankton ASVs (n = 862) 239 
exhibited seasonality in distinct depth zones (Fig 1C). A small subset of seasonal ASVs exhibited 240 
seasonality at two (n = 144) or three (n = 6) major depth zones. In contrast to DOM features, a 241 
subset of bacterioplankton (n = 231) peaked in the stratified season at 1 m and 200 m, indicative 242 
of some taxonomic connectivity in the surface and the upper mesopelagic bacterioplankton. 243 
Although depth is known to structure the ocean’s microbiome diversity (41), the influence on the 244 
resulting exometabolome’s spatiotemporal dynamics was previously unknown. The seasonal 245 
patterns of DOM features are highly stratified in the top 200 m and predominantly endemic to 246 
specific sampling depths. 247 

Our individual time-series of thousands of DOM features detected temporal dynamics that 248 
complement trends in bulk DOC variability, but also independent dynamics that were unique to 249 
the exometabolome. The limited connectivity of seasonal DOM features was unexpected, given 250 
previous work, which finds that solid phase extraction retains the molecules that comprise exported 251 
DOM at BATS (36, 42). It is possible that a portion of these patterns result from depth-specific 252 
mechanisms, such as seasonal changes in zooplankton grazing or viral lysis (43, 44). This may 253 
also in part be explained by our Eulerian sampling approach and the interannual variability of the 254 
extent and duration of stratification and deep convection in our three-year time-series. The mixed 255 
layer extended deeper than 200 m in April 2017 and March 2019, but only to 174 m in March 2018 256 
(Fig 1A). The different hydrographic conditions could have altered seasonal DOM compositions 257 
inconsistently between years at 200 m, which also happens to be the only sampling depth where 258 
wavelets of DOM features predominantly had a period of 8 months, rather than 12 months (Fig 259 
S3). The wavelet analysis is capable of detecting localized periods, but if these differences in 260 
winter mixing significantly disturb the periodicity of these DOM features, a different dominant 261 
period may be assigned. While the previously observed environmental controls of bulk exported 262 
DOM are seasonal, the rate of degradation of individual exported molecules is likely variable, and 263 
therefore a period of 12 months would not capture those dynamics. Thus, the seasonal 264 
exometabolome detected by wavelet analysis reflects a unique subset of the DOM reservoir.  265 

Instead of recapitulating bulk DOM dynamics, the exometabolome at BATS captured new, 266 
additional patterns of seasonal behavior. A majority of the DOM features’ seasonal patterns were 267 
only observed within specific depth horizons. We posit that some of these individual molecules 268 
represent those that are cycled too quickly to be exported, resulting in their limited connectivity. 269 
Much of the bulk DOM that persists in the surface at BATS during summer stratification is 270 
considered to be semi-labile or semi-refractory as it is not accessible to the surface microbial 271 
communities, but can be degraded by genetically distinct microbial communities at depth after 272 
physical export by convective winter mixing (4, 45). While this mechanism is apparent in bulk 273 
DOC concentrations and characterized polymers, i.e., total hydrolysable amino acids (31), only a 274 
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small portion of the seasonal DOM features were observed in both of our upper and lower sampling 275 
depths (Fig 1C). The seasonal peaks of a DOM feature in the exometabolome reflecting these bulk 276 
DOM patterns would be expected to differ in timing. The DOM feature would peak in the surface 277 
during summer stratification and subsequently peak in the deep during winter convective mixing. 278 
However, of the few DOM features that exhibited connectivity, most reached maxima in the same 279 
stratified season at both depths (Fig S4), again indicating that these seasonal DOM features were 280 
not persistent features redistributed by convective mixing. We hypothesize that these DOM 281 
features could be introduced as by-products of metabolisms that utilize the same metabolite across 282 
the different sampling depths or alternatively, other, more rapid export mechanisms such as sinking 283 
particle solubilization or the vertical-migrating mesozooplankton shuttle (46, 47). 284 

Labile exometabolites are present in the seasonal exometabolome 285 
Untargeted exometabolomics techniques provide an opportunity to highlight important, but 286 
previously unrecognized, DOM molecules not detected with targeted techniques. Although the 287 
identification of environmental metabolites is a notoriously challenging endeavor (48), we 288 
highlight four putatively identified seasonal exometabolites of interest, which were identified to 289 
the highest levels of confidence possible (Level 1 or Level 2) (49): gonyol, glucose 6-sulfate (or 290 
the isomer galactose 6-sulfate), trehalose, and succinate (Fig 2, Table S1).  All four exometabolites 291 
are presumably labile molecules based on structure and potential availability for microbial 292 
metabolism, exhibited seasonality in the surface, and peaked in the summer stratified season. 293 
Based on structures and existing literature, these four small exometabolites are expected to be 294 
rapidly metabolized.  For example, gonyol has been shown to be consumed in 24 hours by the 295 
Alphaproteobacteria Ruegeria pomeroyi (50), and succinate is a widely used metabolite that acts 296 
as a crucial intermediate in the tricarboxylic acid cycle (see Supplementary Text 3 for further 297 
discussion of potential microbial interactions). Thus, these exometabolites have the potential to 298 
play an important role in the ocean’s microbe-DOM network. In addition, based on previous work 299 
with structurally similar molecules, we assume that the four molecules have low extraction 300 
efficiencies (~ <1%) when using solid phase extraction and therefore must be present at high 301 
concentrations to be observable in this time-series (51). The identification of these exometabolites 302 
highlights their importance, and future efforts using targeted extraction techniques (e.g., 42, 43) 303 
will further elucidate absolute concentrations to bolster the current paucity of in situ observations.  304 

The composition of most of the seasonal exometabolome remains unknown. Solid phase extraction 305 
is known to select for the more recalcitrant-like properties of bulk DOM based on both the resulting 306 
composition of extracted DOM and its potential for microbial degradation (54). For example, the 307 
size and C:N ratio of DOM decreases after solid phase extraction, and the drawdown of bulk DOC 308 
concentrations are lower when DOM is provided to microbial communities after solid phase 309 
extraction as compared to fresh DOM (55–57). However, as described above, our time-series 310 
captured a unique subset of seasonal DOM that is vertically stratified and specific to sampling 311 
depths. By looking at individual molecules, we found that labile exometabolites do exist within 312 
the seasonal exometabolome, and quantitative targeted work of the same time-series found 313 
additional labile exometabolites (n = 14) that also exhibit seasonal behavior at BATS (58). 314 
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Certainly not all, and not even a majority, of these seasonal DOM features are expected to be labile, 315 
but based on this work, and previous studies (58–61), exometabolomes collected using solid-phase 316 
extraction contain a vast range of molecular compositions and individual components have the 317 
potential to be rapidly remineralized. 318 

Seasonal patterns of DOM features break away from bulk DOM time-series 319 
The mechanisms controlling bulk DOM recycling have traditionally been defined by a spectrum 320 
of turnover times and reactivities, from the most labile and reactive DOM to the most recalcitrant 321 
and long-lived DOM (1). In the context of the bulk DOM framework, seasonal DOM features in 322 
this time-series would be classified as semi-labile or semi-refractory because of their apparent 323 
seasonal accumulation (62). However, our putative identifications indicate the presence of labile 324 
molecules within this seasonally-accumulating pool. This summer accumulation has been 325 
observed at BATS for other similarly small and easily metabolized molecules detected with 326 
targeted methods (58, 63), which can have rapid half-lives of ~24 hours (64). Signatures of these 327 
individual DOM molecules are obfuscated within the µM resolution of bulk DOC methods. When 328 
tracking individual DOM molecules, it should be expected that these molecules can diverge from 329 
the bulk DOM framework and that observations of exometabolite patterns may result from 330 
independent mechanisms. 331 

Vertical stratification of microbial taxa in the oligotrophic ocean presumably results from niche 332 
partitioning among microbial specialists along nutrient and energy gradients (65–67). Culture-333 
based work has shown certain exometabolites are released uniquely by distinct phylogenetic 334 
groups and strains (22, 68). The exometabolome time-series at BATS provides in situ evidence 335 
that vertical differentiation of the microbial community also promotes stratification of metabolic 336 
by-products. Based on the timing of seasonal peaks and the depth differentiation of seasonal DOM 337 
features, the BATS exometabolome likely captured molecules with abiotic and biotic control 338 
mechanisms unique to each molecule. Conservative dilution in the surface and physical export 339 
below the euphotic zone may produce the observed patterns (30, 32). The persistence of these 340 
molecules may result from inherent recalcitrance or environmental conditions that do not support 341 
microbial communities capable of accessing the molecules. However, the unique seasonal patterns 342 
of DOM features that were independent of bulk DOM dynamics support the hypothesis that the 343 
exometabolome captured some of the rapid metabolic rate processes of the microbial communities, 344 
rather than just the production of persistent molecules. We propose that some of the observed 345 
patterns are the result of biotic controls due to rapid microbial turnover. The apparent seasonal 346 
accumulation of DOM features could emerge from seasonal changes in community composition 347 
and unequal shifts in the expression of production and consumption processes.  348 

Exometabolome composition is more stable interannually than microbial taxonomy 349 
During the three-year time-series, we tested whether the observed temporal dynamics of the 350 
exometabolome and bacterioplankton community remain consistent between years. We assessed 351 
interannual variability using the wavelet’s median power (Fig S1), which reflects its fit and thus 352 
provides insight into the predictability of a given time-series (Fig 3). A high median power 353 
indicates the time-series fits well to the seasonal wavelet. A low median power can be driven by a 354 
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poor fit and/or a signal that only appears in a portion of the three-year time-series. Across all 355 
sampling depths, the range of median powers of the seasonal DOM features and bacterioplankton 356 
were similar (0.3 - 1.3). However, the distributions of median powers were significantly different 357 
for DOM features than for bacterioplankton (Kolmogorov-Smirnov test D = 0.2, p < 2e-16) (Fig 358 
3). Seasonal DOM features had an average median power of 0.6 ± 0.2 (mean ± std dev), which 359 
was 0.1 units greater than the average median power of bacterioplankton (0.5 ± 0.1), indicating 360 
that DOM features exhibit stronger recurring patterns between years at BATS. Additionally, the 361 
consecutive absences, or sparsity, in the two data types supports our observation that interannual 362 
variability was greater in seasonal ASVs than in seasonal DOM features. Across all seasonal 363 
ASVs, ~30% (n = 597) were completely absent in at least one year of sampling in the time-series. 364 
In comparison, only a few seasonal DOM features (n = 8) contained consecutive zeros across one 365 
of the years sampled in the time-series. 366 

The magnitude of richness between the DOM features and bacterioplankton ASVs being compared 367 
are similar. However, we also compared the distributions of median powers with the time-series 368 
of ASVs condensed to node-resolved taxonomic resolution based on phylogenetic relationships to 369 
confirm that the interannual variability observed for the bacterioplankton was not inflated by an 370 
overrepresentation of rare taxa in ASV microdiversity (69, 70). Even after condensing the highly 371 
resolved ASVs, the same difference in the distribution of median powers was observed (Fig 3). 372 
This suggests that distinct microbial taxa, rather than just slightly different ASVs, are responsible 373 
for the interannual changes observed across the bacterioplankton time-series. 374 

The composition of seasonal DOM features remained statistically stable across the three years 375 
despite changes in the bacterioplankton community (Fig 3). This indicates that some form of 376 
metabolic redundancy across the variable taxa promoted a stable state of equilibrium in DOM 377 
composition across the time-series (71). Other time-series studies have found that individual 378 
microbial taxa can vary between years (72, 73), but the resulting feedback on the exometabolome 379 
composition was previously unknown. Here we show that the controls of taxonomic variability in 380 
ASVs and their 16S rRNA gene differ from those of the exometabolome, making it difficult to 381 
utilize highly-resolved taxonomic information in predictions of DOM composition. 382 

Redundant metabolisms underpin the seasonal exometabolome 383 
We hypothesized that recurring patterns of the same DOM features in the exometabolome result 384 
from a bacterioplankton community that exhibits taxonomic variability across years but 385 
convergent functionality of key metabolisms. Marine microbial communities are extremely 386 
diverse, but also share core groups of genes that confer the same functions (41). Core genes can 387 
be defined as a set of genes that are common to a single species based on different strains’ genomes 388 
or to an entire microbial community within a specific environment based on metagenome samples 389 
(41, 74, 75). This functional redundancy of specific enzymes or metabolic pathways is thought to 390 
create a buffering capacity of microbial ecosystem functions when communities change (76, 77). 391 
To test our hypothesis, we conducted targeted analyses of historical metagenomes and quantified 392 
the redundancy of metabolic reactions that involve trehalose or succinate as a product or reactant. 393 
These two exometabolites represent examples of DOM features that exhibited consistent 394 
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interannual seasonal patterns in the surface exometabolome at BATS, but also their utilization is 395 
expected to differ significantly across the microbial community. Succinate is broadly used as part 396 
of the tricarboxylic acid (TCA) cycle, whereas trehalose is used more narrowly as a carbon 397 
substrate or for energy storage (78). 398 

Genes that perform reactions involving the identified exometabolites were searched in 399 
metagenomes to assess the redundancy of succinate and trehalose metabolisms (Table S2). Thus, 400 
here we define functional redundancy as the degree to which a sequence is present across a 401 
metagenome. Genes were surveyed using functional orthologs (KOs) in 22 years (1997 - 2019) of 402 
all known publicly available surface ocean BATS metagenomes (n = 28 samples) (Table S3). 403 
These samples were not uniformly collected, but they capture all four seasons of the BATS 404 
physical framework (sample numbers from each season are n = 12 summer stratified, 5 fall 405 
transition, 9 winter mixed, and 2 spring transition) (Table S3). In cases where more than one KO 406 
exists for a given reaction (Table S2), we only present the most common KO (Fig 4). 407 

Most succinate genes (n = 5 reactions) and trehalose genes (n = 6 reactions) were present in a 408 
majority of the metagenome samples (Fig 4A). We found genes for both succinate (n = 3) and 409 
trehalose (n = 3) that were present in 100% and >85% of surface metagenome samples, 410 
respectively, and thus assume that these are core genes of the surface microbial community at 411 
BATS (Fig 4A). We estimated functional redundancy in the surface microbial communities with 412 
the metric of contribution evenness (CE) based on gene abundances (79) (Fig 4B). CE ranges from 413 
no redundancy (CE = 0), indicating only one community member in the sample harbors the gene 414 
of interest, to absolute redundancy (CE = 1), indicating all community members contribute equally 415 
to the presence of the gene of interest. As would be expected based on the increase in sequencing 416 
power in the last twenty years, sequencing depths varied by orders of magnitude across the 417 
different metagenomes. CE accounts for these differences by normalizing KO abundances to total 418 
species richness as estimated by the presence of universal single-copy marker genes, which are 419 
assumed to occur once in each genome (Fig S5). The maximum CE value for succinate-related 420 
genes was 1 for both K00135 and K00244, reflecting the ubiquity of the TCA cycle. In comparison, 421 
the maximum CE value for trehalose-related genes was 0.13 for K13057, reflecting the narrower 422 
potential for trehalose utilization in marine microbial communities. The median CE across all 423 
samples ranged from 0 to 0.5 for all succinate-related genes and from 0 to 0.1 for all trehalose-424 
related genes (Fig 4B). CE of succinate-related genes were overall significantly greater than those 425 
of trehalose-related genes (Wilcoxon rank sum test p ≤ 0.01), indicating greater redundancy in 426 
succinate metabolism.  427 

Functional taxonomy of these genes reflected the differentiation of the microbial community’s 428 
ability to utilize succinate or trehalose (Fig 4C). Core genes encoding for enzymes required to 429 
conduct the TCA cycle (K00135, K01902, and K00244) were most commonly annotated as 430 
Alphaproteobacteria, specifically Pelagibacter, and Gammaproteobacteria, specifically SAR86, 431 
which accounted for ≥ 67% and ≥ 15% of the sum of annotated RPKM for each core KO. As these 432 
are dominant groups in the surface ocean at BATS (80–82), it is not surprising that they dominate 433 
the taxonomy of genes required for the widely used TCA cycle. In contrast, the functional 434 
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taxonomy of core genes encoding for enzymes that synthesize trehalose (K13057, K05343, and 435 
K01236) was more specific. The Alphaproteobacteria were also the most commonly annotated 436 
taxonomic contributors of the trehalose synthase K13057 (accounted for 64% of the sum of 437 
annotated RPKM), whereas the other two core trehalose genes (K01236 and K05343) were most 438 
commonly annotated as Cyanobacteria or Bacteroidia, which accounted for >31% and 15% of the 439 
sum of annotated RPKM for each KO. Although the extent of functional redundancy and the 440 
dominant functional taxonomy differ between succinate and trehalose metabolisms, both 441 
metabolisms are associated with multiple core genes in the surface microbial community and also 442 
very similar resulting patterns of exometabolites. 443 

Between seasons, both functional redundancy and functional taxonomy (Fig 4) of production and 444 
consumption proteins exhibited shifts that could be attributed to the biological controls of the 445 
seasonal DOM features we observed (Fig 2). A subset of the analyzed succinate and trehalose 446 
genes exhibited no significant difference in CE between the summer stratified and winter mixed 447 
seasons (Fig 4B), but there was a general taxonomic shift in their major contributors based on its 448 
presence in samples (Fig 4C). For example, CE of the most redundant succinate KO (K00135) was 449 
not significantly different between seasons, but the dominant functional taxonomy shifted from 450 
Alphaproteobacteria in the summer stratified season to Poseidoniia (Thalassarchaeaceae) in the 451 
winter mixed season. In contrast, CE of the other genes was significantly enhanced or suppressed 452 
between summer stratified and winter mixed seasons (Fig 4B), meaning that the community’s total 453 
potential to produce or consume the exometabolite changed seasonally. Both observations could 454 
alter microbial production or consumption rates to produce apparent seasonal patterns of DOM 455 
features. Changes in rates could result from differences in enzymatic efficiency associated with 456 
the taxonomic shifts, a change in the total number of taxa capable of interacting with the 457 
exometabolite, or shifts in environmental conditions that induce changes in the regulation of 458 
reactions. These results emphasize that observations of labile molecules in the environment are the 459 
result of compounding mechanisms with different timescales, where turnover flux occurs on a 460 
timescale of days but also changes seasonally based on community structure.  461 

Between years, we observed significant taxonomic variability of ASVs across our time-series (Fig 462 
3), but we also identified core genes present in all historical metagenomes. The roles of microbial 463 
redundancy and diversity have been widely investigated (16, 41, 77). This study provides an 464 
additional lens to understand the resulting impacts on the exometabolome. At BATS, trehalose-465 
metabolizing genes exhibited a specific-type redundancy, meaning trehalose utilization was 466 
limited to a narrow portion of the total community (83). In comparison, succinate metabolism was 467 
observed more globally across the microbial community and thus displayed a broad-type 468 
redundancy, which reflects its role in common microbial metabolisms. While these differences in 469 
utilization were expected based on previous literature, ecological theory would suggest that the 470 
lower functional redundancy of trehalose enzymes makes this metabolite more susceptible to 471 
variability when microbial community changes occur (77, 79). And yet, despite differences in 472 
functional redundancies, both succinate and trehalose exhibited similar seasonal patterns in the 473 
surface ocean that remained consistent across all years of the time-series (Fig 2). We suggest that 474 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.03.05.583599doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583599


Main Text 13 

as long as an undefined minimum threshold of functional redundancy is met, the composition of 475 
the seasonal exometabolome will remain consistent. Based on the time-series and metagenomic 476 
analyses, it appears that the role of a metabolite in reactions encoded by core genes of a microbial 477 
community is more important than the degree of functional redundancy. Even if a core gene is 478 
utilized only by a subset of community members, the associated metabolite will still be regularly 479 
exchanged through the labile DOM-microbe network. 480 

Conclusions  481 

Understanding how the reservoir of marine microbial diversity translates into a similarly diverse 482 
pool of DOM molecules is a critical knowledge gap in our understanding of carbon cycling. In an 483 
environment that has already experienced 1.2°C of warming (84), resolving these baseline 484 
processes is essential in order to predict future changes in the ocean’s organic carbon cycle. We 485 
demonstrate that the metabolic functions, rather than taxonomic identity, of microbial communities 486 
are greater predictors of exometabolome composition. 487 

The untargeted exometabolome time-series at BATS provided some of the first insights into the 488 
variability of DOM molecules on seasonal and interannual timescales, in parallel with the 489 
microbial community. Despite similar complexities with respect to composition, we found that the 490 
mechanisms responsible for driving bacterioplankton taxonomy and DOM molecules should be 491 
expected to differ. The results of our analyses are consistent with the perspective that many 492 
metabolic functions are shared across diverse, phylogenetically related taxa and ecological 493 
concepts such as Hubbell’s neutral theory, which predicts variation in species with no 494 
corresponding variation in metabolic function (85). This work highlights that in order to predict 495 
labile DOM flux, future models should focus on incorporating core metabolic pathways that are 496 
required for community function by either all or a portion of the microbial community. 497 

Significant taxonomic variability was detected in the bacterioplankton community at BATS during 498 
the three-year time-series, but the changes were not enough to influence the composition of the 499 
resulting DOM biogeochemistry. This buffer of functional redundancy overlaid on taxonomic 500 
variability will play an important role in future oceans. How much can microbial taxonomy 501 
change, though, before the presence of these core metabolisms is altered? As anthropogenic carbon 502 
emissions alter the ocean’s temperature, pH, and nutrient supplies, microbial communities will 503 
shift and evolve in response, and, in some cases, may do so abruptly, which will inevitably have 504 
implications for DOM biogeochemistry (86–90). This work presents a major advance in our 505 
understanding of variability and composition of the individual molecules comprising DOM, as 506 
well as important avenues of research for predicting the resulting carbon flux. The seasonal 507 
patterns of DOM features represent snapshots of standing stocks, and future studies that emphasize 508 
rate measurements will be essential. Continuing to resolve the influences of the microbial loop’s 509 
functional redundancy and core metabolisms on DOM biogeochemistry is critical for predicting 510 
changes to the ecosystem function of heterotrophic carbon remineralization in future oceans. 511 

 512 

 513 
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Materials and Methods 514 

Exometabolome sample collection and extraction 515 
Samples were collected aboard the R/V Atlantic Explorer bi-monthly from fixed depths (1 m, 40 516 
m, 120 m, 200 m) at or in the vicinity of the Bermuda Atlantic Time-series Study (BATS) site 517 
from July 2016 to July 2019. During July field campaigns, samples were collected from every 518 
sampling depth every 6 hours for 72 hours. During all other sampling events, one sample per depth 519 
was collected primarily between the hours of 05:00 and 10:00 local time. Samples were 520 
contextualized by a physical framework that defines the state of the water column across the 521 
seasonal cycle at BATS (Fig 1A) (31, 58). All major seasons were sampled every year, with the 522 
exception of the spring transition, which is a short-lived period and was missed in 2017 when it 523 
likely occurred between our sampling in April and May. 4L of whole seawater was filtered through 524 
a 47mm 0.2µm Omnipore PTFE filter (Millipore, Burlington MA, USA) using a peristaltic pump 525 
as described previously (91). 4L of onboard Milli-Q water was filtered in the same manner for 526 
process blanks. The filtrate was acidified to a pH of 2-3 with OmniTrace HCl (ThermoFisher 527 
Scientific, Waltham, MA, USA) and extracted via solid phase extraction with styrene-528 
divinylbenzene polymer columns (1g Bond Elut PPL, Agilent, Santa Clara, CA, USA) as described 529 
previously (54, 92). Sample elutions were evaporated to near dryness and reconstituted in Milli-Q 530 
water with 22 stable isotope labeled internal injection standards (Table S4). A pooled sample was 531 
created with an aliquot of every sample. 532 

UHPLC-ESI-MSMS, exometabolite feature processing, and data filtering 533 
The sample set (n = 374) was randomized across five batches. The pooled sample was used for 534 
column conditioning and was also injected after every 5 samples and at the end of each sequence, 535 
followed by process blanks and Milli-Q blanks. Batches were run in both positive and negative 536 
ionization mode. Chromatography was performed as previously described (60, 91) using an 537 
ultrahigh-performance liquid chromatography system (Vanquish UHPLC, Thermo Scientific) 538 
coupled with an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). 539 
Detailed instrument parameters are provided in the Supplement.  540 

Raw data files were converted to mzML format using msConvert (93) and transferred to a high-541 
performance computing cluster for processing with R (v 4.0.1). XCMS (v 3.10.2) was used for 542 
peak picking each sample and grouping shared peaks into a single feature (94). XCMS parameters 543 
and workflow are described in the Supplement. MS1 features were defined by a unique mass-to-544 
charge ratio and retention time. The XCMS analysis yielded a table of MS1 feature intensities in 545 
each sample. Presented intensities are unitless as this integration reflects an integration of all ion 546 
counts associated with a given feature’s mass-to-charge ratio bounded by the retention time 547 
window. CAMERA was used to identify and filter isotopologues and adducts (95). Features were 548 
further filtered for peak quality, blank contaminants, inter-batch variability, and detection in the 549 
samples as described in the Supplement. Feature intensities were batch corrected using the 550 
BatchCorrMetabolomics package (v 0.1.14) with a robust least-squares regression (96). Well-551 
behaved injection standards exhibited an RSD <20% across all injections after batch correction 552 
(Table S4), which is an acceptable threshold for large-scale metabolomics experiments (97). 553 
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XCMS was also used to produce .mgf files (consensus spectra and maximum total ion current 554 
spectra) and abundance tables, which were submitted to the Global Natural Products Social 555 
Molecular Networking infrastructure for feature-based molecular networking (98). The GNPS 556 
results putatively identified the four exometabolites presented herein, which were then further 557 
validated with authentic standards (Table S1). 558 

Microbial community, 16S rRNA amplicon sequencing, and data filtering 559 
Samples for 16S V1-V2 amplicon sequence variants (ASVs) were collected as described in Liu et 560 
al. (2022). Only samples collected at 1 m, 40 m, 120 m, and 200 m were presented. Briefly, 4L of 561 
seawater were filtered onto 0.2 μm Sterivex and stored at -80°C. DNA was extracted with a phenol-562 
chloroform protocol (67). V1-V2 16S rRNA hypervariable region was amplified with primers 27F 563 
(5′-AGAGTTTGATCNTGGCTCAG-3′) and 338RPL (5′-GCWGCCWCCCGTAGGWGT-3′). 564 
Amplicon libraries were built using the Nextera XT Index Kit (Illumina Inc.) and sequenced using 565 
the Illumina MiSeq platform (reagent kit v.2; 2×250 PE) at the Center for Quantitative Life 566 
Sciences (CQLS), Oregon State University. Raw amplicon datasets were processed as in Bolaños 567 
et al. (2022) using Dada2 v1.18 (99) with the following filtering parameters: maxEE=(2,2), 568 
truncQ=2, minLen=190, truncLen= 220,190, maxN=0. Samples from the same sequencing run 569 
were processed together to accurately estimate the error frequency. Potential chimeras were 570 
removed with the removeChimeraDenovo command. Taxonomic assignment was performed with 571 
the assignTaxonomy command and the Silva non redundant database V.123 (100). Generated ASV 572 
and taxonomic tables were analyzed using phyloseq v1.34 (101). ASVs were presented as relative 573 
abundances, normalized to the total counts of all ASVs in a respective sample. ASVs were required 574 
to be detected in ≥ 5% of all samples. This yielded an ASV table with n = 3158 taxa. The terminal 575 
node collapse of the ASVs was conducted via PhyloAssigner with a global reference tree, resulting 576 
in a table of n = 1806 taxa (82). 577 

Wavelet analysis 578 
Wavelet analysis was used to decompose the exometabolome and ASV time-series using the R 579 
package WaveletComp (34) (Fig S1). Wavelet analysis requires a uniform grid. Most of the time-580 
series was sampled in odd months, except for samples collected in April. We interpolated between 581 
months to create a monthly time-series that allowed us to utilize the April data. This also avoided 582 
any distortion to the wavelet analysis which is sensitive to time-series length. In months where 583 
more than one sample was collected, we used the average feature intensity as the representative 584 
value. Significance was assessed with the null hypothesis of white noise and 1000 permutations 585 
were calculated for each time-series. Similar trends were observed for the exometabolome in both 586 
ionization modes, and therefore only positive mode results were discussed. 587 

Metabolic redundancy and functional taxonomy 588 
HMMER (v 3.3.1, hmmer.org) searches were conducted with HMM profiles previously created 589 
by KofamScan (102). KO numbers were collected based on analysis of KEGG Pathways (103) to 590 
find key enzymatic reactions required to conduct pathways that result in the production or 591 
consumption of trehalose and succinate (Table S2). Multiple KOs can encode for the same 592 
metabolic transformation, and for brevity we present the most redundant KO only (Fig 4). In 593 
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addition, single copy marker genes (SCMG) were also searched to estimate sample richness 594 
(K01409, K01869, K01873, K01875, K01883, K01887, K01889, K03106, K03110, K06942). 595 
Publicly available surface sample metagenomes collected at BATS were queried from 1997 – 596 
2019, though with non-uniform sampling (Table S3). Metabolic KO HMM results were filtered 597 
with an e-value of 1 x 10-10, and SCMG KOs were filtered based on threshold scores defined by 598 
KofamScan. Samples richness was calculated based on the number of contigs encoding a SCMG. 599 
The taxonomy of metabolic KO genes was assigned using the contig level taxonomy annotations 600 
from MDMcleaner (v 0.8.2) 'clean' output with '—fast_run' settings (104). Presence was calculated 601 
as the number of contigs assigned to a metabolic KO. Traditional metrics of functional redundancy, 602 
which are based on niche space, are not easily translated for microbial communities. Here we 603 
calculated the metric of contribution evenness as an estimate of metabolic redundancy (79). 604 

Data presentation 605 
All figures were created with ggplot2 (v 3.4.3) and curated with Inkscape (v 1.2.2). 606 

Data availability statement 607 

Metabolomics data, including raw files, mzML files, and feature tables, are deposited at 608 
MetaboLights under study accession number MTBLS5228. 16S amplicon sequences are 609 
deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive 610 
(SRA) under project number PRJNA769790. Publicly available metagenomes were accessed 611 
from NCBI SRA project number PRJNA385855 (105) and newly deposited historical 612 
metagenomes from NCBI SRA project number PRJNA769790. CTD data are deposited in the 613 
Biological and Chemical Oceanography Data Management Office (BCO-DMO) at http://lod.bco-614 
dmo.org/id/dataset/861266 for BIOS-SCOPE cruises, and at http://lod.bco-615 
dmo.org/id/dataset/3782 for BATS cruises. 616 

Code for processing the raw exometabolome data is available at 617 
https://github.com/KujawinskiLaboratory/UntargCode. Code for processing the raw amplicon 618 
data is available at https://github.com/lbolanos32/NAAMES_2020. Code for PhyloAssigner, 619 
analyzing the time-series, querying the metagenomes, and calculating metabolic redundancy is 620 
available under git project https://github.com/BIOS-SCOPE/FunctionalRedundancy 621 
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Figure Captions 938 

Fig 1: (A) Spatiotemporal coverage of samples collected in the three-year time-series for the BATS 939 
exometabolome and bacterioplankton community. Samples are colored by the physical framework 940 
seasons. The black line reflects mixed layer depth. The blue color indicates bottom of euphotic 941 
zone/transition to upper mesopelagic zone. (B) An example time-series of an unidentified DOM 942 
feature at all four sampling depths. The black dots reflect the feature’s intensity in all samples. 943 
Diel sampling efforts are reflected in the subset of days with multiple points displayed. At 40 m 944 
and 120 m, the grey line reflects the significant seasonal trend (12-month period) detected with 945 
wavelet analysis at these two depths. (C) Upset plot of depth structure in the seasonal 946 
bacterioplankton and exometabolome. The top bar plot reflects the total number of seasonal 947 
bacterioplankton ASVs (yellow) and DOM features (green) at each depth. Side panels reflect 948 
connectivity as defined by the inner legend. In the middle legend, black circles indicate the depth(s) 949 
at which seasonality was detected and the shading groups the different trends by the number of 950 
depths with connectivity. Rows 1-4 represent ASVs and DOM features that were seasonal at only 951 
one sampling depth, rows 5-9 represent seasonality at two sampling depths, rows 10-14 represent 952 
seasonality at three sampling depths, and row 15 represents seasonality at all four sampling depths. 953 
The bars reflect the sum of ASVs (left) or DOM features (right) that meet these criteria. 954 

Fig 2: Seasonal patterns across the three-year time-series of four putatively identified 955 
exometabolites: gonyol, glucose 6-sulfate (or the isomer galactose 6-sulfate), trehalose, and 956 
succinate. All samples collected are presented (black circles), including July diel campaigns. The 957 
significant seasonal pattern (grey lines) was calculated with a reconstruction of the wavelet using 958 
a 12-month period. Feature intensity units are arbitrary (see Methods). The presented seasonal 959 
patterns are from sampling depth 1 m. 960 

Fig 3: (A) Empirical cumulative distribution functions demonstrating the spread of median powers 961 
calculated for seasonal DOM features (green), seasonal bacterioplankton (defined as ASVs) 962 
(yellow), and seasonal bacterioplankton nodes condensed by phylogenetic-relatedness (pink). The 963 
insets demonstrate two examples of time-series with different median powers. (B) Example of 964 
DOM feature with a high median power, which reflects a seasonal wavelet fit that is predictable 965 
and exhibits the same pattern across the three-years. (C) Example of bacterioplankton ASV with 966 
lower median power, which is reflects a poor wavelet fit and absences across the three-years. 967 

Fig 4: (A) Presence of genes as represented by metabolic functions (KOs) that utilize succinate 968 
(cool colors) or trehalose (warm colors) as a product or reactant in surface metagenomes at BATS 969 
(n = 28 samples total). + indicates exometabolite is product. – indicates exometabolite is reactant. 970 
The six KOs defined as being core genes are outlined in black. (B) The functional redundancy of 971 
the same genes as estimated with the metric of contribution evenness (CE) of each gene. Higher 972 
CE values reflect greater functional redundancy. The top boxplot (black outline) are CE values in 973 
metagenomes collected during the summer stratified season and the bottom boxplot (grey outline) 974 
collected during the winter mixed season. A star indicates CE was significantly different between 975 
seasons (Wilcoxon rank sum test, p ≤ 0.1). (C) The pie charts reflect the functional taxonomy of 976 
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the same genes. The most commonly annotated (present in ≥ 2 samples) classes are presented 977 
(rows) in each of the metagenome samples (columns) as organized by season (summer stratified, 978 
fall transition, winter mixed, and spring transition). Each pie is divided by the relative contribution 979 
of the taxonomic group to each of the six core genes (K00135, K01902, K00244, K13057, K0543, 980 
K01236) based on total RPKM (reads per kilobase per million mapped reads) in a given sample. 981 
KO colors are the same as presented in (A). The pies are scaled based on the total relative 982 
contribution of each taxonomic group to the sample. 983 
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Supplemental Text 1 

Supplement 1 

Supplemental Text 1: Methods 2 

UHPLC-ESI-MS/MS performance 3 

Separation was performed with a reverse phase Waters Acquity HSS T3 column (2.1 x 100 mm, 4 

1.8 μm), equipped with a Vanguard pre-column. Column temperature was held at 40°C. The 5 

column was eluted at 0.5 ml/min with a combination of solvents: A) 0.1% formic acid in water 6 

and B) 0.1% formic acid in acetonitrile. The chromatographic gradient was as follows: 1% B (1 7 

min), 15% B (1-3 min), 50% B (3-6 min), 95% B (6-9 min), 95% B (10 min). The column was 8 

washed and re-equilibrated with 1% B (2 min) between injections. The autosampler was set to 4°C 9 

and injection volumes were 5 µl. The electrospray voltage was set to 2600 V for negative mode 10 

and 3600 V for positive mode. The setting for source sheath gas was 55 and auxiliary gas was 20 11 

(arbitrary units). The heated capillary temperature was 350°C and the vaporizer temperature was 12 

400°C. MS data were collected in the Orbitrap analyzer with a mass resolution of 120,000 FWHM 13 

at m/z 200. The automatic gain control (AGC) target was 4e5, the maximum injection time was 50 14 

ms, and the scan range was 100 – 1000 m/z. Internal mass calibration of the Orbitrap analyzer was 15 

used to improve mass accuracy of the MS scan. Data-dependent MS/MS data were acquired in the 16 

Orbitrap analyzer using higher energy collisional dissociation (HCD) with a normalized collision 17 

energy of 35% and with mass resolution of 7500. The AGC target value for fragmentation spectra 18 

was 5e4 and the intensity threshold was 2e4. Cycle time was set at 0.6 s. Precursor selection was 19 

performed within the quadrupole with a 1 m/z isolation window. Dynamic exclusion was enabled, 20 

with 3s exclusion duration after n=1. All data were collected in profile mode. Raw data files were 21 

converted to mzML format using msConvert (1). 22 

Large LC-MS/MS experiments are prone to retention time drift, contamination, and carry over 23 

between samples (2). To mitigate these factors LC-MS sequences were limited to 105 injections 24 

(~18 hrs), the internal mass calibration was enabled (equivalent to a lock mass correction), the 25 

column was re-equilibrated at the beginning of each batch, sample order was randomized, the ESI 26 

probe was cleaned between batches, multiple stable-isotope labeled internal injection standards 27 

were added to all samples, and a pool QC sample was run after every n = 5 samples. All of these 28 

efforts were successful in mitigating unwanted variation (see Supplemental Text 2), with the 29 

exception of our QC sample. After running all batches, it was discovered that the pool sample was 30 

sub-sampled too many times and thus created a linear decrease in the TIC of these injections over 31 

time across each batch that could not be compared. However, one pool sample per batch was 32 

aliquoted, and thus variability could be calculated within the QC by comparing the first injection 33 

of each batch (n = 5). 34 

XCMS and CAMERA workflow 35 

Peak-picking was performed using the CentWave algorithm with the following parameters: noise 36 

= 100, peak-width = 3-14, ppm = 15, prescan = 3, preintensity = 5e4, snthresh = 0, integrate = 2, 37 

mzdiff = -0.005, extendLengthMSW = TRUE, fitgauss = FALSE, firstBaselineCheck = FALSE. 38 

Replicate picked peaks were merged with refineChromPeaks (MergeNeighboringPeaks Param: 39 
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expandRt = 0, expandMz = 0, ppm = 5, minProp = 0.75). Peaks were filtered based on peak quality 40 

by requiring a peakwidth less than 15 seconds and with a custom R script based on Gaussian fits 41 

(correlation value > 0.6 and a p-value < 0.075). Retention times were adjusted using Orbiwarp 42 

(binSize = 0.1) based on the center sample (3). Correspondence (bw = 0.7, binSize = 0.0005) 43 

between the peaks was conducted using the peak density method (4). As every effort was made to 44 

optimize accurate parameters for peak picking, alignment, and correspondence based on internal 45 

injection standards and manually checked DOM features, we did not utilize the fillChromPeaks 46 

here as we found it primarily resulted in the integration of noise. Feature values were integrated 47 

by the ‘maxint’ method. CAMERA was performed to identify isotopes and adducts by grouping 48 

features based on retention time to create pseudospectra (perfwhm = 0.5), identifying 13C 49 

isotopologues (ppm = 3, mzabs = 0.01), and grouping based on correlations of intensity, extracted 50 

ion chromatograms, and isotopes (corr_eic_th =0.9, cor_exp_th=0.8, pval=0.05) (5). 51 

Feature filtering 52 

The XCMS and CAMERA workflow resulted in n = 153,360 features in positive mode and n = 53 

117,079 features in negative mode. By optimizing XCMS performance to maximize peak picking, 54 

a majority of these resulting MS1 features were noise and we therefore performed stringent best-55 

practices for feature filtration. Features were filtered based on results from CAMERA to remove 56 

identified isotopologues and adducts (5). Features were filtered using Milli-Q and process blanks 57 

using a data-adaptive method (6). The mean log abundance across samples and blanks was 58 

calculated for each feature, and subsequently binned into 20, 40, 60, and 80th quantiles. For each 59 

bin, a threshold was calculated based on the 25th quartile of the difference between the mean log 60 

abundances of samples and blanks that were less than 0. The difference for all features in a given 61 

bin were required to be greater than the absolute value of this threshold. Features were filtered to 62 

require their grouped peaks to have a range in median retention times of less than 5 seconds. 63 

Features were filtered to require their detection in >50% of all samples. If a feature was detected 64 

in the pool sample, it was required to have a relative standard deviation < 30% as calculated based 65 

on the intensity across the first pool sample injected in each batch (n = 5). The filtered features 66 

total 4% of the original features output by our XCMS workflow. The remaining features represent, 67 

to the best of our ability, unique molecules (defined by a m/z and retention time), but these datasets 68 

will always contain undistinguishable isomers, adducts, and isotopologues (7, 8). 69 

Metabolite identification 70 

All four putative identifications had m/z matches to reference masses within ± 1ppm (Fig S6 - Fig 71 

S9). The identifications were originally made by GNPS and subsequently confirmed with authentic 72 

standards when possible. Based on confidence levels defined by the Metabolomics Standards 73 

Initiative (9), succinate, trehalose, and gonyol were identified to the highest level possible (Level 74 

1) using standards analyzed by the same analytical platform used to analyze the untargeted 75 

exometabolome. Glucose 6-sulfate was identified to the second highest confidence level (Level 2) 76 

as, to the best of our knowledge, an authentic standard for this compound does not exist. The 77 

putative identification was made based on a match to a reference spectrum of the almost identical 78 

compound, glucose 6-phosphate. However, the exact mass difference between the two different 79 
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precursor masses (0.009 m/z) is equal to the expected mass difference between glucose 6-sulfate 80 

and glucose 6-phosphate (0.0095 m/z). Additionally, the MS2 spectrum supports this 81 

identification. A dominant MS2 fragment was m/z 96.959 (HSO4-), in comparison a phosphate 82 

containing fragment would have a mass of m/z 96.969 (H2PO4). Although the exact masses support 83 

the presence of the sulfate group, we cannot rule out that the putatively identified glucose 6-sulfate 84 

could instead be the isomer galactose 6-sulfate. 85 

Supplemental Text 2: Unwanted variability in untargeted exometabolomics 86 

Here we discuss potential sources of unwanted variability due to instrumentation and 87 

computational processing and estimate their presence in this dataset. To minimize variability 88 

induced by changes in instrument performance between batches, we applied a robust least-squares 89 

regression to each DOM feature (10). This regression shifts the mean of each batch so that intra-90 

batch variability is maintained but is centered on a common mean.  QC pool samples in large-scale 91 

metabolomics experiments are expected to exhibit a variation of <20% (relative standard 92 

deviation) (2). This value will encompass any inter-batch variability not removed by the batch 93 

correction, intra-batch variability from instrument performance, and variability induced from 94 

computational preprocessing (10–12). To estimate the amount of unwanted variation in our sample 95 

set we utilized both QC pool samples and stable-isotope labeled injection standards (added after 96 

solid phase extraction). As described above, we could not use all of our QC pool samples to 97 

quantify unwanted variability. However, based on the first injection of the QC pool sample for 98 

each batch we filtered features by requiring <20% inter-batch variability. A total of n = 22 stable 99 

isotope labeled internal injection standards were added to all samples, of which n = 12 were 100 

expected to ionize in positive mode. In order to be used for calculating unwanted variability, “well-101 

behaved” injection standards were required to: 1. exhibit good quality peak shapes based on visual 102 

inspections, 2. exhibit peak heights above limits of detection, 3. display stable retention times, and 103 

4. be detectable by XCMS. A total of n = 8 injection standards behaved well in positive ionization 104 

mode. All of these injection standards had a relative standard deviation ≤ 20%. It is noteworthy 105 

that this variation is calculated across all samples (1-200m, and all seasons), meaning that any 106 

changes in ionization due to changes in bulk DOM across the time-series did not significantly alter 107 

the behavior of the injection standards above acceptable thresholds. Based on our analysis, we 108 

strongly support the inclusion of multiple stable-isotope labeled internal injection standards (13). 109 

The internal injection standards were used to quantify unwanted variability, but were also essential 110 

for optimizing XCMS performance. 111 

Supplemental Text 3: Putatively identified exometabolites’ role in the ocean 112 

Here we further discuss the potential role of putatively identified exometabolites in the marine 113 

microbial loop. Gonyol is a reduced organic sulfur molecule similar in structure to the well-known 114 

metabolite dimethylsulfoniopropionate (DMSP) (14). Gonyol is produced with taxonomic-115 

specificity and can be degraded by marine bacteria, but the genetic pathways responsible for 116 

recycling this exometabolite are not yet known (15–17). As would be expected for a labile 117 

molecule, the first quantification of gonyol in the dissolved phase was found at low nM 118 
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concentrations in the Pacific Ocean (18), and our time-series suggests that these concentrations 119 

would likely change seasonally. Glucose 6-sulfate is similar to the core metabolite glucose 6-120 

phosphate, where the phosphate group is substituted for an oxidized sulfate group. To our 121 

knowledge, this is the first detection of glucose 6-sulfate in the oligotrophic ocean, and its potential 122 

sources or sinks remain an open question. Glucose 6-sulfate (or its isomer galactose 6-sulfate) 123 

could be a degradation product of presumably abundant, but poorly characterized, sulfated 124 

polysaccharides that comprise algal cell walls (19). Little is known about these large biopolymers 125 

in DOM, and most knowledge is derived from studies of macroalgae, which would include 126 

Sargassum at BATS (20). Nevertheless, microalgae and bacteria can also produce sulfated 127 

polysaccharides (21). A diverse suite of known sulfatases could be utilized to remove the oxidized 128 

sulfate group and consume the remaining monosaccharide (21–23). Many questions remain to be 129 

answered about these two organic sulfur molecules, particularly considering past work in 130 

phosphorus-limited waters of the North Atlantic Ocean that has demonstrated the substitution of 131 

sulfur into core biomolecules (24). 132 

Trehalose and succinate are both metabolites for which little is known about their presence in 133 

marine DOM, but their genetic pathways are well-characterized. Trehalose is a sugar that can be 134 

easily routed to glycolysis after breaking the disaccharide bond, but has also been shown to be 135 

synthesized or retained as an osmolyte (25–28). Succinate is a dicarboxylic acid produced as an 136 

intermediate metabolic product of the citric acid cycle and glyoxylate pathway making it a key 137 

part of core catabolism and anabolism pathways in marine microbes (29–31). 138 
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Supplementary Figure Captions 258 

Fig S1: Example of the time-series wavelet analysis. (A) The original time-series (black) is almost 259 

uniformly sampled and contains multiple samples from the same month in some cases. The time-260 

series was first transformed by averaging for months with multiple samples and interpolating 261 

between months to create a time-series with one sample per month (purple) (n = 37 samples; see 262 

Methods). (B) Wavelet analysis is used to detrend the time-series as reflected by the resulting 263 

power spectrum, where the calculated power (colorbar) for every sample (x-axis) is plotted as a 264 

function of every calculated period (1-12 months). The x-axis is the same as that in panel A. The 265 

side panel represents the median power for each period. A higher median power indicates a better 266 

wavelet fit. The highest median power was used to assign the dominant period of a time-series. In 267 

this example, the median power is highest for a period of ≥ 11 months and was therefore considered 268 

to be a seasonal time-series. (C) If the highest significant median power was ≥ 11 months, the 269 

wavelet was reconstructed (dashed black line) using a period of 12 months to predict the seasonal 270 

maximum. The month of the maximum value in the reconstructed time-series was used to assign 271 

the peak season. 272 

Fig S2: The median p-value and median power of all wavelets. Vertical grey line represents the 273 

median p-value cut-off of 0.01 and the horizontal grey lines represents the resulting minimum 274 

possible median power of 0.32. Color reflects the median period (1-12 months). 275 

Fig S3: The percentage of all significant wavelets found in time-series with a dominant period of 276 

5-12 months for DOM features (green) and bacterioplankton (yellow) at each sampling depth (1, 277 

40, 120, and 200 m). 278 

Fig S4: Alluvial plots depicting the connectivity of seasonal (A) DOM features and (B) 279 

bacterioplankton across sampling depths. Horizontal boxes represent the total number of seasonal 280 

DOM features or bacterioplankton, while box width and color reflect the number of features that 281 

peaked in a given season at the respective sampling depth. Grey represents a feature that is not 282 

seasonal at that depth but becomes seasonal at another depth. The ribbon colors track the 283 

connectivity of seasonal DOM features or bacterioplankton at 1 m through the water column.  284 

Fig S5: Median richness of all single copy marker gene (SCMG) KOs versus median richness of 285 

all metabolic functions (trehalose and succinate KOs) in all surface samples (n = 30) of each 286 

assembly queried. Color reflects the assembly name as defined in Table S3. The black line reflects 287 

a 1:1 relationship to demonstrate the linear relationship between the two groups of KOs queried, 288 

despite the order of magnitude differences in sequencing depth across the 20 years of metagenomic 289 

information. 290 

Fig S6: Succinate putative identification (Level 1). (A) Mirror plot of common MS2 fragments 291 

from samples (black) compared to the succinate reference spectrum in GNPS (green). (B) EIC of 292 

samples (blue) compared to succinate standard (black). 293 

Fig S7: Trehalose putative identification (Level 1). (A) Mirror plot of common MS2 fragments 294 

from samples (black) compared to the trehalose reference spectrum in GNPS (green). (B) EIC of 295 
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Supplemental Text 9 

samples (blue) compared to trehalose and sucrose standards (black). The grey box highlights the 296 

chromatographic separation of trehalose and sucrose. 297 

Fig S8: Gonyol putative identification (Level 1) (A). Mirror plot of common MS2 fragments from 298 
samples (black) compared to the gonyol reference spectrum in GNPS (green). (B) EIC of samples 299 

(blue compared to gonyol standard (black). 300 

Fig S9: Glucose 6-sulfate (or galactose 6-sulfate) putative identification (Level 2). (A) Mirror plot 301 
of common MS2 fragments from samples (black) compared to the glucose 6-phosphate reference 302 

spectrum in GNPS (green). 303 

Supp Table Captions 304 

Table S1: Molecular formula, identification level as defined by the Metabolomics Standards 305 

Initiative (9), ionization mode, detected m/z, adduct, retention time, and of putatively identified 306 

metabolites. 307 

Table S2: List of metabolic KOs queried in all surface metagenomes for trehalose and succinate 308 

production or consumption. 309 

Table S3: Metagenome assemblies queried for functional redundancy analyses. 310 

Table S4: A mix of stable isotope labeled internal standards was added to every sample of the 311 

exometabolome. The label reflects which element was isotopically heavy. Ng/ml reflects the 312 
concentration added to each sample. Ion mode reflects which ionization mode the standard was 313 

detected in. The retention time reflects where the standard was detected in the chromatogram. The 314 
exact mass was calculated based on monoisotopic element composition. All standards were 315 

detected as either [M+H] or [M-H] adducts. 316 
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Compound Formula Id level Ion mode m/z Adduct

Ret time

(min)

gonyol C7H14O3S 1 Pos 179.0736 [M+H]
+

0.57

trehalose C12H22O11 1 Pos 360.1504 [M+NH4]
+

0.61

succinate C4H6O4 1 Neg 117.0192 [M-H]
-

1.24

glucose 6-sulfate (or galactose 6-sulfate)C6H12O9S 2 Neg 259.0128 [M-H]
-

0.61
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compound_name KO enzyme_name direction group
Succinate K00135 succinate-semialdehyde dehydrogenase / glutarate-semialdehyde dehydrogenase [EC:1.2.1.16 1.2.1.79 1.2.1.20] production succinate-semialdehyde dehydrogenase
Succinate K00139 succinate-semialdehyde dehydrogenase [EC:1.2.1.24] production succinate-semialdehyde dehydrogenase
Succinate K17761 succinate-semialdehyde dehydrogenase, mitochondrial [EC:1.2.1.24] production succinate-semialdehyde dehydrogenase
Succinate K08324 succinate-semialdehyde dehydrogenase [EC:1.2.1.16 1.2.1.24] production succinate-semialdehyde dehydrogenase
Succinate K01902 succinyl-CoA synthetase alpha subunit [EC:6.2.1.5] production succinyl CoA synthetase
Succinate K01899 succinyl-CoA synthetase alpha subunit [EC:6.2.1.4 6.2.1.5] production succinyl CoA synthetase
Succinate K15737 glutarate dioxygenase [EC:1.14.11.64] production glutarate oxidoreductase
Succinate K18118 succinyl-CoA:acetate CoA-transferase [EC:2.8.3.18] production succinyl CoA - acetate CoA transferase
Succinate K00244 succinate dehydrogenase flavoprotein subunit [EC:1.3.5.1] consumption succinate dehydrogenase
Succinate K00234 succinate dehydrogenase (ubiquinone) flavoprotein subunit [EC:1.3.5.1] consumption succinate dehydrogenase
Succinate K00239 succinate dehydrogenase flavoprotein subunit [EC:1.3.5.1] consumption succinate dehydrogenase
Trehalose K13057 trehalose synthase production glycosyltransferase
Trehalose K05343 maltose alpha-D-glucosyltransferase / alpha-amylase production glucosyltransferase
Trehalose K01236 maltooligosyltrehalose trehalohydrolase production trehalohydrolase
Trehalose K01087 trehalose 6-phosphate phosphatase production phosphatase
Trehalose K22934 alpha,alpha-trehalase consumption trehalase
Trehalose K01194 alpha,alpha-trehalase consumption trehalase
Trehalose K05342 alpha,alpha-trehalose phosphorylase consumption trehalose phosphorylase
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Supp Table 3  
Assembly name Date (year-month-day) Depth (m) sample 

1 hist 1997-09-01 1 108_0 
2 hist 1998-02-01 1 113_0 
3 hist 1999-11-01 1 134_0 
4 hist 2000-01-01 1 136_0 
5 hist 2000-03-01 1 138_0 
6 hist 2001-08-01 1 155_0 
7 hist 2002-05-01 1 164_0 
8 Biller 2003-02-21 1 SRR5720233 
9 Biller 2003-03-22 1 SRR5720238 

10 Biller 2003-04-22 1 SRR5720327 
11 Biller 2003-05-20 1 SRR5720283 
12 Biller 2003-07-15 1 SRR5720235 
13 Biller 2003-08-12 1 SRR5720286 
14 Biller 2003-10-07 1 SRR5720332 
15 Biller 2003-11-04 1 SRR5720276 
16 Biller 2003-12-02 1 SRR5720262 
17 hist 2003-03-01 1 174A_0 
18 Biller 2004-01-27 1 SRR5720338 
19 Biller 2004-02-24 1 SRR5720322 
20 Biller 2004-03-23 1 SRR5720337 
21 Biller 2004-04-21 1 SRR5720256 
22 Biller 2004-05-18 1 SRR5720257 
23 Biller 2004-06-15 1 SRR5720260 
24 Biller 2004-08-17 1 SRR5720321 
25 Biller 2004-09-14 1 SRR5720251 
26 Biller 2004-10-13 1 SRR5720307 
27 Biller 2004-11-12 1 SRR5720278 
28 Biller 2004-12-08 1 SRR5720342 
29 Biller 2009-07-14 1 SRR6507279 
30 AE1916 2019-07-09 1 5_1_S27 
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compound label blanks (n = 15) samples (n = 256) blanks samples
leucine D3 14 256 0.28 0.03
methionine D3 15 256 0.07 0.06
phenyalanine D8 15 256 0.03 0.07
proline 13C5_15N 15 256 0.09 0.08
AMP 15N5 15 253 0.20 0.12
biotin D2 15 256 0.1 0.16
betaine D11 11 254 0.66 0.14
pantothenate 13C3_15N 0 248 - 0.20
lysine D4 15 256 0.50 0.33
guanosine D2 12 232 0.53 0.34
4 aminobenzoic acid D4 15 215 0.19 0.49
cysteine D3 9 197 0.86 0.63

Positive ionization mode
RSDDetection
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