JGR-Atmospheres

Supporting Information for

Relating dimethyl sulphide and methanethiol fluxes to surface biota in the South-West Pacific using shipboard Air-Sea Interface Tanks

M. Rocco¹*, E. Dunne², A. Saint-Macary^{3,4}, M. Peltola^{1**}, T. Barthelmeß⁵, R. Salignat¹, G. Chamba¹, N. Barr³, K. Safi^{3A}, A. Marriner³, S. Deppeler³, , C. Rose¹, J. Uitz⁶, J. Harnwell², A. Engel⁵, A. Colomb¹, A. Saiz-Lopez⁷, M. J. Harvey^{3,†}, C. S. Law^{3,4}, and K. Sellegri¹

¹ Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), Aubière, France

² CSIRO Environment, Aspendale, Australia

³ National Institute of Water and Atmospheric Research, Wellington, New Zealand

^{3A} National Institute of Water and Atmospheric Research, Hamilton, New Zealand

⁴ Department of Marine Science, University of Otago, New Zealand

⁵ GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

⁶ Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France

⁷ Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain

*now at Aix Marseille Univ, CNRS, LCE, Marseille, France and CNRS, Aix Marseille Univ, IRD, Avignon Univ, IMBE, Marseille, France

**now at INAR, University of Helsinki, Finland

+ Deceased

Correspondence to: Karine Sellegri (karine.sellegri@uca.fr); Manon Rocco (rocco.manon@gmail.com)

Contents of this file

Table S1. Mean concentrations (\pm 1 S.D.) for biogeochemical parameters and ASIT's headspace concentrations during the three ASIT experiments.

Table S2. Correlation of DMS and MeSH fluxes (ng m⁻² s⁻¹) with PAR (μ mol m⁻² s⁻¹) and shifted PAR every two hours and temperature (°C).

	EXP A	EXP B	EXP C
--	-------	-------	-------

	Frontal	Subantarctic	Subtropical
Chlorophyll biomass			
Total Chl-a (mg m ⁻³)	1.87 ± 0.34	0.54 ± 0.12	1.88 ± 0.30
Chl-a >20 um (mg m ⁻³)	0.98 ± 0.23	0.13 ± 0.06	1.17 ± 0.25
Chl-a 2-20 um (mg m ⁻³)	0.29 ± 0.03	0.14 ± 0.03	0.25 ± 0.06
Chl-a <2 um (mg m ⁻³)	0.26 ± 0.08	0.18 ± 0.03	0.29 ± 0.05
	Phytoplankton Size	Class	
Nanophytoplankton (cells mL ⁻¹)	$\begin{array}{c} 22.22 \times 10^2 \pm 3.99 \\ \times 10^2 \end{array}$	$\begin{array}{c} 11.93 \times 10^2 \pm \\ 1.16 \times 10^2 \end{array}$	$\begin{array}{c} 12.27 \times 10^2 \pm \\ 1.57 \times 10^2 \end{array}$
Picophytoplankton (cells mL ⁻ ¹)	$\begin{array}{c} 86.81 \times 10^2 \pm \\ 21.61 \times 10^2 \end{array}$	$\begin{array}{c} 153.48 \times 10^2 \pm \\ 11.23 \times 10^2 \end{array}$	$\begin{array}{c} 160.60 \times 10^2 \pm \\ 73.34 \times 10^2 \end{array}$
<i>Synechococcus</i> (cells mL ⁻¹)	$\begin{array}{c} 325.14 \times 10^2 \pm \\ 56.95 \times 10^2 \end{array}$	$\begin{array}{c} 634.17 \times 10^2 \pm \\ 58.70 \times 10^2 \end{array}$	$\begin{array}{c} 413.14 \times 10^2 \pm \\ 75.74 \times 10^2 \end{array}$
Bacteria (cells mL ⁻¹)	$\begin{array}{c} 33549.83 \times 10^2 \pm \\ 10761.14 \times 10^2 \end{array}$	$\begin{array}{c} 22768.92 \times 10^2 \pm \\ 1555.96 \times 10^2 \end{array}$	$\begin{array}{c} 24359.37{\times}10^2 \\ \pm1374.92{\times}10^2 \end{array}$
Phytoplankton biomass			
Total > 5 $um (mg C^{-3})$	50.97 ± 15.42	12.12 ± 4.32	19.10 ± 7.27
Dinoflagellates (mg C ⁻³)	17.72 ± 14.89	6.46 ± 1.74	5.11 ± 1.08
Diatoms (mg C ⁻³)	12.84 ± 11.89	4.17 ± 4.40	12.41 ± 7.23
Flagellates (mg C ⁻³)	2.04 ± 0.88	1.49 ± 0.40	1.58 ± 0.22
Dissolved and Particulate Organics			
Particulate Nitrogen (mg C ⁻³)	$\begin{array}{c} 0.56\times10^2\pm0.06\times\\ 10^2\end{array}$	$0.24\times10^2\pm0.04\\\times10^2$	$\begin{array}{c} 0.31 \times 10^2 \pm \\ 0.04 \times 10^2 \end{array}$
Particulate Carbon (mg C ⁻³)	$\frac{3.94 \times 10^2 \pm 0.46 \times 10^2}{10^2}$	$\frac{1.19 \times 10^2 \pm 0.17}{\times 10^2}$	$\begin{array}{c} 2.04 \times 10^2 \pm \\ 0.51 \times 10^2 \end{array}$
CDOM (ppbv)	0.23 ± 0.02	0.16 ± 0.01	0.24 ± 0.01
TCHO (nmol/L)	$\begin{array}{c} 24.57\times10^2\pm5.92\\\times10^2\end{array}$	$\begin{array}{c} 6.81\times10^2\pm1.22\\\times10^2\end{array}$	$\begin{array}{c} 14.90 \times 10^2 \pm \\ 5.94 \times 10^2 \end{array}$

Total amino-acids (TAA) (nmol L ⁻¹)	$\begin{array}{c} 22.95 \times 10^2 \pm 9.27 \\ \times 10^2 \end{array}$	$\begin{array}{c} 11.49 \times 10^2 \pm \\ 4.71 \times 10^2 \end{array}$	$\begin{array}{c} 12.73 \times 10^2 \pm \\ 6.78 \times 10^2 \end{array}$
Iodide (nmol L ⁻¹)	9.70 ± 2.77	21.93 ± 5.11	30.85 ± 5.44
Iodate (nmol L ⁻¹)	141.58 ± 23.22	204.03 ± 44.32	388.15 ± 53.67
TOC (µM)	120.27 ± 1.51	81.19 ± 1.04	103.51 ± 1.61
DMS (nmol L ⁻¹)	6.45 ± 2.58	3.16 ± 1.30	2.19 ± 0.59
DMSP (nmol L ⁻¹)	90.73 ± 11.98	55.12 ± 5.00	44.97 ± 8.91
	Headspace concentra	ations	
DMS-Control (ppbv)	2.48 ± 1.66	1.64 ± 1.38	0.51 ± 0.14
DMS-O ₃ (ppbv)	1.15 ± 0.43	1.03 ± 0.57	0.45 ± 0.12
MeSH-Control (ppbv)	1.48 ± 0.36	1.21 ± 0.58	0.71 ± 0.15
MeSH-O ₃ (ppbv)	0.51 ± 0.23	0.34 ± 0.21	0.02 ± 0.05
Meteorological parameters			
Sea Surface Water Temperature (°C)	13.72 ± 0.40	14.10 ± 0.16	16.04 ± 1.29
Air temperature (°C)	11.68 ± 0.79	13.5 ± 0.78	14.49 ± 1.24
Relative Humidity (%)	68.63 ± 17.17	87.18 ± 6.08	78.43 ± 10.55

Table S.1. Mean concentrations (\pm 1 S.D.) for biogeochemical parameters and ASIT's headspace concentrations during the three ASIT experiments.

PAR (µmol m ⁻²	r ²	DMS flux	MeSH flux
s ⁻¹)		$(ng m^{-2} s^{-1})$	$(ng m^{-2} s^{-1})$
real-time	corr PAR ASIT (n=9)	0.00	0
	corr PAR ASIT O ₃ (n=9)	0.00	0.03
h+2	corr PAR ASIT (n=9)	0.02	0.01

	corr PAR ASIT O ₃ (n=9)	0.09	0.07
h+4	corr PAR ASIT (n=9)	0.09	0.11
	corr PAR ASIT O ₃ (n=9)	0.16	0.12
h+6	corr PAR ASIT (n=9)	0.12	0.14
	corr PAR ASIT O ₃ (n=9)	0.15	0.16
h+8	corr PAR ASIT (n=9)	0.11	0.14
	corr PAR ASIT O ₃ (n=9)	0.06	0.06
h+10	corr PAR ASIT (n=9)	0.00	0.00
	corr PAR ASIT O ₃ (n=9)	0.07	0.08
h+12	corr PAR ASIT (n=9)	0.00	0.00
	corr PAR ASIT O ₃ (n=9)	0.00	0.00
Temperature (°C)	Both ASITs (n=13)	0.05	0.00

Table S.2. Correlation of DMS and MeSH fluxes (ng $m^{-2} s^{-1}$) with PAR (µmol $m^{-2} s^{-1}$) and shifted PAR every two hours and temperature (°C).