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ABSTRACT
Animals move in three spatial dimensions, but many animal movement tools have only focused on the use of 2D coordinates for 
modelling space use, habitat selection, behavioural classification, social interactions and movement. Here, we submit that many 
common movement ecology analyses can and should be extended to consider all three spatial dimensions to make more robust 
inferences about ecological processes. We provide an overview of how home range analysis, network analysis and social network 
analysis, hidden Markov models, resource selection and step selection functions and hierarchical linear and additive models are 
used for studying animal movement in two dimensions. Then, we explain how the third dimension, z, can be used within these 
existing frameworks to consider how depth and altitude affect key ecological inferences drawn from animal tracking data. Our 
position builds on empirical and theoretical work about how three- dimensional methods can contribute to stronger inferences in 
movement ecology. Key limitations to operationalisation of this framework include calibration of uncertainty in pressure sensors 
used to measure depth and altitude, visualisation and rendering of three- dimensional data to make them interpretable and un-
derstandable to end- users and generally more conventional and accepted methods for using three dimensions when conducting 
standard animal movement analyses.

1   |   Introduction

Accurate quantification and classification of animal move-
ment phenotypes is crucial to understanding ecosystem func-
tioning and proper management (Morales et al. 2010; Spiegel 
et  al.  2017; Brodie et  al.  2018). Technological advancements 

in geolocation using global positioning systems (GPS), en-
vironmental estimators (e.g., light- based geolocation) and 
high- frequency transmissions to remote stations (e.g., radio 
receivers, acoustic receivers, passive integrated transpon-
der antennas, motes and satellites) have revolutionised eco-
logical sciences and provided new perspectives for studying 
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animals and their interactions with the environment and hu-
mans (Hussey et al. 2015; Kays et al. 2011; Lennox et al. 2017; 
Nathan et al. 2022).

Tracking the two- dimensional movement of animals as they 
cross plains, grasslands or the seabed yields critical informa-
tion about movement corridors and habitat use of walking an-
imals (Kays et  al. 2011). For applied questions, this is often 
particularly useful because humans operate predominantly 
in two dimensions (Gonzalez, Hidalgo, and Barabasi  2008). 
Consequently, conceptualisation of many habitat features 
and modelling of animal spatial and movement ecology are 
often summarised by longitudinal and latitudinal planes 
(Montgomery, Ortiz- Calo, and Heit 2020). Management zones 
are not generally differentiated vertically; therefore, pro-
tected areas or harvesting regulations do not change dynami-
cally with altitude or depth but scale from sea- level on a map 
through the full vertical dimension in many cases. However, 
there is extensive use of vertical habitat by animals that fly, 
swim, dig or climb. Specific challenges associated with such 
habitat use, such as vertical gradients in physical and chemi-
cal habitats, make this dimensionality ecologically important 
(Adachi et al. 2017; Wright et al. 2017). While vertical habitat 
is generally taken into account within studies aiming to de-
scribe the habitat use of flying and swimming animals, it is 
typically considered separately from the latitudinal/longitudi-
nal measurements rather than integrated in three dimensions 
(3D; Guzzo et al. 2016; Mulder et al. 2018; Říha et al. 2021).

The animal tracking community is aware of the challenges 
of working in three dimensions and the development of tools 
is ongoing to improve researchers' ability to consider vertical 
space use when modelling animal behaviour (Deng et al. 2011; 
Vivancos, Closs, and Tentelier  2016; Lee et  al.  2017; Wright 
et al. 2017; Venegas- Li et al. 2018; Klein et al. 2019; Montgomery, 
Ortiz- Calo, and Heit  2020; Lato et  al.  2022). For instance, 
pressure- sensing biologgers and transmitters can measure 
the depth or altitude at the high temporal and spatial resolu-
tion, often with better accuracy than latitude and longitude 
can be estimated from detection data (Whoriskey et al.  2019; 
Lato et  al.  2022). Although there is accelerating potential for 
telemetry data to be analysed and presented in three dimen-
sions, a toolbox for three- dimensional analytical methods is 
currently lacking, rendering available three- dimensional data 
an unexploited resource (Ahmed, Bailey, and Bonsall 2022). In 
this paper, we suggest ways in which the untapped potential 
of three- dimensional methods for studying animal movement 
is hindering progress in fundamental and applied biology, 
especially for swimming and flying species. We review key 
methods in analytical movement ecology with respect to their 
potential for integrating three- dimensional data, highlight 
promising new developments and discuss needed methodolog-
ical improvements. Finally, we outline new avenues for both 
fundamental and applied research that may emerge with the 
development of three- dimensional tools in movement ecology.

2   |   Dimensionality of Animal Movement

Animals move in three dimensions, but capturing the dimen-
sionality of these movements can be challenging. Horizontal 

positions are available from electronic tags that connect to 
global navigation satellite systems (GNSS), estimate position 
from the environment (i.e., light- based geolocation) or trans-
mit identification signals to base stations at known locations. 
Positions can be stored onboard tags from GPS fixes, estimated 
from other data stored on the tag (i.e., light- based geolocation) 
or estimated from transmissions via multilateration (Baktoft 
et al. 2017). It is possible to use camera tracking to estimate 
locations in three- dimensional space from positions resolved 
by particle tracking or other laboratory- based methods. For 
example, Neuswanger et  al.  (2022) used camera tracking of 
juvenile salmonids to resolve 3D positions and calculate ter-
ritoriality and intraspecific competition in a hypervolume of 
water. Yet, to date, most tracking is conducted using teleme-
try, as described above, along two horizontal planes resolved 
from GPS or reverse- GPS fixes of the animal in field or meso-
cosm studies (Nathan et al. 2022).

Animal tracking devices provide the option to record or trans-
mit data from pressure sensors, opening a third dimension 
that can be used to better understand the exact position of an 
animal on terrain, in the air or in water. Knowledge about the 
position of an animal in this third dimension is non- trivial for 
the purposes of understanding habitat use, social association, 
behaviour and most other physicochemical associations of an 
animal to its environment. For example, animals may be rel-
atively stationary in two dimensions but travel vertically in 
ways that are energetically costly (Box 1). Most aquatic species 
exhibit vertical patterns in activity to exploit the 3D structure 
of their environment in a way that has long been adopted into 
modelling approaches and to answer specific hypotheses such 
as habitat compression (Vedor et al. 2021) and collision risks 
with turbines (Scacco et  al.  2023). Flying or descending in 
the water column also has energetic implications for animals 
and their three- dimensional movements can help to exploit 
spatial variability in costs of transport (Masello et  al.  2021; 
Scacco et  al.  2023). Many species even display routine diel 
vertical migrations (Mehner  2012; Brierley  2014). Coastal 
and reef species take refuge in the substrate and have a dy-
namic three- dimensional habitat (Udyawer, Simpfendorfer, 
and Heupel 2015). Light, temperature and oxygen can all vary 
greatly at different depths or altitudes. Physiological perfor-
mance of animals will respond to these vertical gradients in 
environmental quality, especially oxygen in thin air (Hawkes 
et  al.  2017) and in the deep ocean or lakes. Consequently, 
animals' movements from sea level to depth or altitude can 
affect their physiology and vulnerability to stressors includ-
ing temperature stress as well as potential barriers such 
as buildings/windmills or fishing nets with fixed depths/
heights. Arboreal animals that climb trees (Harel et al. 2022) 
and species that use complex terrains such as montane mam-
mals (Heit et  al.  2023) may also use 3D habitat in complex 
ways that can benefit from pressure sensors or altimeters that 
help analysts infer the spatial position of the animal in its  
habitat (Box 2).

An important consideration in the dimensionality of animal 
movement for animals that move in three dimensions is that the 
costs of transport may differ horizontally and vertically. Gravity 
in air and in water ensures that the physical costs of moving 
vertically are likely to exceed the costs of horizontal transport. 
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BOX 1    |    

Comparison of two- dimensional and three- dimensional analyses of movement data from three tagged northern pike (Esox lucius) 
in a lake in Czechia. The positions of the animals were resolved from multilateralisation of acoustic tags within a grid of acoustic 
receivers in the lake. The three pike are named based on their general behaviour, swimmer, sedentary and diver. Although two- 
dimensional area use suggests the swimmer has the largest territory (a), three- dimensional trajectories provide a different picture, 
because the diver has the largest 3D home range (b, c, d). The inset table of home range overlap shows the percentage of the home 
range area (2D) or volume (3D) of an individual ‘x’ (rows) that is overlapped by an individual ‘y’ (columns). For example, in 2D, 49% 
of the ‘sedentary’ HR overlaps with the ‘swimmer’ HR, but only 8% of the ‘swimmer’ HR is overlapped with the ‘sedentary’ HR.
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As evidence of this, buoyancy control mechanisms have evolved 
in many aquatic species to account for the costs of vertical move-
ment in water (Strand, Jørgensen, and Huse 2005). Many birds 
have evolved behaviours that exploit thermal updrafts that re-
duce the costs of vertical transport in air against gravity (Bohrer 
et  al.  2012). For terrestrial animals, walking or slithering up 
slopes or climbing trees is also more costly than moving on flat 
ground (Halsey  2016). Although the three dimensions are all 
isotropic in space, the different costs of movement in the vertical 

plane may need to be considered anisotropic for the purposes of 
modelling.

3   |   Applications

To be effective, future management applications will neces-
sarily need to refine their approaches to consider animals' 
three- dimensional space use. For instance, Khosravifard 

BOX 2    |    Examples of 3 three- dimensional habitat use by animals and potential biases in common movement models. All images provided by 
RJL.

Leopards (Panthera pardus) will use vertical structure in the 
habitat. Calculating the costs of transport within this habitat 
based on two- dimensional steps will underestimate total 
activity and energy budgets of the animals.

The unicorn fish Naso unicornis swims in three dimensions 
in the water around this French Polynesian atoll. Positioning 

these fish with acoustic transmitters without depth 
sensors to calculate movement step lengths would likely 

bias inferences about the animal's habitat selection.

This flamingo (Phoenicopterus roseus) flies above 
conspecifics on a marshland in the Mediterranean. 
Although the flying individual overlaps substantially in two 
dimensions with conspecifics, a pressure sensor indicates 
that it is spatially distinct and not co- located, significantly 
affecting interpretations about sociality.

Hedgehogs will dig burrows in the ground to seek 
refuge using subterranean habitat, they can live a three- 
dimensional life. Understanding how the hedgehog uses 

the full dimensionality of its available habitat is important 
to investigate the space use and habitat requirements and 
will influence how behavioural analysis tools like hidden 

Markov models will interpret the animal's daily movements.
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et  al.  (2020) showed that three- dimensional kernel methods 
were more effective for determining the collision risk of grif-
fon vultures (Gyps fulvus) with wind turbines than the two- 
dimensional methods that had been used in previous risk 
assessments (see also Figure  1). Similarly, Kahane- Rapport 
et  al.  (2022) demonstrated that foraging depths of baleen 
whales tend to overlap in depth with microplastic aggregation 
zones, suggesting high potential impact on species such as 
blue whales (Balaenoptera musculus) and pointing to the need 
for depth data along with horizontal positions to correctly in-
terpret risks encountered by animals in the environment as 
they use it, not necessarily just as we see it largely viewing the 
world from our two- dimensional platform.

Three- dimensional modelling can help to better protect an-
imals from disturbance in their environment. Protected areas 
are presently two- dimensional boundaries but may eventually 
be refined to limit activities at certain depths or altitudes, re-
quiring better models of habitat and species compositions in 
three dimensions. Brito- Morales et al. (2022) advocated for the 
use of depth data to create three- dimensional marine protected 
areas, which will rely on or motivate increased application of 
the three- dimensional tools that are available to support such 
ambitions. Commercial and recreational fisheries are already 
operating with intricate planning for positions of their gear in 
depth and good models of three- dimensional animal niches 
can help minimise bycatch, assist with invasive species con-
trol or minimise entrainment of animals in infrastructure like 
turbines. For example, studying the three- dimensional habitat 
of invasive sea lamprey can provide insight into the placement 
of traps (Rous  2014) and the three- dimensional positioning 
of salmon can help determine the optimal placement of di-
version structures to help avoid entrainment in a dam (Silva 
et al. 2020). In the sky, Walter et al. (2012) combined GPS and 
altitude data from vultures to model bird collision risk around 
airfields. Three- dimensional models of animal movement can 
make the most of three- dimensional environmental data such 
as fluid dynamics models (Khan 2006), which can increase the 
resolution with which we can understand and manage species. 
However, measurement error inherent to both the tracking de-
vices and the environmental models should be considered when 

trying to evaluate very fine- scale responses of animals to their 
environment.

4   |   Methods Extending Movement Ecology to 
Three Dimensions

4.1   |   Movement Modelling

Animal locations are collected as a time series of spatial coordi-
nates, either in two dimensions (x, y) or three dimensions (x, y, 
z). From these data, animal movement patterns can be described 
in terms of step lengths and turning angles (Codling, Plank, 
and Benhamou 2008; Benhamou 2019). These parameters can 
be captured via a correlated random walk (CRW) that models 
both speed and directional persistence of movement tracks. In 
two dimensions, CRWs can be formulated in terms of these step 
lengths and turning angles (i.e., based on their polar coordi-
nates; Figure 1a). Step lengths are calculated as the Euclidean 
distance between successive observations,

and turning angles are calculated as the difference in bearings 
between successive steps.

However, for animals moving in three dimensions, the walk can 
be extended to simulate three- dimensional animal locations, 
which can be expressed in spherical coordinates: step length Lt, 
azimuthal (i.e., horizontal) bearing �t, and the polar (i.e., verti-
cal) bearing � t (Figure 1a). Step lengths are extended to measure 
the three- dimensional segments,

better representing the speed and energy consumption of moving 
animals (although note that energy costs in the third dimension 
may not be equivalent to costs in the horizontal dimensions). 
Further, three- dimensional turning angles are based on the 

Lt =

√

(

xt−xt−1
)2

+

(

yt−yt−1
)2

Lt =

√

(

xt−xt−1
)2

+

(

yt−yt−1
)2

+

(

zt−zt−1
)2

FIGURE 1    |    Illustration of two- dimensional and three- dimensional coordinates, for the red vector. (a) Two- dimensional polar coordinates, where 
L is the Euclidean distance and � is the bearing. (b) Three- dimensional spherical coordinates, where L is the Euclidean distance, � is the azimuthal 
(i.e., horizontal) bearing, and � is the polar (i.e., vertical) bearing.
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change in both horizontal and vertical bearings and can be mod-
elled with spherical distributions in a CRW (Ahmed et al. 2021; 
Pike and Burman 2023). CRWs based on step lengths and turn-
ing angles are very common in movement ecology, but note that 
it is also possible to model position- based CRWs (Jonsen, Mills 
Flemming, and Myers  2005; Whoriskey et  al.  2019) and these 
are also extendable to three dimensions. Investigators should 
consider if and how the cost of transport in the third dimension 
differs from the cost in horizontal planes when applying these 
three- dimensional models.

CRWs form the basis of most modern movement models, in-
cluding hidden Markov models (HMMs) for behaviour, ener-
getics models, habitat selection functions and continuous- time 
approaches based on stochastic differential equations (SDEs). 
These models have important uses for quantifying animal be-
haviour, space use and accounting for missing or error- prone 
data (Johnson et al. 2008; Avgar et al. 2016; Morales et al. 2010). 
Therefore, three- dimensional CRWs that better quantify move-
ment speed and tortuosity have important implications for eco-
logical inference, although they have rarely been employed in 
animal movement ecology (but see Ahmed et  al.  2021 for an 
application to insect trap counts). In the next section, we elabo-
rate on several uses of spatial and movement- based models and 
explain how their extension to three dimensions can improve 
inference.

4.2   |   Home Ranges/Space Use

Home range estimation aims to summarise the distribution 
of an animal, traditionally achieved by mapping a poly-
gon around a series of 2D positions. Home range estimation 
from tracking data is an active field and various analyti-
cal approaches have been developed over the past decades. 
Commonly used approaches include the (autocorrelated) 
Kernel Density Estimator (Fleming et  al.  2015), minimum 
convex polygons and local convex hulls (Kie et al. 2010; Silva 
et al. 2022; Kraft et al. 2023). Importantly, range estimators, 
which target the long- term, stationary space- use distribution 
of animals, are distinct from estimators of the occurrence 
distribution, such as Brownian bridge methods, which target 
movement paths and their uncertainty over a specific time in-
terval (Alston et al. 2022).

Independent of the chosen estimator, home ranges of aquatic 
and aerial species are likely to be misrepresented by hori-
zontal positioning not accounting for the third dimension 
(Khosravifard et  al.  2020; Chandler et  al.  2020). The accu-
racy of 2D home range calculations has been significantly en-
hanced through the integration of autocorrelation structures, 
movement models, simulations and the consideration of phys-
ical barriers (Calabrese, Fleming, and Gurarie 2016; Calenge 
2006). This refinement has rendered 2D home range estimates 
more reliable and applicable, particularly when dealing with 
unevenly spaced tracking data (Calabrese, Fleming, and 
Gurarie 2016). Despite these advancements, the application of 
similar calculation procedures for 3D home range estimates 
remains limited, and there is a notable absence of user- friendly 
computational support in this regard. However, promising al-
ternatives are available that extend the home range into three 

dimensions (Keating and Cherry  2009; Tracey et  al.  2014). 
Udyawer, Simpfendorfer, and Heupel  (2015) demonstrated 
the potential of using three- dimensional data combining hor-
izontal positions with data from pressure sensors to estimate 
a more accurate home range volume. Similarly, Aspillaga 
et al. (2019) provided a novel method of estimating fish space 
use in three dimensions to infer spawning behaviour. Finally, 
Ferraini et al. (2023) used 3D home ranges to develop an index 
of overlap among kestrels (Falco naumanni), highlighting that 
the identification of any overlap critically depended on accu-
rate description of their flying altitude. In Box 2, we illustrate 
how different conclusions can be made about the space use 
of three northern pike (Esox lucius) moving in a lake when 
2D and 3D space use estimates are compared. ‘True’ three- 
dimensional space use clearly illustrated a larger volume for 
one pike that had a smaller home range when calculated in 
two dimensions.

For estimating range from detection data (i.e., tagged ani-
mal is recorded at a radio or acoustic station), networks are 
often used instead of kernel or convex polygon- based meth-
ods (Ledee et al. 2015; Jacoby and Freeman 2016). Networks 
have the advantage of not requiring continuous position data 
for estimating space use. However, networks will underesti-
mate space use where the detection array is smaller than the 
potential area that an individual can use. Networks are most 
commonly used for acoustic, radio and PIT telemetry (Kraft 
et al. 2023). Acoustic and radio transmitters commonly have, 
or can easily be complemented by, continuous depth sensors 
that can provide information on the third dimension be-
yond what is available from horizontal positioning systems. 
However, to establish such a three- dimensional network, 
depth would have to be binned, for example into ‘surface’, 
‘mid- water column’ and ‘bottom’, because networks are inher-
ently based on discrete rather than continuous observations. 
Method development for how to discretise space for three- 
dimensional networks and validations are needed in this area 
to understand the benefits of three- dimensional networks for 
calculating spatial summary statistics such as node degree 
and betweenness in discrete space.

4.3   |   Resource and Habitat Selection

Understanding animals' resource and habitat selection is a 
key question in wildlife ecology and of importance for inform-
ing management and conservation strategies (Fletcher, and 
Fortin  (2018). Resource selection functions (RSFs) and step 
selection functions (SSFs) assess animals' habitat preferences 
by contrasting the spatial features of observed locations to the 
surrounding habitat (via a sample of ‘random’ or ‘available’ 
points; Fieberg et al. 2021). However, RSFs and SSFs investi-
gate different spatiotemporal scales (Johnson 1980; Michelot, 
Blackwell, and Matthiopoulos 2019). RSFs describe space use 
at larger scales, assume that animal locations are independent 
and generally sample random points at the home range scale 
(Manly et  al.  2002). Therefore, they are less suited to auto-
correlated tracking data (Alston et al. 2023). In contrast, SSFs 
consider habitat selection at the scale of the movement step 
and consist of both a habitat selection function and a move-
ment kernel. The movement kernel can be estimated from the 
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empirical distribution of step lengths and turn angles (and 
then used to generate available locations) or estimated jointly 
with habitat selection (Rhodes et al. 2005; Forester, Kyung Im, 
and Rathouz 2009; Michelot et al. 2024). The latter approach 
(sometimes termed an integrated SSF; Avgar et al. 2016) has 
been shown to reduce bias in habitat selection parameters, 
when the movement kernel is correctly specified (Forester, 
Kyung Im, and Rathouz 2009), and allows for interactions be-
tween movement and habitat variables (Prokopenko, Boyce, 
and Avgar  2017). In recent years, many methodological ex-
tensions have been proposed for SSFs and RSFs, including 
individual- level and spatial random effects, time- varying dy-
namics and behavioural variation (Nicosia et al. 2017; Muff, 
Signer, and Fieberg  2020; McCabe et  al.  2021; Arce Guillen 
et  al.  2023; Dejeante, Valeix, and Chamaillé- Jammes  2024; 
Chatterjee et al. 2024; Klappstein et al. 2024). This has made 
them flexible and popular tools for assessing animal move-
ment and space use, but little attention has been paid to these 
processes in three dimensions.

SSFs were developed in large part for terrestrial species that 
live in two spatial dimensions, and the movement kernel is 
generally defined as a two- dimensional CRW. However, SSfFs 
have recently been used to study the migration routes of grey- 
faced buzzards (Butastur indicus; Nourani et al. 2018), hunt-
ing strategies of barn owls (Tyto alba; Séchaud et  al.  2021), 
movement decisions of forest bird species (Aben et al. 2021), 
and habitat use of marine turtles in protected areas (Roberts 
et  al.  2021). For the animals that use three dimensions, the 
potential of SSFs for characterising habitat selection has so 
far not been fully realised due to the lack of options to ac-
count for the vertical dimension. For many flying and swim-
ming species, the physicochemistry of the 3D environment is 
critical, including thermal gradients, flow/wind at different 
depths/altitudes, salinity or oxygen content in the water, or 
the rugosity and resistance of the land. The cost of transport 
in the vertical dimension must also be considered, and inves-
tigators will need to consider this when specifying the move-
ment kernel, perhaps via the inclusion of interaction terms 
(e.g., vertical bearing affects distance travelled). To account 
for the impact of the environment on movement, SSFs could 
be improved by modelling movement in three dimensions 
via three- dimensional CRWs, which would better capture 
the true movement process and potentially reduce bias (i.e., 
as shown for two- dimensional SSFs; Forester, Kyung Im, and 
Rathouz  2009). Three- dimensional modelling could also be 
used to better account for the energetics of movement, properly 
accounting for energetic differences between the horizontal 
and vertical dimensions, in energy- based step selection analy-
ses (Klappstein et al. 2022). Similarly, RSFs can be extended to 
model space use in three dimensions, by considering a three- 
dimensional availability domain of the three- dimensional 
habitat in air or water. Therefore, these approaches could in-
clude three- dimensional covariates, which may be important 
in understanding how animals use space when the habitat is 
highly vertically structured, while retaining the flexibility to 
include two- dimensional variables, where ecologically rele-
vant. Indeed, it is unlikely that habitats at ground level are 
influencing movement decisions for fish swimming, or birds/
bats flying, above these areas. An approach that accounts for 
the three- dimensional habitat has the potential to reduce bias 

by appropriately modelling movement and habitat structure 
at the scale the animal moves, if the challenges of measuring 
the environment in three dimensions can be overcome in both 
practical and computational terms.

4.4   |   Inter-  and Intraspecific Interactions

Animal tracking data are increasingly used to understand co- 
occurrence and interactions of animals by inferring proximity 
(Long et al. 2014; e.g. Haulsee et al. 2016). Any tag type can 
be used to infer proximity by establishing a distance thresh-
old a priori and calculating rates of association, ideally com-
pared to a null model of simulated encounter probabilities 
(Farine  2017). Associations among individuals can then be 
used to investigate sociality and inter- /intraspecific interac-
tions. Interactions of guinea fowl (Acryllium vulturinum), for 
example, have been inferred from GNSS tracking data to draw 
networks and identify complex social dynamics in their soci-
eties (Papageorgiou et al. 2019). Alternative metrics of associa-
tion or habitat partitioning may draw on home range methods 
or similar kernel- based measurements to evaluate overlap in 
space and time (Fieberg and Kochanny 2005). Space use met-
rics derived from kernel analysis (i.e., kernel- based methods 
such as kernel utilisation distribution) may be used to calcu-
late overlap and test hypotheses about individual interactions 
such as competition. Importantly, co- occurrence does not 
necessarily imply interaction (Jacoby, Papastamatiou, and 
Freeman  2016), although it may be a strong predictor of dy-
namics (Farine 2015).

Crucially, inferring association for walking species that live 
in a two- dimensional plane is simpler than for species exploit-
ing three- dimensional habitats where horizontal position-
ing can misrepresent association (Figure 1). MacArthur and 
MacArthur  (1961) famously showed that avian species split 
habitat overlapping in horizontal space into three- dimensional 
niche partitioning, facilitating coexistence. Simpfendorfer 
et  al.  (2012) demonstrated that European eel (Anguilla an-
guilla) overlapped substantially in their 95% kernel utilisa-
tion distribution (KUD), but when considering their depth 
use, they were in fact overlapping very little. Similarly, Lee 
et al. (2017) showed that 3D KUDs were effective for identify-
ing intraspecific overlap of Eastern blue groper (Achoerodus 
viridis) during the spawning season. For species using three- 
dimensional space, accounting for depth/altitude is necessary 
to accurately characterise inter-  and intraspecific interactions 
and three- dimensional spatiotemporal niche partitioning. By 
identifying accurate space use and estimating interactions 
more accurately, it is possible to generate more robust infer-
ences of social interaction and social networks.

4.5   |   Behavioural Classification With HMMs

Various methods exist to extract behavioural information 
from tracking data (see Edelhoff, Signer, and Balkenhol 2016; 
Gurarie et  al. 2016). HMMs are increasingly popular tools 
that provide a natural framework to infer behavioural modes 
(e.g., foraging and travelling) and their various drivers from 
position data (Langrock et al. 2012; McClintock et al. 2020). 
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HMMs are hierarchical time series models which assume 
that each observation arises from an unobserved or latent 
state. In movement ecology, these states are interpreted as be-
havioural modes, and are usually defined as state- dependent 
CRWs. For example, foraging is often associated with slower, 
more tortuous movement, compared to fast, directed travel-
ling behaviour (Morales et  al.  2010). The state- dependent 
CRWs are usually formulated in terms of step lengths and 
turning angles (Michelot, Langrock, and Patterson  2016; 
Michelot, and Blackwell (2019)) but can also be position- based 
models (Whoriskey et  al.  2019). Step lengths between two 
tri- dimensional sets of coordinates may be more precise infor-
mation about many species, revealing new behavioural types 
not possible to identify using two- dimensional step length 
measurements. For animals living in 3D space, step lengths 
will consistently be underestimated from 2D Euclidean dis-
tance calculations, and behavioural state classification will 
consequently be biassed.

Recent studies have recognised the potential of integrat-
ing depth/altitude data into HMMs. Langrock et  al.  (2012) 
were early to suggest a hidden Markov modelling approach 
accounting for depth data of a diving whale to explicitly 
model movement and foraging behaviour in the water col-
umn. Heit et  al.  (2023) incorporated altitude data for Puma 
concolor and found better fitting HMMs using the third di-
mension (they call it 2D+ rather than 3D). Especially for 
marine mammals, this approach has subsequently proven 
useful in classifying behavioural states and link behavioural 
variation to environmental conditions (van Beest et  al. 
2018; Photopoulou et  al. 2020). Similarly, for aerial species, 
Pritchard et al. (2022) used the 3D flight paths of humming-
birds to classify search and travel behaviours. Although it is 
becoming relatively common to include vertical observations 
(e.g., depth and altitude) as an additional HMM data stream 
(Langrock et al. 2012; McClintock and Michelot 2018; Adam 
et al. 2019), it is also possible to define each behavioural state 
as a fully three- dimensional CRW. This is a promising exten-
sion of the HMM approach to more accurately classify be-
haviours of animals that swim, fly or otherwise move across  
three axes.

4.6   |   Hierarchical Models

Animal tracking data often violate assumptions of indepen-
dence in many modelling approaches. Hierarchical models can 
be used to account for the autocorrelation in tracking data, via 
the inclusion of spatial, temporal or individual- level random 
effects (Pedersen et  al. 2019). Hierarchical models may aim 
to model factors that affect the movement of animals in space 
and time by using the step as the sample unit, for example, di-
rectly measuring the step length or transforming steps to a rate 
(speed). Hypotheses that animal movement is affected by time 
of day, location in space, and individual variation (i.e., random 
effects) will likely yield different results when the steps are 
calculated with consideration of three- dimensional movement 
rather than assuming two- dimensional activity on a single 
plane, as implied by two- dimensional calculations of step length  
or speed.

Hierarchical models for telemetry data necessarily must con-
sider spatial effects, frequently using stochastic partial differ-
ential equations or spatial smoothing to reveal hotspots and 
coldspots in spatial effects and manage autocorrelation in-
herent in time- series data with spatial dependency (Gutowsky 
et  al.  2020). When individual positions are available in three 
axes, the spatial autocorrelation may not be adequately de-
scribed by two- dimensional Gaussian Markov Random 
Fields or other smoothing solutions that do not consider the 
three- dimensional location of the animal. Three- dimensional 
smoothing of positions are possible in R packages such as mgcv 
(Wood 2017) to estimate spatial effects in three dimensions, but 
will be challenging to visualise and may require some effort 
to render. Nevertheless, the mgcv package provides a strong 
functionality with which to consider isotropic or anisotropic 
three- dimensional effects of space by specifying a smoother, 
for example, s(x, y, z) or te(x, y, z) for anisotropic smoothers. 
In the latter case, anisotropic smoothers are appropriate where 
the vertical dimension is not measured in the same units as the 
two horizontal planes; in the former isotropic case, a metric 
or imperial coordinate reference system (e.g. UTM) would be 
combined with a vertical measurement of depth or altitude in 
metres. Anisotropy may also be necessary for species that have 
relatively high costs of movement in the vertical plane.

5   |   Prospectus

Most animals move in three dimensions, a feature of move-
ment that we submit to be underdeveloped in many analytical 
frameworks for animal tracking data. Moreover, where a 3D 
framework is available, such as 3D kernel utilisation distribu-
tions for home range analysis (Keating and Cherry 2009), util-
isation appears not to be fully realised in movement studies. 
The dimensionality of movement is particularly salient to most 
aquatic and aerial species whose vertical displacement can be 
measured by available tracking technology but is typically not 
accounted for in estimations of space use, behaviour, and hab-
itat selection. We have provided an overview of key methods 
in animal movement ecology that we believe would be im-
proved with the consideration of three- dimensional data. It is 
certain that better integration of depth data for aquatic species 
and altitude data for their airborne counterparts will refine 
our understanding of their ecology and will influence the 
way that aquatic and aerial movement data are interpreted. 
We have outlined applications where such improved ecologi-
cal understanding can foster more effective management and 
conservation strategies.

One of the major challenges facing three- dimensional data in 
ecology is the computational cost for model fitting and visuali-
sation. Adding an additional dimension will certainly increase 
the cost of model fitting and the time required for spatial models 
to provide estimates. Illustrating three- dimensional data in two 
dimensions is not intuitive, notwithstanding the intensive com-
putational power required to render many of the more richly illus-
trated visualisations (Demšar et al. 2015). Specialised programs 
for rendering space in three dimensions have been developed for 
other applications, and we envision that these tools will become 
more accessible to ecologists to assist with visualisation and 
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presentation of information about animal movements in three 
dimensions. Software for illustrating data in three dimensions 
includes rayshader, a renderer in the R environment that can fa-
cilitate plotting voxels (i.e., three- dimensional pixels) from home 
ranges, for example (Morgan- Wall 2021). Other promising appli-
cations are immersive virtual or augmented reality visualisations 
that can create engaging communication tools but also open new 
avenues for understanding data and how animals use their envi-
ronment in three- dimensional planes (Klein et al. 2019).

The primary limitation of three- dimensional methods is ac-
counting for differences in the costs of vertical movement. 
Slopes and inclines in the terrestrial environment make the 
costs of moving altitudinally different from horizontal move-
ments for walking species (Carnahan et al. 2021). For diving 
species like birds, the physical and physiological demands 
of diving are different from those of flying (or swimming); 
Gómez- Laich et al.  (2013) demonstrated high energetic costs 
of diving for shags, for example. For many soaring birds, the 
cost of moving altitudinally is subsidised by their careful use 
of thermal updrafts (Shamoun- Baranes et  al.  2016). Three- 
dimensional analytical tools that do not consider how grav-
ity affects the costs of movement in the third dimension can 
risk underestimating the costs of movement in 3D. A second 
limitation is the sampling resolution of the devices. Biologgers 
that measure pressure may sample at 1–100 Hz whereas GPS 
locations may be available at greater intervals, creating a 
mismatch that requires some interpolation for modelling. 
Investigators should think carefully about the sampling reso-
lution that they need to gather depth or altitude data for mod-
elling movement in 3D.

Collecting 3D data from animals using biotelemetry and biolog-
ging devices is one part of the equation to advance movement 
ecology into three dimensions (Hussey et  al. 2015; Kays et  al. 
2011). However, an equally important aspect is to advance the 
dimensionality of environmental measurements. Methods for 
mapping land-  and seascapes in three dimensions are advancing 
(Lepczyk et al. 2021). In aquatic environments, vertical profiling 
of temperature, salinity, and oxygen is routinely performed with 
conductivity, temperature, depth recorders (CTD) and may also 
include additional measurements such as total dissolved gas, 
nutrients, light availability, salinity or biological variables such 
as food. These environmental data collected at discrete sam-
pling points can be smoothed using additive models or kriging 
to generate three- dimensional habitat voxels into which three- 
dimensional animal locations can be superimposed, for in-
stance, to identify 3D habitat selection (Pedersen et al. 2019). In 
terrestrial environments with vertical structuring, such as for-
ests, Light Detection and Ranging (LiDAR) systems have dras-
tically improved our ability to map, for example, canopy habitat 
structure in 3D (Harel et al. 2022). Depending on the scale of 
interest, LiDAR sensors can be mounted on drones, planes or 
satellites, offering opportunities to characterise tree and for-
est structure, canopy height, and vegetation density from fine 
to coarse spatial scales (Asner et al. 2008; Dubayah et al. 2020; 
Lang et al. 2021). Ongoing advances in LiDAR technology and 
processing of LiDAR data consequently show great promise for 
accurate, high- resolution and large- scale mapping of terrestrial 
3D habitats and thus for improving our understanding of animal 
behaviour and habitat use in 3D (or 2.5D; aka Harel et al. 2022). 

Computer vision technology and mapping of three- dimensional 
airspace has been used for example to investigate hawk flight 
(Miñano et al. 2023).

Three- dimensional methods are clearly promising for swim-
ming and flying species and can help reveal new aspects of 
their ecologies that have been challenging to detect otherwise 
(Neuswanger et  al.  2022). Pressure sensors are frequently in-
corporated into tracking packages and there are therefore great 
opportunities to increase the use of these data by developing 
and applying extensions of commonly used models ranging 
from simple calculations of step length and speed to estimating 
home range dimensions, spatial and social networks, classify-
ing behaviour, and estimating resource use of tagged animals. 
New developments may be possible in sensor technology that in-
creases precision or resolution of these sensors. In many cases, 
the functionality to apply these advances is already available, 
and increased awareness and convention around the use of all 
three spatial dimensions will strengthen the science provided by 
electronic tagging and tracking tools. However, it is important 
to remember that the model quality will always depend on prop-
erly calibrated sensors, which may require further development 
or calibration for some applications (Veilleux et  al.  2016; Lato 
et al. 2022). Because most species use a three- dimensional habi-
tat, improved technology for recording locations/positions in 3D 
and more conventional use of tools for analysing these data in 
adequate dimensionality has great potential to contribute to eco-
logical studies of animals, their environments, and conservation 
initiatives on land and in water.

6   |   Conclusion

It is clear that many studies have started to include depth and 
altitude data in their analysis and new methods have started 
to emerge such as 3D home range estimators. Many of the sug-
gested extensions in this paper are actionable but will require 
some development by statisticians and integration into func-
tions for popular software like R to realise their potential. With 
large volumes of animal tracking data being archived in global 
databases like Movebank and Ocean Tracking Network, ensur-
ing that horizontal locations are paired with depth and altitude 
data as much as possible should be prioritised to ensure that 
the most information possible can be exploited to model animal 
movement.
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