
software engineering: To address the
so-called software crisis, NATO was the
sponsor of the first software engineer-
ing conference in 1968. The percep-
tion at that time was that while errors
in scientific data processing applica-
tions might be a nuisance, they are to a
large extent tolerable. In contrast, fail-
ures in mission-critical military sys-
tems might cost lives and substantial
amounts of money. Based on this atti-
tude, software engineering—like com-
puter science as a whole—aimed for
generality in its methods, techniques,
and processes and focused almost ex-
clusively on business and embedded
software, and system software, such
as operating systems, networks, and
compilers. Software development is
more than just programming. Mean-
while, the software engineering dis-
cipline has gained a lot of insight into
the whole process of software develop-
ment, accumulating in various text-
books on software engineering, a mul-
titude of books on dedicated sub-fields

R
E S E A RC H S O F T WA R E I S soft-
ware designed and devel-
oped to support research
activities. It can be used to
collect, process, analyze,

and visualize data, as well as to model
complex phenomena and run sophisti-
cated simulations. Research software is
developed by researchers themselves or
by software developers working closely
with researchers. Research software is
typically developed to meet specific re-
search needs, and it often has unique
requirements that are different from
standard commercial software.

Research software engineering
(RSE) and the related role of research
software engineer has emerged as a
job profile in its own right. We high-
light the concept of research software
engineering research—RSE research
in short—as a complementary ap-
proach to RSE: conducting research
on understanding and improving how
software is developed for research. We
start with a look at 50 years of software

engineering research, before introduc-
ing the characteristics of research soft-
ware, RSE in general, RSE research,
and then concluding with an outlook
to further essential activities on RSE
research.

Software Engineering Research
Randell14 reviewed the first 50 years of

Opinion
Investigating Research
Software Engineering:
Toward RSE Research
Research software engineering research aims at understanding
and improving how software is developed for research.

DOI:10.1145/3685265 Wilhelm Hasselbring et al.

Research software
engineering (RSE)
is a discipline that
focuses on the
development
of software for
research purposes.

20 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

opinion

O

https://dx.doi.org/10.1145/3685265
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3685265&domain=pdf&date_stamp=2025-01-22

of software engineering, such as re-
quirements engineering, software ar-
chitecture, design, modeling, testing,
and development processes. The Soft-
ware Engineering Body of Knowledge
(SWEBOK) structures and aggregates
what software developers have learned
in the last 50+ years.

Software engineering does not only
have these sub-disciplines mentioned
previously, which cover the different
activities within a software engineer-
ing project. To properly address the
various application areas, software
engineering is also organized into
domain-specific sub-disciplines, such
as automotive software engineering.
However, software engineering re-
search largely ignored the specific de-
mands of research software,9 and vice
versa.

Research Software Categories
and Sustainability
Research software mainly falls into
one of the following three top-level role

categories (and sometimes combina-
tions)5:

1. Modeling, Simulation, and Data
Analytics of, for example, physical,
chemical, social, linguistic, or biologi-
cal processes in spatiotemporal con-
texts.

2. Technology Research Software in
science and engineering research.

3. Research Infrastructure Soft-
ware, such as research data and soft-
ware management systems.

The assignment of research soft-
ware to categories may evolve over
time. For instance, software specifi-
cally developed for a research ques-
tion (usually Categories 1 and 2) can
later turn into research infrastructure
software (Category 3). In different con-
texts, software may also be in multiple
categories at the same time.

Research software includes source-
code files, algorithms, scripts, compu-
tational workflows, and executables
created during the research process
or for a research purpose. Software
components (for example, operating
systems, programming languages,
libraries, and so forth) used for re-
search but not created during research
or with a clear research intent should
be considered “software in research”
and not “research software.”2 Research
software should be FAIR3,10 and open.4
The goal of FAIR (Findable, Accessible,

The goal of RSE is to
support and advance
research fields by
providing high-quality
software that is
reliable, efficient, and
easy to use.

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 21

I
M

A
G

E
 B

Y
 W

H
O

 I
S

 D
A

N
N

Y
/S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

opinion

Research Software
Engineering Research
RSE research aims to improve the
scholarly understanding of research
software development, and to develop
methods, techniques and tools to im-
prove RSE practice. Therefore, RSE
research must tackle a number of re-
search questions, which do not only
address the software as a product, but
also software development assistance
for the domain researcher as a human
being with limited time and usually
improvable skills for software devel-
opment. Possible research questions
include:11

 ˲ What is specific about RSE com-
pared to other SE specializations?

 ˲ How to (better) organize software-
centric scientific processes?

 ˲ How to (better) integrate SE tech-
niques such as requirements engineer-
ing, architectural modeling and auto-
mated testing in the research software
development process?

 ˲ What additional tools do RSE prac-
titioners need?

 ˲ Which skills are required for RSE
practitioners, and what are suitable
education formats?

 ˲ What is the (potential) role of gen-
erative AI in RSE practice?

Let us take a look at an example
RSE research area. Requirements en-
gineering is crucial for software proj-
ects, but explicit requirements engi-
neering is often ignored in scientific
software projects. Due to the explor-
atory nature of research, functional
requirements are often unknown up
front for research software, which also
makes verification and validation a
challenging task. A research approach
specifically designed for research
software may extract requirements
from available knowledge sources,
such as related scientific papers, user
manuals, and project reports.12 An im-
plication of unknown requirements
is the test oracle problem for research
software, which also requires spe-
cific solutions.8 We acknowledge that
Heroux6 recently introduced a very
similar notion of research software
science. We fully consent with its
goals, but feel that the term suggests
research on research software as the
study object, rather than research on
the RSE process that leads to the soft-
ware. To emphasize the research fo-

from a by-product into a long-living,
sustainable asset if not into a core re-
search infrastructure, where demands
for quality of the code heavily increase.
This includes understandability, doc-
umentation, reuse, ability to evolve,
adaptability, and other typical quality
attributes that software engineering
has discussed as a consequence of the
software crisis in other development
domains over the past 50+ years. How-
ever, software engineering approaches
will only be adopted by scientists if
these approaches honor the distinct
characteristics and constraints of sci-
entific software development.

Research software engineers devel-
op, optimize, and maintain research
software. They should have a deep
understanding of both software engi-
neering and research practices, and
are skilled at bridging the gap between
these two domains. To foster RSE skills
and leverage the job profile of RSE, sev-
eral associations have been founded,
such as the U.K. Society of Research
Software Engineering (https://society-
rse.org/), the U.S. Research Software
Engineer Association (https://us-rse.
org/), or the German Society for Re-
search Software (https://de-rse.org),
which in turn coordinate in an inter-
national council (researchsoftware.
org/council.html). The U.K. Software
Sustainability Institute (https://www.
software.ac.uk/) provides support for
furthering RSE practice, while the Re-
search Software Alliance (https://re-
searchsoft.org) works toward evolving
RSE policy by collaborating with deci-
sion makers and key stakeholders. We
propose to complement these activi-
ties via RSE research.

Due to the
exploratory nature of
research, functional
requirements are
often unknown up
front for research
software.

Interoperable, Reusable) is to increase
the transparency, reproducibility, and
reusability of research. Many research
institutions are now recognizing the
increasing importance of research
software and are providing support
for its development, sharing, and long-
term preservation, but also develop-
ment and maintenance effort. One
of the main challenges with research
software prototypes is the continuous
maintenance and managed evolution15
as open source by a research commu-
nity, especially for that software, which
was developed with some initial, lim-
ited funding. To address these chal-
lenges, the Software Sustainability
Institute (SSI) was founded in 2010 in
the U.K. as the first organization dedi-
cated to improving software in several
research domains.1

Research Software Engineering
Research software engineering is a
discipline that focuses on the devel-
opment of software for research pur-
poses. It is a relatively new field that
emerged in response to the growing
recognition of the importance of re-
search software and the need for spe-
cialized skills and expertise in its de-
velopment. Overall, the goal of RSE is
to support and advance research fields
by providing high-quality software
that is reliable, efficient, and easy to
use. Specific to engineering research
software is, for instance, that re-
quirements are usually not known up
front, emerge and evolve as research
advances, and often hard to compre-
hend without some Ph.D. in science.
Verification and validation are dif-
ficult and strictly scientific. Overly
formal software processes restrict
research. Few scientists are trained in
software engineering, which leads to
a disregard of most modern software
engineering methods and tools. This
situation created a chasm between
software engineering and computa-
tional science.7

As early scientific software was
developed by small teams of scien-
tists primarily for their own research,
modularity, maintainability, and team
coordination could often be neglected
without a large impact. As a conse-
quence of the expected sustainability
and reproducibility requirements on
research software, the software turns

22 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

opinion

References
1. Chue Hong, N.P. et al. Software Sustainability

Institute Midterm Rev. (2023). 10.5281/
ZENODO.8205595

2. Chue Hong, N.P. et al. FAIR Principles for Research
Software (FAIR4RS Principles). (2022); 10.15497/
RDA00068

3. Hasselbring, W. et al. From FAIR research data
toward FAIR and open research software. IT—
Information Technology 62 1, (Feb. 2020); 10.1515/
itit-2019-0040

4. Hasselbring, W. et al. Open source research
software. Computer 53, 8 (Aug. 2020); 10.1109/
mc.2020.2998235

5. Hasselbring, W. et al. Multi-Dimensional
categorization of research software with examples.
Zenodo (2024); 10.5281/zenodo.14082554

6. Heroux, M.A. Research software science: Expanding
the impact of research software engineering.
Computing in Science & Engineering 24, 6 (2022);
10.1109/mcse.2023.3260475

7. Johanson, A. and Hasselbring, W. Software
engineering for computational science: Past, present,
future. Computing in Science & Engineering 20, 2 (Mar.
2018); 10.1109/mcse.2018.021651343

8. Kanewala, U. and Bieman, J.M. Testing scientific
software: A systematic literature review. Information
and Software Technology 56, 10 (Oct. 2014);
10.1016/j.infsof.2014.05.006

9. Kelly, D.F. A software chasm: Software engineering
and scientific computing. IEEE Software 24, 6 (Nov.
2007); 10.1109/ms.2007.155

10. Lamprecht, A.L. et al. Towards FAIR principles for
research software. Data Science 3, 1 (June 2020);
10.3233/ds-190026

11. Lamprecht, A.L. et al. What do we (not) know about
research software engineering?. J. Open Research
Software 10 (Dec. 2022); 10.5334/jors.384

12. Li, Y. et al. Automated requirements extraction for
scientific software. Procedia Computer Science 51,
(2015); 10.1016/j.procs.2015.05.326

13. Ralph, P. et al. Empirical Standards for Software
Engineering Research. (2021); 10.48550/
arXiv.2010.03525 Version 0.2.0.

14. Randell, B. Fifty Years of Software Engineering—
or—The View from Garmisch. (2018); 10.48550/
arXiv.1805.02742

15. Reussner, R. et al. Managed Software Evolution.
Springer, Cham (2019); 10.1007/978-3-030-13499-0

Michael Felderer (Michael.Felderer@dlr.de) is a
professor in the Department of Computer Science at the
University of Cologne and director of the Institute for
Software Technology, German Aerospace Center (DLR),
Germany.

Michael Goedicke (michael.goedicke@paluno.uni-due.de)
is a professor emeritus for the specification of software
systems in the Department of Computer Science at the
University of Duisburg-Essen, Germany.

Lars Grunske (grunske@informatik.hu-berlin.de) is a
professor of software engineering in the Department of
Computer Science at Humboldt-Universität zu Berlin,
Germany.

Wilhelm Hasselbring (hasselbring@email.uni-kiel.de) is
a professor of software engineering in the Department of
Computer Science at Kiel University, Germany.

Anna-Lena Lamprecht (anna-lena.lamprecht@uni-
potsdam.de) is a professor of software engineering in the
Department of Computer Science at the University of
Potsdam, Germany.

Bernhard Rumpe (rumpe@se-rwth.de) is a professor
of software engineering in the Department of Computer
Science at RWTH Aachen University, Germany.

© 2025 Copyright held by the owner/author(s).

cus on these engineering aspects, we
propose the concept of RSE research
instead.

Conclusion and Outlook
Research software should be flexible
and modular, allowing researchers
to easily modify, compose, configure,
and extend it as their research evolves.
To ensure the quality and reproduc-
ibility of research, it is important that
research software is well documented,
tested, and maintained. Among the
methods and techniques that software
engineering can offer to RSE are mod-
el-driven software engineering with
domain-specific languages, modular
software architectures, specific re-
quirements engineering techniques,
and testing without test oracles.7 Re-
search software engineering correctly
pushes these techniques into devel-
opment projects for researchers, but
domain-specific adaptations are nec-
essary. This way, research may achieve
maintainable, sustainable software,
in particular for community research
software. We suggest addressing this
goal via empirical software engineer-
ing research.13

Software development tools for
the automation of various activities
and wizard-like assistance have enor-
mously increased productivity and
simplified the hurdles for newcomers
to create software. Moreover, these
tools nowadays enable non-experts to
develop significant pieces of software
and leverage the knowledge of core
software techniques, such as persis-
tent storage, communication, com-
pilation, computation orchestration,
and so forth.

Researchers must be aware that
software engineering is not only about
getting the code right but also involves
architectural, design, quality assur-
ance, and management soft skills to
be adopted and lived during a develop-
ment process. Researchers who create
software for a sustainable, long-lasting
infrastructure must be trained in soft-
ware engineering skills, which drasti-
cally differ from mere programming
skills.

We have learned that there are ge-
neric software engineering techniques
that can be applied in many domains,
but due to the domain-specific differ-
ences in characteristics, it is also use-

ful to adapt, enhance and possibly cre-
ate domain-specific techniques, tools,
methods, frameworks, and so forth.
It is necessary to build better domain-
specific tooling to address the domain-
specific challenges of research soft-
ware and to establish RSE Research as
a research field over RSE.

The context of this Opinion column
is the inception of a new special inter-
est group on RSE within the German
Association for Computer Science
(https://GI.de). However, RSE research
cannot be a national activity: interna-
tional RSE Research collaboration is
required (https://irser.github.io), for
which we call with this Opinion col-
umn. We support initiatives to raise
awareness of the role of funding prac-
tice in the sustainability of research
software, and to improve that practice,
such as the Amsterdam Declaration
on Funding Research Software Sus-
tainability (https://ADORE.software).
A recent Dagstuhl seminar brought
together software engineering re-
searchers and research software engi-
neers bridging knowledge gaps among
these communities (www.dagstuhl.
de/24161). Another option could be a
new task force or similar on the topic
of RSE within ACM SIGSOFT, the spe-
cial interest group on software engi-
neering, so that interested persons
have a place to go and cooperate.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
investigating-rse

Researchers must be
aware that software
engineering is not
only about getting
the code right
but also involves
architectural, design,
quality assurance,
and management soft
skills to be adopted
and lived during a
development process.

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 23

opinion

