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Abstract
Mediterranean open marine and coastal ecosystems face multiple risks, due to climate change, that
impact their unique biodiversity. To assess these risks and evaluate their con�dence levels, we adopt the
scenario-based approach of the Intergovernmental Panel on Climate Change (IPCC), relying on a review
of literature projecting changes in Mediterranean Sea ecosystems. The main drivers of environmental
change are sea level rise, ocean warming and acidi�cation. Similar to global conditions, all
Mediterranean ecosystems face high risks under all climate scenarios, with coastal ecosystems being
more strongly impacted than open marine ecosystems. For these coastal ecosystems, risk levels are
expected to become very high already once global warming exceeds 0.8°C with respect to the 1976–
2005 period. A few Mediterranean ecosystems (e.g., coralligenous and rocky coasts) have greater
adaptive capacity than all others, probably because of the long evolutionary history in this sea and the
presence of a variety of climatic and hydrological conditions. Overall, due to the higher observed and
projected rates of climate change in the Mediterranean, compared to global trends, for variables such as
seawater temperature and pH, marine ecosystems (particularly coastal) are projected to be under higher
risks compared to the global ocean.

I. Introduction
The Mediterranean Sea is one of the most important regions in the world in terms of marine biodiversity
and is home to more than 17000 marine species, almost 18% of all known marine temperate and
subtropical species (Balzan et al. 2020). Among these species, ~ 20–30% are endemic (Coll et al. 2010),
making it one of the main marine biodiversity hotspots of the world. Many key resident and transient
marine organisms such as �sh, shell�sh, cetaceans (dolphins, whales) and top predators (tuna,
sword�sh) are ecologically and economically important. They play crucial roles in the food web and in
supporting a variety of human activities, including tourism and �sheries, which are economically
important (for income and employment) in most Mediterranean countries (MedECC 2020). Socio-
economic and political disparities in the region are large and they in�uence the future development and
management of Mediterranean ecosystems (Dos Santos et al. 2020; Hassoun et al. 2022).

Climate change, through changes in average as well as extremes in water temperature, pH and sea level,
is one of the main drivers of risk for marine and coastal habitats worldwide (Henson et al. 2017; IPCC
2019). Due to its unique geological, climatic and hydrological features (Merheb et al. 2016; Balzan et al.
2020), the Mediterranean Sea is critically affected by climate change (Tanhua et al. 2013; Cramer et al.
2018; Chatzimentor et al. 2022; Álvarez et al. 2023). The projected additional impacts of climate change
on marine and coastal ecosystems threaten the livelihoods of millions, as these ecosystems play a
signi�cant role in food security and coastal protection (Rice and Garcia 2011; Barange et al. 2018; IPCC
2022).

One of the most important drivers of regional ecosystem change is atmospheric warming which exceeds
global mean values compared to the pre-industrial period, reaching ~ 1.5°C in 2020 (Cherif et al. 2020).
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Regional warming will very likely continue to exceed the global mean value by 20% and may reach 5.6°C
at the end of the 21st century under a high emission scenario (RCP8.5; Cos et al. 2022). Warming will be
particularly strong in summer, likely to exceed the global annual rates by 50% (Lionello and Scarascia
2018). An accumulated warming of 1.3°C has been estimated for the Mediterranean Sea surface
temperature (SST) from 1982 to 2019 (Pastor et al. 2020), less in the Western than the Eastern
Mediterranean Basin with an increase rate that varies between + 0.29 to + 0.44°C decade− 1 (Nabat et al.
2015; Darmaraki et al. 2019a; Pisano et al. 2020). For the period 1980–2020, the SST increase is more
than 2-fold higher in the Mediterranean than globally (1.3°C in the Mediterranean vs 0.60°C globally; Fox-
Kemper et al. 2021). The SST increase is strongest in the Eastern Basin, where some areas warmed up to
+ 1.2°C in the period 2000–2017 compared to 1980–1999 (Cherif et al. 2020). SST in the Mediterranean
Sea is expected to increase by 0.6–1.3°C and 2.7–3.8°C by 2050 and 2100, under the RCP4.5 and
RCP8.5 scenarios, respectively (Darmaraki et al. 2019b). Intermediate and deep-sea temperature and
salinity (below 400 m) are also signi�cantly increasing (Vargas-Yáñez et al. 2010; Skliris et al. 2014;
Schroeder et al. 2016). By the end of the century, the projected temperature change ranges are 0.81–
3.71°C in the upper layer (0–150 m), 0.82–2.97°C in the intermediate layer (150–600 m) and 0.15–
0.18°C in the deep layer (600 m-bottom), strongly depending on the adopted scenarios and global
forcing (Soto-Navarro et al. 2020).

Marine heat waves are projected to become longer, more intense, and more frequent (Darmaraki et al.
2019a; Garrabou et al. 2022; Juza et al. 2022; Pastor and Khodayar 2022; Dayan et al. 2023). Although
the intensity of precipitation extremes is projected to increase in some areas of the Northern
Mediterranean (Tramblay and Somot 2018; Lionello and Scarascia 2020; Cos et al. 2022), total annual
precipitation is expected to decrease over most of the basin (the average reduction rate is approximately
4% per each degree of global warming) under RCP8.5 (Lionello and Scarascia 2018; Cherif et al. 2020).

Warming directly modi�es the ocean’s thermal strati�cation (Powley et al. 2016), potentially increasing
eutrophication and dissolved oxygen (O2) consumption due to increasing dissolved organic carbon

concentrations in the mixed layer (Ferreira et al. 2011; Santinelli et al. 2013; Ngatia et al. 2019).
Increasing atmospheric CO2 results in acidi�cation of both surface and deep waters (Hassoun et al.
2022). Ocean acidi�cation of Mediterranean waters (upper 80 m) occurs at rates of -0.001 to -0.009 pH
units y− 1 depending on regions (Eastern vs. Western basin) and time period (Hassoun et al. 2022). By the
end of the current century, pH is expected to drop 0.28 to 0.462 pH units below the pre-industrial values
depending on scenarios, with some differences between sub-basins and depths (Goyet et al. 2016;
Hassoun et al. 2022; Reale et al. 2022; Solidoro et al. 2022). This pH decrease is ~ 1.5-fold more
pronounced than the average global ocean (~ 0.3–0.4 units by the year 2100; Kwiatkowski et al. 2020),
according to most pessimistic scenarios (Reale et al. 2022; Solidoro et al. 2022). Some Mediterranean
sub-basins might experience more exacerbated acidi�cation trends than the global ocean in the future
(Hassoun et al. 2015; 2022; Álvarez et al. 2023).

Sea level rise (SLR) has major consequences on coastal ecosystems including more frequent and/or
intensive �ooding along low-lying coasts, particularly in deltas and lagoons, wetlands, and some islands
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(McFadden et al. 2007, Balzan et al. 2020), and coastal erosion (Satta et al. 2017; Ali et al. 2022). During
inundations and storm surges, SLR affects coastal infrastructures and coastal communities. Sea level
has risen at a rate of about 1.2–1.3 mm yr− 1 since the end of the 19th century (Zerbini et al. 2017) and of
1.7 mm yr− 1 since the mid-20th century (Wöppelmann and Marcos 2012), similar to the global trend,

increasing to about 2.57 mm yr− 1 since 1993 (based on satellite altimetry, Marcos et al. 2023).
Mediterranean sea level is projected to be 20 to 110 cm higher at the end of the 21st century compared
to the 2000s (Cherif et al. 2020), and will likely be similar to the global rates because regional differences
produced by changes in the circulation and mass redistribution almost compensate each other (Slangen
et al. 2017).

The sum of climate change-related habitat alterations, in association with non-climatic stressors, pose
unprecedented risks for the Mediterranean Sea biodiversity and resilience, potentially driving many
species outside the conditions required to acclimate or adapt. Key open marine and coastal ecosystems
are already impacted, threatening their diversity, as well as the services and resources they provide
(Liquete et al. 2016; Martín-López et al. 2016). These risks faced by the Mediterranean Sea open marine
and coastal ecosystems need to be well de�ned to understand the implications on the health and
viability of its key species. Here, we present an integrated overview of the main risks that are threatening
key Mediterranean open marine and coastal ecosystems. We build on the assessment performed using
expert judgment conducted in the preparation of the MedECC report (Balzan et al. 2020) to evaluate the
responses of key habitats and ecosystems, towards various climate change risks under multiple climate
change scenarios by the end of the 21st century.

II. Methods

II.1. General approach
This study addresses both the open Mediterranean Sea and its coastal zone. Many de�nitions exist to
determine the spatial extent of the coastal zone. Here, we de�ne the coastal zone as the area up to an
elevation of 10 m above mean sea level (i.e. “Low-Elevation Coastal Zone” LECZ, a term used in
sensitivity studies with respect to the projected sea level rise; Vafeidis et al. 2011; MedECC 2020). The
coastal ecosystems here include sandy beaches and sand dunes, rocky coasts, coastal lagoons and
deltas, salt marshes and coastal aquifers (Fig. 1). Open marine ecosystems comprise epipelagic
ecosystems, coralligenous, seagrass meadows, �sh, seaweeds and megafauna (Fig. 1). For
simpli�cation, we use the term “ecosystems” to encompass ecosystems sensu stricto, habitats and/or
key biological groups. The detailed de�nition of each ecosystem is provided in Supplementary Material
(S1).

A literature review was conducted, searching for peer-reviewed publications that highlight projections for
any of the ecosystems of interest (Fig. 2). Risk levels for biodiversity loss under various warming
scenarios for six open marine ecosystems and six coastal ecosystems were developed and visualized
through “burning embers”, a widely-used qualitative IPCC plot featuring risk levels (‘Undetectable’,
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‘Moderate’, ‘High’, ‘Very high’). Based on the levels of evidence and agreement, a con�dence level has
been assigned to each projected risk (Mastrandrea et al. 2010).

II.2. Data compilation
Our literature review covered 196 publications (until August 2023) compiled using academic search
engines (Google Scholar, Scopus and ResearchGate) to capture all available studies projecting changes
in Mediterranean Sea ecosystems (Fig. 2). The searched keywords comprised the following terms:
projections, forecasts, scenarios, Mediterranean Sea, with variable keywords depending on the
ecosystem we were looking for (e.g., corals, �sh, seaweeds, etc.). After assessing these papers, we only
kept the ones that have clearly identi�ed scenario projections (N = 131), the other publications were used
as additional resources for discussion (Fig. 2).

Data extracted from these studies comprise the emission scenarios used, the timing of the projections
(mid- and/or end of the century), and other parameters taken into consideration to implement the
projections (e.g., global atmospheric temperature, Mediterranean atmospheric temperature, seawater
temperature, pH, SLR, etc.; see section II.3), the estimated risk(s), con�dence level and the main drivers if
available. Additional information was extracted from all relevant papers, such as the a�liation country of
the �rst author, the study area, and the type of the study (i.e., modeling, laboratory experiment,
mesocosm experiment, in situ study, observations near CO2 vents, remote sensing, review, etc.) (see

Supplementary Material S2 for additional information). The locations of the study areas are shown in
Fig. 3.

The publications assessed (N = 131) have very large geographical disparities in terms of the type of
studies and study sites (Fig. 3); they also have unequal distribution across habitats. Only 11 were
conducted in non-European (outside the European Union) Mediterranean countries. Italy, France, and
Spain account together for 73 articles (56% of all studies). This disparity is re�ected in the distribution of
study sites across the Mediterranean Sea. In fact, 43 out of 50 open marine ecosystems sites and 51 out
of 66 coastal sites are located in European countries. This results in a strongly biased distribution of
study areas between the different Mediterranean Sub-basins, since most European countries are located
in the Western realm of the Mediterranean Sea. Even for regional studies that address the various parts
or the entire Mediterranean Sea (n = 36), 30 studies are led by researchers from Northwestern
Mediterranean countries. Regional studies favor open marine ecosystems (32 out of 36). Overall,
research in the Southern and Eastern Mediterranean marine and coastal areas is relatively scarce.

Not all ecosystem types could be investigated equally. Among the 116 study sites, 66 are coastal (57%),
while the remaining 50 are open marine ecosystems. The most studied open marine habitats are the
epipelagic with 16 study sites and 11 regional studies, followed by �sh (7 sites and 11 regional studies),
and coralligenous (17 sites and one regional study). Seagrass meadows, seaweeds, and megafauna are
largely understudied with only 11, 3, and 4 study areas respectively. Only one study could be found for
the deep-sea. As for coastal ecosystems, a large disparity also exists in terms of studied habitats. Sandy
beaches and sand dunes are the most studied with 21 sites, followed by lagoons and deltas (15 sites
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and one regional study), and rocky coasts (10 sites and one regional study). Coastal aquifers, coastal
wetlands and salt marshes account for 9, 8, and 5 studies respectively.

There is a disparity in the source of data used. By necessity, assessments of future conditions in most
ecosystems cannot be observed – they are therefore based on well-constrained ecological model
simulations. Speci�c local conditions in coastal ecosystems are often derived from remote sensing,
while process understanding applied to the assessment is based on laboratory or in-situ experiments.
Ecological model simulations are the main source for open marine ecosystems, while remote sensing is
the most common for coastal ecosystems. The number of coastal ecosystem studies using modeling is
also high (Fig. 4). Studies based on in situ observations are very scarce for both open marine and
coastal ecosystems. Furthermore, the number of experimental studies for open marine ecosystems is
relatively high (14 lab. Experiments and 7 mesocosms), there are only 4 experimental studies for coastal
ecosystems. The majority of experimental studies are conducted in the Northwestern Mediterranean.

The detailed approach used to convert global scenarios into Mediterranean ones, to assign risks and
con�dence levels used to visualize the risks in Fig. 5 are all detailed in the Supplementary Material (S3).
Risk levels and risk drivers with respect to the preindustrial values were also calculated, visualized and
presented in S4. Finally, a comparison between risk levels in the Mediterranean vs the ones in the global
ocean are detailed in S5.

III. Results and discussion

III. 1. Mediterranean key habitats undergoing change
Our assessment shows that severe risks on biodiversity, structure and function of coastal ecosystems
are projected to be higher than for open marine ecosystems (high con�dence) when Mediterranean Sea
surface warming exceeds 1ºC above the reference period 1976–2005, combined with other climate-
related hazards. Most coastal ecosystems assessed are projected to face an increasing risk level, from
moderate to high under 2°C ∆SST warming to high to very high above 2°C relative to 1976–2005 (Fig. 5).
The only exception is the “Rocky Coasts”, being relatively the least vulnerable. The main stressor for
coastal ecosystems is linked to exposure to SLR (Fig. 6). This re�ects the remarkable risks for coastal
habitats posed by climate change in addition to those caused by anthropogenic pressures.

Among the open marine ecosystems, seagrass meadows and seaweeds will face the most severe risks
while the least impacted will be the epipelagic (low to medium con�dence level). The main stressors for
the open marine ecosystems are predominantly linked to exposure to ocean warming and ocean
acidi�cation (Fig. 6).

Open marine ecosystems:

Epipelagic
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Most studies highlight ocean warming as the main driver (Lazzari et al. 2014; Maugendre et al. 2015;
Pulina et al. 2016; Gazeau et al. 2017; Benedetti et al. 2018; Moltó et al. 2021; Reale et al. 2022; Solidoro
et al. 2022), with risks projected to be undetectable to moderate under + 0.8°C <∆SST < + 6°C (medium
con�dence) (n = 12; Fig. 5). Ocean acidi�cation is the second most relevant driver (Gazeau et al. 2017;
Maugendre et al. 2017; Reale et al. 2022) (Fig. 5). Other less signi�cant drivers include changes in ocean
strati�cation/circulation (Herrmann et al. 2014; Macias et al. 2015), changes in salinity (Benedetti et al.
2018; Stefanidou et al. 2018), nutrient enrichment (Reale et al. 2022), deoxygenation (Reale et al. 2022),
atmospheric CO2/acidi�cation (Solidoro et al. 2022), and solar radiation (Moltó et al. 2021) (Fig. 6).

Ocean warming is expected to increase gross primary production, boosting phytoplankton exudation and
bacterial growth. The planktonic community structure is generally expected to shift towards larger
biomasses of small-size groups (Herrmann et al. 2014; Maugendre et al. 2015; Pulina et al. 2016; Gazeau
et al. 2017; Moullec et al. 2019; Pagès et al. 2020; van Leeuwen et al. 2022), particularly pico- and
nanophytoplankton, and bacteria (Herrmann et al. 2014). However, studies indicating an undetectable to
moderate risk also highlight that the abundance of relatively large phytoplankton species (e.g., Cyclotella
sp. and Thalassiosira sp.) is expected to decline due to warming, potentially decreasing the export and
energy transfer to higher trophic levels, with a very limited impact from ocean acidi�cation/increasing
pCO2 (Maugendre et al. 2015; 2017; Pulina et al. 2016; Gazeau et al. 2017; van Leeuwen et al. 2022).
Other studies (n = 11) demonstrate higher risks on epipelagic species (although with lower con�dence
levels). For example, ocean warming is expected to boost the expansion of Harmful Algal Blooms (HABs,
e.g., Ostreopsis ovata) and thermophilic and/or exotic species of smaller size and of low trophic levels,
which might produce biotoxins, a serious public health hazard (Accoroni et al. 2016; Vila et al. 2016;
Abboud-Abi Saab and Hassoun 2017; Moullec et al. 2019; Pagès et al. 2020; Hassoun et al. 2021).
Changes in species richness are also projected due to increasing temperature (predominantly during
marine heat waves; Soulié et al. 2023) and changes in ocean strati�cation/circulation (Howes et al.
2015; Macias et al. 2015). Additional factors are expected to change and consequently modify the
epipelagic ecosystems, such as changes in nutrient concentrations (e.g., nitrite and nitrate
concentrations are expected to decrease mainly due to rising temperatures and decreasing continental
inputs; Temino-Boes et al. 2021), weakened winter convection, surface layer warming and the changing
variability of extreme meteorological events (Herrmann et al. 2014; Totti et al. 2019).

In combination, these changes are expected to modify the seasonal blooms, as spring blooms may
occur earlier (Volpe et al. 2012; Herrmann et al. 2014) and last longer (Macias et al. 2018). Calci�ers,
such as foraminifera, pteropods and coccolithophores, are among the most vulnerable organisms to
combined warming and acidi�cation effects impacting surface ocean strati�cation and food availability
(Meier et al. 2014; Mallo et al. 2017; D’Amario et al. 2020). Epipelagic harvested species (e.g., �sh,
macroinvertebrate, cephalopods) are projected to signi�cantly change in terms of stocks and
distribution, mainly due to ocean warming (Moullec et al. 2019; Schickele et al. 2020; 2021; Moltó et al.
2021; van Leeuwen et al. 2022). Overall, these contradictory �ndings re�ect the speci�cities of sub-
regions and drivers taken into consideration. Mediterranean basins and sub-basins will likely face non-
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uniform future risks, i.e., on primary production and species diversity (Benedetti et al. 2018; Richon et al.
2019; Pagès et al. 2020; Reale et al. 2022; Solidoro et al. 2022).

Coralligenous

Risks here are projected to be undetectable to moderate below ∆SST = + 3.1°C (low con�dence) and
moderate to high (medium con�dence) above ∆SST = + 3.1°C (n = 10; Fig. 5). Most of the studies
highlight acidi�cation as the main driver (Hall-Spencer et al. 2008; Martin and Gattuso 2009; Movilla et al.
2012; Bramanti et al. 2013; Movilla et al. 2014; Fine et al. 2017; Prada et al. 2017; Marchini et al. 2020),
followed by warming (Martin and Gattuso, 2009; Fine et al. 2017; Prada et al. 2017; Marchini et al. 2020;
Vitelletti et al. 2023) (Fig. 6). Other drivers were also mentioned, such as changes in salinity (Vitelletti et
al. 2023), nutrient enrichment (Vitelletti et al. 2023), and marine heat waves (Gómez-Gras et al. 2019)
(Fig. 6). Most coralligenous species will undergo change but appear to be unlikely to disappear with a
warming climate, contradicting earlier projections (Hassoun et al. 2022). Above + 3.1°C, ocean
acidi�cation impacts recruitment and growth of the early life stages of corals like Astroides calycularis
(Carbonne et al. 2022), and is expected to alter typical rocky shore communities that will lack
scleractinian corals and reduce the abundance of sea urchin and coralline algae (Hall-Spencer et al.
2008). Zooxanthellate coral species like Cladocora caespitosa and Oculina patagonica, and some cold-
water coral species such as Desmophyllum dianthus will also face detrimental effects due to ocean
acidi�cation (Movilla et al. 2012; 2014). The Mediterranean red coral Corallium rubrum’s skeletal growth
and spicule morphology could be detrimentally affected by low pH (Bramanti et al. 2013). In synergy with
ocean acidi�cation, ocean warming will also have impacts on some corals (Carbonne et al. 2022).
Calcifying algae living near their thermal limit are likely to be threatened by ocean acidi�cation and may
not be able to contribute to reef accretion under the projected levels of warming and acidi�cation (Fine
et al. 2017). Mortality of coralline algae, particularly Lithophyllum cabiochae, is also expected to increase
with net dissolution surpassing net calci�cation (Martin and Gattuso 2009). Also, synergistic effects on
mortality rates are expected to affect all Mediterranean scleractinian corals (up to 60%), suggesting that
high seawater temperatures may have increased their metabolic rates which, in conjunction with
decreasing pH, can lead to rapid deterioration of cellular processes and performance (Prada et al. 2017).

Although the 10 studies used in our risk assessment diagram present concordant conclusions regarding
the response of many coralligenous species to climate change effects, the rest of the assessed literature
presents some ambiguities and contradictory results. Some coralligenous species are expected to show
no physiological (Martin et al. 2013) or mineralogical (Nash et al. 2016) changes, even under high
emission scenarios. For example, after several months of exposure to acidi�ed conditions, the skeletal
growth rate of Dendrophyllia cornigera showed no difference with control conditions (Movilla et al.
2014). Under low pH conditions, some species of crustose coralline algae become more resistant while
others are becoming more sensitive (Kamenos et al. 2016). Ellisolandia elongata may withstand
projected temperature changes (Nannini et al. 2015; Gamliel et al. 2020), counteracting the effect of
combined stressors (acidi�cation and warming), although these stressors may cause shifts in the
associated assemblages toward a less diverse structure, with possible dominance of the more
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opportunistic species (Marchini et al. 2019). Coverage of invertebrate calci�ers and crustose coralline
algae appears not to be affected by the lowered pH (Cox et al. 2017). Environmental variations (e.g.,
salinity, temperature, and nitrate concentration) under climate change conditions are expected to favor
opportunistic organisms at the expense of vulnerable species in coralligenous habitats, potentially
leading to biodiversity loss in certain regions, such as in the Northern Adriatic Sea (Vitelletti et al. 2023).

The diversity of responses to climate change drivers re�ects the complexity of this ecosystem and
points out species-speci�c responses, suggesting the presence of potential winners and losers (Gómez-
Gras et al. 2019).

Seagrass meadows

Risks are projected to be high to very high with ∆SST = + 0.8°C (medium con�dence) (n = 5; Fig. 5).
Seagrass meadows are among the main Mediterranean ecological key ecosystems projected to face
signi�cant climate-related risks. Seagrass species’ responses to warming are complex, due to varying
thermal performance. While some meadows exhibit thermal resilience, others suffer population declines.
Under high CO2/low pH conditions, macroalgal communities undergo shifts with dominant species
changing, while some species exhibit enhanced reproduction (Porzio et al. 2011). Ocean acidi�cation
contributes to changes in benthic communities, altering competitive dynamics between calcareous and
�eshy seaweeds (Porzio et al. 2013). Projections for some seagrass species are showing generally
negative results. Although negative impacts from ocean acidi�cation on Posidonia oceanica epiphytic
communities are projected to be smaller than previously expected (Cox et al. 2017), P. oceanica might
still lose 75% of suitable habitats by 2050 and is at risk of functional extinction by 2100 under high
warming scenarios, as genetic diversity erosion and habitat loss are expected (Chefaoui et al. 2018),
speci�cally in the Eastern Mediterranean (Litsi-Mizan et al. 2023). Other studies are projecting functional
extinction of P. oceanica by mid-century, even under relatively mild GHGs emissions (Jordà et al. 2012).
Seagrass shoot mortality rates and losses are projected to increase with rising temperatures (Marbà and
Duarte 2010), and younger life stages (i.e., seedlings of P. oceanica) may be particularly vulnerable
(Balzan et al. 2020).

Warming in areas with excessive nutrient and organic inputs may exacerbate the risk for sediment
anoxia and production of metabolites as sul�des, both detrimental for seagrass survival (Jordà et al.
2012). These results have been con�rmed in a recent study (Llabrés et al. 2023), projecting that P.
oceanica meadows will experience a 70% population decline by mid-century giving way to the more
resilient Cymodocea nodosa. Joint effects of warming and eutrophication are projected to further curtail
the survival of C. nodosa (Ontoria et al. 2019). Warming and acidi�cation drive shifts in seagrass
morphology, impacting seagrass shoot morphology and reproductive strategies and altering leaf and
rhizome morphology which will affect nutrient storage, trophic interactions, and meadow resilience
(Stipcich et al. 2022). In addition, the joint effect of low light, increased turbidity, changes in water
circulation, nutrients’ availability, and ocean warming may play a major role in the survival of P. oceanica,
regardless of the genetic traits (Martínez-Abraín et al. 2022) and the possible bene�ts from increased
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pCO2 (Hendriks et al. 2017). Otherwise, more suitable habitats could become available for both tropical
species, Halophila stipulacea and H. decipiens, during this century under all RCP scenarios (Beca-
Carretero et al. 2020). The predicted rapid expansion of these non-native species could alter the
Mediterranean’s seagrass community and may have signi�cant socio-economic consequences.

Fish

Risks here are projected to be undetectable to moderate below ∆SST = + 0.8°C (low con�dence) and
moderate to high (medium con�dence) above ∆SST = + 0.8°C (n = 8; Fig. 5). Most studies identify ocean
warming as the main driver of change (Moullec et al. 2019; D’Amen and Azzurro 2020; Stavrakidis-
Zachou et al. 2021; Ben Lamine et al. 2022; Lima et al. 2022; Tsagarakis et al. 2022; van Leeuwen et al.
2022; Loya-Cancino et al. 2023), followed by invasive species (Dimitriadis et al. 2020; D’Amen and
Azzurro 2020; Loya-Cancino 2023) (Fig. 6). These studies are mainly predicting a signi�cant �sh stock
reduction (~ 30% for RCP4.5 and ~ 40% for RCP8.5; van Leeuwen et al. 2022) together with a contraction
of the distributional range of commercial species, with a general biogeographical displacement towards
North European coasts (Ben Lamine et al. 2022). This is in agreement with studies forecasting the shifts
in suitable spawning habitats in all seasons to higher latitudes caused by warming and decreased
plankton productivity affecting sardine stocks (Lima et al. 2022). Higher temperatures are expected to
boost the suitable areas for invasive species, even in protected areas, predominantly in the Eastern
Mediterranean and to a lesser extent in the South Adriatic Sea and off South-West Italy (D’Amen and
Azzurro 2020). For example, suitable conditions for the lion�sh, Pterois miles, are likely to expand to the
Northern and colder areas even under mild warming scenarios (Loya-Cancino et al. 2023). Ocean
warming might slow down the deep overturning circulation, affecting the strati�cation of the water
column and thus the nutrient supply and primary production which are projected to impact some species
in additive (sardines) or synergistic ways (anchovy, mackerel) (van Leeuwen et al. 2022). More severe
risks are projected by other studies (n = 3), predicting a signi�cant loss of climatically suitable habitats
for endemic species (Albouy et al. 2013) with climate-related local extinctions of the most harvested
small pelagic species in Europe, mainly in the South-Eastern Mediterranean (Schickele et al. 2020), and a
considerable expansion of Pterois miles towards new areas (Dimitriadis et al. 2020). In contrast, other
studies (n = 4) indicate only undetectable to moderate risks. These studies mostly predict an increase of
suitable areas/gains (e.g., for anchovy spawning habitats), total biomass, total length at catch, total
catch with some spatial and inter-species contracts with increases mainly projected in the Eastern
Mediterranean and the Iberian Peninsula (Moullec et al. 2019; Maynou et al. 2020; Moltó et al. 2021;
Lima et al. 2022) in parallel with potential distribution shifts northward (e.g., round sardinella; Maynou et
al. 2020).

Seaweeds

Risks here are projected to be undetectable to high below ∆SST = + 0.8°C (low con�dence) and high to
very high (low con�dence) above ∆SST = + 0.8°C (n = 2; Fig. 5). These studies identify ocean warming
(Samperio-Ramos et al. 2015; Buonomo et al. 2018), followed by invasive species (Samperio-Ramos et
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al. 2015) as main drivers (Fig. 6). The main risks include diversity loss (e.g., of Cystoseira macroalgae)
due to habitat retractions and genetic erosion, mostly in the Eastern Mediterranean Sea (Buonomo et al.
2018). This loss could have cascading effects on the whole ecosystem and its services (Thrush et al.
2011; Araújo et al. 2016). Projections include triggering high abundance of invasive seaweeds in coastal
areas (e.g., Acrothamnion preissii, Lophocladoa lallemandii and Caulerpa cylindracea), accelerating the
decline of already threatened native habitats, such as seagrasses (Marbà and Duarte 2010) and
gorgonians (Coma et al. 2009). This process can be attributed to the reduction in biotic resistance of
native communities to the arrival of non-indigenous seaweeds (Samperio-Ramos et al. 2015). Another
study, not taken into consideration in our risk assessment as it has low con�dence level, re�ects more
complex projections showing that climate-induced range shifts may be less drastic and thus most
species are unlikely to completely disappear (e.g., Padina pavonica, Halopteris scoparia; Gamliel et al.
2020). These results suggest marked differences in warming sensitivity within and between benthic
communities (Bennett et al. 2022).

Megafauna

Risks are projected to be undetectable to moderate below ∆SST = + 3.1°C (low con�dence) (n = 3; Fig. 5).
These studies are overwhelmingly stating ocean warming as the main driver (Almpanidou et al. 2019;
Chatzimentor et al. 2021; Albouy et al. 2020; Fig. 6). The main risks include a disproportionate loss of
functional diversity (Albouy et al. 2020), an increase in the daily energy expenditure and thus an
alteration of the physiological functions of marine turtles (Almpanidou et al. 2019) with contractions of
their foraging space (Chatzimentor et al. 2021). There is low con�dence in the identi�cation of these
risks as foraging areas are likely to increase by up to 10%, mainly in neritic zones (Chatzimentor et al.
2021). Overall, megafauna-related projections are very limited in the Mediterranean. Already observed
changes include a poleward shift and an alteration of the migration timing for some cetaceans (van
Weelden et al. 2021). While expected risks encompass megafaunal range shifts for some species (such
as the westward shifts of loggerhead turtles; Mancino et al. 2022) and extinction for others (such as the
common dolphins Delphinus delphis; Santostasi et al. 2018). 21–31% of Mediterranean marine
ecoregion species have high climate risk (Chatzimentor et al. 2023), increasing the risk of extinction of
critical species even in protected areas. While �n whales can leave the Western Mediterranean Sea
through the Strait of Gibraltar, the 12 Hellenic Trench cetacean species (Frantzis et al. 2003) are
surrounded by much shallower seas that make it di�cult to leave (Grose et al. 2020). In addition,
Mediterranean-wide shifts in prey distribution and abundance driven by climate change and
anthropogenic disturbance is expected for the black angler�sh (Haubrock et al. 2020).

Coastal Ecosystems:

Sandy beaches and sand dunes

Risks are projected to be undetectable to high below ∆SST = + 0.8°C (low con�dence) and high to very
high (high con�dence) above ∆SST = + 0.8°C (Fig. 5). SLR is by far the dominant driver (Fig. 6) (Enríquez
et al. 2017; Monioudi et al. 2017; Rizzi et al. 2017; Sanuy et al. 2018; Varela et al. 2019; Antonioli et al.
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2020; Anzidei et al. 2021; Thiéblemont et al. 2021; Rizzo et al. 2022; Filippaki et al. 2023; Vandelli et al.
2023; Monioudi et al., 2023). Other drivers include storm surges (Rizzi et al. 2017; Monioudi et al., 2023),
changing precipitation and warming (Prisco et al. 2013) (Fig. 6). The major risks of SLR are shoreline
retreat and coastal inundation. Modeling results project very severe erosion and �oodings from as early
as mid-century particularly under the combined effects of the projected mean SLR and storm surges
(Enríquez et al. 2017; Monioudi et al. 2017; Sanuy et al. 2018; Antonioli et al. 2020; Anzidei et al. 2021;
Thiéblemont et al. 2021; Rizzo et al. 2022; Vandelli et al. 2023; Monioudi et al., 2023). Due to their low
elevation and proximity to the sea, sandy beaches are at higher risk (Rizzi et al. 2017; Sharaan and Udo
2020; Filippaki et al. 2023; Sánchez-Artús et al. 2023) compared to dunes (Sanuy et al. 2018). The
transition dune habitat is projected to remain stable, although mobile and �xed dune habitats are
projected to lose most of their actual distribution, the latter being more sensitive to climate change
effects. The partial or total destruction of sandy beaches and dune habitats seriously threatens species
and biodiversity hampering these ecosystems’ resilience (Scapini et al. 2019). For example, a SLR of 1.2
m is expected to cause a loss of 67.3% and 59.1% for loggerhead and green turtle nesting sites
respectively (Varela et al. 2019). The speci�city of sandy beaches as narrow ecotones between sea and
land may be lost, adversely affecting �ne-tuned macrofaunal adaptations and therefore ecosystem
functioning (Scapini et al., 2019).

Rocky coasts

Risks are projected to be undetectable to moderate below ∆SST = + 0.8°C (low con�dence) and
moderate to high (medium con�dence) above ∆SST = + 0.8°C (Fig. 5). SLR is the major driver (Fig. 6)
(Antonioli et al. 2020; Rilov et al. 2021; Bonello et al. 2022; Lo Presti et al. 2022; Rizzo et al. 2022). Other
drivers are ocean warming (Bonello et al. 2022) and acidi�cation (Milazzo et al. 2014) (Fig. 6). Compared
to other coastal ecosystems, SLR-related risks seem to be lower for ∆SST above + 0.8°C, mostly
because the elevation of these areas is a critical factor (Antonioli et al. 2020; Rizzo et al. 2022).
Nevertheless, some of these habitats may undergo serious deterioration under the projected SLR for
mid- and end of the century, such as in North-Eastern Sicily that may undergo gravity collapse events (Lo
Presti et al. 2022). The deterioration and inundation of these habitats will affect the resident populations,
as biodiversity is shown to be much lower on very shallow, permanently submerged, horizontal rocky
surfaces compared to the one on intertidal reef platforms (Rilov et al. 2021). The rich intertidal
community will shift, when permanently submerged, either to a very different but still rich community
when protected from grazing or to a much poorer turf community when exposed, and the reef
community net production will drastically drop (Rilov et al. 2021). Also, insects are expected to be
impacted. For instance, the splashpool resident culicid Acartomyia mariae will be affected by SLR and
warming since its life cycle is highly dependent on temperature and salinity (Bonello et al. 2022), posing
a sanitary risk with implications for human activities and subsequent coastal management. Ocean
acidi�cation will also impair vermetid reef recruitment, especially the pH sensitive gastropods. Unless
CO2 emissions are reduced and conservation measures taken, results suggest that these reefs are in
danger of extinction (Milazzo et al. 2014). High risks are projected for the occurrence of patellids in 2050
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and 2100 (Freitas et al. 2023), as these species are predicted to decline in the South and progressively
expand their ranges further North.

Coastal wetlands

Risks here are projected to be high to very high above ∆SST = + 0.8°C (high con�dence) (n = 6; Fig. 5),
mainly affected by SLR (Rizzi et al. 2016; 2017; Mastrocicco et al. 2019; Antonioli et al. 2020; Estrela-
Segrelles et al. 2021) (Fig. 6). Other drivers are related to changing precipitation (Ramírez et al. 2018;
Lefebvre et al. 2019), seawater intrusion (Mastrocicco et al. 2019), and storm surges (Rizzi et al. 2017)
(Fig. 6). In general, more exposure to coastal hazardous events are projected, affecting not only wetlands
but also the densely inhabited settlements and infrastructures in their vicinity (Antonioli et al. 2020).
These risks are predicted to negatively affect waterbird communities, mainly the ones residing and
breeding in these wetlands as environmental suitability will decline (Ramírez et al. 2018). On the other
hand, small wading birds may bene�t from changing conditions, mainly the ones who use the affected
wetlands for wintering or stopover, as most wintering species use muddy areas and open water to forage
and will likely bene�t from increasing water salinity and the decline in aquatic vegetation (Ramírez et al.
2018). Other studies project that increased salt and sul�de concentrations may induce physiological
stress in wetland biota and ultimately result in signi�cant shifts in wetland communities and their
associated ecosystem functions (Herbert et al. 2015). For example, salinity changes can signi�cantly
alter crustacean communities hatching from the resting egg bank and negatively affect the
establishment of large branchiopods and copepods. This might shift the whole wetland regime from a
zooplankton-rich clear-water state to a zooplankton-poor turbid state, altering the structure and diversity
of invertebrate communities, including some keystone species (Waterkeyn et al. 2010).

Coastal lagoons and deltas

Risks here are projected to be high to very high starting from a ∆SST = + 1.0°C (high con�dence) (n = 9;
Fig. 5). SLR is by far the major driver affecting these ecosystems (Ben Haj et al. 2009; Shaltout et al.
2015; Antonioli et al. 2020; Lionello et al. 2021; Filippaki et al. 2023) (Fig. 5). Other drivers include
changing precipitation (La Jeunesse et al. 2015), terrestrial runoff (La Jeunesse et al. 2015), nutrient
enrichment (Lloret et al. 2008), and marine heat waves (Soulié et al. 2023) (Fig. 6). The predicted
impacts include a remarkable increase of SLR (e.g., up to 160% in 2100 in the Northern Adriatic; Lionello
et al. 2021), causing �oodings (Shaltout et al. 2015) and loss of important habitats nesting beaches, i.e.,
for the loggerhead (Caretta caretta), such as in the Egyptian coasts/Nile delta region (Ben Haj et al.
2009). These effects are expected to have signi�cant environmental and socioeconomic consequences,
as many lagoons and deltas will be highly vulnerable (Filippaki et al. 2023). In addition, risks include drier
soil moisture conditions, negative effects on water quality comprising anoxic crises, intensi�ed
terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity,
with unknown consequences for the phytoplankton community (La Jeunesse et al. 2015). These latter
are expected to witness an altered natural succession due to heat waves, as cyanobacteria and
chlorophytes are favored at the expense of haptophytes (Soulié et al. 2023). Also, it is predicted that
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Caulerpa prolifera, that is signi�cantly uptaking nutrients avoiding thus the occurrence of high
phytoplankton densities, will be negatively affected, worsening eutrophication (Lloret et al. 2008).
Otherwise, high to very high risks with low con�dence level include more coastal hazards, causing
signi�cant loss of coastal lands (Antonioli et al. 2020) and continuous shoreline erosion (Abd-Elhamid et
al. 2023). Undetectable to moderate risks attributed to SLR are also expected in speci�c areas such as
the Ebro Delta (Sánchez-Arcilla et al. 2008) with relatively higher rates in the Eastern Mediterranean Sea
(e.g., Egypt) compared to its Western part (Sharaan and Udo 2020). Moderate risks are forecasted for
macroinvertebrates in coastal lagoons due to ocean acidi�cation (Range et al. 2014). Other studies are
expecting less drastic effects on the zooplankton community, with even positive in�uence, although their
structure will be subjected to changing competitive interactions (Simantiris and Avlonitis 2023). Other
studies (not included in our analysis as they do not present projections) show site-speci�c impact
combinations (Day et al. 2019). In addition to the increasing vulnerability due to SLR (Frihy and El-Sayed
2013), an alteration of phytoplankton blooms is projected, as shallow coastal ecosystems shift towards
famine or feast dynamics (Deininger et al. 2016). Human activities are expected to worsen the
projections due to natural habitat destruction and alteration of the hydrological cycle (e.g., Cardoch et al.
2002).

Salt marshes

Risks are projected to be high to very high above ∆SST = + 0.8°C (medium con�dence) (n = 5; Fig. 5), with
SLR as the main driver (Antonioli et al. 2020; Anzidei et al. 2021; Scardino et al. 2022) (Fig. 5). Other
drivers also include atmospheric warming, precipitation change (Strain et al. 2017), and invasive species
(Borges et al. 2021) (Fig. 6). The risk of SLR was mostly assessed along the Italian coasts (Sicily and
coastal areas of the Adriatic Sea; Antonioli et al. 2020; Anzidei et al. 2021; Scardino et al. 2022).
Projections show important �ooding in mid- and end of the century resulting in habitat submersion. This
change is expected to be accelerated by natural and anthropogenic land subsidence in some areas
(Anzidei et al. 2021; Scardino et al. 2022). Risk maps for other low-lying areas, involving several islands
(Sardinia, Elba Island in Italy; Corsica in France; Cyprus; Kerkennah in Tunisia; Majorca and Ibiza in
Spain), provide an estimated potential land loss of about 150 km2 for the RCP8.5 (Antonioli et al. 2020).
The physical destruction of such habitats, together with other drivers, such as air warming and droughts,
may threaten the structure and function of salt marshes and trigger species shifts. In the North Adriatic
Sea, the combined effects of inundation, increased temperature and decreased precipitation result in
rapid species composition changes from perennial to annual (Strain et al. 2017). This should be regarded
as an early warning sign of a deteriorating ecosystem (O’Leary et al. 2017). Additionally, the
Mediterranean will potentially experience a sharp drop in the richness of Spartina spp. With higher
potential for invader species of Spartina spp. (e.g., S. anglica) to expand northward (Borges et al. 2021).

Coastal aquifers

Risks here are projected to be high to very high starting from a ∆SST = + 0.8°C (medium con�dence) (n = 
7; Fig. 5). It is noteworthy that the same number of studies (n = 7) found moderate to high risk, but with
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low con�dence level, which is why we assigned the �rst category to this ecosystem. The studies
considered in this risk assessment (high to very high risk) clearly show that SLR is the main driver
(Carneiro et al. 2010; Sefelnasr and Sherif 2014; Romanazzi et al. 2015; Al-Najjar et al. 2022; Schorpp et
al. 2023) (Fig. 6). Other drivers include seawater intrusion (Romanazzi et al. 2015; Lyra and Loukas 2023;
Schorpp et al. 2023), decrease in precipitations (García-Ruiz et al. 2011), and air warming (Stigter et al.
2014) (Fig. 5). The main projected risks include decreasing trends in groundwater levels, mostly in the
recharge zone (Stigter et al. 2014) with growing effects of seawater intrusion (Romanazzi et al. 2015;
Lyra and Loukas 2023; Schorpp et al. 2023), considerable changes in �ow velocity, the drainage of the
aquifer upstream areas (Carneiro et al. 2010), and losses in groundwater resources (Sefelnasr and Sherif
2014). In addition, the decrease in precipitations is expected to increase groundwater consumption,
exacerbating the withdrawal trend (Al-Najjar et al. 2022). Other studies project moderate to high risks (n 
= 7), with a groundwater recharge decreasing trend as a response to changes in precipitation (El Asri et
al. 2022). This variability in groundwater recharge posed by the high variability of precipitation will
increase the aquifer’s deterioration potential of both its quantity and quality status, and clearly stating
that seawater intrusion might have stronger impacts compared to SLR (Pisinaras et al. 2021). Other
studies (not included in this risk assessment as they do not present projections), project the submersion
of large areas in the coastal zone (e.g., the Nile Delta) and a landward shift of coastline by several
kilometers (Sherif et al., 2014), showing negative effects of saline conditions on survival and
reproduction of soil invertebrate species (Owojori et al. 2008, 2014) or on avoidance behavior of
earthworms (Bencherif et al. 2015).

IV. Conclusions
In order to determine the projected future risks in the Mediterranean Sea and its marine and coastal
ecosystems, a systematic risk assessment exercise has been conducted relying on the available
literature and based on the IPCC methodology. Our results re�ect a diversity of responses of key habitats
and ecosystems in the Mediterranean Sea, towards various climate change risks under multiple climate
change scenarios. When ∆SST exceeds 0.8°C relative to 1976–2005 period, risks are projected to be
high to very high (low to medium con�dence) for seagrass meadows and seaweeds, and moderate to
high for �sh (when ∆SST exceeds 0.8°C). Epipelagic ecosystems are predicted to be more resilient as
the projected risks vary from undetectable to moderate. For coralligenous habitats, moderate to high
risks are projected when ∆SST exceeds 3.1°C (medium con�dence). Moreover, our assessment
evidences that all considered coastal ecosystems are expected to experience high to very high risks
when ∆SST exceeds 0.8°C (medium to high con�dence level), except for rocky coasts that are predicted
to be more resilient as their risk transition is expected to vary from moderate to high (medium
con�dence).

Similar to the global ocean, all Mediterranean coastal ecosystems are projected to face higher risk levels
than open marine ecosystems. The remarkably higher projected vulnerability of these ecosystems might
be related to the rates of climate change in the Mediterranean that exceed global trends for most
variables. However, climate change-related stressors seem to impact marine and coastal ecosystems
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differently than in the global ocean, as epipelagic and coralligenous ecosystems are expected to be more
resilient while seagrass meadows and seaweed are predicted to have higher risks.

Our meta-analysis also shows a remarkable gap in the number of studies dedicated to project the future
response of key ecosystems and biological groups, such as deep-sea habitats, megafaunal populations,
seaweeds, and salt marshes. This clearly demonstrates the need to address gaps in modeling and
projections’ studies targeting these critical ecosystems to better understand their future behavior and
e�ciently take measures of protection and mitigation. Furthermore, our assessment demonstrates a
signi�cant geographical imbalance as most studies are Euro-centric, focusing predominantly on the
Northern and Western Sub-basins of the Mediterranean Sea.

This study ultimately highlights the main risks projected for key open marine and coastal ecosystems in
the short- and long-term, under various climate change scenarios, and can be used as a baseline to
guide researchers on gaps and areas where the uncertainty is high and need to be urgently addressed,
and policymakers on the ecosystems that need urgent measures to e�ciently improve their resilience.
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Footnotes
1. 0.13°C should be added to obtain the SST warming level with respect to preindustrial (see section

S4)
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Figure 1

Schematic illustration of i) the different open marine and coastal ecosystems for which we assessed risk
levels, and ii) the main drivers taken into consideration in this assessment.
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Figure 2

Work-�ow diagram resuming the systematic approach used, from the literature assessment to the
assignment of risks and con�dence levels.
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Figure 3

The geographic locations of the studies taken into consideration in the risk assessment (by country of
the �rst author) and their study sites.
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Figure 4

Types of the studies assessed in this paper.
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Figure 5

Risk assessment diagrams for open marine and coastal ecosystems in relation to observed and
projected climate impacts on ecosystem structure, functioning and biodiversity. N is the total number of
studies compiled, and n is the total number of studies taken into consideration in the bar. See
Supplementary Materials S3 and S4 for details on the conversion of ΔGMST, Mediterranean ΔSST and
ΔpH with respect to the reference and pre-industrial periods.
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Figure 6

Schematic illustration of the main drivers assigned to the burning ember risk assessment for every
habitat in marine and coastal ecosystems. The icons are the same as the ones used in Figure 1. The
diameter of the circle indicates the number of studies pointing out a speci�c driver.
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