
Journal Pre-proof

Virtual fieldwork in immersive environments using game engines

Armin Bernstetter, Tom Kwasnitschka, Jens Karstens,
Markus Schlüter, Isabella Peters

PII: S0098-3004(25)00005-6
DOI: https://doi.org/10.1016/j.cageo.2025.105855
Reference: CAGEO 105855

To appear in: Computers and Geosciences

Received date : 27 August 2024
Revised date : 16 December 2024
Accepted date : 7 January 2025

Please cite this article as: A. Bernstetter, T. Kwasnitschka, J. Karstens et al., Virtual fieldwork in
immersive environments using game engines. Computers and Geosciences (2025), doi:
https://doi.org/10.1016/j.cageo.2025.105855.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cageo.2025.105855
https://doi.org/10.1016/j.cageo.2025.105855


Journal Pre-proof

Cover Let
Virtual Fie
Armin Bernst
Dear Editors-
please find en
which we are
submission fo
The manuscri
display virtua
involving data
We provide th
In response to
separate respo

• Include
• Emphas

agnostic
• Reduce

for the u
• Merged
• Expand

Thank you for
Sincerely,
Armin Berns
GEOMAR He
Wischhofstr. 1
D-24148 Kiel
Germany
abernstetter@

s
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

ter
ldwork in Immersive Environments using Game Engines
etter,Tom Kwasnitschka,Jens Karstens,Markus Schlüter,Isabella Peters
in-Chief,
closed the revised manuscript "Virtual Fieldwork in Immersive Environments using Game Engines"

submitting for exclusive consideration for publication in Computers & Geosciences. We confirm that the
llows all the requirements and includes all the items of the submission checklist.
pt introduces a new application for immersive virtual geoscientific fieldwork both in a head-mounted
l reality environment as well as a spatially immersive projection dome. We describe three use cases
collected by scientists at our research institute GEOMAR Helmholtz Centre for Ocean Research Kiel.

e source codes in a public repository with details listed in the section "Code availability".
the feedback received, we have made the following revisions to our manuscript (also detailed in the

nse to reviewers document.):
d relevant suggested references
ized that despite our shown use case data sets being focussed on marine geology, the system itself is
of whether the visualized data is submarine or not

d the level of detail on the topic of immersion in the Introduction and instead discussed more the benefit
nderstanding of three-dimensional (geological) models
Sections 2.3 and 2.4 and moved the content of a paragraph on Cesium to Section 4.1

ed on the numerical precision and level of detail of the geological data and measurements
your consideration.

tetter, Tom Kwasnitschka, Jens Karstens, Markus Schlüter, Isabella Peters
lmholtz Centre for Ocean Research Kiel
-3

geomar.de

Click here to view linked Reference



Journal Pre-proof

Virtual F1

Armin Bern2

Isabella Pet3

aGEOMAR Helm4

bKiel University,5

cZBW Leibniz-Inf6

7

A R T I C L E
Keywords:
Immersive Analy
Virtual Fieldwork
Ocean Science D
Game Engines
Virtual Reality
Collaborative

89

10

11

12

13

14

15

16

17

18

19

20

1. Introdu21

Fieldwork22

outcrop in-pe23

outcrop prope24

professionally25

geologists, as26

nature of the27

autonomous u28

problems of t29

fields studying30

remotely oper31

time delay. Be32

in different fo33

two of which34

by means of p35

Frequently
Environment, VF

∗Correspond
abernst

ORCID(s): 0
0000-0001-584

Bernstetter et

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

ieldwork in Immersive Environments using Game Engines
stettera,b,∗, Tom Kwasnitschkaa, Jens Karstensa, Markus Schlütera and
ersb,c

holtz Centre for Ocean Research Kiel, Kiel, Germany
Kiel, Germany
ormation Centre for Economics, Kiel, Germany

I N F O
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ata

A B S T R A C T
Fieldwork still is the first and foremost source of insight in many disciplines of the geosciences.
Virtual fieldwork is an approach meant to enable scientists trained in fieldwork to apply
these skills to a virtual representation of outcrops that are inaccessible to humans e.g. due
to being located on the seafloor. For this purpose we develop a virtual fieldwork software in
the game engine and 3D creation tool Unreal Engine. This software is developed specifically
for a large, spatially immersive environment as well as virtual reality using head-mounted
displays. It contains multiple options for quantitative measurements of visualized 3D model
data. We visualize three distinct real-world datasets gathered by different photogrammetric and
bathymetric methods as use cases and gather initial feedback from domain experts.

ction
still is the first and foremost source of insight in many disciplines of the geosciences. Inspecting an

rson to form a mental map or model of the site, corroborated by manual measurements of physical
rties tremendously helps to understand detailed findings in the context of a “bigger picture”. This is a
well-established thought process that both trains and applies spatial understanding. Meanwhile, seafloor
most ocean scientists in general, do not have the luxury of their physical presence at study sites, by
extreme environment of the deep ocean. They rather rely on data gathered by remotely operated or
nderwater vehicles (ROVs/AUVs) or crewed submersibles. Other research fields that encounter similar
oo remotely located sites include above all astronomy and planetology, but also volcanology or other

hazardous environments. In this way, our application is similar to the operation of planetary probes or
ated space telescopes, where time-critical scientific interests are transmitted remotely, and with a severe
sides physical rock and sediment samples, the terrain datasets that put observations into context come

rms across a range of nested scales, from acoustic methods to seafloor images and video feeds, the latter
are then often used to reconstruct highly detailed three-dimensional (3D) models of seafloor outcrops
hotogrammetric reconstruction (Kwasnitschka et al., 2013; Arnaubec et al., 2023). Based on such 3D
used abbreviations: GIS - geographic information system, HMD - Head-Mounted Display, UE - Unreal Engine, VE - Virtual

T - Virtual Fieldwork Tool, VR - Virtual Reality
ing author
etter@geomar.de (A. Bernstetter)
000-0003-1603-1699 (A. Bernstetter); 0000-0003-1046-1604 (T. Kwasnitschka); 0000-0002-9434-2479 (J. Karstens);
0-0806 (I. Peters)
al.: Preprint submitted to Elsevier Page 1 of 27
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Virtual Fieldwork in Immersive Environments

tists study the digitally recreated geologic settings on their personal computers using any of the multitude
ographic information system (GIS) or 3D mesh processing applications (see e.g Escartín et al. (2016)).
e allow to view a model from any arbitrary pose, they may easily fail to create a notion of comprehensive
areness and realistic spatial perception. They rely on cognitive immersion rather than spatial, physical
the environment of study employing the full range of bodily perception, even if that spatial immersion
lation.
as shown that immersion in virtual environments (VEs) improves the spatial understanding of 3D data

lex geological models (Schuchardt and Bowman, 2007). Visualizing and viewing models of geological
VE is a natural fit since they are inherently three-dimensional and any classic depiction on paper and even
onitors is thus limiting understanding (Jones et al., 2009; Caravaca et al., 2020). In VEs, (geological)
visualized at real scale, offering better understanding and a realistic sense of the 3D geometry, spatial
nd distribution of the structure.
text, factors that increase the feeling of immersion might include being isolated in a virtual world

aring Head-mounted Display (HMD) Virtual Reality (VR) glasses or being surrounded by a spatially
vironment (see section 2.2). Another factor is whether the VE reacts to the user’s actions and the user
ith the virtual world. This can be achieved by tracking the movement of the head and other body parts or
earable components, using one’s body in the real world for embodied interactions in the virtual world.
ironment, the model can be viewed at real scale as if standing or floating right next to it and embodied
n be used to make relevant measurements such as distance, strike and dip, a height profile etc.
develop a productive working environment for digital (seafloor) geosciences, our design goals included
functionality:

n of a sense of presence through spatially immersive visualization and real-time interactive navigation;
odel detail up to realistic eye-limiting resolution, across scales from (sub)centimeter to kilometers;
e quantitative interactions by measuring key structural parameters, e.g. orientation (strike vs dip),
or size

g the recent major advances in computer graphics enabled by the gaming industry, we chose to develop
based on the Unreal Engine1 (UE), a powerful virtual 3D environment originally intended for game
Here we introduce an application built in UE version 5.3 intended to examine nested acoustic large-area
metric close-up seafloor terrain models employing both HMDs and our spatially immersive visualization
ARENA22 (fig. 1). We call this approach a virtual fieldwork tool (VFT) (Bernstetter, 2024).

ww.unrealengine.com

ww.geomar.de/en/arena

al.: Preprint submitted to Elsevier Page 2 of 27
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Virtual Fieldwork in Immersive Environments

research area of our institute, our use cases are focussed on marine geology. The software presented
however, is able to visualize any digital outcrop model regardless of its location on the Earth and thus
ol for many different geosciences.

Work and Background
pt links subdisciplines of the geosciences, computer graphics and human-computer interaction (HCI)
, we provide an overview of related previous research and introduce relevant aspects of the multifaceted,
ticed bathymetrical workflow that motivates our work.

etric Seafloor Mapping
s largely impermeable to far reaching electromagnetic fields, (e.g., radar, infrared light) (Mobley, 1995),
chanical methods – primarily acoustics – to map the seafloor. These methods come with inherent trade-
ion versus range. Therefore, the commonly practiced way of surveying the seafloor employs a stack of
ds across an overlapping cascade of scales. It ranges from ship-based multibeam swath echo sounders
l resolution of 1% of the water depth, i.e., tens of meters and yielding quasi-textures based on the strength

return signal) to close-range echo sounders, sub bottom profilers and sonars deployed from deep-towed
r AUVs, achieving resolutions down to single meters or even centimeters. The majority of such acoustic
has a 2.5D data structure, with the elevation represented as an extrusion of a plane with no double values
ing a Digital Elevation Model, DEM (Guth et al., 2021)). Thus, steep, (sub-) vertical or even overhanging
poorly imaged, or not at all, despite the observation that these typically form the geoscientifically most
ops due to their lack of contemporary sediment cover, granting access to the vertical sequence of deposits.
his geometrical shortcoming, but also to further increase geometric resolution into the millimeter scale,
e a color texture in the familiar human visible light range, photogrammetric methods have been added
f survey methods throughout the last decade (Kwasnitschka et al., 2013; Arnaubec et al., 2023). These
veying of outcrops from close distances of typically 2-8m using subsea cameras and lighting arrays. This
istic terrain models that fully serve the human visual senses equivalent to on-land, in-person field studies.
the methods employed, the final terrain model takes the form of a point cloud or a mesh, optionally with

ly Immersive Displays
a spatially immersive display environment as one that physically covers the full human field of view,

ore. The CAVE (Cruz-Neira et al., 1992) is one of the early such examples, featuring a 4-sided room in

could stand in and immerse themselves in the environment projected onto the walls and the floor. Motion

al.: Preprint submitted to Elsevier Page 3 of 27
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Virtual Fieldwork in Immersive Environments

actively analyzing a seafloor bathymetry 3D model inside the ARENA2 at GEOMAR Helmholtz Centre for
h Kiel.

ms enable the VE to react to user movement, enabling embodied interactions, while motion parallax and
endering increase the plasticity of the simulation. In the context of geoscientific collaborative work, they
cessfully used for visualizing LiDAR data (Kreylos et al., 2008; Hsieh et al., 2011), atmospheric data
2014), and interactive visualizations of multi-scale geological models (Schuchardt and Bowman, 2007;
09; Hyde et al., 2018).
al CAVE concept was continuously extended and modernized over the years. Facilities with the goal
llaborative sensemaking through spatially immersive visualization can be found all over the world, for
AVE2 at UIC (Febretti et al., 2013), Brown University’s YURT (Kenyon et al., 2014), the AixCAVE

chen (Kuhlen and Hentschel, 2014) or the Allosphere at UC Santa Barbara (Höllerer et al., 2007), in
ong standing commercial interest throughout the oil and gas industry (Evans et al., 2002). At GEOMAR

ARENA2 (see fig. 2), an architecture based on the concept of digital projection domes (Kwasnitschka

mergence of on-set virtual production technology in cinematography in recent years, becoming popular
the series "The Mandalorian" (Purtill, 2023), the technology that is available for spatial immersion has

e of the drivers of this development may have been the COVID-19 pandemic during which filmmakers
to travel to and film on location and had to find solutions (Purtill, 2023), similar to how ocean researchers
al.: Preprint submitted to Elsevier Page 4 of 27
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Virtual Fieldwork in Immersive Environments

travel to the deep seas in person. The ecosystem used for many of these virtual production stages and
d on UE.

Geoscientific Fieldwork and Collaborative Immersive Analytics
analytics is a research field that makes use of VEs to facilitate interactive analysis of visualized data

l., 2015; Skarbez et al., 2019; Fonnet and Prié, 2021). Research in this area dates back to the early 2000s
l., 2000; Kreylos et al., 2006, 2008) but with the advent of increasingly available and affordable VR

hnology there have been more possibilities to engage in this field. Some work in immersive analytics
aditional forms of data visualization like graphs (Cordeil et al., 2017a) whereas others utilize immersion
proved spatial understanding of complex 3D structures (Schuchardt and Bowman, 2007), e.g. medical
data (Kuťák et al., 2023), astrophysical data (Bock et al., 2020), or geoscience data (Jones et al., 2009;

2019, 2020; Seers et al., 2022).
oscientific fieldwork has frequently been used to support or simulate real-world fieldwork either for
nts or for actual scientific sensemaking (Klippel et al., 2019, 2020). Partly driven by the Covid-19
rsztyn et al. (2021) for example developed a tool that trains geology students in learning the geological
measurement convention in a VE, and improving their spatial visualization skills, an important part of
itus and Horsman, 2009). With the Virtual Reality Geological Studio (VRGS)3, Hodgetts et al. (2007)
erful albeit closed-source toolbox for field geologists to visualize and analyze 3D outcrop models either

r in HMD VR. Its set of interactive analytical tools is a holistic portfolio of tools required for (immersive)
rk applications.

roaches to immersive analytics are utilizing game engines for scientific work and visualization which is
evolving field of research (Friese et al., 2008; Reina et al., 2020). Krüger et al. (2024) describe several

for and their experience with using UE as a tool for scientific immersive visualization in their AixCave
entschel, 2014) leading up to their decision to fully switch from custom built software architectures to

al. (2018) employ the Unity game engine for the exploration of geological environments in immersive
, Harrap, R.M. et al. (2019) use it to visualize a spatial simulation of rockfalls, and Zhao et al. (2019)
oint cloud of a volcanic vent in Unity including several interaction methods.
l. (2024) present GeaVR, a tool programmed in Unity for immersive VR using HMDs that has grown over
ncludes a multitude of use-cases and tools for the exploration of and interaction with geological structures
ough user evaluations, they were successful in showing its usefulness especially for the education of
dents (Bonali et al., 2022; Wright et al., 2023). Caravaca et al. (2020) leave the realms of the Earth and

ww.vrgeoscience.com/

al.: Preprint submitted to Elsevier Page 5 of 27
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Virtual Fieldwork in Immersive Environments

to enable virtually visiting a digital model of an outcrop located on Mars. Billant et al. (2019) on the
targeting the seafloor with their open-source software Minerve, visualizing a 3D model of the Roseau
et al., 2016), and implementing fundamental geological measurements, which are also supported in our

e et al. (2016) and Wang et al. (2020) make use of UE for the immersive visualization of geophysical data
(2021) use UE to visualize large-scale oblique photogrammetry models. In the context of the ARENA2

se case, UE is without alternative due to its high-performance virtual production ecosystem.
metimes challenging for immersive analytics, however, is the aspect of collaborative work (Cordeil et al.,
t al., 2022). Especially HMDs cause a certain degree of isolation from the surroundings which reduces

th people outside the VE to sound, unless a multi-player environment has been implemented. The shared
nce of a field party in an outcrop, their shared work, and discussions on site are an important aspect of
geoscientific work which can be simulated in spatially immersive environments.
al. (2021) apply Minerve (Billant et al., 2019), which supports multiple users, for teaching and evaluate
virtual fieldwork. Similarly, Caravaca et al. (2020) also support multiple users in HMD VR with their
r case, we make use of the ARENA2 providing co-located collaboration between multiple users in the
space.

ENA2: Spatially Immersive Environment for Geoscience
A2 is a multi-projection dome situated at GEOMAR Helmholtz Centre for Ocean Research Kiel. The

patially immersive visualization domes at GEOMAR is laid out by Kwasnitschka et al. (2023).

cture and Hardware
A2 dome has a diameter of 6 meters and a tilt angle of 21° to make it possible to display content at eye

s above users. Figure 2a shows a sketch of the architecture and fig. 1 shows the inside of the ARENA2.
ped with five WQXGA (2560x1600) projectors that also allow stereoscopy, a 5.1 surround sound system
our OptiTrack4 cameras for motion tracking. A Windows computer cluster of five nodes is used for
active applications. The dome projection screen is mathematically described by calibration files in the
I standard5. It specifies the warping (i.e., the geometric reprojection of planar imagery onto the curved
and blending of color and brightness among overlapping projector frustums (i.e., the viewing sectors of

on the dome) to create a seamless surface.
ptitrack.com/
esa.org/vesa-standards/
al.: Preprint submitted to Elsevier Page 6 of 27
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Virtual Fieldwork in Immersive Environments

sketch of the ARENA2. Shown is the roughly 7𝑚× 7𝑚× 6𝑚 enclosure which is fully opaque in reality. Also visible
g on which the free-hanging dome structure is suspended at a 21° angle.

w of several of the devices we are using in the ARENA2. Visible in the background is the inside surface of the
e. 1: One of the five BARCO F50 WQXGA projectors. 2: One of the four OptiTrack motion tracking cameras,
the blue glowing ring. 3: Stereo 3D shutter glasses and an Xbox controller equipped with tracking markers. 4: An

headset with the accompanying controllers. 5: One of two HTC Vive base stations (“lighthouse”) used to track the
Vive headset and controllers.
mages showing a sketch of the ARENA2 (fig. 2a) and a selection of the devices we are using (fig. 2b).

Engine in Multi-Display Cluster Setups
rom the technical advances in virtual production, we use UE technology developed for distributed multi-
ulti-projection setups. The concept of virtual production stages has emerged as an alternative to filming
n studios. It uses virtual environments pre-built in UE to reduce workload in post-production and increase
actors who now have visual references such as a horizon instead of a green wall where the background is
al.: Preprint submitted to Elsevier Page 7 of 27
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photogrammetry preprocessing workflow for adding models to our Unreal Engine VFT. Images are processed
ve photogrammetry software and a mesh is created which receives a texture calculated also from the images.
mesh can then either be exported directly as Cesium tileset or to an FBX file and imported as static mesh

rds. A virtual camera frustum in the VE responds to the perspective and movement of a motion tracked
urtill, 2023).

technology that enables the rendering of UE content to a cluster of multiple computer nodes and displays
plugin (Dalkian et al., 2019). Using our OptiTrack setup, a user’s viewpoint is connected to active stereo

s providing head-tracking and 3D in the virtual environment. Two gamepads equipped with tracking
sed as input devices for (collaborative) embodied interaction (See also fig. 2b).

enting a Collaborative Virtual Fieldwork Tool in a Game Engine
l Engine is a game engine and 3D creation tool enabling programmers and artists to develop games and
both in C++ as well as a powerful visual scripting environment called “Blueprints”6.

cessing
renced context is a prerequisite for any application aiming at exploration of real-world geospatial data
D models. Our system uses Cesium (Cesium GS, 2024a) and the Cesium for Unreal plugin (Cesium GS,
ating a georeferenced representation of the Earth. Cesium is an ecosystem and platform for 3D geospatial
ring open source software that enables the creation of georeferenced environments in various different
ev.epicgames.com/documentation/en-us/unreal-engine/introduction-to-blueprints-visual-scripting-i
ne
al.: Preprint submitted to Elsevier Page 8 of 27
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nd frameworks such as UE. We are using precisely geolocated coordinates (longitude/latitude) which is
se Cesium and UE itself support using double-precision floating-point numbers. In Cesium for Unreal,
n be accessed both as geodetic as well as Earth-centered, Earth-fixed coordinates. These are translated
he UE coordinate system where one internal unit of measurement equals exactly 1 centimeter i.e. 100 UE
ter. Due to the double-precision floating-point representation these UE units can have decimal values of
al digits. The coordinates and any measurements are thus calculated in a way to ensure the best possible

ows our workflow (see also section 2.1) leading up to being able to load 3D models in UE. Once exported
D models can be imported into UE as static meshes where they can be placed into our georeferenced
using their geodetic coordinates. During import to UE, a few further optimizations are advisable: One
that the imported meshes have fine-grained collision that enables querying the model at any point of its
ermore, a custom material has to be applied to the imported mesh to be able to use the clipping box (see

ore streamlined workflow is to export photogrammetric models directly in the Cesium 3D tiles format7
lley, 2023) with which the models are automatically placed at their correct coordinates on the Cesium
. This approach removes several steps that might be prone to human error or decimal point inaccuracies

sh coordinates.
m tilesets are always being rendered on their highest level of detail, providing a fine-grained collision
important for accurate measurements.

so allows a runtime data-loading workflow since Cesium3DTilesets are streamed into the UE world and
s UE proprietary asset. Given the (file) url, a new Cesium3DTileset can be added during runtime without
ipulate its location, material, or collision.

tion
s to many existing HMD VR applications, embodied interaction with the virtual world is implemented by
ter rays attached to the controllers. A 3D menu widget allows options to be selected by targeting them with
essing a button (see fig. 4b). In the ARENA2 setting, two rays that allow interaction with both the world
ls) and the menu are attached to two motion-tracked gamepads, enabling two users to operate the system.
the HMD VR setting could also be adapted to support multiple players and a mode for remote HMD
onnect to a session in the ARENA2 is also possible. One pair of tracked shutter glasses can be used to
n parallax for improved depth perception of the virtual world and if desired, active stereoscopy. Figure 4
ithub.com/CesiumGS/3d-tiles
al.: Preprint submitted to Elsevier Page 9 of 27
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level in which a user is placed initially when starting the VFT. The “portals” labeled with the name of the location
r to the respective model. The compass widget visible in the lower left part of the image can be hidden.

t of the HMD VR setting showing what is being rendered for both eyes. The image also shows the menu widget
left HTC Vive controller and the “pointer ray” emanating from the right controller.

Figure 4: Screenshots from the VFT showcasing the user experience

ult environment displayed to the user upon starting the application (fig. 4a) as well as a screenshot from
session with the menu widget opened (fig. 4b).

etation Toolbox
d an extensible collection of measurement options with the goal of providing both qualitative spatial
antitative metadata as the outcome of geoscientific interpretation workflows. The fundamental action

very measurement builds is the placement of a location marker to query the latitude, longitude, and

al.: Preprint submitted to Elsevier Page 10 of 27
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(a) (b)

(c)
essions of the VFT used inside the ARENA2. Figures 5a and 5b show the Kolumbo dataset (see Section 5.1)
ws the Mothra dataset (see Section 5.3).

at specific point. These markers are visualized as pins with a label hovering above them. When a marker
ed, the label initially shows the coordinates which are replaced by other data when the marker becomes
complex measurement (see figs. 4b and 5).
er from two to 𝑁 markers can be used to calculate a linear multi-segment distance measurement which
al distance along the sequence of markers, as well as the intermediate distances and elevation differences
onsecutive markers. This feature is employed to measure arbitrary dimensions but also to characterize
such as faults, joints or artifacts of sediment transport. Figures 6a, 7c, 9c and 9d each show examples of
easurement.
al.: Preprint submitted to Elsevier Page 11 of 27
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(a) Distance measurement along three markers shown on the Mothra model.

p measurement shown on a portion of the Niua South model, together with the vertical edges of a clipping box in
. Two of the three markers that make up the strike plane have their labels hidden for visual clarity. This happens
hen the measurement is generated but they can be set visible again by the user if desired.

Figure 6: Screenshots from the Unreal Engine showing the results of measuring actions.

d dip” are the format of geological notation for the azimuth and deviation from a leveled position in the
easurement of planar surfaces such as sedimentary bedding, faults, or rock faces. This can be realized
y placing three markers that describe a plane in space. Our VFT then derives and visualizes the angle
orizontal plane and the strike plane i.e. the inclined surface. It also reports the maximum straight-line
hree-point measurement to give a measure of the sample scale.
al.: Preprint submitted to Elsevier Page 12 of 27
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box that renders the portion of a model outside its volume invisible can similarly be placed using at
ers which define the box width and another defining the length. The height of the box is automatically
ass the entire elevation range of the cut-out part of the model. Figure 6b shows both a strike and dip
as well as a clipping box and fig. 7c also shows a clipping box.
t quantitative studies beyond the visualization session, all measurement results can be exported to a JSON
s can also be loaded again from inside the VFT during runtime.

ntific Use Cases
tion we introduce three use cases derived from recent studies of seafloor volcanology and hydrother-
are of varying scale (i.e. level of detail in overlapping sections) and heterogeneous origin, illustrating
kely situations in the real-world application of nested-scale seafloor surveying. Along these, we explore
d limitations of our VFT when applied to productive geoscientific work. We aim to investigate whether
a) complexity or b) spatial context compared to real terrestrial fieldwork impact the acceptance and usage
ation by users.

se A: AUV Bathymetry of the Kolumbo Volcano, Santorini Greece
(fig. 7) is a submarine volcano located 7 km northeast of Santorini (Greece) in the Aegean Sea (Nomikou
olumbo’s last eruption occurred in 1650 CE, when a slope instability triggered an explosion that formed

and 2500m wide crater (Karstens et al., 2023). Ongoing hydrothermal venting and seismicity confirm
is still active (Carey et al., 2013; Schmid et al., 2022). Moreover, a seismic full-waveform inversion
resence of a shallow magma reservoir about 2km beneath the seafloor (Chrapkiewicz et al., 2022). Our
ataset has a horizontal resolution of 2m, an extent of 10 km by 6 km and was acquired in 2017 during
e POS510 onboard RV Poseidon (Hannington, 2018) by the GEOMAR AUV ABYSS equipped with a
at 7125 multibeam echo sounder. The dataset is available at the PANGAEA data repository (Petersen
on, 2023).
inent morphological topics to be explored during virtual fieldwork are the structural context and
ntacts of several exposed dykes within the inner crater wall as well as the extent of ubiquitous late-stage
n the crater slopes. The strike and dip as well as the distance measurements further allow the quantitative
slope segments at the over-steepened and internally deformed northwestern flanks in comparison to the
stern sector.
al.: Preprint submitted to Elsevier Page 13 of 27
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(a)

(b)

(c)
mbo is located near the island of Santorini in the greek Aegean Sea (fig. 7a). Figure 7b shows a view of the
eset model in Unreal Engine (in desktop mode). In the lower left, Santorini is visible, visualized through the
aps Aerial Imagery dataset (https://cesium.com/platform/cesium-ion/content/bing-maps-image

shows a closer view of the crater in Unreal Engine. A distance measurement can be seen that measures the
e crater, and a clipping box has been applied.
al.: Preprint submitted to Elsevier Page 14 of 27
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(a)

(b)
Mothra hydrothermal field is located at the Endeavour Segment of the Juan de Fuca Ridge, NE Pacific
e 8b shows one shot from the footage taken for photogrammetric reconstruction. Compare fig. 6a for a view
el.

se B: ROV based Photogrammetric Model at Mothra Hydrothermal Field, Endeavour

g. 8) is the southernmost of five major hydrothermal fields at the Endeavour Segment of the Juan de
E Pacific, which have been regularly visited for the last 30 years (Delaney et al., 1992; Clague et al.,
eans these are not only one of the earliest discoveries of seafloor hydrothermalism but also that they
the best studied seafloor outcrops in general. Faulty towers is one of the largest of six hydrothermal
Mothra Field, measuring roughly 30 × 13 × 20 meters hosting a dozen slender, diffusely venting sulfide
nor occurrences of black smoker venting towards the perimeter of the group. The chimneys are roughly
a N-S striking fault related to the local tectonics along the axial valley (Robigou et al., 1993; Kelley et al.,
n et al., 2007). During the 2015 Ocean Networks Canada maintenance cruise NA069, we conducted a
tric survey of the entire complex using the ROV HERCULES (on dive H1960) and its ZeusPlus HD
al.: Preprint submitted to Elsevier Page 15 of 27
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esulting model has a spatial resolution ranging between 5 and 15cm with a textural resolution locally
m.
shows a shot from the footage recorded for photogrammetric reconstruction. Noticeable here is that
r processing (e.g. stitching photos together in a photomosaic, or photogrammetric reconstruction) it is
sp the full extent of the surroundings and discern relevant details from a single photo.
resolution, color texture and steep relief, this dataset is well suited for a number of digital outcrop studies
abitat mapping of the vent fauna, structural measurements on spacing, vertical extent, and alignment of
ces to the underlying fluid-feeding fault system, as well as the quantification of the talus on which part
ctive edifice resides.

se C: Nested Photogrammetric and Hydroacoustic Bathymetry at Niua South Vent
onga, SW Pacific
h (fig. 9) is one of two hydrothermal fields near the summit of Niua Volcano at the northern terminus
volcanic arc. It is situated within a 500m wide crater at a depth of 1180m. Within a central area of 150
eral dozen active hydrothermal chimneys of up to a height of 8m rise from sulphide talus mounds up to
ead across these mounds are over a hundred of >1m tall, inactive and partly collapsed chimneys (Peters
artman et al., 2017). The site was commercially surveyed in 2011 using the GEOMAR AUV ABYSS and
N Seabat 7125 multibeam echo sounder yielding a 2m resolution hydroacoustic map of the entire crater

ndings measuring 2 km across. In 2016, we surveyed it again using the ROV ROPOS aboard R/V Falkor
320) (Kwasnitschka et al., 2016), yielding a dataset of 229,000 images. For the purpose of this study,
a subset of this data covering the central 200m by 200m which yielded a preliminary photogrammetric
erage geometrical resolution of 15cm and a textural resolution of locally up to 5 cm. The two datasets

posed on each other within an estimated error of < 2.5m laterally based on fiducial landmarks, which is
in the scope of our study.
ing synthesized terrain model is perfectly suited for habitat assessments as well as the study of abundance,
hysical properties (height, diameter, orientation) of sulfide chimneys, and to map the extent of talus

iquely allows the synoptic observation of morphological phenomena across an entire vent field, including
ructural context of its surroundings. The fact that the vent field lies surrounded by crater walls implies
of immersion into the scene may not be corrupted by the visibility of the boundary of the model, when
atially immersive visualization environment.
al.: Preprint submitted to Elsevier Page 16 of 27
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(a) (b)

(c) (d)
Niua South volcano is located in the Lau basin between Fiji and Samoa (fig. 9a). Figure 9b shows a vertically
gital elevation model of the Niua South volcano. Figures 9c and 9d show the central part of the Niua South
field model in Unreal Engine with and without its surrounding area which is lower in resolution. A distance
shows the distance across the central part of the model in meters.

on
bility of high-resolution bathymetry data is continuously increasing in light of endeavors such as Seabed
et al., 2018). While this increasing amount of data is also being analyzed using machine learning
relies on human classification efforts and thus the personal observation and analysis by researchers is
obsolete. Moreover, the incorporation of strategic ground truthing of regional observations against local
utcrops at the seafloor becomes ever more important to validate inferences on larger scales. Therefore,

rchers an alternative tool to analyze seafloor models in a more immersive way than on PC monitors may
es both in productivity and in the quality of insight.
gain a first-order, qualitative round of feedback on our development, we invited seven domain scientists,

volved in the project, in varying group sizes (from 1-3) to explore our tool both in the ARENA2 and with
ne had prior experience with using our tool, however, several had previously been in the ARENA2 or
al.: Preprint submitted to Elsevier Page 17 of 27
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headsets. This informal gathering of feedback was done as a preliminary step towards a semi-structured
I evaluation study planned for future publication.
ere first shown the ARENA2 setting, familiarized with the controls, menu navigation and measurement

ouraged to explore all three datasets and apply all available measurement options. Afterwards they were
e HMD VR version. They provided anecdotal feedback and suggestions for improvements which we
together with our own observations. We omit concrete suggestions regarding the implementation (e.g.
ntrols, visual design decisions) from this discussion.

l Results
ant aspect we are facing occasionally when working with our ARENA2 laboratory is the additional effort
made for researchers to visit the laboratory which impacts the overall value of working with the VFT.
a visualization is defined by van Wijk (2005) in the following way:

reat visualization method is used by many people, who use it routinely to obtain highly valuable
dge, without having to spend time and money on hardware, software, and effort.”

ing of knowledge is specified by van Wijk (2005) as Δ𝐾 , the difference between prior knowledge and
knowledge after interacting with a visualization.
owing, we make callbacks to this definition by highlighting whether or not these points hold true for the
ementioned effort of visiting the laboratory for example increases the time spent on effort.
for the VFT prototype was to provide a tool for scientific sensemaking and analysis for researchers

g highly valuable knowledge). However, feedback by our testing users often mentioned the potential
rather be used in a more educational context and for outreach, additional to scientific work, an approach
l. (2018) call exploranation (a portmanteau of exploration and explanation). This could be implemented
pproach more in the line of Zhao et al. (2019), Klippel et al. (2019, 2020) and also Tibaldi et al. (2020).
hes for example show text-based information, photographs and figures about the visualized 3D model,
s for their users which are mostly meant to be geoscience students using the application for training.
e tool with external information and additional data might provide increased value by increasing the
ple that are using it (⇒ many people).
users mentioned that the application has too little data variability with there being only 3D models
user remarked that it is “important for [them] to have the big picture”, e.g. include high resolution

try embedded in a surrounding context of lower resolution bathymetry (see figs. 9c and 9d). There is
ilable, often from the same location so it is important to combine those to have a more complete context.
al.: Preprint submitted to Elsevier Page 18 of 27
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our assumption that lack of either complexity or spatial context compared to real terrestrial fieldwork
rejection of the presentation by the users.
ption in accord with related literature (see section 2.3) is that 3D models help with understanding

m a different perspective compared to 2D on a desktop. Working with highly trained professionals,
scientific objective of our testing users was found to be on quantitative measurements and less on
r refinement of a mental model through visual data exploration. Our users deemed the former to still
ctive on a flat PC monitor with the latter possibly providing some inspiration beforehand. Therefore in
𝐾 would be less in the ARENA2 for experts with a large amount of prior knowledge about the data. A

g this was “Why would it be necessary to be in here and not work on this on a PC?” which also touches
sers being reluctant to routinely use the VFT if their Δ𝐾 is not perceived as sufficient and they have to

nto visiting the ARENA2.
ific analysis and sensemaking, the VFT needs to implement the standard tools, that are used on PC, in a
ey give additional value in the immersive setting and are intuitive for geoscientists (thus less time spent
he Strike and Dip tool for example was criticized for not being able to measure on a small enough scale.
h, one user commented that they “got a different perspective on the model” and during the session
they now suspected an opinion they had held about a dyke in the Kolumbo crater might have to be
highly valuable knowledge/Δ𝐾). While the approach of being a geoscientific interpretation tool is

rs remarked that they see our VFT at an earlier point in the workflow and as having a different strength.
ility to visualize 3D models in a different way than a PC monitor which opens a new basis for discussion
ea generation for more precise interpretation.

of money spent could be touched here with regards to the general inaccessiblity of a facility such as the
r application is, however, usable both with VR head sets which - depending on model - are relatively
well as on a desktop PC although the latter does lack the immersive aspect.
nsus between our test users was that a clear benefit of using the VFT in the ARENA2 is the possibility for
group work and discussion instead of working on one’s own (⇒ many people). Testing users suggested
be used to either discuss initial results after a research cruise or discuss an upcoming follow-up cruise and
most important and promising locations to (re-) visit and investigate. The HMD VR setting in its current
rally not considered an alternative to productive work on a desktop PC, lacking both the extended toolset
tware as well as the option of collaborative work and easily being able to take notes in the ARENA2.
al.: Preprint submitted to Elsevier Page 19 of 27
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Selection and Presentation
ments on the visualized data were in regards to pre-processing topics such as the chosen color map and
model or more generally the resolution.

ra photogrammetry model was liked both in the ARENA2 and VR due to its high resolution which
ser comments “almost [felt] like you can touch it” which according to them improved their feeling of

evertheless, the surrounding area in which the model could be embedded is missing and therefore not
rger context was able to be used for sensemaking. The missing surrounding spatial context also caused
rientation and lack of a motion reference.
sets, such as the Kolumbo model where the bathymetry is being investigated, were found to be more
RENA2 despite also being criticized as feeling like “it’s just a bigger screen than PC”. In contrast, small
olution photogrammetry datasets (Mothra), where features as small as crabs are visible and measurable,
more fitting for HMD VR.

rototype was commended for its novel (from the stand point of our test cohorts) approach and immersive,
ualization which none of our domain expert testing users had worked with previously. Of course, an
this will not be able to compete with desktop-based GIS software in terms of the sheer number and

ls available for productive scientific work but it can help form opinions and get a different perspective
zed datasets. By broadening the niche of our prototype to think of it as more than a tool for scientific
nd include aspects of education and outreach, it might prove to be a valuable addition to scientific work at
arch institute and potentially elsewhere. Therefore, referring back to van Wijk, our tool has the potential
many people to obtain highly valuable knowledge thus increasing their Δ𝐾 although they might have
especially if it were to be used routinely.

ion
sically trained geologists and other geoscientists make use of their spatial visualization skills honed

o make sense of 3D geospatial data. Doing this in immersive environments has shown to provide new
n the data especially if it’s data from locations that cannot easily be visited in person or put in realistic
a simple computer screen. Implementing an immersive application for virtual fieldwork will not make

xtensive toolboxes that established GIS softwares offer. It can, however, give scientists a new way to
ata. Implementing such an application in the framework of a freely available and popular game engine
to making the development sustainable and future-proof for extension.
al.: Preprint submitted to Elsevier Page 20 of 27
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ation introduced here is built for a unique spatially immersive projection dome to specifically enhance
work of researchers at our institute, though it also supports HMD VR to offer users outside our very
vironment to explore the tool. Our initial datasets included in our prototype are real-world use cases
investigated by multiple working groups at GEOMAR. We visualize these data in our prototype to be

examined using quantitative measurement tools in VR and collaboratively in the ARENA2.
opment of such software is difficult to call “finished” at any point. Therefore the future work on our tool
) implement more measurement options such as rake measurement for fault kinematics, height profile,
ea measurement, (b) include more datasets and develop a parameterized import functionality at runtime,
ith a history management companion application (Bernstetter et al., 2023), and of course (d) improve
and usability.
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