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S1.	Details	of	model	development		
S1.1. Overview of the modeling process 

The reactive transport model (RTM), machine learning, and Monte Carlo were employed to assess 

the importance of each underlying process in global preservation rates of DOC (or MOC formation 

rates) in marine sediment. The flowchart of the model deployment is illustrated in Fig. S3. Once 

the RTM was developed and the proposed processes were incorporated and validated, the RTM 

was used in a Monte Carlo procedure (Fig. S3, Stage 1) in which the model was run iteratively for 

1000 to 2000 times using randomly varied input parameters to obtain output indicators (i.e., the 

preservation rates for different mineral-phase DOC (MOC) fractions). These inputs-outputs 

datasets were then fed into a previously developed artificial neural network (ANN) code1 to assess 

the importance of each input parameter (Fig. S3, Stage 2). The role of different processes in MOC 

formation was determined based on the importance of their relevant model input parameters after 

grouping the parameters into six categories standing for six underlying processes, including DOC 

hydrolysis (cascaded breakdown of various DOC pools, main text Fig. 1), mixing (a transport 

mechanism related to bio-irrigation and bioturbation), DOC remineralization (transformation of 

DOC or GPS species to DIC), equilibrium adsorption, kinetic sorption, and geopolymerization as 

shown in Tables S1, S8, and S9. In doing so, the maximum importance of one of the parameters 

in each group of parameters was selected as the importance of that group of parameters. 

Alternatively, we summed up the importance of all parameters in each group and divided it by the 

number of parameters in that group to cancel the role of the parameter numbers in determining the 

importance of each process. We compared the final results based on this weighted average method 

with those obtained based on the maximum of each group and found they are similar, with a 

correlation coefficient of 0.926. Herein, we only report the results based on the maximum 

importance in each category instead of the weighted average of each category.  

We obtain the ranges and statistical distributions from global grid data for six of the input 

parameters (including sediment accumulation rate, water depth, sediment surface porosity, and 

sediment-water interface concentrations of POC, O2, and NO3, Tables S1, S8, Figs. S1, S2) and 

by compiling data from 10 previous studies containing field data and modeling results. These 

studies and their data are summarized in Table S2. The statistics obtained for these data, e.g., lower 

and upper fences, are listed in Table S1 and were used for selecting the ranges for most of the other 
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unknown parameters. The ranges for new parameters were also either taken from the literature or 

from fitting the model to literature field data, as will be discussed later in Section S1.4.  

S1.2. Details of mechanistically resolved reactive transport model  

S1.2.1. Proposed conceptual model 
Similar to the multi-G model2, here we consider a series of POC pools that are hydrolyzed at 

different rates ranging from those of labile to least-reactive species as illustrated in main text Fig. 

1. Unlike previous models of DOC (main text Fig. 1A)3,4, however, in which each POC pool is 

hydrolyzed to a counterpart DOC pool, we assume that the hydrolysis of all POC pools results in 

a single DOC pool (DOC1) which has the highest molecular weight (MW) and lowest lability in 

terms of the potential for direct remineralization to DIC among DOC pools (main text Fig. 1B). 

This DOC pool then breaks down to more labile DOC pools with lower MW (DOC2 to DOCm) in 

a cascaded manner similar to the recently proposed model for DOC hydrolysis in the ocean water 

column5, while each of these DOC components can also be directly remineralized to dissolved 

inorganic carbon (DIC) with rates increasing from DOC1 towards the last pool (DOCm). 

Geopolymerized organic substances (i.e., GPS-DOC, hereafter simply GPS) start to form from 

DOCm in an opposite sequential process as a result of condensation, i.e., in this process, MW 

increases and lability decreases from GPS1 towards GPSp. The last component, GPSp, eventually 

contributes to the least-reactive DOC pool (lrDOC). Similar to DOC pools, all GPS pools can be 

directly remineralized to DIC but with reaction rates decreasing from GPS1 towards GPSp.   

The DOC1 pool is heterogeneous and in addition to its contribution to DOC2, it contains a 

fraction of intrinsically undegradable DOC, which is freshly liberated from POC because it has 

labile bonds within the bulk POC but low intrinsic reactivity when released into the pore-water as 

colloidal or dissolved phases6-8. We, therefore, consider a pathway through which DOC1 transfers 

directly to the lrDOC pool while DOC1 also acts as a source for lower MW DOC and subsequent 

GPS components. Our model decouples DOC hydrolysis from DOC remineralization and assumes 

that while hydrolysis leads to more reminerlizable DOC and decreases MW, condensation reaction 

(geopolymerization) leads to less reminerlizable DOC and increased MW. Smallest MW DOC 

fractions are at the center of this cascade, giving rise to the potential preservation of this small-

MW fraction over a long time due to other processes such as dilution in the water column9,10 or 

sorption in sediment pore-waters11-13. It should also be noted that size-reactivity continuum 
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observations6-8, where with increasingly lower MW, DOC displays lower reactivity, are unlikely 

to be due to the hydrolysis process. Recent research indicates that these observations can be 

explained by other processes, such as the dilution hypothesis9,10, where lower MW and thus smaller 

molecules have higher diffusivity, and can thus dilute more easily in seawater and hence escape 

microbial degradation (see Eq. S2114). In this way, these molecules persist for longer in seawater, 

and it is observed that lower MW is correlated with lower reactivity and longer age. All DOC and 

GPS constituents in our model can interact with mineral surfaces through a two-site model for 

equilibrium adsorption and kinetic sorption/desorption. Although sorption in river sediments has 

been considered before15,16, our model is the first to consider kinetic and equilibrium sorption 

together in a marine sediment early diagenesis model, and we also consider geopolymerization 

and sequential hydrolysis in this model for the first time. There might still be other processes that 

can play a role in OC preservation, e.g., sulfurization, which can render OC unreactive, but we 

have not considered them in the present study as they are mostly environment-specific17. 

S1.2.2. Mathematical model description and parametrization 
A recently developed RTM18 was modified to include DOC and GPS components and the 

processes of hydrolysis, equilibrium adsorption, kinetic sorption, and geopolymerization. The final 

model considers all common early diagenesis reactions for different compounds including 

dissolved species (O2, SO4, NH4, NO3, DIC, H2S, CH4, Fe2+, Mn2+, DOC1 to DOCm, GPS1 to GPSp, 

and lrDOC) and particulate species (highly reactive iron oxide (Fe(OH)3HR), moderately reactive 

iron oxide (Fe(OH)3MR), non-reactive iron oxide (Fe(OH)3UR), MnO2, FeS, FeS2, S0, and POC1 to 

POCn) as listed in Table S10. We also considered similar reactions for mineral organic carbon 

(MOC) pools which are formed by kinetic sorption of DOC or GPS to mineral phases through 

occlusion into, or co-precipitation with mineral phases (see also Section S1.7). For the sake of 

simplicity, however, and reducing the overall number of parameters, we assumed that MOC 

species are non-reactive. Although our RTM code could consider a variable number of POC, DOC 

and GPS components, in order to gain a reasonable model runtime and to reduce the number of 

parameters, herein, we considered seven species for POC, four species for DOC and two species 

for GPS in addition to lrDOC. The selected number of species is not expected to make a noticeable 

impact on the model results as we investigated the effect of increasing these numbers on the model 

outputs. In doing so, we used the model at the step where DOC species were just added similar to 

the model of Burdige et al.4,19 (Step 1, Table S6). We increased the number of DOC species from 
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3 to 9 by replacing the third DOC species, DOC3, as an example, with 7 new DOC species. In this 

way, we divided the degradation rate of DOC3, i.e., kDOC3, by 7 (kDOC3 /7) and assigned this value 

to this new DOC species and the 6 other new species. used this for the new DOC3 species and the 

6 other new DOC species.  We also divided the hydrolysis rate of DOC3 by 7 and used this for the 

new DOC3 species and the 6 other new DOC species. The result shown in Fig. S17 and S18 

demonstrate that the addition of multiple new DOC species does not make a discernible change to 

the concentration profile of any other species considered in the model. Especially, the 

concentration profiles of newly added sub-pools are the same as the original DOC3 pool since 

different pools operate serially5,20-22 and we specified the same degradation/hydrolysis rates for 

different subpools by dividing the rate of the original pool. Therefore, in framing the conceptual 

model, rather than the number of species considered, the important point mainly is consistency 

with previous literature23 and consideration of other modeling aspects, e.g., consistency with the 

conceptual model to make the most biogeochemical sense, smooth transition of rates across 

different species for the convenience of the numerical solution and minimizing the number of 

unknown model parameters. It should be mentioned that here to compare the number of pools 

considered in our model with a larger potential number of pools, we used a similar 

parameterization for the two cases so that we did not need to fit the model to field data again for 

the new parameterization as that could make the comparison of the model performance for 

different numbers of pools complex. 

It should be noted that in our model, MOC is different from POC by origin, i.e., POC originates 

from the water column whilst MOC is formed in the sediments via kinetic sorption of DOC to 

minerals. Current field measurements are mostly based on total OC, which is equal to POC+MOC 

in our model, although some techniques such as bond-strength characterization may be useful 

approaches to distinguish MOC from POC in field measurements and thus improve our 

understanding of different classes of OC in nature11. 

Considerations of equilibrium adsorption, kinetic sorption, hydrolysis and geopolymerization are 

described below, and the list of all other reactions in the model is given in Table S10.  

S1.2.3. Incorporation of equilibrium adsorption and kinetic sorption  
We considered a two-site equilibrium-kinetic model24,25 for (i) equilibrium adsorption of DOC 

onto mineral surfaces and (ii) kinetic retention/dissociation of DOC within the mineral matrix. 
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Despite the frequent use of a linear equilibrium adsorption expression in early diagenesis models26 

and riverine sediments39,40, developing a kinetic expression for interacting dissolved species with 

minerals in the context of marine early diagenesis has not been considered to date. One complexity 

lies in tracking the kinetically associated dissolved species with the mineral phase, which itself 

undergoes advection (burial), bioturbation and reaction. We borrowed the basic concept of colloid-

mediated transport of sorbing contaminants from the context of groundwater modeling27 to 

develop a kinetic forward-backwards mass transfer model in marine sediment where the minerals 

are also transported in addition to dissolved species. 

In porous media systems where both dissolved and particulate phases are transported, the 

kinetic sorption may be accounted for by considering six types of concentrations. These include 

the concentration of each dissolved species in the aqueous phase (pore water), Cd, the concentration 

of each dissolved species in the solid phase of porous media, Sd, the concentration of each 

particulate species in the aqueous phase, Cp, the concentration of each particulate species in the 

solid phase of porous media, Sp, the concentration of each dissolved species sorbed to particles in 

the aqueous phase, Cap, and the concentration of each dissolved species sorbed to particles in the 

solid phase, Sap. For marine sediments, one can assume that the particulate phase is attached to the 

porous media, which itself is transporting, and thus Cp can be merged with Cap and consequently 

Sp can be combined with Cp too. Thus, the six types of concentrations are reduced to three for 

marine sediment porous media: Cd, Cp and Sd. This means that three sets of governing equations 

are required to model kinetic sorption at the kinetic sites as follows:  

1. The governing equation for dissolved species: 

𝜑
𝜕𝐶!" 	
𝜕t =

	𝜕
𝜕𝑧 (𝜑𝐷

𝜕𝐶!" 	
𝜕𝑧 * −

𝜕,𝜑𝑣!𝐶!".
𝜕𝑧 + 𝜑𝛼 1𝐶!"(0) − 𝐶!"(𝑍)6 + 𝜑7𝑅!",$

$%&

+ 𝜑𝑅'()!* − 𝜑	𝑘*+,-.,"𝐶!" + 𝜀𝜌*𝑘*+,-/"𝑆!" 

(S1) 

2. The governing equation for particulate species: 

𝜌*𝜀
∂𝐶-" 	
𝜕t = 𝜌*

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝐶-" 	
𝜕𝑧 * − 𝜌*

𝜕
𝜕𝑧 1𝜀𝑣-𝐶-"6 + 𝜌*𝜀𝑅-"  

(S2) 

3. The governing equation for mineral phase OC resulting from the kinetically sorbed fraction 

of dissolved species:  
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𝜌*𝜀
𝜕𝑆!"
𝜕𝑡 = 𝜌*

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝑆!" 	
𝜕𝑧 * − 𝜌*

𝜕
𝜕𝑧 ,𝜀𝑣-𝑆!". + 𝜌*𝜀7𝑅0!",$

$%&

+ 𝜑	𝑘*+,-."𝐶!"

− 𝜌*𝜀𝑘*+,-/"𝑆!" 

(S3) 

Besides, to account for the equilibrium adsorption of dissolved species, another set of 

equations may be required, which is given below, although this can be combined with the above 

equations as will be described later:  

𝜌*𝜀
𝜕𝑆𝑒!"
𝜕𝑡 = 𝜌*

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝑆𝑒!" 	
𝜕𝑧 * − 𝜌*

𝜕,𝜀𝑣-𝑆𝑒!".
𝜕𝑧 + 𝜌*𝜀7𝑅'(0!",$

$%&

+ 𝜌*𝜀𝑅0	'()!*	 (S4) 

where Cdi is the concentration of dissolved species i (mM or µmol.cm-3 of pore water), Cpi is the 

concentration of particulate species i (g.g-1), Sdi is the concentration of dissolved species i 

kinetically sorbed to sediment minerals (µmol.g-1 of solid sediments), 𝜑 is porosity, 𝜀 is the solid 

fraction of sediments which is equal to 1−𝜑, vd and vp are the burial velocities of pore-water and 

particulate species (cm.yr–1), 𝜌* is the dry density of sediments (g.cm–3), Di is the apparent 

diffusion coefficient of dissolved species i (cm2.yr–1), 𝛼 is the bio-irrigation coefficient (cm2.yr–1), 

Db is the bioturbation coefficient (cm2.yr–1), z is the sediment depth with respect to the coordinate 

system located at the sediment-water interface (cm), Rp, Rd, Rsd, and REqsd stand for reaction rates 

of particulate, dissolved, kinetically sorbed, and adsorbed species (yr–1, µmol.cm–3.yr–1, µmol.g–

1.yr–1, and µmol.g–1.yr–1), respectively, which are temporally and spatially variable, ksorpf is the 

forward kinetic sorption rate coefficient (yr–1), and ksorpb is the backward kinetic desorption rate 

coefficient (yr–1). REqads and RsEqads are exchange rates for dissolved and adsorbed (equilibrium) 

phase equations (µmol.cm–3.yr–1 and µmol.g–1.yr–1, respectively). The unit of every term in Eqs. 

(S1) and (S3) is µmol cm-3.yr-1 and in Eq. (S2) is gr.cm-3.yr-1.  

Considering the linear isotherm model, 𝑆𝑒!" = 𝐾!"𝐶!", where 𝐾!" is the distribution or partitioning 

coefficient (cm3.g–1), Eq. (S4) is then rewritten as26,28: 

𝜌*𝜀𝐾!"
𝜕𝐶!"
𝜕𝑡 = 𝜌*𝐾!"

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝐶!" 	
𝜕𝑧 * − 𝜌*𝐾!"

𝜕,𝜀𝑣-𝐶!".
𝜕𝑧 + 𝜌*𝜀7𝑅'(0!",$

$%&

+ 𝜌*𝜀𝑅0	'()!* 

(S5) 

The following mass balance expression may be used to combine Eqs. (S1) and (S5), Ref.28: 

𝑅0	'()!* =
−𝜑	
𝜀𝜌*

𝑅'()!* (S6) 
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Since the equilibrium adsorbed phase is in fast exchange with the dissolved phase, we assume that 

no reaction is considered for the equilibrium adsorbed phase (∑ 𝑅'(0!",$$%& = 0). Substituting Eqs. 

(S1) and (S5) into Eq. (S6), the governing equation for dissolved species is: 

𝜑
𝜕𝐶!" 	
𝜕t + 𝜌*𝜀𝐾!"

𝜕𝐶!"
𝜕𝑡

=
	𝜕
𝜕𝑧 (𝜑𝐷

𝜕𝐶!" 	
𝜕𝑧 * + 𝜌*𝐾!"

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝐶!" 	
𝜕𝑧 * −

𝜕,𝜑𝑣!𝐶!".
𝜕𝑧

− 𝜌*𝐾!"
𝜕,𝜀𝑣-𝐶!".

𝜕𝑧 + 𝜑𝛼 1𝐶!"(0) − 𝐶!"(𝑍)6 + 𝜑7𝑅!",$
$%&

− 𝜑	𝑘*+,-."𝐶!" + 𝜀𝜌*𝑘*+,-/"𝑆!" 

(S7) 

 

which can be rearranged as: 

,𝜑 + 𝜌*𝜀𝐾!".
𝜕𝐶!"
𝜕𝑡

=
	𝜕
𝜕𝑧 ((𝜑𝐷 + 𝜌*𝜀𝐾!"𝐷/)

𝜕𝐶!" 	
𝜕𝑧 * −

	𝜕
𝜕𝑧 1,𝜑𝑣! + 𝜌*𝜀𝐾!"𝑣-.𝐶!"6

+ 𝜑𝛼 1𝐶!"(0) − 𝐶!"(𝑍)6 + 𝜑7𝑅!",$
$%&

− 𝜑	𝑘*+,-."𝐶!"

+ 𝜀𝜌*𝑘*+,-/"𝑆!" 

(S8) 

or can be written in an expanded form as:  

,𝜑 + 𝜌*𝜀𝐾!".
𝜕𝐶!"
𝜕𝑡

= 𝜑𝐷
	𝜕
𝜕𝑧 (

𝜕𝐶!" 	
𝜕𝑧 * +

	𝜕
𝜕𝑧
(𝜑𝐷)

𝜕𝐶!" 	
𝜕𝑧

+ 𝜌*𝐾!" B𝜀𝐷/
	𝜕
𝜕𝑧 (

𝜕𝐶!" 	
𝜕𝑧 * +

	𝜕
𝜕𝑧
(𝜀𝐷/)

𝜕𝐶!" 	
𝜕𝑧 C

− B
	𝜕
𝜕𝑧 ,𝜑𝑣!)𝐶!". + 𝜑𝑣!

𝜕𝐶!" 	
𝜕𝑧 + 𝜌*𝐾!" (

	𝜕
𝜕𝑧 (𝜀𝑣-)𝐶!" + 𝜀𝑣-

𝜕𝐶!" 	
𝜕𝑧 *C

+ 𝜑𝛼 1𝐶!"(0) − 𝐶!"(𝑍)6 + 𝜑7𝑅!",$
$%&

− 𝜑	𝑘*+,-."𝐶!"

+ 𝜀𝜌*𝑘*+,-/"𝑆!" 

(S9) 
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The kinetic sorption rate (µmol.cm-3.yr-1) based on Eq. (S3) is: 

𝑅*+,-!" = 𝜑𝑘*+,-."𝐶!" (S10) 

The desorption rate (µmol.cm-3.yr-1) in Eq. (S3) is: 

𝑅!2*!" = 𝜀𝜌*	𝑘*+,-/"𝑆!" (S11) 

In the above formulation for kinetic sorption, we used ksorpf and ksorpb (yr-1), which are 

dependent on porosity and, therefore, the depth of sediments. These can be related to constant 

parameters as follows: 

𝑘*+,-" = 𝜑𝑘*+,-." (S12) 

𝐾𝑑*+,-" =
𝜑𝑘*+,-."
𝜀𝜌*	𝐾*+,-/"

 (S13) 

where ksorp is the mass transfer rate between the dissolved and kinetically sorbed phases to minerals 

(MOC pools) (yr-1) and Kdsorp is the so-called distribution coefficient in the kinetic mass transfer 

expression (cm3.g–1). Accordingly, Eqs. (S3) and (S8) can be rewritten as: 

𝜌*𝜀
𝜕𝑆!"
𝜕𝑡 = 𝜌*

	𝜕
𝜕𝑧 (𝜀𝐷/

𝜕𝑆!" 	
𝜕𝑧 * − 𝜌*

𝜕
𝜕𝑧 ,𝜀𝑣-𝑆!". + 𝜌*𝜀7𝑅0!",$

$%&

+ 	𝑘*+,-"𝐶!"

−
𝑘*+,-"
𝐾𝑑*+,-"

𝑆!" 

(S14) 

 

,𝜑 + 𝜌*𝜀𝐾!".
𝜕𝐶!"
𝜕𝑡

=
	𝜕
𝜕𝑧 ((𝜑𝐷 + 𝜌*𝜀𝐾!"𝐷/)

𝜕𝐶!" 	
𝜕𝑧 * −

	𝜕
𝜕𝑧 1,𝜑𝑣! + 𝜌*𝜀𝐾!"𝑣-.𝐶!"6

+ 𝜑𝛼 1𝐶!"(0) − 𝐶!"(𝑍)6 + 𝜑7𝑅!",$
$%&

− 	𝑘*+,-"𝐶!" +
𝑘*+,-"
𝐾𝑑*+,-"

𝑆!" 

(S15) 

At very high ksorp values, the kinetic mass-transfer model should converge to an equilibrium 

model similar to the one we have used to describe the adsorption phenomenon24,29,30. We use this 

notion to validate the mathematical and numerical model developments for kinetic sorption and 

equilibrium adsorption.       

S1.2.4. Hydrolysis and geopolymerization model description 
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Hydrolysis is a stage of degradation where organic molecules are liberated from the bulk of POC 

and further undergo breakdown into smaller molecules in a sequential process31. We consider the 

first stage of the hydrolysis similar to the conventional first-order multi-G degradation model2 with 

a series of POC pools converting to a single DOC pool, DOC1, in parallel: 

E
∂𝐶-" 	
𝜕t F

34!,+54*"*
= 𝑅-" = 𝑘"𝐶-"  (S16) 

where ki is the hydrolysis rate constant, which was considered in a similar way to the degradation 

rate constants of POC in the continuum model following previous studies18,32-34. In the continuum 

model, a constant set of ki values is assumed with ranges that may cover those happening in nature 

(here assumed to be 10-8 to 102 yr-1). The POC arriving at the sediment surface is fractioned into a 

number of components corresponding to the number of ki values, and either the concentration or 

rain rate of each fraction is determined based on a gamma distribution34. Here we first considered 

14 classes with ki and fraction values following Ref.18, and then we selected every other class to 

match the number of POC species, which is selected as seven species in the present study. We then 

scale the fractions by the sum of the fractions of 14 classes, which is one, divided by the sum of 

the fractions of the maintained seven classes so that the sum of the fractions of the seven classes 

after scaling also becomes one. It should be noted that in the continuum approach, the number of 

classes does not affect the results as the fractions are sampled from a gamma distribution33,34. The 

continuum model introduces only two constant parameters related to the gamma distribution, 

including “aGam” which represents the average lifetime of more reactive components of the POC 

spectrum (yr) and “vGam” which is related to the shape of the gamma distribution (dimensionless)  

The sequential stage of the hydrolysis may be modeled using a consecutive (chain-reaction) first-

order reaction expression5,22: 

E𝜑
𝜕𝐶!" 	
𝜕t F

34!,+54*"*
= G𝜑7𝑅!",$

$%&

H

34!,+54*"*

= 𝜆678"9&𝐶!"9& 	− 𝜆678"𝐶!" (S17) 

where λDOCi is the conversion rate of DOCi to DOCi+1, and λDOCi-1 is the conversion rate of         

DOCi-1 to DOCi in yr-1.  

The same mathematical formula is assumed to describe geopolymerization20,21:  
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E𝜑
𝜕𝐶!" 	
𝜕t F

:2+-+54;2,"*<="+>
= G𝜑7𝑅!",$

$%&

H

:2+-+54;2,"*<="+>

= 𝜆:?0"9&𝐶!"9& 	− 𝜆:?0"𝐶!" 

(S18) 

where λGPSi is the conversion rate of GPSi to GPSi+1, and λGPSi-1 is the conversion rate of GPSi-1 to 

GPSi in yr-1. The influence of molecular weight variations across DOC and GPS pools (main text 

Fig. 1) is considered through the diffusion coefficients of these species and the influence of 

variations in lability across DOC and GPS pools is reflected in the thresholds of remineralization 

rates and conversion rates (λ values) of these components (Table S1). 

As described in the Proposed Conceptual Model Section in the main text (see also main text 

Fig. 1), we consider an additional pathway for the transfer between the first DOC pool (DOC1) 

and lrDOC pool which is also comprised of the last GPS pool (GPSP). This results in the following 

equations for the hydrolysis and/or geopolymerization reactions of the first DOC pool and lrDOC 

pools, respectively:  

E𝜑
𝜕𝐶!&	
𝜕t F

34!,+54*"*
= G𝜑7𝑅!&,$

$%&

H

34!,+54*"*

= 10@𝜌*
𝜀

𝜑. 𝐴𝑊78
7𝑅-&,$
$%&

	− 𝜆678&𝐶!& − 𝜆678&,𝐶!& 

(S19) 

E𝜑
𝜕𝐶!, 	
𝜕t F

34!,+54*"*
= G𝜑7𝑅!,,$

$%&

H

34!,+4*"*

= 𝜆:?0-9&𝐶!,9& + 𝜆678&,𝐶!& (S20) 

where AWOC is the molar mass of carbon (assumed 12 g.mol-1), λGPSp-1 is the conversion rate of 

GPSp-1 to lrDOC, and λDOC1r is the conversion rate of DOC1 to lrDOC, index r represents the most 

refractory pool among DOC and GPS pools (r = m+p, where m is the number of DOC pools and 

p is the number of GPS pools which is merged with lrDOC, main text Fig. 1).  

We assume that the decrease and increase of molecular weight (MW) across DOC and GPS 

pools, respectively, follow a linear trend with threshold values assumed to be in the range of 104 

Da down to 50 Da for DOC1 to DOCm, and from >50 Da (c.a. 3367 Da when two GPS pools are 

considered) to 104 for GPS1 to lrDOC4,20,35,36. Accordingly, in our current modeling, we used MWs 

of 10000, 6683.3, 3366.7, 50, 3366.7, 6683.3, and 10000 Da for DOC1, DOC2, DOC3, DOC4, 

GPS1, GPS2 and lrDOC, respectively. 
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Diffusion coefficients of DOC species were calculated based on the Stokes-Einstein equation 

following14:  

𝐷678" =
𝑅. T

6π.𝑁. 𝜂 . S
4π. ρABC. 𝑁
3𝑀𝑊678"

#
 (S21) 

where 𝐷678" is the diffusion coefficient of DOC (or GPS) species, i (cm2yr-1), T is absolute 

temperature (K), R is the universal gas constant, N is Avagadro’s number, 𝑀𝑊678" is the molecular 

weight of DOCi (or GPSi), η is the dynamic viscosity of the medium calculated following Refs.37,38, 

𝜌678  is the density of DOC (or GPS) which is assumed the same as the density of typical 

biomolecules, 1.5 g.cm-3 Refs.14,39.   

S1.3. Process importance analysis 

Although global process importance analysis methods such as Morris (derivative-based) and Sobol 

(variance-based) have been used for Earth and environmental models40-42, for complex models 

with a large number of parameters such as the RTM developed in the present study, the use of such 

process importance analysis methods can be computationally expensive43,44 and/or might suffer 

from the scale issue, which is the loss of small-scale variations in the response surface when the 

step size of the analysis is taken relatively large45,46. A more efficient approach may be to use RTM 

along with Monte Carlo and artificial intelligence techniques to obtain the global importance of 

influential factors1,43,44,46,47. In this way, we run the RTM iteratively, e.g., for 1000 times, using 

random input parameter values and employ ANN to fit the resultant input-output datasets of the 

iterative model runs to create a meta-model, thereby obtaining the global importance of different 

factors43,44,46,47. Relative importance of the categorized processes in controlling PE and MOC 

formation at 1 m depth is shown in main text Fig. 3. Details of Monte Carlo and ANN procedures 

are described in the following sections.  

S1.4. Monte Carlo 

The Monte Carlo approach was applied by random sampling of the input parameters of the RTM 

over their global ranges and statistical distributions taken from six global grid datasets (with a 

resolution of 1°×1°, Figs. S1, S2) and based on statistical analyses of 10 selected field-modeling 

datasets from previous studies4,18,19,48-55. The global grid datasets include water depth56, sediment 

accumulation rate57, porosity58, and sediment-water interface concentrations of POC, which are 
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assumed to be the same as total OC58, NO3 Refs.59,60, and O2 Refs.59,60. The ranges, probability 

distribution assumptions and other statistics (upper and lower fences and median) selected for the 

data are given in Tables S1, S8. The ranges of parameter values for the new parameters introduced 

in the present study were assumed to be from near zero values to five times the value obtained in 

fitting the model to field data4,19, or they were assumed based on other reasonable boundary values, 

e.g., the values of the same parameter from other components of DOC or GPS species (Tables S1, 

S8). We use a broad range of parameter values (e.g., by selecting the upper and lower fences of 

the data available, Supplementary Table S1) because this leads to a more robust understanding of 

their role in OC preservation, as long as the uncertainties are reasonable, whilst the Monte Carlo 

approach assures that the number and the ranges of model parameters do not affect the insights 

obtained in our study. 

Different probability distributions were fitted to the six global grid datasets and the final 

distributions used in the Monte Carlo random sampling process were selected based on a trade-off 

between goodness-of-fit for histogram plots and simplicity. The selected distributions fitted to 

field data histograms, along with their means (µ) and standard deviations (σ), are shown in Fig. 

S8. A normal distribution appeared to be appropriate for these parameters except for POC0, which 

fits better with a log-normal distribution (Fig. S2). For all other parameters, we used a uniform 

distribution except for ‘aGam’ parameter of the gamma distribution used in the continuum model 

for POC hydrolysis. We assumed that aGam was log-normally distributed. The log-normal 

distribution for aGam was assumed because considering a previous empirical equation34 relating 

aGam to the sediment accumulation rate and using random data generated for the sediment 

accumulation rate, we found that the distribution of aGam is log-normal. The final selected types of 

distributions for all parameters are listed in Table S8. The uncertainties are estimated by 

determining the confidence intervals (CI) based on a 95% confidence level according to the 2.5th 

and 97.5th percentiles of the Student’s t-distribution61.   

S1.5. Artificial neural network  

The artificial neural network (ANN) is a versatile and universal tool for function approximation 

problems and is notable for its application to complex, non-linear systems1,62. The commonly-used 

ANN structure is a three-layer configuration comprising input, hidden and output layers1,63-65. Each 

of these layers is composed of a series of nodes (neurons) with their numbers in the input and 

output layers corresponding to the number of input and output variables, respectively. The number 
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of neurons on the hidden or middle layers should be optimized when finding the best fit during the 

training process63,66. A summation of signals (information) from all nodes in the input layer is 

propagated to each node in the hidden layer and likewise from all nodes of the hidden layer to each 

node in the output layer using methods such as the back-propagation algorithm63. While this 

summation is based on a simple algebraic linear relationship, there are different types of additional 

transfer (or activation) functions that are exerted on the input signals into nodes of each layer1,63.  

To find insight into the relationships between inputs and outputs of ANN, several process 

importance analysis approaches have been developed, among which the Partial Derivatives (PaD) 

method has been identified as the most useful and stable approach67. The PaD method is based on 

taking the partial derivative of the output variables with respect to the input variables. In this 

process, in addition to the derivative of the main connections between different layers, the 

derivatives of the transfer functions used for processing the signals are also taken into account1,63-

65.  

In the present study, we considered a simple three-layer configuration with a hyperbolic 

tangent sigmoid function (tansig function of MATLAB) as the transfer function for the hidden 

layer and a linear transfer function (purelin function of MATLAB) for the output layer. The ANN 

training was performed using the Levenberg–Marquardt back-propagation learning algorithm for 

optimization of ANN indigenous parameters (hyper-parameters) known as weights and biases 

based on the cross-validation method (i.e., keeping randomly-selected 15% of the input-output 

dataset for validation and 15% for testing while the rest of the dataset (70%) is used for training 

ANN)63,64,68. The optimum number of hidden layer nodes was obtained by iterating the training 

process over a range of 4 to 36 nodes in each run of the Monte Carlo process. The MATLAB code 

performing ANN modeling and process importance analysis was adapted from Babakhani et al.1 

where it was used for modeling nanoparticle transport in porous media. Here, we further excluded 

15% of the original dataset from the analysis for separate testing of the ANN prediction ability.   

S1.6. Numerical model implementation and boundary conditions  

The RTM was developed in Mathematica (version 11.3) with a similar basis to that developed by 

Dale et al.18 but with a reconsideration of manganese and iron species, e.g., considering three 

reactive (oxyhydr)oxide iron pools instead of four pools in Ref.18 and with a modification of the 

numerical approach. To speed up the computations, the code was modified to conduct the space 

discretization manually instead of the previously-used automatic approach built into Mathematica. 
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Here we used a third-order central-in-space finite difference scheme for the discretization of terms, 

including space (depth) variable derivatives. This scheme was selected because it showed the best 

trade-off between accuracy and computational speed compared to first, second or higher-order 

schemes. The integration of the terms with time derivatives was performed using the 

NDSolveValue function of Mathematica. The spatial discretization of the model was conducted 

using a high-resolution stepping at the top of the sediments that was decreasing based on a third-

order polynomial function. The third-order function appeared to perform better (in terms of 

numerical stability and computational speed) than a second-order stepping function, especially if 

the depth of the simulated sediment was relatively large. 

The model was run using a long simulation time (five times the expected simulation time 

calculated based on the depth divided by the burial rate) in order to ensure that the steady-state 

condition was reached when the model outputs were recorded. The mass balance for each species 

was checked by comparing depth-integrated reaction rates and fluxes across the model domain 

boundaries18. A tolerance of 1% was assumed for the mean mass balance errors across all species, 

i.e., those model runs which did not meet this criterion were automatically run with a finer grid 

step to yield a lower mass balance error or if they still could not meet the criterion, they were 

excluded from the results in Monte Carlo simulations.  

Upper boundary conditions were considered as the first type (constant concentration or 

Dirichlet type) for all dissolved species4,19, and a third type (Robin) boundary condition was 

assumed for other solid species as well as kinetically sorbed species18. This flux (µmol.cm-2.yr-1) 

for kinetically sorbed species, as an example, is as follows: 

𝐽0!" = 𝜌*𝜀	(𝑣-𝑆!" − 𝐷/
	𝜕𝑆!"
𝜕𝑧 ) (S22) 

For POC species, here we utilized the constant-concentration boundary data instead of the 

more commonly used flux-type boundary data since more reliable datasets are available for 

sediment-water interface concentration of POC rather than POC flux58. This constant 

concentration POC values were converted to flux boundary condition by calculating mass 

accumulation rate (MAR) following69. The lower boundary conditions were considered as the 

second type (zero flux or Neumann type) boundary condition for all species.   

The Monte Carlo process with RTM (using Mathematica) was executed on a 2.9 GHz Core™ 

i9 CPU with 32 GB RAM, while the Monte Carlo process for ANN process importance analysis 
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(using MATLAB) was conducted on High-Performance Computing clusters (ARC4) at the 

University of Leeds, possessing 149 nodes with 40 cores and 192 GB of memory each and an SSD 

within the node with 170 GB of storage. 

S1.7. Model calibration and parameterization 

In the validation process of the RTM, where the model was fitted against field data, the unknown 

model parameters were calibrated both automatically (inverse model) and manually. A simple 

optimization algorithm previously described and coded in MATLAB70 was coded in Mathematica 

in the present study. In cases where this approach did not seem to be efficient enough or was 

unlikely to find the global optimum of the objective function, we further used basic manual 

calibration to improve the model fits to the data.  

To optimize the model parameters of the RTM, it is necessary to use a global objective 

function that can synchronize the outputs for different species involved in the modeling because 

the output concentration of every species can be on a different order of magnitude than others and 

thus contribute differently to the overall objective function of all species. One way might be to get 

the sum of normalized output values as a consistent single objective function. On the other hand, 

it is challenging to synchronize different output concentrations by normalization of each output by 

its initial/boundary values because the initial and/or boundary conditions of some of the species 

can be zero, e.g., DOC components are all produced within the model domain during the 

simulation period. Hence, we herein directly used the Nash-Sutcliffe model efficiency (NSE) 

criterion71 as the objective function, which was maximized during the calibration process to make 

it closer to one. As NSE has a consistent range (−∞ to 1) for concentrations of all species fitted to 

their corresponding field datasets, and can thus be averaged for all species, this approach could 

properly deal with the challenge of the different concentration ranges of various components that 

can contribute to the objective function with different weights. The NSE is calculated as follows: 

𝑁𝑆𝐸 = 1 −
∑ (𝑋$+ − 𝑋$;)D
>$%&
$%&

∑ (𝑋$+ − 𝑋+\\\\)D
>$%&
$%&

 (S23) 

where 𝑋$+ is the jth record of the quantity being measured or observed, 𝑛+/* is the total number of 

measured records or observations, 𝑋$; is the jth record of the quantity being modeled or computed, 

𝑋+\\\\ is the average of the observation data. NSE values above 0.5 are generally acceptable, with 

values close to 1 indicating better matches64.  
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The list of all model parameters and whether they are considered variable or fixed based on 

the data from literature or global grid maps are given in Tables S1 and S8.  

S1.8. Data pre-treatment 

Certain parameter combinations could result in unreasonable model results and, thus, the existence 

of outliers in the generated dataset at the Monte Carlo stage (Stage 1, Fig. S3). We removed the 

outliers for all cases, which led to the loss of data by 0%, 10.1%, 10.5% and 10.7% for PE, 

preservation rates of (semi)labile DOC, GPS and lrDOC, respectively, compared to the entire 

dataset. It should be mentioned that at this stage, the model was initially run 2000 times. 

Nevertheless, since not all model runs were successful due to facing numerically difficult 

conditions, the final data obtained at this stage were comprised of 1756 cases. Furthermore, there 

were cases in different model runs across the random input parameter values where the model-

produced bottom-water concentration of DIC yielded values less than the constant concentration 

bottom-water boundary condition specified for DIC at the sediment-water interface (which was 

2.3 mM). Since the diffusion for dissolved species occurs from areas with greater concentrations 

towards areas with lower concentrations according to Fick’s law72, in those cases where the 

produced DIC inside the sediments was smaller than the sediment-water interface DIC 

concentration, selected as a constant value (2.3 mM) in all model runs, then DIC fluxed inward 

into rather than outwards from the sediments. This resulted in an opposite direction for the flux of 

DIC (influx), which was not physically justifiable. Therefore, we removed all these cases from the 

entire dataset, reducing the final number of data from 1756 to 1450 before removing the outliers 

described above.  Even with the highest portion of outlier removal (10.7%), still, the size of the 

dataset was larger than 1000 records. 

For the outlier removal, we used “rmoutliers” function of MATLAB to remove the outliers 

based on the default method of “median”, which considers three scaled median absolute deviations.  

All data were log-transformed prior to feeding to the ANN (Stage 2 of the modeling algorithm).  

 

S2.	Model	validation		
S2.1. Analytical validation of the kinetic sorption and equilibrium adsorption models 

 At a high mass transfer rate where the kinetic condition is expected to reach an equilibrium state, 

the model outputs from the kinetic sorption model developed in the present study should be 
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comparable with those of the equilibrium adsorption model24,29,30. In this approach, by forcing the 

model parameters, we first turn off the equilibrium adsorption expression and run the model when 

the kinetic sorption expression is operating at high exchange rates, and get the model output 

concentrations versus depth profiles for all species. Then we run the model by turning off the 

kinetic sorption expression and operating the equilibrium adsorption expression and get the model 

outputs. Since the equilibrium expression has previously been used frequently in the literature of 

early diagenesis modeling, matching the two model outputs validates our formulation for the 

kinetic model. In this section, the model parameters and characteristics were selected mostly from 

Ref.18, and adsorption coefficients were assumed to be similar to Ref.55. 

Results shown in Fig. S4 demonstrate that output concentrations for all particulate, dissolved 

and adsorbed species of the kinetic model at a high mass transfer rate match very well (R2 = 1.000) 

with the output concentrations of the equilibrium model, verifying our approach towards 

development and implementation of a kinetic expression for interaction between dissolved species 

and minerals in early diagenesis models of marine sediments. Such a model had previously been 

considered through a derivation approach known as “separation of the kinetically influenced term 

method (SKIT)”73, where the two governing equations for dissolved and solid phases were 

combined. The resulting single partial differential equation is one order higher, however, which is 

complex and computationally difficult to solve. In the present study’s model, although the 

equations are not combined and are solved together numerically, the order and complexity of 

developed partial differential equations remain similar to those previously used in early diagenesis 

modeling.  

S2.2. Testing of the model against field data and previous models 

Our model was further tested against various datasets from previous studies4,18,50,54 as described 

below: 

1. The basic model, i.e., without DOC species terms but with the reconsideration of 

manganese and iron species compared to the previous model18 and with a different numerical 

scheme, was matched against the model outputs of Meysman et al.54 using the same modeling 

features and parameter values as those of Meysman et al. who used the MEDIA (Modeling Early 

DIAgenesis) software package for the data from Santa Barbara Basin sediment. The results of the 

model fit to the model outputs of Meysman et al.54 are shown in Fig. S5. These results show 

excellent matches between the two models for all relevant species shown. 
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2. The model was fitted to the field data of Kraal et al.50 by tuning some of the parameters but 

without modifying the characteristics of the basic model of Dale et al.18, to see if better goodness-

of-fit criteria can be obtained compared to the model of Ref.50. Parameter values of Ref.50 with 

calibrated values in the current modeling are listed in Table S3. At this stage, we also included 

DOC but with a simplifying approach rather than considering the full cascaded hydrolysis 

processes of DOC presented in our conceptual model shown in main text Fig. 1. Here, we also 

aimed to test the application of NSE as an objective function in the model calibration process that 

is described in Section S1.7.  

Concentration profiles of the model fitted with and without a basic consideration of DOC 

compared to the data of Kraal et al.50 are shown in Figs. S6 and S8, respectively. The goodness-

of-fit criteria are given in Table S4. The results show that the model is able to fit all species profiles 

except the FeS2 profile and the decaying part of the Mn2+ profile. Similar to the above, this is 

attributed to the lack of carbonate species in our model. The goodness-of-fit criteria (R2 and NSE), 

presented in Tables S4 and S5, demonstrate that, on average, the performance of the present model 

without DOC (mean R2 = 0.762) shows improvement over the model of Kraal et al. (mean R2 = 

0.724) and is improved even further when DOC is included (mean R2 = 0.764).  

Here we also used two alternative approaches to consider the objective function in the 

automatic calibration process, i.e., the use of either typical determination coefficient (R2) or NSE. 

The result of this investigation performed for the case without DOC shows that the use of NSE as 

an objective function substantially improves the final NSE values (mean NSE increases from -5.08 

to 0.332, Tables S4 and S5) and shows a better visual match between the modeled and observation 

curves (Fig. S6 versus Fig. S7).   

3. The RTM with DOC and GPS species and with all processes of adsorption, kinetic 

sorption, geopolymerization and hydrolysis included step-by-step was tested against the field and 

modeling data of Burdige et al.4,19. In step 1, we used all model characteristics and parameter 

values of Burdige et al.4,19. They used two models separately: OMSN (Organic 

Matter/Sulfate/Nitrogen) model and the DOC model to fit the field data, whereas our model 

combines their two models already. Furthermore, in order to constrain the Total H2S concentration 

profile, which had not been presented in Refs.4,19 but was available from other sources (BCO-

DMO ERDDAP database), we added three parameters to the model, including kFe2H2S = 0.00007, 

kFeSH2S = 0.14 and kFeOH3HRH2S = 0.0002. These parameters did not affect the concentration profiles 
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of other dissolved or particulate species based on a preliminary manual sensitivity analysis that we 

carried out. The proposed features in our conceptual model (main text Fig. 1) were then added in 

eight steps, as listed in Table S6, and the new model parameters (e.g., DOC and GPS degradation 

rates) were considered as free (tunable) parameters in the calibration process. For each step of 

adding complexity (adding new parameters), we calculated the Akaike information criterion 

(AIC)74 and/or model selection criterion (MSC) to check whether or not the improvement in the 

goodness-of-fit has been efficient enough with regard to the added complexity.  

AIC can be calculated as follows74,75: 

AIC = 𝑛+/*	Ln(σD) + 2𝑛-<, +
2𝑛-<,(𝑛-<, + 1)
𝑛+/* − 𝑛-<, − 1

 (S24) 

where 𝑛+/* in the number of observation data, 𝜎D is the sum of squared residuals divided by 𝑛+/*, 

𝑛-<, is the number of parameters estimated in the inverse modeling process and Ln is the natural 

logarithm. In comparing the performance of different models, the best model which has the best 

goodness-of-fit value using the fewest number of adjustable parameters yields the lowest AIC 

value.  

The model selection criterion, which is based on AIC, can be calculated as follows76,77: 

MSC = Lnh
∑ 𝑤"(𝑋$+ − 𝑋+\\\\)D
>$%&
$%&

∑ 𝑤"(𝑋$+ − 𝑋$;)D
>$%&
$%&

j −
2𝑛-<,
𝑛+/*

 (S25) 

where wi is a weight factor that is canceled in the equation by assuming equal weight for all 

observations. Considering Eq. (S23), MSC can then be expressed in terms of NSE as: 

MSC = Ln k
1

1 − 𝑁𝑆𝐸l −
2𝑛-<,
𝑛+/*

 (S26) 

When comparing the performance of different models, the best model with the highest 

goodness-of-fit value and the fewest number of adjustable parameters yields the highest MSC 

value (opposite to AIC).  

The incremental addition of complexity to the model is summarized in eight steps, with the 

results of NSE, MSC, and calibrated parameter values presented in Table S6. Concentration 

profiles resulting in steps 1, 2, and 7 are shown in Figs. S9, S10 and S11, respectively. According 

to these results, the mean NSE of all output profiles increases almost steadily from the first step of 

the model evolution (i.e., without adding any new parameters) towards step 7 (with all features 

included)—from 0.456 to 0.588. This improvement in the model fit to the addition of complexity 
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may be justified with the MSC74,76 as similar to NSE, MSC calculated for all species displays a 

rising trend from Step 2 being 0.626 to Step 7 being 0.843. Although the model in Step 7 shows a 

better overall fit to all species profiles, further adjustment of parameters was made in Step 8 to 

improve the match between the modeled and the field profiles of total DOC. It should be noted 

that the model developed at Step 8 best describes the total DOC profile because of yielding the 

highest NSE for this profile, and this is also conceptually the most comprehensive among different 

steps. Thus, we chose the results of Step 8 as the basis for some of the parameter ranges in the 

Monte Carlo sampling process (Table S1). 

We should note that whilst up to Step 7 we have considered the model fit to the concentration 

profiles of all species, (total DOC, total POC, SO4, CH4, DIC, H2S, Fe2+, Fig. S11), at Step 8 we 

have considered only total DOC concentration as the target data in the model fitting because total 

DOC concentration is also a proper representative of the majority of the processes that affect DOC 

cycling, including sorption/preservation, geopolymerization, hydrolysis, etc. DOC concentration 

has a mutual effect on MOC concentration and thus even though MOC concentration has not been 

included directly in the target data during the fitting procedure, still, the sorption/preservation 

process has been fully taken into account in the fitting procedure through the DOC concentration 

profile. Indeed, it is common practice in the literature of sorption to consider the concentration 

data of dissolved species instead of sorbed species when fitting different models to experimental 

data78,79. It is also common in the context of contaminant transport in porous media where the 

models are fitted to the concentration of transported species from experimental porous media (what 

is called the breakthrough curve) rather than the concentration of retained or sorbed mass24. 

By changing the target data from the concentrations of all species to only the total DOC 

concentration, there are only slight changes to a few of the optimized parameters from Step 7 to 8 

and those are mainly related to sorption parameters (Table S6). After all, the impact of the tuned 

parameter values in the fitting procedure on the results of the present study is minor because ranges 

are sufficiently widened, e.g., for ksorp the lower range has been extended to a near zero value 

(1.0×10-15) and even though it only has a non-zero value for GPS1 and GPS2 in the model fit 

process (18.5 and 2.00, respectively, Table S6), we extend the range of 1.0×10-15 to 18.5×5=92.5 

to all ksorp parameters related to DOC1, DOC2, DOC3, DOC4, rDOC, GPS1 and GPS2.  
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It should be noted that our model does not explicitly consider the catalysis effect of iron and 

manganese on the geopolymerizaion process80. Nonetheless, model-generated GPS production 

rates shown in Supplementary Fig. S15 demonstrate a single peak at the depth of 5 cm, which is 

close to the iron availability zone in marginal sediments80. While the catalysis impact of iron and 

manganese on geopolymerizaion should be considered in future studies, the fact that the GPS 

production rate profile peaks near the surface suggests that iron and manganese availability depth 

does not significantly affect the validity of the present approach. 

S2.3. Validation of the use of artificial neural network  

The ANN process importance analysis based on the PaD method coded in MATLAB was 

previously validated against data generated from a basic mathematical equation and experimental-

modeling literature data1. Here the ANN model could fit the data in all cases of process importance 

analysis with the best predictive fit NSE in the range of 0.923 to 0.944 and the optimum number 

of hidden layer neurons in the range of 6 to 20, as shown in Table S7. The scatter plots and error 

histograms for ANN fit the data corresponding to the highest and the lowest fit NSE are obtained 

for lrDOC-MOC preservation rate and PE of POC+MOC, respectively, as shown in Fig. S12 as 

representative examples among other cases, i.e., preservation rates of (semi)labile DOC, GPS, and 

lrDOC (Table S7). This demonstrates that excellent matches are obtained between RTM output 

data generated through the Monte Carlo technique and the ANN. Therefore, the meta-model 

obtained in this procedure has learned the behavior of the complex RTM properly, with 68 

parameters being varied in around 1450 model runs of the RTM. The uncertainties incurred by the 

variation in parameter values are determined as a 95% confidence interval and are shown as error 

bars in the process importance analysis results. These uncertainties range from 4.6% to 29.9% 

(12.6% on average) of the mean values for the cases investigated and shown in main text Fig. 3 

and S13.  

S2.4. Validation of the modeling processes using mass budgets 

In order to track the total organic carbon (OC) mass budget in the sediment column at a given 

depth, L, we consider the rates of mass transfer as either fluxes or reaction/conversion rates of 

different species. To show how these are calculated, we simplify our conceptual model presented 

in main text Fig. 1 to illustrate the mass flow in the model in Fig. S14. Here the control volume is 

considered from the sediment surface (z = 0) to the depth of L (z = L), herein considered at 1 m. 
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We then consider three cross sections to check the mass budget, including A-A, B-B, and C-C 

shown in Fig. S14.  

The OC mass budget across the cross-section A-A (MBA-A) is as follows: 

𝑀𝐵)9) = 𝐽?78E (S27) 

𝐽?78E is the flux of POC (sum of all pools) into sediments at the surface (µmol.cm-2.yr-1). This is, 

in fact, the total flux of the OC entering the sediment and is thus used to check the mass budgets.   

At the cross-section B-B, the OC mass budget is: 

𝑀𝐵F9F = 𝐽?78G +n 𝑅?78→678
I%G

I%E
 (S28) 

where 𝐽?78G is the flux of the POC at a depth of L, 𝑅?78→678  is the rate of conversion of POC to 

DOC (µmol.cm-3.yr-1) which is then integrated over the depth of the sediments, L. This integration 

makes the unit of the second term in Eq. (S28) consistent with the unit of flux (µmol.cm-2.yr-1). 

This calculation involves all pools of POC and DOC (including (semi)labile DOC, GPS and 

lrDOC).      

At the cross-section C-C, the OC mass budget is: 

𝑀𝐵898 = 𝐽?78G + 𝐽678E − 𝐽678G +n 𝑅678→6J8
I%G

I%E
+n 𝑅6780+,-

I%G

I%E
 (S29) 

where 𝐽678E is the efflux of DOC from the sediment surface, 𝐽678G is DOC flux at a depth of L, 

𝑅678→6J8  is the rate of DOC remineralization to DIC and 𝑅6780+,- is the net DOC kinetic sorption 

rate (or MOC formation rate which is sorption rate minus desorption rate). It should be noted that 

𝐽678Ghas a negative sign in the equation above because the mass is added to the control volume 

via this term, whereas the mass is removed from the system via all other terms. This calculation 

also involves all pools of POC and DOC (including (semi)labile DOC, GPS and lrDOC).      

Based on Monte Carlo model runs (1450 realizations, Stage 1), the results averaged for all runs 

give mean values of  𝑀𝐵)9) = 57.136 µmol.cm-2.yr-1, 𝑀𝐵F9F = 57.197 µmol.cm-2.yr-1, and 

𝑀𝐵898 = 57.189 µmol.cm-2.yr-1, which demonstrates an overall mass balance error of ~0.1% 

which is less than the acceptable mass balance error of 1% considered in our general modeling 

process. 
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S2.5. Model assumptions and sensitivity of results to these 

We have followed standard practice on different aspects of the model development and modeling 

procedure, which inherently contain assumptions. We adopted these practices and assumptions 

based on previous literature or logic that we believe better represents nature than previous studies, 

e.g.: 

i. The concept: We have based our conceptual model (Fig. 1) upon logics that are deemed 

to be better applicable to carbon cycling in marine sediments than the previous concepts. 

For instance, previously, DOC breakdown (hydrolysis) has been considered as a series of 

parallel reactions4, whereas here we considered this as a series of consecutive chain-

reaction expressions which work serially and not parallelly. This is in line with the 

literature on water column carbon cycling5. The overall model fits to the field data using 

the consecutive chain-reaction model show a similar to better match compared to using the 

parallel pool concept considered in previous modeling studies (see Table S6). 

ii. The number of pools: In our conceptual model (Fig. 1), we have considered an unknown 

number of pools for all species to better represent nature. Whilst maintaining the overall 

structure of the conceptual model and the accurate representation of natural conditions, to 

follow the principle of parsimony, in our modelling approach, we have selected the 

minimum number of pools for different species based on a trade-off between the accuracy 

and feasibility/efficiency of model runs. Particularly, to make sure our model represents 

nature, we selected the reactivities of DOC pools based on their lifetimes in the water 

column as categorized in field measurements similar to labile and semi-labile (DOC1, 

DOC2…, grouped as (semi)labile-DOC for simplicity of discussion (lifetime of ~9 hours 

to ~1.5 years)), mid-reactive (GPS1, GPS2… with a lifetime of ~20 years) and least-reactive 

(lrDOC with a lifetime of ~16000 years)23. We have further provided evidence that our 

model outputs are not sensitive to an increased number of pools for DOC compared to the 

minimum number that we had considered already (Figs. S17, S18). 

iii. The parameterization: The principle of parsimony (also known as Occam’s Razor) 

suggests that when there are multiple alternative models, the one with the lowest number 

of parameters is preferred. By reducing the number of pools, we have also mostly reduced 

the number of unknown parameters. Importantly, we developed our model on a stage-by-

stage basis and used the Akaike information criterion (AIC)74 and/or model selection 
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criterion (MSC) to ensure that we follow the principle of parsimony in our model 

development as discussed in Section S2.2 and summarized in Table S6. We conducted a 

comprehensive sensitivity analysis of the model parameters that resulted in the process-

importance analysis (Fig. 3, Section S1.3). 

We acknowledge that there are still some assumptions in our modeling which cannot be explicitly 

verified, including the consecutive chain-reaction model equations (Eqs. S17-S20) used for 

hydrolysis and geopolymerization that have been taken from a broader context and may need 

further validation for the specific case of marine sediments, yet we provide a comparison of our 

results to recent literature with respect to GPS in Section S.5. 

 

S3.	Calculation	of	ratios	used	in	the	profiles	of	Figure	S16	and	in	the	
process	importance	analysis		
The ratios or percentages used for sketching the profiles within the panels of main text Fig. 4 are 

calculated as follows: 

Panel A. The ratio of the kinetic sorption mass-transfer rate to desorption mass-transfer rates 

presented in main text Fig. 4a is described as follows: 

𝑅𝑎𝑡𝑖𝑜 0+,-
62*,+-

	= (n 𝑅6780+,-
I%G

I%E
* . (n 𝑅K7862*

I%G

I%E
*
9&

 (S30) 

where 𝑅K7862* is the MOC kinetic desorption rate. Here DOC is either (semi)labile DOC, GPS, 

or lrDOC, and MOC is either (semi)labile DOC-MOC, GPS-MOC or lrDOC-MOC. 

Panel B. The percentage of GPS contribution of the total lrDOC production rate presented in main 

text Fig. 4b is as follows: 

𝑃:?0	8+>=,"/L=
,678	?,+!

	= (n 𝑅:?0-→,678	
I%G

I%E
* . (n 𝑅:?0-→,678	

I%G

I%E
+n 𝑅678&→,678

I%G

I%E
*
9&

× 100 

(S31) 

where 𝑅:?0-→,678	is the rate of conversion of the terminal GPS species (GPSp, see main text Fig. 

1) to lrDOC and 𝑅678&→5,678  the rate of conversion of DOC1 to lrDOC representing the 

intrinsically refractory fraction of DOC1 (leftovers). The unit of all the rates mentioned above is 

in µmol.cm-3.yr-1 which after integration becomes µmol.cm-2.yr-1.  
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It should be noted that to calculate the ratio in Panel A, we used the ratio of means of sorption 

rates and means of desorption rates for the outcomes of the Monte Carlo stage. In panel B, we used 

the mean of the percentages obtained in different Monte Carlo runs. In Panel A, we used the ratio 

of means because sorption and desorption occur in parallel, and the numerator could be much 

larger than the denominator for some of the individual cases of the Monte Carlo output data 

yielding extremely high ratios. Such large values could control the average of ratios, thereby 

yielding unreasonable results, whereas the mean value of sorption rates and the mean value of 

desorption rates were not affected by the extreme values in the Monte Carlo outcomes, nor were 

the ratios of these means.  

 

S4.	Detailed	discussion	on	where	and	how	sorption	and	geopolymerization	
control	OC	preservation	
Several different factors have been proposed to explain OC preservation in marine 

sediments11,17,81-85, e.g., oxygen availability81, physical restriction82, mineral sorption11, 

polymerization80,84,86, selective preservation11, iron minerals83, other minerals87 and biological 

factors88. In the present study we reveal the importance of kinetic sorption and geopolymerization 

for OC preservation as outlined in Section titled “The role of different processes in carbon 

preservation” in the main text. Here we further use sediment depth profiles (Fig. 4 and 

Supplementary Section S3) from the Monte Carlo simulations to provide a broader insight into 

how these processes control OC preservation.  

S4.1. Mineral shuttle 

The ratio of kinetic sorption rate to desorption rate (Fig. 4A) may indicate where the sorption is 

more effective with depth in the sediment. The effectiveness of sorption for all DOC constituents 

exhibits maxima within the top 10 cm of sediments, corresponding to the surface mixed layer, and 

then decreases steadily with depth by a factor of 3 – 5 down to 1-m depth. These results clearly 

demonstrate that minerals in the mixed layer act as a shuttle for different DOC pools by protecting 

them from exposure to oxygen, nutrients and microbial enzymes and, consequently, limiting their 

rapid remineralization in the mixed layer and delivering them to greater depths (Fig. 4A). The peak 

in sorption effectiveness is explained by contrasting rates of sorption and desorption. The former 

increases rapidly within the mixed layer and less rapidly below this depth (Fig. S16A), whereas 



27 
 

desorption rates increase monotonically with depth Fig. S16B). The peak for (semi)labile DOC 

appears largest and earliest compared to lrDOC, followed by that of GPS, appearing at 

approximate depths of 2.5 cm, 5 cm, and 7.5 cm, respectively (Fig. 4A). This is because the 

gradient of sorption rate, becomes milder for (semi)labile DOC compared to lrDOC and GPS 

toward deeper depths relative to the surface mixed layer (Supplementary Fig. S16). The role of 

sorptive preservation of labile OC has been highlighted before12, although its reversibility remains 

enigmatic33,84,85,89. Here our analysis demonstrates that the ratio of sorption to desorption kinetic 

rates, defined as sorption effectiveness, is larger than 1 throughout the investigated depth of 

sediments (Fig. 4A). This suggests that the net result of these processes leads to the formation and 

accumulation of MOC over time, and implies that the seemingly concurrent equilibrium and 

irreversible sorption observed in previous studies12,84,85,90 can in fact be the net result of kinetic 

sorption-desorption processes being dominated by sorption. Our results also show that the mineral 

shuttle contribution to OC preservation is greater for (semi)labile DOC compared to lrDOC 

followed by GPS.  

S4.2. Pathways of least-reactive DOC production  

The contribution of geopolymerization to lrDOC formation shown in Fig. 4B displays a substantial 

increase with sediment depth and reaches 16.3% by 100 cm. The remaining 83.7% of lrDOC 

production corresponds to the intrinsically undegradable DOC fraction (see Fig. 1). Organic 

carbon preservation as lrDOC is thus governed by intrinsically undegradable DOC. lrDOC 

produced at depth may be more important in preservation compared to that produced near the 

surface. lrDOC produced close to the sediment surface can be more easily transported to the water 

column via diffusion compared to lrDOC produced at depth, increasingly by geopolymerization. 

The increase in the contribution of geopolymerization to lrDOC formation with depth may thus 

point to the importance of geopolymerization in preserving OC and help to explain the origin and 

formation of kerogen and fossil carbon in marine sediments17. 

S4.3. Burial is the start of preservation, not the end  

The contribution of MOC to the solid OC (POC+MOC) increases with depth, e.g., at 10 cm, 25 

cm, 50 cm and 100 cm, it is around 22%, 37%, 49%, and 60% (Fig. 4D). This results in PE 

estimated at 1-m depth for POC+MOC to be 2.7 times PE for POC alone (Fig. 4C). The 

pronounced increase of MOC within the top 10 cm of sediments is consistent with the ratio of 
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sorption to desorption rates being maximum in this layer (Fig. 4A), corroborating the concept of a 

mineral shuttle playing an important role in carbon preservation within marine sediments.  

 

S5.	Comparison	with	previous	studies	and	directions	for	future	research	
Here we compare the estimation of our study about GPS contribution to OC burial with that 

of Moore et al.80. POC deposition flux at the sediment-water interface has been reported to range 

from 200 to 5000 Tg C yr-1,17,91-93 whilst mean conventional burial efficiency has been known to 

be ~20%94 giving burial flux of POC in the range of 40 to 1000 Tg C yr-1. Considering GPS 

formation rate from Moore et al.80 in the oxygenated zone of sediments being 4.05 Tg C yr-1, GPS 

contribution to buried carbon may thus range from 0.4% to 10%. Our model runs provide a ratio 

of net GPS sorption to total solid OC (MOC+POC) buried at depths ranging from 0.05 to 1 m 

depths within the range of 2.7±0.2% and 18.0±0.8%. Our model estimation is thus close to that 

based on Moore et al. On the one hand, our estimates might be more representative of the GPS 

contribution to OC burial because we take into account the whole sediment to the depth of 1 m, 

compared to Moore et al. only considering the oxic zone. On the other hand, the chain-reaction 

model equations that we use for geopolymerization have not been explicitly verified for marine 

sediments. The take home message, however, is that both Moore et al. and our model results show 

that GPS production is a small but important part of OC preservation. 

The ANN modeling stage, in addition to providing insights into the importance of different 

processes, generates empirical networks that can be used for global prediction of each of the output 

parameters discussed (e.g., DOC fluxes or net sorption rates) with minor computation expense in 

future studies or be integrated within other numerical models, such as deep-time paleo models 

(e.g., SCION94), ocean biogeochemical models (e.g., PISCES95) and global circulation models 

(GCM)96. Such models may allow for investigating complex factors such as sediment morphology 

dynamics on carbon cycling that require a combination of three-dimensional sediment-water 

column models. Future studies may also consider more surface interaction theories and concepts 

to quantify the strength of associations between OC and minerals as well as the role of colloids 

and microbes97,98.   
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Figures and Tables 

  

 
Fig. S1.  Maps for six global grid datasets (with a resolution of 1°×1°) including sediment 
accumulation rate or burial velocity57, water depth56, porosity in the upper 5-cm of seafloor58, 
sediment-water interface concentrations of POC58, NO3 concentration at the sediment-water 
interface (SWI) Ref.59,60, and O2 concentration at SWI Ref.59,60. 
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Fig. S2.  Selected probability distributions fit to the six global grid datasets listed in the caption of 
Fig. S1 based on a trade-off between goodness-of-fit (distribution plots) and simplicity. The types 
of the distributions, their mean (µ) and standard deviation (σ) for each case are shown in each 
panel.  
 



31 
 

 
Fig. S3. The overall flowchart of the modeling algorithm showing the two stages of the modeling 
procedure. The validated reaction transport model (RTM) is executed multiple times to generate a 
model database of preservation efficiencies (PE) or preservation rates of MOC at 1 m depth (Stage 
1), which is used to train an Artificial Neural Network (ANN) to determine the influential factors 
of PE or preservation rates considering six different groupings of parameters (Stage 2). See main 
text for full description.  
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Fig. S4. Validation of the kinetic sorption formulation developed in the present study against the 
equilibrium, linear isotherm model, which has already been used for adsorption in early diagenesis 
models26,28 at a high mass transfer rate where it is expected that the kinetic model asymptotes to 
the equilibrium model. (a) The model output concentrations for all species except adsorbed 
species. (b) The model outputs for all adsorbed species. (c) and (d) Log-log transformed plots of 
(a) and (b), respectively. In these simulations, the model parameters and characteristics were 
selected from Ref.18, and adsorption coefficients were assumed to be similar to Ref.55.  
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Fig. S5. Comparing the basic numerical model results with those of Meysman et al. 54. The 
outputs of the present model are shown with continuous lines and those of the previous model 
(MEDIA (Modeling Early DIAgenesis) software package conducted by Meysman et al.54) are 
shown with markers for total organic carbon (TOC) and particulate FeS and FeS2 (g/g, panel A) 
and some of the other dissolved constituents (mM, panels B, C).  
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Fig. S6. Concentration profiles of the basic model (without DOC species) fitted to field data and 
compared with modeling data of Kraal et al.50. Here, we used R2 as the objective function. The 
continuous black line represents our model curve, the red circles represent the field data of Kraal 
et al., and the dashed orange line represents the modeling outputs of Kraal et al. For the cases of 
POC1 to POC3, and Total H2S, no field or previous measurement or modeling data is available.  
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Fig. S7. Concentration profiles of the basic model (without DOC species) fitted to field data and 
compared with modeling data of Kraal et al.50. Here, we used NSE as the objective function. The 
black continuous line represents our model curve, the red circles represent the field data of Kraal 
et al. and the dashed orange line represents the modeling outputs of Kraal et al. For the cases of 
POC1 to POC3, and Total H2S, no field or previous measurement or modeling data is available.  
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Fig. S8. Concentration profiles of the model with the basic consideration of DOC species fitted to 
field data and compared with modeling data of Kraal et al.50. The inclusion of DOC at this stage 
was a simplifying approach rather than considering full cascaded hydrolysis processes of DOC 
presented in our conceptual model (main text Fig. 1). The continuous black line represents our 
model curve, the red circles represent the field data of Kraal et al., and the dashed orange line 
represents the modeling outputs of Kraal et al. For the cases of POC1 to POC3, Total H2S, and 
DOC species no field or previous measurement or modeling data is available.   
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Fig. S9. Model results without involving adsorption, kinetic sorption and geo-polymerization 
mechanisms (Step 1, Table S6) fitted against field data and compared with modeling data of 
Refs.4,19. In this step, we used all features of the Burdige et al. model, including their conceptual 
model of DOC. Yet, they used two models separately: OMSN (Organic Matter/Sulfate/Nitrogen) 
model and DOC model. Here we combined their two models into one and further extended it to 
consider various processes. Furthermore, in order to constrain Total H2S profile, which had not 
been presented in Refs.4,19 but was available from other sources (BCO-DMO ERDDAP database), 
we added three parameters to the model. These parameters include kFe2H2S = 0.00007, kFeSH2S 
= 0.14, and kFeOH3HRH2S = 0.0002. These parameters did not affect the concentration profiles 
of other dissolved or particulate species in the model based on a manual sensitivity analysis that 
we carried out. In the figure, the continuous black line represents our model curve, the hollow blue 
circles represent the field data of Refs.4,19 and the dashed orange line or solid red markers represent 
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their modeling outputs. Here, in the Total POC profile, MOC has not been added because in the 
early steps, sorption has not been included yet. For the cases of POC1 to POC3, DOC1 to DOC3 
and Fe2+, no field or previous measurement or modeling data is available.   



39 
 

 

 

 
Fig.  S10. Model results after considering DOC cascaded hydrolysis (Step 2, Table S6) fitted 
against field data and compared with modeling data of Refs.4,19. The continuous black line 
represents our model curve, the hollow blue circles represent the field data of Refs.4,19 and the 
dashed orange line or solid red markers represent their modeling outputs. Here, in the Total POC 
profile, MOC has not been added because, in the early steps, sorption has not been included yet. 
For the cases of POC1 to POC3 and DOC1 to DOC3, no measurements and for Fe2+, no 
measurement or modeling are available.  
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Fig. S11. Model results after considering DOC, GPS, lrDOC, and all mechanisms of adsorption, 
kinetic sorption, and geo-polymerization (Step 7, Table S6) fitted against field data and compared 
with modeling data of Refs.4,19. The continuous black line represents our model curve, the hollow 
blue circles represent the field data of Refs.4,19 and the dashed orange lines or red solid markers 
represent their modeling outputs. Total DOC includes(semi)labile DOC, GPS, and lrDOC 
constituents. For the cases of GPS1, GPS2, lrDOC and Fe2+ no measurement or modeling are 
available. 
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Fig. S12. The scatter plots (top) and error histograms (bottom) for ANN fits to different subsets of 
the data, including the training set (70% of the dataset selected randomly during the ANN modeling 
process), the validation set (15% of the dataset selected randomly during the ANN modeling 
process), and the test set (15% of the dataset selected randomly during the ANN modeling 
process)1 for the cases with the highest and the lowest predictive fit NSE, corresponding to the 
cases of lrDOC-MOC preservation rate (left) and PE of POC plus MOC (right), respectively. 
These are shown as representative examples among all cases in Table S7. 
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Figure S13. The relative importance of 6 different processes to preservation rates at 1 m depth for 
different fractions of MOC, including (semi)labile DOC-MOC, GPS-MOC and lrDOC-MOC. The 
six processes are DOC hydrolysis, DOC remineralization, mixing, equilibrium adsorption, kinetic 
sorption and geopolymerization. Error bars represent a 95% confidence interval based on 1000 
runs of the process importance analysis at Stage 2 of the modeling procedure. The bars are sorted 
from the highest importance averaged for the three fractions of MOC (top) to the lowest 
importance (bottom). The averaged values of each three bars for the three fractions are given in 
main text Fig. 3B.  
 
 
  



43 
 

 
Figure S14. Simplified conceptual model to show the OC mass flow in the RTM. The rectangular 
boxes represent a control volume of the sediment with a depth of L for each species. Thick arrows 
represent fluxes in and out of the control volume and thin arrows represent reaction rates 
transferring mass to other species. Cross sections A-A, B-B and C-C are used to calculate the mass 
budgets for mass balance validation of the model in Section S2.4.  
 

 
 
Figure S15. GPS net production rate normalized by the sum of GPS production rates over the 
depth. The rates are average results of 1450 model runs during the Monte Carlo stage of modeling 
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(Stage 1 of the modeling algorithm, Fig. S3). The results are averaged for GPS1 and GPS2. Net 
GPS production rate means GPS production rate minus consumption rate. These rates are divided 
by the sum of all production rates over the depth and are reported in percentage.  
 
 

 

 
Figure S16. Kinetic sorption (A) and desorption (B) rates of (semi)labile DOC, GPS, and 
lrDOC. These are averaged results of 1450 model runs during the Monte Carlo stage of modeling 
(Stage 1 of the modeling algorithm, Fig. S3). The results for DOC are averaged across DOC1 to 
DOC4 and for GPS are averaged across GPS1 and GPS2. The light, blue-shaded region represents 
the mixed layer depth (10 cm). Shaded areas of the curves represent 95% confidence intervals 
obtained from Monte Carlo model runs. 
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Figure S17. Profiles of modeled concentrations (vertical axis) versus depth (horizontal axis) with 
3 DOC species based on the model of Refs.4,19 and fitted against their field data4,19 (solid lines are 
model curves and filled circles are measured field data). Here the DOC profile is the sum of DOC1 
to DOC3 concentrations. This is for the investigation of increasing the number of DOC species and 
is to be compared with the following figure (Fig. S18).  
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Figure S18. Profiles of modeled concentrations (vertical axis) versus depth (horizontal axis) with 
the addition of 6 new DOC species in the model used for generating the previous figure (Fig. S17) 
and fitted against the field data of Refs.4,19 (solid lines are model curves and filled circles are 
measured field data). Here the DOC profile is the sum of DOC1 to DOC9 concentrations. This is 
for the investigation of increasing the number of DOC species and is to be compared with the 
previous figure (Fig. S17). 
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Table S1. Model parameters with their statistics, including upper and lower fences, the median and their selected ranges based on 
literature data presented in Table S2. The selected ranges are generally based on upper and lower fences of literature data. If the fences 
fall outside the physicochemically meaningful values, we select the meaningful values as the borders, e.g., for negative rate quantities, 
a value close to zero has been assumed (10-15) instead.  
Parameter Literat. 

data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

L -34.4 120.6 30.0 
 

 100 assumed sufficient to include 
most of the major biogeochemical 
processes 

SFD**       0.02 7475.0   described in the footnote 
P0** 0.693 1.102 0.900 0.39 0.991   described in the footnote 

Pf 0.557 0.931 0.745 
 

  assumed P0-0.18 

px -0.067 0.447 0.200 
 

 0.1814 average of the literature data 
(after excluding an outlier) 
instead of the median 

u0**       1.0E-05 3.3   described in the footnote 

ds 2.2 2.9 2.6 
 

 2.5 assumed following 18 
Temp 268 294 281 

 
 278.15  

Sal* -9.4 61.0 32.3 1.0E-12 61.0 32.3  

Press -85.0 144.6 9.0 
 

 22.87 assumed 

rNC 0.035 0.211 0.124 
 

 0.151 assumed as the Redfield ratio 
following 18 

DBio0* -31.6 53.4 6.7 1.0E-15 53.4 6.7  

XBio* -12.7 26.5 4.0 1.0E-15 11.8 4.0  

α0* -52.5 87.5 3.0 1.0E-15 87.5 3.0  
XBI* -21.4 41.6 5.0 1.0E-15 7.0 3.5 assumed following Ref.99 
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

RRPOC -0.034 0.060 0.005 
 

  Calculated from TOC (or POC0) 
and MAR following69 to convert 
constant concentration of POC at 
the surface to flux 

POC0**       1.0E-15 5.0   described in the footnote 

MAR       
 

  not used in the main modeling; 
can be calculated from u0 
following69 

kO2NH4* -37025 76967 10000 1.0E-15 76967 10000  

kO2TH2S* -1183385 197273
5 

160 1.0E-15 16000 160  

kFe2O2 * -
12031570 

2.0E7 140000 1.0E-15 10000000 100000  

kFeSO2* -14064 23826 300 1.0E-15 23826 300  
kFeS2O2* -125 210 1.0 1.0E-15 210 1.00  

kFe2H2S* -290314 485323 14800 1.0E-15 485323 14800  

kFeSH2S* -77.1 128.9 0.2 1.0E-15 128.9 0.237  
kFeSS0* -6.3 18.9 7.0 1.0E-15 18.9 7.0  

kFe(OH)3HRH2

S* 
-486 814 8.0 1.0E-15 814.2 8.0  

kFe(OH)3MRH2

S* 
-12.6 31.6 8.0 1.0E-15 31.6 8.0  

kFe(OH)3HR>F

e(OH)3MR* 
-0.87 1.52 0.58 1.0E-15 1.0 0.01  

kMn2O2* -363339 612695 20000 1.0E-15 612695 20000  
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

kMnO2HRFe2* -2650 4421 2.0 1.0E-15 1000 10  

kMnO2HRH2S
* 

-92.0 206.7 20.0 1.0E-15 206.7 100  

kS0* -25.6 50.7 3.0 1.0E-15 50.7 3.0  
KO2DOC -2.6E-02 4.8E-02 2.0E-02 

 
 0.001 following Ref.18 

KNO3DOC -2.3E-03 1.2E-02 4.0E-03 
 

 0.01 following Ref.18 
KSO4DOC -1.2 3.3 1.3 

 
 0.5 following Ref.18 

KMnO2HRDO

C 
-7.7E-02 1.3E-01 8.8E-04 

 
 0.1 following Ref.18 

KFe(OH)3HRD

OC 
-0.45 0.75 3.6E-03 

 
 0.6 following Ref.18 

kSO4CH4 
(kAOM)* 

 
  

0.498 49.8 4.98 following Ref.4; the ranges are 
assumed from 10 times less to 10 
times more than the selected value 

KSO4CH4 
(Ka) 

 
 

1.0 
 

 1.0 following   4 

RRFe(OH)3HR
/RRFe(OH)3 

-1.4E-03 2.5E-03 3.2E-04 
 

 0.5 assumed; and RRFe(OH)3 = 
0.05u0.(1-P0).ds following 18 

RRFe(OH)3M

R/ RRFe(OH)3 
-6.9E-04 1.1E-03 1.7E-04 

 
 0.5 assumed 

RRMnO2HR/ 
RRFe(OH)3 

-2.9E-04 4.9E-04 2.7E-05 
 

 1 assumed 

Kdfe* -548.9 1129.3 384.0 1.0E-15 40000 400  

KdMn* -5.8 44.4 15.6 1.0E-15 44.4 15.6  

KdNH4*  
 

2.6 1.0E-15 26.4 2.6  
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

BWO2** -0.4 6.6E-01 1.2E-01 1.0E-15 0.40 
ρs.φ.ε-1 

 described in the footnote; 
multiplication is for converting 
the unit from µmol.g-1 to 
µmol.cm-3 

BWNO3** 0.0 7.2E-02 1.9E-02 1.0E-15 0.06 
ρs.φ.ε-1 

  described in the footnote; 
multiplication is for converting 
the unit from µmol.g-1 to 
µmol.cm-3 

BWNH4 -0.1 9.4E-02 2.3E-03 
 

 2.3E-03  

BWMn2 0.0 0.0 0.0 
 

 0.0  
BWFe2 0.0 0.0 0.0 

 
 0.0  

BWSO4 16.8 35.1 27.7 
 

 27.7  

BWH2S 0.0 0.0 0.0 
 

 0.0  

BWDOC  
 

0.0 
 

 0.0 assumed zero  
BWlrDOC  

 
0.07 

 
 0.0 assumed zero  

kDOC1*  
 

119.6 0.20 2.27 0.67 the mean was assumed to be equal 
to 1/lifetime of semi-labile DOC 
after 23, the min was assumed 
1/3.4 times the mean and the max 
was assumed 3.4 times the mean 
initially assumed (0.67), so that 
√𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 

kDOC2* -47336 78894 33.7 2.27 25.95 7.67 the mean was assumed to be equal 
to 11.45 times the mean of kDOC1 
(based on interpolation between 
DOC1 and DOC4), the min was 
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

assumed to be equal to the max of 
kDOC1 and the max was assumed 
3.4 times the mean initially 
assumed (7.63), so that 
√𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛  

kDOC3* -5.1 8.5 0.2 25.95 297.17 87.82 the mean was assumed to be equal 
to 11.45 times the mean of kDOC2 
(based on interpolation between 
DOC1 and DOC4), the min was 
assumed to be equal to the max of 
kDOC2 and the max was assumed 
3.4 times the mean initially 
assumed (87.40), so that 
√𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 

kDOC4*  
 

123 297.2 3400 1005 the mean was assumed to be equal 
to 1/lifetime of labile DOC after 
Ref. 23, the min was assumed to be 
equal to the max of kDOC3 and the 
max was assumed 3.4 times the 
mean initially assumed (1000), so 
that √𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 

kGPS1*  
 

33.7 1.17E-02 0.21 4.98E-02 the mean was assumed to be equal 
to 1/lifetime of semi-refractory 
DOC after Ref.23, the min was 
assumed to be equal to the max of 
kGPS2 and the max was assumed 
4.25 times the mean initially 
assumed (5.00E-02), so that 
√𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

kGPS2*  
 

3.4 2.66E-04 1.17E-02 1.76E-03 the mean was assumed based on 
interpolation between GPS1 and 
lrDOC, the min was assumed to 
be equal to the max of klrDOC and 
the max was assumed 4.25 times 
the mean initially assumed 
(2.75E-03), so that 
√𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 

kGPS3 or 
krDOC * 

 
 

0.0 1.47E-05 2.66E-04 6.25E-05 the mean was assumed to be equal 
to 1/lifetime of refractory DOC 
after23, the min was assumed to be 
equal to 1/4.25 times the mean 
initially assumed (6.25E-05), and 
the max was assumed 4.25 times 
the mean initially assumed, so 
that √𝑚𝑖𝑛 × 𝑚𝑎𝑥 ≈ 𝑚𝑒𝑎𝑛 

KdDOC1*  
 

0.0 1.0E-15 14.5 1.45  

KdDOC2*  
 

0.0 1.0E-15 14.5 1.45  
KdDOC3*  

 
0.0 1.0E-15 14.5 1.45  

KdDOC4*  
 

1.0 1.0E-15 14.5 1.45  

KdGPS1*  
 

0.7 1.0E-15 14.5 1.45  

KdGPS2*  
 

2.9 1.0E-15 14.5 1.45  
KdlrDOC*  

 
1.1 1.0E-15 14.5 1.45  

ksorpDOC1*  
 

0.0 1.0E-15 92.5 10.3  

ksorpDOC2*  
 

0.0 1.0E-15 92.5 10.3  
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

ksorpDOC3*  
 

0.0 1.0E-15 92.5 10.3  

ksorpDOC4*  
 

0.0 1.0E-15 92.5 10.3  
ksorpGPS1*  

 
18.5 1.0E-15 92.5 10.3  

ksorpGPS2*  
 

2.0 1.0E-15 92.5 10.3  

ksorplrDOC*  
 

0.0 1.0E-15 92.5 10.3  

KdsorpDOC1 
* 

 
 

0.0 1.0E-15 367198 36720 Random sampling was conducted 
for KsorpDOC1.KdsorpDOCi-1.ρs-1 in 
range of 10-15 to 9.7×10-4 with a 
mean of 1.1×10-4  

KdsorpDOC2 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

KdsorpDOC3 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

KdsorpDOC4 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

KdsorpGPS1 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

KdsorpGPS2 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

KdsorplrDOC 
* 

 
 

0.0 1.0E-15 37973 36720 as above 

λDOC1r *  
 

3.5 1.0E-15 17.5 3.5  
λDOC1*  

 
187 88.7 933 187  

λDOC2*  
 

187 88.7 933 187  

λDOC3*  
 

187 88.7 933 187  
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Parameter Literat. 
data 
lower 
fence 

Literat.
data 
upper 
fence  

Literat. 
data 
median 

Selected 
min 

Selected 
max 

Selected mean for 
probability 
distribution or fixed 
value 

Note on selected values 

λDOC4*  
 

187 88.7 933 187  

λGPS1*  
 

17.7 4.53 88.7 17.7  
λGPS2*  

 
0.9 1.0E-15 4.53 0.91  

vGam*       0.052 1.08 0.423 after 34,100 
aGam*   

  
3.0E-04 35000 1.5 after 34,100 

*These parameters were randomly varied at the Monte Carlo stage of process importance analysis based on ranges that were selected 
mostly from the literature.  
**These parameters were also randomly varied at the Monte Carlo stage of process importance analysis based on ranges taken from six 
global grid datasets and their statistical probability distributions used in the random sampling were obtained by direct fitting of different 
distributions to the histogram of their global grid data and selecting the best distributions (Figs. S1, S2).   
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Table S2. Data for model parameters compiled from 10 previous studies given in different columns of the Table. The citations to the 
mentioned references on the top row have been listed in the footnote. The descriptions of parameters and their units are given in Table 
S1.  
 
Parameter Dale et 

al., 2015 
(adapted) 

Berg et 
al., 2003 

Fossing 
et al., 
2004 

Wijsman 
et al., 
2002 

Kraal et 
al., 2012 

Reed et 
al., 2011a 

Reed et 
al., 2011b 

Burdige 
et al., 
2016a,b 

Meysman 
et al., 
2003 

Kasih et 
al., 2009 

L 40 20 20 30 25 50 30 460 100 30 

P0 0.900 0.838 0.849 0.950 0.860  0.943 0.99 0.948 0.9 

Pf 0.700 0.631 0.763 0.730 0.760 0.7 
 

0.78 0.824 0.69 

px 0.200 1.020 0.216 0.230 0.151  0.189 0.100 0.278 0.088 

u0  
  

   
 

   

ds 2.65 2.41 2.04 2.55 2.65 2.65 2.65 2.65 2.6 2.5 

Temp 281.0 272.2 282.2 279.0 286.2 286.2 281.7 276.7 279.0  

Sal 35 32.3 23.2 17   11 34.6 34.2  

Press 9 
  

   
 

1.12 58.5  

rNC 0.151 0.097 0.1 0.128 0.105  
 

0.122 0.151 0.125 

DBio0 50 145.165 11.9 12.053 0.36 5 5.411 0 0 8 

XBio 5 4 11.8 1 3.5 2 
 

  11.8 

α0 20 48 
 

 40 0 0 0 0 6 

XBI 5 16 
 

1 3.5  
 

  20 

RRPOC 0.002 0.022 0.005 0.025 0.000  0.122  0.001 0.004 

kO2NH4 30 1.99E+04 7.89E+04  1.00E+04 3.90E+04 1.00E+04  5000 7889 

kO2TH2S 500 160.944 1.58E+06 1.60E+02 160 160 160  160 1.58E+06 

kFe2O2  5.00E+05 34713 1.58E+07 1.07E+05 1.40E+05 1.40E+05 1.40E+05  140 1.58E+07 
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Parameter Dale et 
al., 2015 
(adapted) 

Berg et 
al., 2003 

Fossing 
et al., 
2004 

Wijsman 
et al., 
2002 

Kraal et 
al., 2012 

Reed et 
al., 2011a 

Reed et 
al., 2011b 

Burdige 
et al., 
2016a,b 

Meysman 
et al., 
2003 

Kasih et 
al., 2009 

kFeSO2 100 189.3 1.89E+04 3.00E+02 300 300 300  0 1.89E+04 

kFeS2O2 1 9.47 5.05E+02 1.60E+02 1 1 1  0 9.467 

kFe2H2S 1000 14832 2.37E+04 3.65E+05 100 14800 100  12000 1.18E+06 

kFeSH2S 100 
 

9.47E-02 3.25E+00   
 

 0.14 0.237 

kFeSS0 100 7.25825 7.89E-01  7 3.15 7   9.467 

kFe(OH)3HRH2S 3.16 22.0903 6.31E+02 3.65E-02 8 8 8  0 6312 

kFe(OH)3MRH2S 0.003 22.0903 
 

 8 8 8    

kFe(OH)3HR> 

Fe(OH)3MR 
0.7 0.568037 2.84E-02  0.6  0.6   0.028 

kMn2O2 5000 347.1 4.73E+05 5.00E+03 2.0E+04 2.0E+04 2.0E+04  0 4.73E+05 

kMnO2HRFe2 1.00E+04 1.18 5.36E+02 3.00E+03 2 2 2  0 53.6 

kMnO2HRH2S 100 31.56 9.47E+01 2.00E+01 20 20 20  0.172 94.7 

kS0 1 3.16 2.21E+01  3 3 3   22.1 

KO2POC 0.001 0.020 0.020 0.001 0.020 0.020 0.020 1.0E+06 0.002 0.020 

KNO3POC 0.010 0.002 0.005 0.008 0.004 0.004 0.004 1.0E+06 0.002 0.005 

KSO4POC 0.5 0.5 
 

1 1.6 1.6 1.6 0.5 1.6  

KMnO2HRPOC 0.1 0.001 0.003 5 0.000 0.000 0.000 1.0E+06 0.001 0.003 

KFe(OH)3HRPOC 0.6 0.001 0.006 12.5 0.004 0.002 0.004 1.0E+06 0.001 0.006 

kSO4CH4 (kAOM) 1.00E+05 
  

   
 

4.98   

RRFe(OH)3HR/ 
RRFe(OH)3 

1.74E-04 4.58E-04 1.80E-04 5.71E-04 2.06E-06  4.43E-05  2.01E-03 1.22E-03 

RRFe(OH)3MR/ 
RRFe(OH)3 

1.74E-04 4.58E-04 1.80E-04  0  4.43E-05  0 2.45E-03 
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Parameter Dale et 
al., 2015 
(adapted) 

Berg et 
al., 2003 

Fossing 
et al., 
2004 

Wijsman 
et al., 
2002 

Kraal et 
al., 2012 

Reed et 
al., 2011a 

Reed et 
al., 2011b 

Burdige 
et al., 
2016a,b 

Meysman 
et al., 
2003 

Kasih et 
al., 2009 

RRMnO2HR/ 
RRFe(OH)3 

1.99E-04 1.30E-06 3.03E-06 2.01E-04 2.75E-05  
 

 1.10E-04 1.34E-05 

Kdfe  268 500    
 

 17.9 500 

KdMn  28 13      18.2 13 

KdNH4  
  

   
 

3.78  1.5 

BWO2 0.25 
 

 0.295 0.014    0.010 0.115 

BWNO3 1.90E-02 
  

0.005 0.036  
 

 0.025 0.001 

BWNH4 1.00E-03 
  

 0.003  
 

0.002  0.050 

BWMn2 0 
  

0 0  
 

 0 0 

BWFe2 0 
  

0 0  
 

 0 0 

BWSO4 28 
  

1.60E+01 29  
 

26.2 28 27.3 

BWH2S 0 
  

0   
 

  0 

BWDOC  
  

   
 

0.001   

BWlrDOC  
  

   
 

0.068   

kDOC1  
  

   
 

239.2   

kDOC2  
  

   
 

33.7  31558 

kDOC  
  

   
 

3.40  0.158 

kDOC4  
  

   
 

1.60E-04   

References citations are as follows: Dale et al.18, Berg et al.48, Fossing et al.49, Wijsman et al.51, Kraal et al.50, Reed et al.52, Reed et al.53, 
Burdige et al.4,19, Meysman et al.54, Kasih et al.55. 
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Table S3. List of model parameters in Kraal et al.50 and calibrated values in fitting the basic model of the present study to their field 
data. 
Parameter Description Unit Parameter values from 

Kraal et al.50  
Parameter values 
assumed or calibrated 
in fitting data of Kraal 
et al.   

L Depth of modeled sediments cm 25 25 
P0 Porosity at the sediment-water 

interface 
[-] 0.86 0.86 

Pf Porosity after compaction [-] 0.76 0.76 
px Parameter for the exponential 

decrease in porosity with depth 
cm-1 0.15083 0.15083 

uf Burial velocity of solids after 
compaction  

cm.yr-1 0.004 0.004 

ds Density of dry solids g.cm-3 2.65 2.65 
Temp Sediment-water interface temperature K 276.5 – 286.8 281.7 
Sal Salinity PSU 8 – 14  11 
Press Pressure bar NG 9 
rNC Molar N:C ratio during POM 

degradation 
[-] 0.105 0.105 

DBio0 Bioturbation coefficient at the 
sediment-water interface 

cm2.yr-1 0.36 3.51 

XBio Halving depth of the bioturbated zone  cm 3.5 3.5 
α0 Bio-irrigation coefficient yr-1 10 (except 70 for O2 and 

0 for Fe2+) 
10 (except 0 for Fe2+) 

XBI Depth of bio-irrigated zone cm 3.5 3.5 
RRPOC POC rain rate for POC1, POC2 and 

POC3 
g.cm-2.yr-1 2.16×10-4, 5.10×10-5, 

2.04×10-5 
3.54×10-4, 8.36×10-5, 
3.35×10-5 

kO2NH4 Kinetic constant for aerobic 
ammonium oxidation  

mM-1.yr-1 104 945864 

kO2TH2S Kinetic constant for aerobic H2S 
oxidation in mM-1.yr-1 

mM-1.yr-1 160 160 
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Parameter Description Unit Parameter values from 
Kraal et al.50  

Parameter values 
assumed or calibrated 
in fitting data of Kraal 
et al.   

kNO3TH2S Kinetic constant for anaerobic TH2S 
oxidation in mM-1.yr-1 

mM-1.yr-1 NG 4.99 

kFe2O2  Rate constant for aerobic oxidation of 
Fe2+  

mM-1.yr-1 1.4×105 290.6 

kFe2NO3 Rate constant for anaerobic oxidation 
of Fe2+ 

mM-1.yr-1 NG 100 

kFeSO2 Rate constant for aerobic oxidation of 
FeS  

mM-1.yr-1 300 300 

kFeS2O2 Rate constant for aerobic oxidation of 
FeS2 

mM-1.yr-1 1 3.05×10-4 

kFe2H2S Rate constant for FeS precipitation mM-1.yr-1 100 27 
kFeSH2S Rate constant for FeS2 precipitation mM-1.yr-1 NG 1.34×10-7 
kFeSS0 Rate constant for FeS2 precipitation mM-1.yr-1 7 5.65×10-4 
kFe(OH)3HRH2

S 
Rate constant for Fe(OH)3HR  
reduction by H2S 

mM-0.5.yr-

1 
8 70.4 

kFe(OH)3MRH2

S 
Rate constant for Fe(OH)3MR  
reduction by H2S 

mM-0.5.yr-

1 
8 0.017 

kFe(OH)3HR>F

e(OH)3MR 
Rate constant for Fe(OH)3HR ageing to 
Fe(OH)3MR 

yr-1 0.6 0.81 

kMn2O2 Rate constant for aerobic oxidation of 
Mn2+ 

mM-1.yr-1 20000 1875 

kMnO2HRFe2 Rate constant for MnO2MR reduction 
by Fe2+ 

mM-1.yr-1 2 0 

kMnO2HRH2S Rate constant for MnO2HR reduction 
by H2S 

mM-1.yr-1 20 0 

kMnO2MRH2S Rate constant for MnO2HR reduction 
by H2S 

mM-1.yr-1 20 0 

kMnO2HR>Mn

O2MR 
Rate constant for MnO2HR aging to 
MnO2MR 

yr-1 1.8 0 
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Parameter Description Unit Parameter values from 
Kraal et al.50  

Parameter values 
assumed or calibrated 
in fitting data of Kraal 
et al.   

kS0 Rate constant for S0 degradation yr-1 3 3 
KO2POC Monod constant for aerobic POC 

degradation  
mM 0.02 5.51×10-3 

KO2DOC Monod constant for aerobic DOC 
degradation  

mM NG 5.51×10-3 

KNO3POC Monod constant for denitrification for 
POC 

mM 0.004 1.26×10-2 

KNO3DOC Monod constant for denitrification for 
DOC 

mM NG 1.26×10-2 

KSO4POC Monod constant for sulfate reduction 
for POC 

mM 1.6 1.6 

KSO4DOC Monod constant for sulfate reduction 
for DOC 

mM NG 1.6 

KMnO2HRPOC Monod constant (Half-saturation 
constant) for MnO2HR reaction with 
POC 

g.g-1 2.20×10-4 8.35×10-4 

KMnO2HRDO

C 
Monod constant (Half-saturation 
constant) for MnO2HR reaction with 
POC 

g.g-1 NG 8.35×10-4 

KFe(OH)3HRP

OC 
Monod constant (Half-saturation 
constant) for Fe(OH)3HR reaction with 
DOC 

g.g-1 3.63×10-3 1.39×10-4 

KFe(OH)3HRD

OC 
Monod constant (Half-saturation 
constant) for Fe(OH)3HR reaction with 
DOC 

g.g-1 NG 1.39×10-4 

RRFe(OH)3HR Rain rate of Fe(OH)3HR to the seabed  g.cm-2.yr-1 2.07×10-6 4.43×10-5 
RRFe(OH)3M

R 
Rain rate of Fe(OH)3MR to the seabed  g.cm-2.yr-1 0 6.81×10-5 

RRMnO2HR Rain rate of MnO2HRto the seabed  g.cm-2.yr-1 2.75×10-5 2.75×10-5 
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Parameter Description Unit Parameter values from 
Kraal et al.50  

Parameter values 
assumed or calibrated 
in fitting data of Kraal 
et al.   

RRMnO2MR Rain rate of MnO2MRto the seabed  g.cm-2.yr-1 0 5.50×10-7 
BWO2 Oxygen concentration at the 

sediment-water interface 
mM 0.014 0.014 

BWNO3 Nitrate concentration at the sediment-
water interface 

mM 0.036 0.036 

BWNH4 Ammonia concentration at the 
sediment-water interface 

mM 0.0026 0.0026 

BWMn2 Manganese concentration at the 
sediment-water interface 

mM 0 0 

BWFe2 Ferrous iron concentration at the 
sediment-water interface  

mM 0 0 

BWSO4 Sulfate concentration at the sediment-
water interface  

mM 29 29 

BWH2S Hydrogen sulfide concentration at the 
sediment-water interface 

mM NG 0 

BWDIC DIC concentration at the sediment-
water interface 

mM NG 2.17 

KPOCfast First-order degradation constant for 
POCfast 

yr-1 0.25 1.23 

KPOCslow First-order degradation constant for 
POCslow 

yr-1 1.5×10-3 3.5×10-4 

NG: Not given.  
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Table S4. Goodness-of-fit criteria, including determination coefficient (R2) and Nash–Sutcliff model efficiency (NSE) for model fits to 
the field data of Kraal et al.50 and comparison with their model fits. These are conducted using the basic model (without DOC) and the 
model with a simple consideration of DOC. Here the determination coefficient was used as the objective function in the automatic 
calibration process.   

 
Without 
DOC   

Without 
DOC   With DOC   

  R2    NSE    R2 NSE 
 Present study Kraal et al. Present study Kraal et al. Present study Present study 
POC1 0.833 0.711 0.802 0.665 0.834 0.802 
O2 0.499 0.477 0.195 -0.068 0.500 0.175 
NO3 0.989 0.996 0.966 0.995 0.990 0.968 
SO4 0.254 0.000 -0.357 -1.188 0.253 -0.431 
NH4 0.940 0.924 0.890 0.922 0.941 0.901 
Fe2 0.764 0.875 0.517 0.479 0.781 0.422 
Mn2 0.717 0.825 0.648 0.405 0.721 0.621 
Fe(OH)3HR 0.913   0.857   0.909 0.822 
MnO2HR 0.878 0.860 -0.188 0.831 0.875 -0.183 
FeS2 0.832 0.850 -61.032 -4.614 0.831 -53.642 
Mean 0.762 0.724 -5.077 -0.175 0.764 -4.954 
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Table S5. Goodness-of-fit criteria, including determination coefficient (R2) and Nash–Sutcliff model efficiency (NSE) for model fits to 
the field data of Kraal et al.50 and comparison with their model fits. These are conducted using the basic model (without DOC) and the 
model with a simple consideration of DOC. Here the Nash–Sutcliff model efficiency was used as the objective function in the automatic 
calibration process.   

 
Without 
DOC   

Without 
DOC   

  R2    NSE    
 Present study Kraal et al. Present study Kraal et al. 
POC1 0.833 0.711 0.802 0.665 
O2 0.494 0.477 0.339 -0.068 
NO3 0.980 0.996 0.976 0.995 
SO4 0.260 0.000 -0.347 -1.188 
NH4 0.935 0.924 0.854 0.922 
Fe2 0.749 0.875 0.669 0.479 
Mn2 0.739 0.825 0.659 0.405 
Fe(OH)3HR 0.916 

 
0.834 

 

MnO2HR 0.794 0.860 -0.156 0.831 
FeS2 0.866 0.850 -1.308 -4.614 
Mean 0.757 0.724 0.332 -0.175 
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Table S6. Summary of the results for step-by-step consideration of the proposed conceptual model towards including DOC and GPS 
species and considering all proposed processes (equilibrium adsorption, kinetic sorption, and geopolymerization) tested against field-
modeling data of Refs.4,19. The units of parameters are given in Table S1.  
Parameters/ 
Indicators 

Reproduction 
of Burdige et 
al. model 

The 
proposed 
concept, 
including 
DOC 
cascaded 
hydrolysis 

Including 
equilibrium 
adsorption 

Including 
kinetic 
sorption 

Including GPS 
and geo-
polymerization 

Conceptualizing 
the parameter 
trends 

Adding 
link 
between 
DOC1 
and 
lrDOC* 

Further 
adjustment*  

Steps of the model 
development 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 

kDOC1 NA 0 0 0 239.2 1.00E-05 1.00E-
05 

1.00E-05 

kDOC2 NA 0 0 0 33.7 5.00E-04 5.00E-
04 

5.00E-04 

kDOC3 NA 0 0 0 3.4 1.21E-02 1.21E-
02 

1.21E-02 

kDOC4 NA 0 0 1.035 1.60E-04 232.024 246.2 246.2 

kGPS1 NA NA NA NA 1.60E-04 33.7 33.7 33.7 
kGPS2 NA NA NA NA 1.60E-04 3.4102 3.41 3.41 
KlrDOC NA NA NA NA 1.60E-04 1.60E-04 9.95E-

05 
1.14E-04 

KdDOC1 NA 0 0.9199 0 0 0 0 0 
KdDOC2 NA 0 0.0156 0 0 0 0 0 
KdDOC3 NA 0 0.0197 0 0 0 0 0 
KdDOC4 NA 0 2.1250 0 1.035 1.035 1.04 1.04 
KdGPS1 NA NA NA NA 0.748 0.748 0.75 0.75 
KdGPS2 NA NA NA NA 2.892 2.892 2.89 2.89 
KdlrDOC NA NA NA NA 1.116 1.116 1.14 1.14 
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ksorpDOC1 NA 0 0 0 0 0 0 0 
ksorpDOC2 NA 0 0 5.872 5.87 0 0 0 
ksorpDOC3 NA 0 0 1.944 1.94 0 0 0 
ksorpDOC4 NA 0 0 0 0 0 0 0 
ksorpGPS1 NA NA NA 0 0 5.87 5.87 18.5 
ksorpGPS2 NA NA NA 0 0 1.94 1.94 2.00 
ksorplrDOC NA NA NA 0 0 0 0 0 
KdsorpDOC1 NA NA NA 0 0 0 0 0 
KdsorpDOC2 NA NA NA 1.22E+04 1.22E+04 0 0 0 
KdsorpDOC3 NA NA NA 2.58E+04 2.58E+04 0 0 0 
KdsorpDOC4 NA NA NA 0 0 0 0 0 
KdsorpGPS1 NA NA NA NA 0 1.22E+04 1.81E-

04 
3.58E+04 

KdsorpGPS2 NA NA NA NA 0 2.58E+04 2.85E-
05 

2.65E+04 

KdsorplrDOC NA NA NA NA 0 0 0 0 
λDOC1 NA 150 177.45 186.7 186.69 186.69 186.69 186.69 
λDOC2 NA 15.0 17.67 17.73 17.73 186.69 186.69 186.69 
λDOC3 NA 1.50 1.900 1.81 1.81 186.69 186.69 186.69 
λDOC4 NA NA NA NA 5.00E-01 186.69 186.69 186.69 
λGPS1 NA NA NA NA 1.15E-01 17.73 17.73 17.73 
λGPS2 NA NA NA NA 3.00E-02 1.81 0.905 0.905 
λDOC1r NA NA NA NA 0 0 3.62 3.494 
NSE averaged for all 
species** 

0.4560 0.4683 0.4885 0.4491 0.5793 0.5818 0.5881 0.5222 

NSE for total DOC 
and GPS 

0.9716 0.9784 0.9672 0.9900 0.9904 0.9911 0.9896 0.9911 

MSC for all 
species** 

NA 0.626 0.657 0.787 0.824 0.830 0.843 0.695 

MSC for total DOC 
and GPS 

3.560 3.628 2.934 4.055 3.684 3.276 3.051 3.208 
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Number of 
parameters added 

0 3 7 8 21 21 22 22 

Mean mass balance 
error (%) 

0.02 0.01 0.02 0.06 0.08 0.09 0.12 0.12 

NA: Not applicable 
*Step 8 is a further adjustment of six of the parameters from Step 7 to get the best possible fit for the data of total DOC. 
**In calculating the mean NSE, model fit results for total POC and total DOC+GPS+lrDOC were considered for each individual POC 
or DOC/GPS/lrDOC species, and thus the contributions of total POC and total DOC+GPS+lrDOC to the mean NSE have been multiplied 
by the number of their individual species. Consequently, the MSC of all species, which was calculated based on the mean NSE, was 
affected by total POC and total DOC+GPS in the same way. This results in a sudden increase in NSE and MSC from Step 4 on, where 
GPS species and lrDOC are included in the model, and therefore, the number of these species is increased.  
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Table S7. Nash–Sutcliff model efficiency (NSE) and the optimum number of nodes in the hidden layer of ANNs obtained during 
multiple runs of the process importance analysis through ANN fits to data generated from the Monte Carlo stage of the modeling 
procedure with 68 model parameters. The number of process importance analysis runs is 1000 in all cases.  
NSE or the number of hidden layer 
nodes in the ANN 

PE 
MOC
& 
POC 

(semi)
labile 
DOC-
MOC* 
preser
vation 

GPS-
MOC 
preser
vation  

lrDOC-
MOC 
preserv
ation 

Mean NSE of the best fits 0.9232 0.9261 0.9404 0.9444 

Min of NSE of the best fits 0.9056 0.9031 0.9238 0.8975 

Max of NSE of the best fits 0.9439 0.9487 0.9552 0.9613 

Mean number of nodes of the best fits 20 13 13 6 

Min number of nodes of the best fits 3 3 3 3 

Max number of nodes of the best fits 36 36 36 36 

Corresponding node to the Max NSE 17 6 11 4 

PE: preservation efficiency (%), POC: particulate organic carbon; DOC: dissolved organic carbon; MOC: mineral-phase organic carbon;  
DOC-MOC: mineral phase DOC resulting from kinetic sorption of (semi)labile DOC to minerals; GPS-MOC: mineral phase GPS 
resulting from kinetic sorption of GPS to minerals; lrDOC-MOC: mineral phase lrDOC resulting from kinetic sorption of lrDOC to 
minerals.     
*Note the (semi)labile DOC pool is comprised of both labile and semi-labile DOC fractions.   
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Table S8. List of model parameters, their descriptions, units, parameter grouping used in the process of process importance analysis and 
probability distributions used in Monte Carlo sampling.*  
Parameter Description Unit Parameter group Probability distribution 

assumed in Monte Carlo 
sampling 

L Depth of modeled sediments cm -  
SFD Water depth  m - Normal 

P0 Porosity at the sediment-water interface [-] - Normal 

Pf Porosity after compaction [-] -  
px Parameter for the exponential decrease in 

porosity with depth 
cm-1 -  

u0 Burial velocity of solids before 
compaction  

cm.yr-1 - Normal 

ds The density of dry solids g.cm-3 -  

Temp Sediment-water interface temperature K -  

Sal Salinity PSU - Uniform 

Press Pressure bar -  
rNC Molar N:C ratio during POM 

degradation 
[-] -  

DBio0 Bioturbation coefficient at the sediment-
water interface 

cm2.yr-1 Mixing Uniform 

XBio Halving depth of the bioturbated zone  cm Mixing Uniform 

α0 Bio-irrigation coefficient yr-1 Mixing Uniform 

XBI Depth of bio-irrigated zone cm Mixing Uniform 
RRPOC POC rain rate g.cm-2.yr-1 -  

POC0 Total organic carbon concentration  [%] - Lognormal 

MAR Sediment mass accumulation rate g.cm-2.yr-1 -  
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Parameter Description Unit Parameter group Probability distribution 
assumed in Monte Carlo 
sampling 

kO2NH4 Kinetic constant for aerobic ammonium 
oxidation  

mM-1.yr-1 - Uniform 

kO2TH2S Kinetic constant for aerobic H2S 
oxidation in mM-1.yr-1 

mM-1.yr-1 - 
 

Uniform 

kFe2O2  Rate constant for aerobic oxidation of 
Fe2+  

mM-1.yr-1 - Uniform 

kFeSO2 Rate constant for aerobic oxidation of 
FeS  

mM-1.yr-1 - Uniform 

kFeS2O2 Rate constant for aerobic oxidation of 
FeS2 

mM-1.yr-1 - Uniform 

kFe2H2S Rate constant for FeS precipitation mM-1.yr-1 - Uniform 
kFeSH2S Rate constant for FeS2 precipitation mM-1.yr-1 - Uniform 

kFeSS0 Rate constant for FeS2 precipitation mM-1.yr-1 - Uniform 

kFe(OH)3HRH2

S 
Rate constant for Fe(OH)3HR  reduction 
by H2S  

mM-0.5.yr-1 - Uniform 

kFe(OH)3MRH2

S 
Rate constant for Fe(OH)3MR  reduction 
by H2S 

mM-0.5.yr-1 - Uniform 

kFe(OH)3HR>F

e(OH)3MR 
Rate constant for Fe(OH)3HR ageing to 
Fe(OH)3MR 

yr-1 - Uniform 

kMn2O2 Rate constant for aerobic oxidation of 
Mn2+ 

mM-1.yr-1 - Uniform 

kMnO2HRFe2 Rate constant for MnO2MR reduction by 
Fe2+ 

mM-1.yr-1 - Uniform 

kMnO2HRH2S Rate constant for MnO2HR reduction by 
H2S 

mM-1.yr-1 - Uniform 

kS0 Rate constant for S0 degradation yr-1 - Uniform 
KO2DOC Monod constant for aerobic DOC 

degradation  
mM -  
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Parameter Description Unit Parameter group Probability distribution 
assumed in Monte Carlo 
sampling 

KNO3DOC Monod constant for denitrification for 
DOC 

mM -  

KSO4DOC Monod constant for Sulfate reduction for 
DOC 

mM -  

KMnO2HRDO

C 
Monod constant (Half-saturation 
constant) for MnO2HR reaction with 
DOC 

g.g-1 -  

KFe(OH)3HRD

OC 
Monod constant (Half-saturation 
constant) for Fe(OH)3HR reaction with 
DOC 

g.g-1 -  

kSO4CH4 
(kAOM) 

 
yr-1 - Uniform 

KSO4CH4 
(Ka) 

 
mM -  

RRFe(OH)3HR
/RRFe(OH)3 

Ratio of rain rate of Fe(OH)3HR to the 
seabed to the  total Fe(OH)3 rain rate 

[-] -  

RRFe(OH)3M

R/ RRFe(OH)3 
Ratio of rain rate of Fe(OH)3MR to the 
seabed to the  total Fe(OH)3 rain rate 

[-] -  

RRMnO2HR/ 
RRFe(OH)3 

Ratio of rain rate of MnO2HR to the 
seabed to the  Fe(OH)3 rain rate 

[-] -  

Kdfe Distribution coefficient for dissolved 
iron  

cm3.g-1 - Uniform 

KdMn Distribution coefficient for dissolved Mn cm3.g-1 - Uniform 

KdNH4 Distribution coefficient for NH4 cm3.g-1 - Uniform 

BWO2 Oxygen concentration at the sediment-
water interface 

mM - Normal 

BWNO3 Nitrate concentration at the sediment-
water interface 

mM - Normal 

BWNH4 Ammonia concentration at the sediment-
water interface 

mM -  
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Parameter Description Unit Parameter group Probability distribution 
assumed in Monte Carlo 
sampling 

BWMn2 Manganese concentration at the 
sediment-water interface 

mM -  

BWFe2 Ferrous iron concentration at the 
sediment-water interface  

mM -  

BWSO4 Sulfate concentration at the sediment-
water interface  

mM -  

BWH2S Hydrogen sulfide concentration at the 
sediment-water interface 

mM -  

BWDOC DOC concentration at the sediment-
water interface 

mM -  

BWlrDOC lrDOC concentration at the sediment-
water interface 

mM -  

kDOC1 First-order degradation constant for 
DOC1 

yr-1 Remineralization Uniform 

kDOC2 First-order degradation constant for 
DOC2 

yr-1 Remineralization Uniform 

kDOC3 First-order degradation constant for 
DOC3 

yr-1 Remineralization Uniform 

kDOC4 First-order degradation constant for 
DOC4 

yr-1 Remineralization Uniform 

kGPS1 First-order degradation constant for 
GPS1 

yr-1 Remineralization Uniform  

kGPS2 First-order degradation constant for 
GPS2 

yr-1 Remineralization Uniform 

klrDOC  First-order degradation constant for 
GPS3 (lrDOC) 

yr-1 Remineralization Uniform 

KdDOC1 Adsorption coefficient for DOC1 cm3.g-1 Equilibrium adsorption Uniform 

KdDOC2 Adsorption coefficient for DOC2 cm3.g-1 Equilibrium adsorption Uniform 

KdDOC3 Adsorption coefficient for DOC3 cm3.g-1 Equilibrium adsorption Uniform  
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Parameter Description Unit Parameter group Probability distribution 
assumed in Monte Carlo 
sampling 

KdDOC4 Adsorption coefficient for DOC4 cm3.g-1 Equilibrium adsorption Uniform  
KdGPS1 Adsorption coefficient for GPS1 cm3.g-1 Equilibrium adsorption Uniform  

KdGPS2 Adsorption coefficient for GPS2 cm3.g-1 Equilibrium adsorption Uniform  

KdlrDOC Adsorption coefficient for lrDOC cm3.g-1 Equilibrium adsorption Uniform  
ksorpDOC1 Mass transfer rate between the dissolved 

and sorbed phases for DOC1 
yr-1 Kinetic sorption Uniform  

ksorpDOC2 Mass transfer rate between the dissolved 
and sorbed phases for DOC2 

yr-1 Kinetic sorption Uniform 

ksorpDOC3 Mass transfer rate between the dissolved 
and sorbed phases for DOC3 

yr-1 Kinetic sorption Uniform 

ksorpDOC4 Mass transfer rate between the dissolved 
and sorbed phases for DOC4 

yr-1 Kinetic sorption Uniform  

ksorpGPS1 Mass transfer rate between the dissolved 
and sorbed phases for GPS1 

yr-1 Kinetic sorption Uniform  

ksorpGPS2 Mass transfer rate between the dissolved 
and sorbed phases for GPS2 

yr-1 Kinetic sorption Uniform  

ksorplrDOC Mass transfer rate between the dissolved 
and sorbed phases for lrDOC 

yr-1 Kinetic sorption Uniform  

KdsorpDOC1  Equivalent distribution coefficient for 
kinetic sorption of DOC1 

cm3.g-1 Kinetic sorption Uniform  

KdsorpDOC2  Equivalent distribution coefficient for 
kinetic sorption of DOC2 

cm3.g-1 Kinetic sorption Uniform  

KdsorpDOC3  Equivalent distribution coefficient for 
kinetic sorption of DOC3 

cm3.g-1 Kinetic sorption Uniform  

KdsorpDOC4  Equivalent distribution coefficient for 
kinetic sorption of DOC4 

cm3.g-1 Kinetic sorption Uniform  

KdsorpGPS1  Equivalent distribution coefficient for 
kinetic sorption of GPS1 

cm3.g-1 Kinetic sorption Uniform  
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Parameter Description Unit Parameter group Probability distribution 
assumed in Monte Carlo 
sampling 

KdsorpGPS2  Equivalent distribution coefficient for 
kinetic sorption of GPS2 

cm3.g-1 Kinetic sorption Uniform  

KdsorplrDOC  Equivalent distribution coefficient for 
kinetic sorption of lrDOC 

cm3.g-1 Kinetic sorption Uniform  

λDOC1r  Conversion rate of DOC1 to lrDOC yr-1 DOC hydrolysis Uniform  
λDOC1 Conversion rate of DOC1 to DOC2 yr-1 DOC hydrolysis Uniform  

λDOC2 Conversion rate of DOC2 to DOC3 yr-1 DOC hydrolysis Uniform  

λDOC3 Conversion rate of DOC3 to DOC4 yr-1 DOC hydrolysis Uniform  
λDOC4 Conversion rate of DOC4 to GPS1 yr-1 Geopolymerization Uniform  

λGPS1 Conversion rate of GPS1 to GPS2 yr-1 Geopolymerization Uniform  

λGPS2 Conversion rate of GPS2 to lrDOC yr-1 Geopolymerization Uniform  

vGam Continuum model parameter, the average 
lifetime of reactive POC 

[-] - Uniform  

aGam Continuum model parameter, 
determining the shape of the distribution 
near kPOC = 0 

yr - Lognormal 

*Parameters that do not have a distribution are not varied in the Monte Carlo process or the rest of the modeling process.  
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Table S9. Summary of model parameter grouping into three previously known processes and three proposed processes in this study.  
 

Known or 
proposed   

Parameter 
groups/processes 

Abbreviation/ 
names 

 Parameters in each group 

Previously 
known 
process 

DOC hydrolysis DOC hydrolysis λDOC1r, λDOC1, λDOC2, λDOC3   

DOC and GPS 
remineralization 

Remineralis. kDOC1, kDOC2, kDOC3, kDOC4, kGPS1, kGPS2, klrDOC 

Sediment mixing by fauna Mixing XBI, α0, XBio, DBio0  

Proposed 
added 
processes 

Equilibrium adsorption Equilib. Adsorp. KdDOC1, KdDOC2, KdDOC3, KdDOC4, KdGPS1, KdGPS2, KdlrDOC 

Kinetic sorption Kinetic Sorption ksorpDOC1, ksorpDOC2, ksorpDOC3, ksorpDOC4, ksorpGPS1, 
ksorpGPS2, ksorplrDOC, KdsorpDOC1, KdsorpDOC2, 
KdsorpDOC3, KdsorpDOC4, KdsorpGPS1, KdsorpGPS2, 
KdsorplrDOC 

Geopolymerization Geopolymeri. λDOC4, λGPS1, λGPS2 
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Table S10. List of primary and secondary redox reactions considered in the early diagenesis model with rate constants (adapted from 
Ref.18.  
Reaction 
number 

Reaction name  Stoichiometry Rate expression Parameter(s) Parameter 
unit(s) 

1 DOC* degradation 
 

DOC + O2 à CO2 + &
(8:O)

 NH4+ 

+ H2O 

kDOCi.[DOCi] kDOCi yr-1 

2 DIC production via 
DOC degradation 
(DIC+CH4) 
 

DOCà 0.5CO2 + &
(8:O)

 NH4+ + 
0.5CH4 
 

∑kDOCi.[DOCi]  yr-1 

3 NH4 release 
(ammonification) via 
DOC degradation 
 

DOC + 0.8NO3– + 0.8H+ à CO2 

+ &
(8:O)

 NH4+ +0.4N2 + 1.4H2O 
 

rNC.kPOCi.[POCi] rNC, kPOCi [–], yr-1 

4 O2 consumption via 
aerobic DOC 
degradation 
 

DOC + O2 à CO2 + &
(8:O)

 NH4+ 

+ H2O 
 

∑kDOCi.[DOCi].[O2] / 
(KO2DOC+[O2]) 

KO2DOC mM 

5 Denitrification DOC + 0.8NO3– + 0.8H+ à CO2 

+ &
(8:O)

 NH4+ +0.4N2 + 1.4H2O 
 

∑kDOCi.[DOCi]. KO2DOC / 
(KO2DOC+[O2]).[NO3] / 
(KNO3DOC+[NO3]) 

KNO3DOC mM 

7 DOC degradation via 
Sulfate reduction 

DOC + 0.5SO42– + H+ à CO2 + 
&

(8:O)
 NH4+  + H2O + &

D
 H2S 

 

L2.∑kDOCi.[DOCi].[SO4] / 
(KSO4DOC+[SO4]) 

KSO4DOC mM 

8 Methanogenesis DOCà 0.5CO2 + &
(8:O)

 NH4+ + 
0.5CH4 
 

L2.∑kDOCi.[DOCi].(1- [SO4] 
/ (KSO4DOC+[SO4])) 

  

9 Aerobic NH4 oxidation NH4+ + 2O2 à NO3– + H2O + 
2H+ 
 

kO2NH4.[O2].[NH4] kO2NH4 mM-1.yr-1 
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Reaction 
number 

Reaction name  Stoichiometry Rate expression Parameter(s) Parameter 
unit(s) 

10 Aerobic TH2S 
oxidation 

H2S + 2O2 à SO42– + 2H+ 
 

kO2H2S·[O2]·[H2S] kO2H2S mM-1.yr-1 

11 Aerobic CH4 oxidation CH4 + 2O2 à CO2 + 2H2O 
 

kO2CH4·[O2]·[CH4] kO2CH4 mM-1.yr-1 

12 Anaerobic CH4 
oxidation 

CH4 + SO42– +2H+ à H2S + 
CO2 + 2H2O 
 

kSO4CH4·[SO4].[CH4] / 
([SO4]+ KSO4CH4) 

kSO4CH4, 
KSO4CH4 

yr-1 
, mM 

13 Anaerobic TH2S 
oxidation 

H2S + NO3– + H2O à SO42– + 
NH4+ 
 

kNO3H2S ·[NO3]·[H2S] kNO3H2S mM-1.yr-1 

14 Secondary redox 
reactions 

DOC + 2MnO2 → 2Mn2+ + CO2 
+ &
(8:O)

NH4+ + &
(?:8)

PO43-  
 

2∑kDOCi.[DOCi]. KO2DOC / 
(KO2DOC+[O2]). KNO3DOC / 
(KNO3DOC+[NO3]).[MnO2] / 
(KMnO2DOC+[MnO2]) 

KMnO2DOC mM 
 

15  DOC + 4FeOOH → 4Fe2+ + 
CO2 + &

(8:O)
NH4+  

 

4∑kDOCi.[DOCi]. KO2DOC / 
(KO2DOC+[O2]). KNO3DOC / 
(KNO3DOC+[NO3]). 
KMnO2DOC / 
(KMnO2DOC+[MnO2]). 
[Fe(OH)3] / 
(KFe(OH)3DOC+[Fe(OH)3]) 

KFe(OH)3DOC mM 

16  Mn2+ + 0.5O2 → MnO2   kMn2O2.[O2].[ Mn2+] kMn2O2 mM-1.yr-1 
17  Fe2+ + 0.25O2 → FeOOH kFe2O2.[O2].[Fe2+] kFe2O2 mM-1.yr-1 
18  Fe2+ + 0.2NO3- → FeOOH  + 

0.1N2  
kFe2NO3.[NO3].[Fe2+] kFe2NO3 mM-1.yr-1 

19  FeS + 2O2 → Fe2+ + SO42–   kFeSO2·[FeS]·[O2]. 
ρs.ε.(φ.AWFeS)-1.106 

kFeSO2 mM-1.yr-1 

20  FeS2 + 3.5O2 → Fe2+ + 2SO42–  kFeS2O2·[FeS2]·[O2] . 
ρs.ε.(φ.AWFeS2)-1.106 

kFeS2O2 mM-1.yr-1 

21  Fe2+ + H2S → FeS  kFe2H2S·[Fe2+]·[H2S] kFe2H2S mM-1.yr-1 
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Reaction 
number 

Reaction name  Stoichiometry Rate expression Parameter(s) Parameter 
unit(s) 

22  FeS + H2S → FeS2 + H2  kFeSH2S·[FeS]·[H2S]. 
ρs.ε.(φ.AWFeS)-1.106 

kFeSH2S mM-1.yr-1 

23  FeS + S0 → FeS2  kFeSS0·[FeS]·[S0]. 
ρs.ε.(φ.AWFeS)-1.106 . 
ρs.ε.(φ.AWS0)-1.106 

kFeSS0 mM-1.yr-1 

24  MnO2 + 2Fe2+ → 2FeHR + 
Mn2+  

kMnO2Fe2·[MnO2]·[Fe2+]. 
ρs.ε.(φ.AWMn)-1.106 

kMnO2Fe2 mM-1.yr-1 

25  MnO2 + H2S → S0 + Mn2+  kMnO2H2S·[MnO2]·[H2S]. 
ρs.ε.(φ.AWMn)-1.106 

kMnO2H2S mM-1.yr-1 

26  FeOOH  + 0.5H2S → S0 + Fe2+ kFe(OH)3H2S·[Fe(OH)3]·[H2S]. 
ρs.ε.(φ.AWFe)-1.106 

kFe(OH)3H2S** mM-1.yr-1 

27  FeHR → FeMR kFe(OH)3HRMR. [Fe(OH)3HR] kFe(OH)3HRMR yr-1 
28  S0 → 0.25SO42- + 0.75H2S kS0.[S0] kS0 yr-1 

* Throughout the table, the term “DOC” applies to both DOC and GPS pools.  
**Applied to both highly reactive and moderately reactive iron species of Fe(OH)3.    
L2=0.59 and AW is the atomic weight. Squared parentheses stand for the concentration of the compound. 
 
 
  



 
 

1 
 

References 
1 Babakhani, P., Bridge, J., Doong, R. a. & Phenrat, T. Parameterization and prediction of nanoparticle 

transport in porous media: A reanalysis using artificial neural network. Water Resources Research 53, 
4564-4585 (2017). 

2 Jørgensen, B. B. A comparison of methods for the quantification of bacterial sulfate reduction in 
coastal marine sediments: I. Measurement with radiotracer techniques. Geomicrobiology Journal 1, 
11-27 (1978). 

3 Burdige, D. J. & Gardner, K. G. Molecular weight distribution of dissolved organic carbon in marine 
sediment pore waters. Marine Chemistry 62, 45-64 (1998). 

4 Burdige, D. J., Komada, T., Magen, C. & Chanton, J. P. Modeling studies of dissolved organic matter 
cycling in Santa Barbara Basin (CA, USA) sediments. Geochimica et Cosmochimica Acta 195, 100-
119 (2016). 

5 Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nature Reviews Earth 
& Environment, 1-14 (2021). 

6 Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. 
Limnology and Oceanography 41, 41-51 (1996). 

7 Benner, R. & Amon, R. M. W. The size-reactivity continuum of major bioelements in the ocean. 
Annual review of marine science 7, 185-205 (2015). 

8 Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Marine Chemistry 
92, 67-85 (2004). 

9 Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 
331-333 (2015). 

10 Middelburg, J. J. Escape by dilution. Science 348, 290-290 (2015). 
11 Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic 

carbon. Nature 570, 228-231, doi:10.1038/s41586-019-1280-6 (2019). 
12 Keil, R. G., Montluçon, D. B., Prahl, F. G. & Hedges, J. I. Sorptive preservation of labile organic 

matter in marine sediments. Nature 370, 549-552 (1994). 
13 Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative 

synthesis. Marine chemistry 49, 81-115 (1995). 
14 Alperin, M. J., Albert, D. B. & Martens, C. S. Seasonal variations in production and consumption rates 

of dissolved organic carbon in an organic-rich coastal sediment. Geochimica et Cosmochimica Acta 
58, 4909-4930 (1994). 

15 Ren, W. et al. Global sensitivity study of non-reactive and sorptive solute dispersivity in multiscale 
heterogeneous sediments. Journal of Hydrology 619, 129274 (2023). 

16 Massoudieh, A., Bombardelli, F. A. & Ginn, T. R. A biogeochemical model of contaminant fate and 
transport in river waters and sediments. Journal of contaminant hydrology 112, 103-117 (2010). 

17 Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an 
imbalance in sediment organic carbon budgets? Chemical reviews 107, 467-485 (2007). 

18 Dale, A. W. et al. A revised global estimate of dissolved iron fluxes from marine sediments. Global 
Biogeochemical Cycles 29, 691-707 (2015). 

19 Burdige, D. J., Komada, T., Magen, C. & Chanton, J. P. Methane dynamics in Santa Barbara Basin 
(USA) sediments as examined with a reaction-transport model. Journal of Marine Research 74, 277-
313 (2016). 

20 Leong, L. P. & Wedzicha, B. L. A critical appraisal of the kinetic model for the Maillard browning of 
glucose with glycine. Food Chemistry 68, 21-28 (2000). 



 
 

2 
 

21 Babakhani, P. et al. Comparison of a new mass-concentration, chain-reaction model with the 
population-balance model for early-and late-stage aggregation of shattered graphene oxide 
nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 582, 123862 
(2019). 

22 Rogalinski, T., Liu, K., Albrecht, T. & Brunner, G. Hydrolysis kinetics of biopolymers in subcritical 
water. The Journal of Supercritical Fluids 46, 335-341 (2008). 

23 Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annual review of marine science 5, 
421-445 (2013). 

24 Babakhani, P., Bridge, J., Doong, R.-a. & Phenrat, T. Continuum-based models and concepts for the 
transport of nanoparticles in saturated porous media: A state-of-the-science review. Advances in 
Colloid and Interface Science 246, 75-104, doi:https://doi.org/10.1016/j.cis.2017.06.002 (2017). 

25 Šimunek, J., Šejna, M., Saito, H., Sakai, M. & Van Genuchten, M. T. The HYDRUS-1D software 
package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-
saturated media, version 4.08. University of California, Riverside, Dept. of Environmental Sciences 
HYDRUS Software Series 3, 330 (2009). 

26 Berner, R. A. Inclusion of adsorption in the modelling of early diagenesis. Earth and Planetary Science 
Letters 29, 333-340 (1976). 

27 Corapcioglu, M. Y. & Jiang, S. Colloid‐facilitated groundwater contaminant transport. Water 
Resources Research 29, 2215-2226 (1993). 

28 Sohma, A., Sekiguchi, Y. & Nakata, K. Modeling and evaluating the ecosystem of sea-grass beds, 
shallow waters without sea-grass, and an oxygen-depleted offshore area. Journal of marine systems 
45, 105-142 (2004). 

29 Babakhani, P. The impact of nanoparticle aggregation on their size exclusion during transport in 
porous media: One-and three-dimensional modelling investigations. Scientific reports 9, 1-12 (2019). 

30 Zheng, C. & Wang, P. P. A modular three-dimensional multi-species transport model for simulation 
of advection, dispersion and chemical reactions of contaminants in groundwater systems; 
documentation and user's guide. US Army Engineer Research and Development Center Contract 
Report SERDP-99-1, Vicksburg, Mississippi, USA (1999). 

31 Robador, A., Brüchert, V., Steen, A. D. & Arnosti, C. Temperature induced decoupling of enzymatic 
hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments. 
Geochimica et Cosmochimica Acta 74, 2316-2326 (2010). 

32 Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Science 
advances 6, eaba0697 (2020). 

33 Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: A review and 
synthesis. Earth-Science Reviews 123, 53-86, doi:10.1016/j.earscirev.2013.02.008 (2013). 

34 Boudreau, B. P. & Ruddick, B. R. On a reactive continuum representation of organic matter diagenesis. 
American Journal of Science 291, 507-538 (1991). 

35 Killops, S. D. & Killops, V. J. Introduction to organic geochemistry.  (John Wiley & Sons, 2013). 
36 Cole, J. J., McDowell, W. H. & Likens, G. E. Sources and molecular weight of" dissolved" organic 

carbon in an oligotrophic lake. Oikos, 1-9 (1984). 
37 Kukulka, D. J., Gebhart, B. & Mollendorf, J. C. in Advances in Heat Transfer Vol. 18  (eds James P. 

Hartnett & Thomas F. Irvine)  325-363 (Elsevier, 1987). 
38 Boudreau, B. P. Diagenetic models and their implementation. Vol. 410 (Springer, Berlin, 1997). 
39 Weast, R. C., Astle, M. J. & Beyer, W. H. CRC Handbook of Chemistry and Physics. 70th eds. Boca 

Raton, Frorida (1989). 



 
 

3 
 

40 Razavi, S. & Gupta, H. V. A new framework for comprehensive, robust, and efficient global sensitivity 
analysis: 1. Theory. Water Resources Research 52, 423-439 (2016). 

41 Morris, M. D. Factorial sampling plans for preliminary computational experiments. Technometrics 33, 
161-174 (1991). 

42 Sobol, I. y. M. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe 
modelirovanie 2, 112-118 (1990). 

43 Jaxa-Rozen, M. & Kwakkel, J. Tree-based ensemble methods for sensitivity analysis of environmental 
models: A performance comparison with Sobol and Morris techniques. Environmental Modelling & 
Software 107, 245-266 (2018). 

44 Tunkiel, A. T., Sui, D. & Wiktorski, T. Data-driven sensitivity analysis of complex machine learning 
models: A case study of directional drilling. Journal of Petroleum Science and Engineering 195, 
107630 (2020). 

45 Razavi, S. & Gupta, H. V. What do we mean by sensitivity analysis? The need for comprehensive 
characterization of “global” sensitivity in E arth and E nvironmental systems models. Water Resources 
Research 51, 3070-3092 (2015). 

46 Wang, A. & Solomatine, D. P. Practical experience of sensitivity analysis: Comparing six methods, 
on three hydrological models, with three performance criteria. Water 11, 1062 (2019). 

47 Zhang, P. A novel feature selection method based on global sensitivity analysis with application in 
machine learning-based prediction model. Applied Soft Computing 85, 105859 (2019). 

48 Berg, P., Rysgaard, S. & Thamdrup, B. Dynamic modeling of early diagenesis and nutrient cycling. A 
case study in an artic marine sediment. American journal of science 303, 905-955 (2003). 

49 Fossing, H. et al. A model set-up for an oxygen and nutrient flux model for Aarhus Bay (Denmark). 
NERI technical report 483 (2004). 

50 Kraal, P., Slomp, C. P., Reed, D. C., Reichart, G. J. & Poulton, S. W. Sedimentary phosphorus and 
iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences 9, 
2603-2624 (2012). 

51 Wijsman, J. W. M., Herman, P. M. J., Middelburg, J. J. & Soetaert, K. A model for early diagenetic 
processes in sediments of the continental shelf of the Black Sea. Estuarine, Coastal and Shelf Science 
54, 403-421 (2002). 

52 Reed, D. C., Slomp, C. P. & de Lange, G. J. A quantitative reconstruction of organic matter and nutrient 
diagenesis in Mediterranean Sea sediments over the Holocene. Geochimica et Cosmochimica Acta 75, 
5540-5558 (2011). 

53 Reed, D. C., Slomp, C. P. & Gustafsson, B. G. Sedimentary phosphorus dynamics and the evolution 
of bottom‐water hypoxia: A coupled benthic–pelagic model of a coastal system. Limnology and 
Oceanography 56, 1075-1092 (2011). 

54 Meysman, F. J. R., Middelburg, J. J., Herman, P. M. J. & Heip, C. H. R. Reactive transport in surface 
sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. Computers 
& Geosciences 29, 301-318 (2003). 

55 Kasih, G. A. A., Chiba, S., Yamagata, Y., Shimizu, Y. & Haraguchi, K. Numerical model on the 
material circulation for coastal sediment in Ago Bay, Japan. Journal of Marine Systems 77, 45-60 
(2009). 

56 Burwicz, E. B., Rüpke, L. H. & Wallmann, K. Estimation of the global amount of submarine gas 
hydrates formed via microbial methane formation based on numerical reaction-transport modeling and 
a novel parameterization of Holocene sedimentation. Geochimica et Cosmochimica Acta 75, 4562-
4576 (2011). 



 
 

4 
 

57 Restreppo, G. A., Wood, W. T. & Phrampus, B. J. Oceanic sediment accumulation rates predicted via 
machine learning algorithm: towards sediment characterization on a global scale. Geo-Marine Letters 
40, 755-763 (2020). 

58 Lee, T. R., Wood, W. T. & Phrampus, B. J. A machine learning (kNN) approach to predicting global 
seafloor total organic carbon. Global Biogeochemical Cycles 33, 37-46 (2019). 

59 NOAA, N. O. a. A. A. National Centers for Environmental Information, World Ocean Atlas (WOA). 
https://www.nodc.noaa.gov/OC5/woa18/woa18data.html (2018). 

60 Bohlen, L., Dale, A. W. & Wallmann, K. Simple transfer functions for calculating benthic fixed 
nitrogen losses and C: N: P regeneration ratios in global biogeochemical models. Global 
biogeochemical cycles 26 (2012). 

61 Couto, P. R. G., Damasceno, J. C. & de Oliveira, S. P. in Theory and Applications of Monte Carlo 
Simulations   (ed Victor (Wai Kin) Chan)  (INTECH Open Access Publisher, 2013). 

62 McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The bulletin 
of mathematical biophysics 5, 115-133 (1943). 

63 Yu, H. et al. Prediction of the Particle Size Distribution Parameters in a High Shear Granulation 
Process Using a Key Parameter Definition Combined Artificial Neural Network Model. Industrial & 
Engineering Chemistry Research 54, 10825-10834, doi:10.1021/acs.iecr.5b02679 (2015). 

64 Nourani, V. & Sayyah-Fard, M. Sensitivity analysis of the artificial neural network outputs in 
simulation of the evaporation process at different climatologic regimes. Advances in Engineering 
Software 47, 127-146 (2012). 

65 Gevrey, M., Dimopoulos, I. & Lek, S. Two-way interaction of input variables in the sensitivity analysis 
of neural network models. Ecological modelling 195, 43-50 (2006). 

66 Yerramareddy, S., Lu, S. C. Y. & Arnold, K. F. Developing empirical models from observational data 
using artificial neural networks. Journal of Intelligent Manufacturing 4, 33-41 (1993). 

67 Gevrey, M., Dimopoulos, I. & Lek, S. Review and comparison of methods to study the contribution 
of variables in artificial neural network models. Ecological modelling 160, 249-264 (2003). 

68 Doherty, J. Pest, Model-Independent Parameter Estimation User Manual:  5th Edition.,  (Watermark 
Numerical Computing, 2004). 

69 Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: A theoretical 
approach. Energies 5, 2449-2498 (2012). 

70 Babakhani, P., Bridge, J., Phenrat, T., Doong, R.-a. & Whittle, K. R. Aggregation and sedimentation 
of shattered graphene oxide nanoparticles in dynamic environments: a solid-body rotational approach. 
Environmental Science: Nano 5, 1859-1872 (2018). 

71 Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I — A discussion 
of principles. Journal of Hydrology 10, 282-290, doi:10.1016/0022-1694(70)90255-6 (1970). 

72 Philibert, J. One and a half century of diffusion: Fick, Einstein before and beyond.  (2006). 
73 Bahr, J. M. & Rubin, J. Direct comparison of kinetic and local equilibrium formulations for solute 

transport affected by surface reactions. Water Resources Research 23, 438-452 (1987). 
74 Akaike, H. A new look at the statistical model identification. Automatic Control, IEEE Transactions 

on 19, 716-723 (1974). 
75 Bradford, S. A., Torkzaban, S., Leij, F. & Simunek, J. Equilibrium and kinetic models for colloid 

release under transient solution chemistry conditions. Journal of contaminant hydrology 181, 141-152 
(2015). 

76 Saiers, J. E. & Hornberger, G. M. Migration of 137Cs through quartz sand: experimental results and 
modeling approaches. Journal of contaminant hydrology 22, 255-270 (1996). 

http://www.nodc.noaa.gov/OC5/woa18/woa18data.html


 
 

5 
 

77 Koeppenkastrop, D. & De Carlo, E. H. Uptake of rare earth elements from solution by metal oxides. 
Environmental science & technology 27, 1796-1802 (1993). 

78 Langmuir, D. Aqueous environmental. Geochemistry Prentice Hall: Upper Saddle River, NJ 600 
(1997). 

79 Limousin, G. et al. Sorption isotherms: A review on physical bases, modeling and measurement. 
Applied Geochemistry 22, 249-275, doi:http://dx.doi.org/10.1016/j.apgeochem.2006.09.010 (2007). 

80 Moore, O. W. et al. Long-term organic carbon preservation enhanced by iron and manganese. Nature 
621, 312-317, doi:10.1038/s41586-023-06325-9 (2023). 

81 Canfield, D. E. Factors influencing organic carbon preservation in marine sediments. Chemical 
geology 114, 315-329 (1994). 

82 Rothman, D. H. & Forney, D. C. Physical model for the decay and preservation of marine organic 
carbon. Science 316, 1325-1328, doi:10.1126/science.1138211 (2007). 

83 Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments 
promoted by iron. Nature 483, 198-200 (2012). 

84 Henrichs, S. M. Sedimentary organic matter preservation: an assessment and speculative synthesis—
a comment. Marine Chemistry 49, 127-136 (1995). 

85 Lee, C. Kitty litter for carbon control. Nature 370, 503-504 (1994). 
86 Hedges, J. I. The formation and clay mineral reactions of melanoidins. Geochimica et Cosmochimica 

Acta 42, 69-76 (1978). 
87 Kennedy, M. J., Pevear, D. R. & Hill, R. J. Mineral surface control of organic carbon in black shale. 

Science 295, 657-660 (2002). 
88 LaRowe, D. E. et al. The fate of organic carbon in marine sediments-New insights from recent data 

and analysis. Earth-Science Reviews 204, 103146 (2020). 
89 Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth 

& Environment 2, 402-421 (2021). 
90 Keil, R. G. & Mayer, L. M. in Treatise on Geochemistry (Second Edition)   (eds Heinrich D. Holland 

& Karl K. Turekian)  337-359 (Elsevier, 2014). 
91 Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the 

ocean interior and factors controlling the biological pump: A synthesis of global sediment trap 
programs since 1983. Progress in Oceanography 76, 217-285 (2008). 

92 Henson, S. A. et al. A reduced estimate of the strength of the ocean's biological carbon pump. 
Geophysical Research Letters 38 (2011). 

93 DeVries, T. The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes, and transports over the 
industrial era. Global Biogeochemical Cycles 28, 631-647 (2014). 

94 Mills, B. J. W., Donnadieu, Y. & Godderis, Y. Spatial continuous integration of Phanerozoic global 
biogeochemistry and climate. Gondwana Research 100, 73-86 (2021). 

95 Aumont, O., Éthé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical 
model for carbon and ecosystem studies. Geoscientific Model Development Discussions 8 (2015). 

96 Kasim, M. F. et al. Building high accuracy emulators for scientific simulations with deep neural 
architecture search. Machine Learning: Science and Technology 3, 015013 (2021). 

97 Lower, S. K., Hochella Jr, M. F. & Beveridge, T. J. Bacterial recognition of mineral surfaces: nanoscale 
interactions between Shewanella and α-FeOOH. Science 292, 1360-1363 (2001). 

98 Xiao, K.-Q., Moore, O. W., Babakhani, P., Curti, L. & Peacock, C. L. Mineralogical control on 
methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface 
sediment. Nature Communications 13, 2722 (2022). 

http://dx.doi.org/10.1016/j.apgeochem.2006.09.010


 
 

6 
 

99 Thullner, M., Dale, A. W. & Regnier, P. Global-scale quantification of mineralization pathways in 
marine sediments: A reaction-transport modeling approach. Geochemistry, Geophysics, Geosystems 
10, n/a-n/a, doi:10.1029/2009gc002484 (2009). 

100 LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale 
throughout the Quaternary. Geochimica et Cosmochimica Acta 286, 227-247 (2020). 

 




