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ABSTRACT  I 

Abstract 

Active pore water expulsion from marine sediments has been observed on continental 

margins worldwide and is therefore considered a potentially important link in global 

geochemical cycles. Understanding element recycling through submarine fluid discharge on a 

global scale requires a profound knowledge of the fluids’ origin and the geochemical 

processes affecting their composition. Consequently, the present thesis investigates the 

chemical and isotopic composition of cold seep fluids as a function of the tectonic context, the 

lithology and thickness of ambient sediments and other relevant geological factors.  

Chapter II deals with pore water data of five mud volcanoes that are aligned on an E-W 

transect across the Gulf of Cadiz in the NE Atlantic Ocean. In this area, mud volcanism and 

other phenomena of fluid flow are closely tied to thrust and strike-slip motion along the 

African-Eurasian plate boundary. Stable lithium and radiogenic strontium isotope data reveal 

a systematic pattern of deep fluid sources and diagenetic processes across the continental 

margin. High lithium concentrations and light δ7Li values, both similar to those observed at 

hydrothermal vents, indicate a high-temperature fluid origin in the deep subsurface. 

Decreasing 87Sr/86Sr ratios reflect the seaward thinning of terrigenous sediments and the 

increasing importance of a non-radiogenic fluid component originating in the underlying 

oceanic basement. The collected data represent new geochemical evidence for a hydrological 

connection between buried oceanic crust and the water column at this crustal age (>140 Ma) 

and distance from the spreading axis. 

The well-defined continent-ocean transition in the Gulf of Cadiz is revisited in Chapter III to 

investigate how iodine and its radioisotope, 129I, respond to lateral changes in sediment 

thickness and fluid origin. Iodine is a biophilic element and the cosmogenic 129I system 

therefore has been used to date organic sources of marine pore waters. In the Gulf of Cadiz, 

however, pore fluids receive additional 129I produced through spontaneous fission of 238U in 

uranium-rich, terrigenous sediments. Seaward decreasing 129I/I ratios and a pronounced 

correlation with 87Sr/86Sr ratios are in line with the progressive change from continental to 

oceanic fluid sources. Comparison of the new data with literature data from sediment cores of 
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the Ocean Drilling Program (ODP) and terrestrial groundwater aquifers reveals a systematic 

relationship between fissiogenic 129I, radiogenic 87Sr and the lithology or provenance of rocks 

and sediments, respectively. This relationship places valuable constraints on the applicability 

of 129I dating in different geological settings. 

Chapter IV provides a comprehensive analysis of lithium isotope fractionation during 

diagenetic or hydrothermal fluid/mineral exchange in marine systems. New pore water data 

for cold seeps in different ocean basins and geological settings are compared with new and 

literature data for shallow marine sediments, ODP cores, hydrothermal fluids and marine 

brines. Most of the fluid data follow a general relationship between lithium concentration and 

isotopic composition reflecting lithium release from sediment and fractionation during 

uptake into authigenic minerals. Deviations from this trend are related to the varying 

lithology of sediments and rocks or to transport-related fractionation mechanisms. 

Application of a numerical transport-reaction model demonstrates that little pore water 

advection suffices to transfer deep-seated lithium isotope signals into shallow sediments. It is 

shown that lithium isotopes may provide a valuable record of fluid/mineral interaction that 

has been inherited hundreds or thousands of meters below the seafloor   

Comparison of seep fluids in different geological settings reveals that deep-sourced fluid flow 

may occur in much more diverse manifestation than previously thought. Some cold seep 

fluids bear witness of exchange with minerals at temperatures beyond the typical diagenetic 

range (>150 °C) or share other geochemical characteristics with fluids from sediment-

covered ridge crest or ridge flank hydrothermal systems. This applies in particular to the 

abyssal seep locations in the Gulf of Cadiz where fluids carry a signature from interaction 

with the oceanic basement. Further manifestations of such fluid pathways intermediate 

between mid-ocean ridge hydrothermal vent and shallow marginal cold seep most likely exist 

on sediment-covered seamounts and fracture zones in the deep-sea. Exploration of these 

largely disregarded structures is essential for a sound understanding of material exchange 

between the oceanic lithosphere and the ocean.  

 



KURZFASSUNG  III 

Kurzfassung 

Die Freisetzung von Porenwässern am Meeresboden durch kalte Quellen ist ein weltweit an 

Kontinentalrändern beobachtetes Phänomen und muss folglich als potentiell wichtiges 

Bindeglied in globalen geochemischen Stoffkreisläufen betrachtet werden. Ein globales 

Verständnis der Rückführung von Elementen durch submarine Fluidfreisetzung erfordert 

detaillierte Kenntnisse über die Herkunft der Fluide und die ihre Zusammensetzung 

bestimmenden Prozesse. Die vorliegende Arbeit beschäftigt sich mit der chemischen und 

isotopischen Zusammensetzung von Fluiden an submarinen, kalten Quellen, in Abhängigkeit 

des tektonischen Kontexts, der Sedimentmächtigkeit und anderer relevanter geologischer 

Faktoren.  

Kapitel II behandelt Porenwasserdaten von fünf Schlammvulkanen, die entlang eines von Ost 

nach West verlaufenden Transekts durch den Golf von Cadiz im Nordost-Atlantik angeordnet 

sind. In diesem Gebiet sind Schlammvulkanismus und andere mit Fluidaustritten 

zusammenhängende Phänomene eng mit lateralen, tektonischen Bewegungen entlang der 

afrikanisch-eurasischen Plattengrenze verknüpft. Stabile Lithium und radiogene Strontium 

Isotopendaten belegen, wie sich tiefe Fluidquellen und diagenetische Prozesse in einer 

systematischen Abfolge über den Kontinentalrand hin ändern. Hohe Lithium-

Konzentrationen und leichte δ7Li-Werte, beide ähnlich derer von hydrothermalen Fluiden, 

weisen auf eine Fluidentstehung im tiefen Untergrund bei hohen Temperaturen hin. Zudem 

zeigen über den Kontinentalrand abnehmende 87Sr/86Sr-Verhältnisse die Ausdünnung 

terrigener Sedimente, die mit dem zunehmenden Einfluss einer unradiogenen 

Fluidkomponente aus der ozeanischen Kruste einhergeht. Die erhobenen Daten liefern neue 

Hinweise für eine hydrologische Verbindung zwischen einem von mächtigen Sedimenten 

bedeckten, alten (>140 Ma)  ozeanischen Krustensegment und der Wassersäule.  

Der in Kapitel II untersuchte Übergang zwischen Kontinent und Ozean im Golf von Cadiz wird 

in Kapitel III neu aufgegriffen, um zu untersuchen, wie die sich ändernden 

Sedimentmächtigkeiten und Fluidquellen auf die Iod-Konzentrationen und 

Iodisotopenverhältnisse im Porenwasser auswirken. Im Allgemeinen entstammt der 
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Hauptteil des im Porenwasser gelösten Iods der im Untergrund abgebauten organischen 

Substanz. Aus diesem Grunde wurde das kosmogene 129I-System vorwiegend zur Datierung 

organischer Komponenten im Porenwasser genutzt. Im Gegensatz zu diesem generellen 

Trend enthalten tiefe Porenwässer im Golf von Cadiz zusätzliches Iod aus dem spontanen 

Zerfall von 238U in uranreichen, terrigenen Sedimenten. Abnehmende 129I/I-Verhältnisse über 

den Kontinentalrand und eine ausgeprägte Korrelation mit 87Sr/86Sr-Verhältnissen stehen im 

Einklang mit den sich seewärts ändernden Fluidquellen. Eine vergleichende Betrachtung 

neuer Daten und Literaturdaten aus Sedimentkernen des Ocean Drilling Program (ODP) und 

terrestrischer Grundwasseraquifere belegen einen systematischen Zusammenhang zwischen 

129I aus dem Zerfall von 238U, radiogenem 87Sr und der Lithologie oder Herkunft der 

umgebenden Sedimente und Gesteine. Diese generelle Systematik bietet wertvolle Hinweise 

für die Anwendbarkeit der Iodisotopendatierung in verschiedenen geologischen Systemen. 

Kapitel IV beschäftigt sich mit einer umfassenden Analyse der Prozesse, die bei 

diagenetischen oder hydrothermalen Austauschreaktionen in marinen Systemen, zur 

Lithiumisotopenfraktionierung führen. Porenwasserdaten von submarinen kalten Quellen in 

unterschiedlichen Gebieten werden mit neu erhobenen und aus der Literatur bezogenen 

Daten mariner Sedimentporenwässer, hydrothermaler Fluide und mariner Solen verglichen. 

Größtenteils zeigen die Fluiddaten eine systematische Beziehung zwischen Lithium-

Konzentration und –Isotopenzusammensetzung, die die Freisetzung von Lithium aus 

Tonmineralen und die Isotopenfraktionierung beim Einbau in authigene Minerale 

widerspiegelt. Abweichungen von diesem generellen Trend sind auf Unterschiede in der 

Herkunft der Sedimente oder deren Zusammensetzung sowie auf transportbedingte 

Fraktionierungsmechanismen zurückzuführen. Die Anwendung eines numerischen 

Transport-Reaktions-Modells beweist, dass bereits geringe Fluidaufstiegsgeschwindigkeiten 

ausreichen, um die in großer Tiefe generierten Lithiumisotopensignale in 

Oberflächensedimente zu transferieren. Lithiumisotope können daher als ein wertvoller 

Anzeiger für Interaktionen zwischen Fluiden und Mineralen in tiefen Sedimenten genutzt 

werden. 

Die vergleichende Untersuchung von Fluiden aus submarinen, kalten Quellen in 

unterschiedlichen geologischen Situationen macht deutlich, dass Fluidtransport in deutlich 

vielgestaltigerer Form auftritt, als dies bisher angenommen wurde. Viele Fluide zeugen von 

Austauschprozessen mit Mineralen bei Temperaturen jenseits des typischen diagenetischen 

Bereichs (>150 °C) oder teilen andere geochemische Eigenschaften mit Fluiden aus 

sedimentbedeckten Hydrothermalsystemen an Spreizungsachsen oder deren Flanken. Dies 
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gilt insbesondere für die abyssalen Porenwasseraustritte im Golf von Cadiz, wo die 

geförderten Fluide Spuren von Interaktionen mit der ozeanischen Kruste tragen. Damit 

können sie als intermediäre Fluidtransportsysteme zwischen den hydrothermalen 

Fluidaustritten an mittelozeanischen Rücken und den flachwurzelnden, kalten Quellen an 

Kontinentalrändern angesehen werden. Weitere solche intermediären Fluidaustritte 

existieren höchst wahrscheinlich an sedimentbedeckten Seamounts und Bruchzonen in der 

Tiefsee. Eine Untersuchung dieser bisher weitgehend unbeachteten Strukturen ist 

unerlässlich für ein vollständiges Verständnis des stofflichen Austauschs zwischen der 

ozeanischen Lithosphäre und dem Ozean.  
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CHAPTER I – GENERAL INTRODUCTION 1 

General Introduction 

I.1. Geochemical budget of the global ocean 

The world ocean directly interacts with most other geochemical reservoirs on earth and, 

therefore, plays a key role in global geochemical cycles. In order to understand its 

geochemical budget it is necessary to evaluate the composition, magnitude and temporal 

variability of element fluxes into and out of the oceanic reservoir. This global framework of 

input and output fluxes is illustrated as a conceptual box model in Figure I.1.  

Major natural sources or sinks of material to the ocean are the continental crust, the oceanic 

crust and the atmosphere. Material that has been mobilized from the continental crust by 

subaerial weathering and erosion reaches the ocean mostly via fluvial or aeolian transport. 

River inputs to the ocean are well constrained from studies on the runoff and chemical 

composition of the dissolved and particulate load of the world’s major rivers and streams 

(Martin and Maybeck, 1979; Martin and Whitfield, 1983). In principle, the chemical 

composition of river water and particulate matter chiefly depends on the geology and 

climatic regime of the catchment area. However, chemical and biological reactions in the river 

itself and, especially, in the estuarine mixing zone have to be considered for the evaluation of 

the river flux into the ocean (Boyle et al., 1974). The atmospheric flux has attracted 

considerable attention in recent years because of its important role in controlling primary 

productivity in nutrient-limited ocean regions (Jickells et al., 2005). Estimates of the 

continental input flux via the atmospheric pathway have been obtained by combining the 

quantity and chemical composition of locally collected dry and wet deposition with global 

wind and precipitation data (Duce et al., 1991). Other approaches concentrate on diagnostic 

elements in surface waters (e.g. aluminum; Measures and Vink, 2000) or involve remote 

sensing data on the global aerosol distribution (Kaufman et al., 2005). The chemical 

composition of the airborne input to the ocean depends, similar to that of the fluvial input, on 

the geology of the source region but also on the extent of chemical alteration during transport 

in the atmosphere.  
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The most prominent manifestation of chemical exchange between the ocean and the oceanic 

crust is hydrothermal venting at the crests of mid-ocean ridges. It is a result of the 

emplacement of hot rock at divergent plate boundaries and the accompanying circulation of 

seawater through the oceanic basement. Depending on the reaction temperature, 

hydrothermal fluids are strongly depleted in magnesium and sulfate and enriched in 

hydrogen sulfide, alkali elements and certain trace metals (Edmond et al., 1979; Von Damm, 

1990). Global estimates suggest that the entire ocean interacts every 8 – 10 Ma with fresh 

basalt at the high-temperature ridge axial zone. The importance of hydrothermal activity for 

ocean chemistry has been further underscored by studies on hydrothermal circulation at low 

to intermediate temperatures at the ridge flanks. For instance, it has been suggested that 

most of the riverine input of magnesium to the ocean is balanced by removal during off-axis 

hydrothermal circulation (Wheat and Mottl, 2000). Furthermore, the heat transferred 

through the seafloor at ridge flanks exceeds that of the ridge axis by a factor of 2 - 4 

(Elderfield and Schulz, 1996). Low-temperature weathering of basalt that is exposed on the 

seafloor or interaction with hot lava that is extruded onto the sea bed at submarine volcanoes 

are further examples for exchange between seawater and the oceanic crust. 

Figure I.1. Schematic representation of the global ocean geochemical reservoir. The large black arrows indicate 

transport from material sources and the large white arrows indicate transport into material sinks. Small arrows 

denote transitions between particulate/solid (p) and dissolved (d) phase. The main subject of the present thesis, 

i.e. pore water expulsion from sediments, is highlighted by the red arrow. 
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Marine sediments represent the ultimate sink for all particulate components that survive 

destruction in the oceanic reservoir. The sediments are also the major sink for dissolved 

elements which become scavenged by particles or incorporated in organic tissues or 

biogenous precipitates. Tectonic uplift above sea level and subduction at convergent ocean 

margins are the major mechanisms by which sediments may be transferred into adjacent 

geochemical reservoirs. Prior to uplift or recycling to the earth mantle, however, sediments 

undergo multiple physical and chemical alterations leading to a significant modification of the 

primary sediment-forming signal. Many elements or components contained in the sediments 

at the time of deposition are dissolved and recycled during these processes. This back-flux of 

dissolved elements from marine sediments is one of the least-constrained input pathways to 

the ocean. Especially the expulsion of deep-sourced pore fluids from thick sediment 

accumulations on continental margins is likely to be an important source of volatile elements 

to the global oceanic reservoir. 

I.2. Significance of fluid expulsion on continental  margins 

The most common transport mechanism by which solute elements are transported across the 

sediment/bottom water boundary is molecular diffusion. It is driven by concentration 

gradients which result from chemical or biological processes within the sediments. However, 

on continental margins with high sedimentation rates, this process does only affect the 

uppermost meters of the sediment column. In contrast to molecular diffusion, active fluid 

advection is a more efficient transport mechanism by which pore fluids from sediment depths 

of several kilometers below seafloor may be transferred to the sediment surface.   

The actual reasons for upward directed, advective transport of fluids in sedimentary 

environments may be comprehended by examining Figure I.2 showing a compilation of 

worldwide locations where either hydrothermal venting or sediment fluid expulsion occurs. 

Submarine hydrothermalism is closely tied to magmatic activity at mid-ocean ridges, back-

arc spreading centers or intra-plate hot spots. In a hydrothermal convection cell, seawater 

that has penetrated the oceanic crust along fractures or fissures is heated to temperatures of 

350 - 400 °C close to the top of the magma chamber and then driven upwards towards the 

seafloor (Lowell et al., 1995). In contrast to hydrothermal venting, phenomena related to 

active sediment dewatering and degassing are concentrated on thickly sedimented 

continental margins and at convergent plate boundaries (Figure I.2). During deposition of  
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sediments with normal consolidation, pore fluids move upward with respect to the solid 

grains and relative to the underlying crust. However, provided that the porosity at the bottom 

does not become zero, both solid grains and fluids are continually added to the sediment 

section at the top. In other words, as long as such a situation of equilibrium consolidation is 

maintained, there is no pore fluid expulsion from the seafloor (Hyndman and Davis, 1995). 

Active upward migration of fluids with respect to the seafloor requires one of the following 

particular geological conditions: Sediment sections must be (i) subjected to compressional 

forces and undergo tectonic thickening, e.g. in accretionary wedges in subduction zones,  

(ii) loaded and compressed when underthrust and subducted at non-accretionary margins or 

(iii) so rapidly deposited that equilibrium consolidation is no longer maintained and fluid 

expulsion has to occur in order to redress the balance (Hyndman and Davis, 1995). Examples 

for the first two cases are the Mediterranean Ridge accretionary complex and the non-

accretionary Central American margin, respectively. The Nile deep-sea fan in the eastern 

Mediterranean Sea may be an example for the third case. Pore water geochemical data for all 

of these examples will be treated in Chapter IV of this thesis.  

In addition to the above-listed mechanisms, geochemical processes within the sediments, 

such as generation of hydrocarbon gases, dehydration of clay minerals or dissolution of gas 

Figure I.2. Global distribution of phenomena related to seafloor hydrothermal activity (yellow triangles) and 

active fluid expulsion from sediments (blue triangles). Tectonic plate boundaries are depicted by red lines (data 

from Herzig and Hannington, 2005; Judd, 2003). 
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hydrates, may further amplify pore pressure and thus upward movement of interstitial fluids. 

In continental margin settings with huge accumulation rates of terrigenous, fine-grained 

sediments, clay mineral dehydration and tectonic compression may cause liquefaction and 

vertical emplacement of sediments themselves. The combined process of pore fluid, gas and 

mud (i.e. liquefied sediment) extrusion is referred to as ‘mud volcanism’. It has to be stressed, 

however, that at most mud volcanoes, fluids and mud are unlikely to be derived from the 

same depth within the sedimentary complex (Dimitrov, 2002; Kopf, 2002). 

One major problem in quantifying the contribution of pore fluid expulsion on continental 

margins to the geochemical budget of the world ocean is the poorly constrained number of 

seep locations, as well as their size and activity. A global map of regions where fluid seepage 

has been documented is given in Figure I.2. However, analogical to the occurrence of 

hydrothermal vents, the actual number of fluid expulsion sites is likely to be considerably 

higher. Another limitation for a quantitative evaluation of fluid seepage is the lack of a 

general systematic on how geological conditions such as the tectonic setting or the thickness, 

provenance and/or lithology of sediments influence the chemical and isotopic composition of 

pore fluids. A brief overview about (bio)geochemical processes that may be encountered in 

shallow and deeply buried sediments on continental margins is given in the following section. 

This general overview will prepare the ground for a detailed treatise of the behavior of 

specific elemental and isotopic proxies under varying environmental conditions in Chapter II 

to IV.  

I.3. Diagenetic processes in marine sediments 

Interstitial waters are aqueous solutions that occupy the pore space between particles in 

sediments or rocks. For most marine sediments, the pore water originated as seawater 

trapped from the overlying water column. Exceptions to this rule are coastal or estuarine 

sediments where groundwater seepage can occur and sediments at mid-ocean ridge flanks 

where circulating basement fluids may enter the sediment column. The sediment-pore water 

continuum is a site of intense physical, chemical and biological reaction leading to 

compaction, dissolution of detrital minerals or precipitation of new, so-called authigenic 

minerals and, consequently, to changes in the composition of pore waters themselves 

(Chester, 2003). These processes are grouped together under the term ‘diagenesis’ which has 

been defined by Berner (1980) as “the sum total of processes that bring about changes in a 
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sediment or sedimentary rock subsequent to deposition in water”. This section focuses on 

diagenetic processes and concepts that are relevant to the following chapters. Therefore, 

special attention is given to the inorganic geochemical aspects of diagenesis.      

I.3.1. Early diagenesis of organic matter 

Diagenetic processes occurring up to a burial depth of a few hundred meters and at 

temperatures close to that prevailing at the seafloor are referred to as ‘early diagenesis’ 

(Berner, 1980). Most early diagenetic processes are related to the microbial degradation of 

organic matter. Organic substance is produced by photosynthetic algae in the water column, 

transported through the food chain and repeatedly recycled until sedimentation and burial in 

the sediments. Chemoheterotrophic microorganisms oxidize sedimented organic matter by 

transferring electrons from organic carbon to an electron acceptor. The major electron 

acceptors are dissolved oxygen, nitrate (NO3-), sulfate (SO42-) and carbon dioxide (CO2) as 

well as solid manganese (Mn(IV)) and iron (Fe(III)) in the form of oxyhydroxides. Since 

bacteria aim to optimize their metabolic energy yield, different microbial communities exist 

which are specialized for specific oxidizing agents. Oxidants are consumed successively 

according to the decreasing Gibbs free energy yield (∆G0) of the corresponding metabolic 

pathway. This results in a vertical sequence of predominantly occurring redox-reactions: the 

so-called ‘early diagenetic sequence’ (Figure I.3; Froelich et al., 1979). The early diagenetic 

sequence is reflected by the pore water profiles of the involved redox species. With 

increasing sediment depth, concentrations of reduced species (e.g. HS-) increase at the 

expense of the corresponding oxidized species (e.g. SO42-). Such concentration-depth 

gradients promote vertical, diffusive transport of pore water constituents. Upward-diffusing 

reduced species may reach the interface at which they are not stable anymore. 

Microorganisms occupy such transitions zones and gain energy through re-oxidation. A 

prominent example for such an interfacial redox process is sulfate reduction coupled to the 

anaerobic oxidation of methane which results from a syntrophic relationship between sulfate 

reducing bacteria and methanotrophic archeans (Boetius et al., 2000). This process plays an 

outstanding role in oxidizing deep-sourced methane in surficial sediments of submarine fluid 

escape structures (Wallmann et al., 2006).  

According to the predominantly occurring metabolic pathway or the presence of specific 

authigenic minerals, sediments have been classified into oxic, sub- or post-oxic, anoxic-

sulfidic and methanic (Figure I.3; Berner, 1981). Especially the ambiguous definition of  
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‘suboxic’ conditions, however, has led to considerable confusion in literature. In a recent 

article, Canfield and Thamdrup (2009) proposed a more precise terminology for conditions, 

where neither dissolved oxygen nor sulfide is present. According to these authors, 

geochemical environments should be denominated ‘nitrogenous’, ‘manganous’ and 

‘ferruginous’, depending on the predominant redox species in pore water. Although not yet 

accepted by the scientific community, this classification is shown in parentheses in Figure I.3.   

The vertical extent of redox zones varies from a few centimeters to several meters, depending 

on the availability of organic matter and electron acceptors. In pelagic deep-sea sediments, 

where the organic matter flux and, as a result, microbial respiration is low, oxic or suboxic 

diagenesis may prevail up to a depth of several meters (Froelich et al., 1979). By contrast, in 

near-shore environments with high biological productivity or in semi-enclosed basins, most 

electron acceptors are rapidly depleted and sulfate reduction or even methanogenesis 

becomes the dominant organic matter degradation pathway at or shortly below the 

sediment/bottom water interface (Jørgensen, 1982; Claypool and Kvenholden, 1983).   

In ocean regions with high primary productivity, considerable amounts of organic matter 

may survive early diagenesis and become buried to greater sediment depth (Pedersen and 

Figure I.3. Schematic representation of the early diagenetic sequence in marine sediments (after Froelich et al., 

1979). The names of the major redox zones are taken from Froelich et al. (1979), Berner (1981) and Canfield and 

Thamdrup (2009). The reaction equations for organic matter oxidation, methanogenesis as well as anaerobic 

methane oxidation and their corresponding Gibbs free energy yield ( ∆G0 at pH = 7) are given according to 

Jørgensen (2006).  
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Calvert, 1990). Hegdes and Keil (1995) demonstrated that organic matter preservation in 

such environments largely depends on its residence time in the oxic diagenetic zone. 

Furthermore, these authors pointed out that formation of protective clay-organic aggregates 

leads to an enhanced burial of organic matter to the anoxic zone. Once buried and subjected 

to temperatures and pressures beyond the early diagenetic range, organic matter is slowly 

transformed into non-hydrolysable degradation products referred to as kerogen. Depending 

on temperature, pressure and its composition, kerogen may later transform into light (i.e. 

gas) or heavy hydrocarbons (i.e. oil). Such deeply buried organic matter in continental margin 

sediments represents an important reservoir in the long-term carbon cycle (Berner, 2003).       

I.3.2. Diagenetic alteration of silicate minerals 

The pore water chemistry of many major and minor seawater constituents is determined by 

interactions with detrital or authigenic silicate minerals. Those interactions occur over a 

broad depth and temperature range and can lead to significant changes in the bulk 

geochemistry of the solid phase. The most readily altered siliciclastic components of marine 

sediments are ash particles and other fresh volcanogenic material. This has important 

implications for the composition of pore waters in convergent margin settings where huge 

amounts of volcanogenic matter are delivered from the volcanic arc (Kastner et al., 1991). 

During low-temperature diagenesis, ash particles are transformed into authigenic minerals 

such as smectite or zeolites. Authigenic smectite formation decreases pore water magnesium 

and lithium, increases calcium and strontium and consumes water. Since most volcanic 

matter in subduction zones has an intermediate, i.e. andesitic, composition, interstitial 

87Sr/86Sr ratios become generally less radiogenic during this process (Lawrence et al., 1979). 

Depending on the respective zeolite mineral formed, pore fluids become depleted in e.g. 

potassium, sodium or calcium (Kastner and Rudnicki, 2004).  

At temperatures above 60 °C, authigenic or detrital smectite is progressively transformed 

into illite or smectite/illite mixed layer minerals. In a generalized manner, this process may 

be expressed as a reaction of smectite and potassium to illite, magnesium, sodium, some 

minor elements (e.g. strontium and lithium) and water. Depending on the provenance of the 

precursor smectite (oceanic/volcanic versus terrigenous), pore water 87Sr/86Sr ratios can 

become less radiogenic or more radiogenic during this process (Środoń, 1999; Kastner and 

Rudnicki, 2004). Pore fluids that are influenced by clay mineral transformation in adjacent 

sediments commonly display reduced salinities due to dilution with interlayer water. 
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Furthermore, dehydration of clay minerals may increase pore pressure which enhances 

negative buoyancy of already overpressured pore fluids in compressional sedimentary 

settings. The interlayer water released during smectite/illite transformation has a 

characteristic oxygen and hydrogen isotopic composition (δ18O > Standard Mean Ocean 

Water (SMOW) and δD < SMOW) (Sheppard and Gilg, 1996). Oxygen and hydrogen isotope 

systematics may therefore be used to distinguish between clay mineral dehydration and 

other reasons for pore fluid freshening, such as gas hydrate dissolution (δ18O, δD > SMOW) or 

seepage of meteoric groundwater (δ18O, δD < SMOW) (Dählmann and De Lange, 2003). At 

temperatures ≤160 °C smectite/illite conversion is mostly completed, which is also indicated 

by near-complete potassium depletion in pore water. 

At temperatures between 160 °C and 250 °C, geochemical exchange processes between fluids 

and sediments become similar to those typically observed in ridge crest hydrothermal 

systems. For instance, plagioclase is replaced by albite, smectite or illite are transformed into 

chlorite/smectite mixed layer minerals or pure chlorite and fluids leach mobile elements 

such as potassium, rubidium, lithium and boron from the solid phase (Alt et al., 1986; Alt, 

1995; You et al., 1996; Kastner and Rudnicki, 2004). Further interaction between pore fluids 

and silicate minerals at higher temperatures and pressures occurs during ongoing subduction 

of sediments at convergent plate boundaries. 

I.3.3. Water/rock interaction within buried basemen t rocks 

Strictly speaking, water/solid interactions within basement rocks should not be dealt with in 

a section on sediment-diagenetic processes. However, in particular geological settings, such 

as sedimented ridge flank hydrothermal systems (e.g. eastern flank of the Juan de Fuca 

Ridge), basement fluids may enter the sediment column. In these cases, a detailed 

understanding of seawater/basalt interaction at low to intermediate temperatures is a basic 

requirement to distinguish sediment- and basement-derived geochemical signals in pore 

water. 

Critical factors for fluid flow within buried basement rocks on sedimented ridge flanks are 

the location and abundance of basement outcrops that provide sites for fluid recharge (Fisher 

et al., 2003). In general, basement fluids become more geochemically evolved with increasing 

basement temperature which, in turn, is determined by the thickness of the overlying 

sediments. For instance, fluids sampled on a W-E transect across the eastern flank of the Juan 
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de Fuca Ridge showed increasing concentrations of calcium and decreasing concentrations of 

magnesium, sodium, potassium and lithium with increasing distance from the recharge zone 

and with temperature increasing from ~16 °C to 63 °C. Interstitial 87Sr/86Sr ratios decreased 

towards an end member value intermediate between those of fresh basalt and modern 

seawater (Wheat and Mottl, 1994; Elderfield et al., 1999). Most of these geochemical signals 

have been explained with transformation of plagioclase and volcanic glass to smectite and 

related mineral phases (see above) (Wheat and Mottl, 2000). 

The factors controlling reaction of basement fluids with overlying sediments or mixing with 

pore waters are less well constrained. James et al. (2003) suggested that reaction with 

sediments becomes dominant at slow upwelling rates (e.g. <0.1 cm a-1). This has important 

implications for the pore water geochemistry of sediments that are in hydraulic contact with 

the underlying oceanic basement. For instance, lithium is taken up by basalt at temperatures 

up to 250 °C but released from terrigenous sediments at temperatures as low as 50 °C (James 

et al., 2003). Considering intense reaction of a slowly upwelling basement fluid with 

sediments, the original basement-derived lithium signal would be entirely overprinted after 

passage through the sediment column.  

Once the sediment cover has reached a thickness of a few hundred meters, pore fluid 

advection largely ceases confining flow to the basement aquifer (McDuff, 1981; Rudnicki et 

al., 2001). In certain ocean areas, there is geophysical evidence for continued hydrothermal 

circulation within the upper oceanic basement at crustal ages of ~60 – 175 Ma. Because of the 

thick sediment cover, however, such basement aquifers are unlikely to possess a hydrological 

connection to the ocean (Von Herzen, 2004). 

I.4. The oceanic lithium cycle 

Investigating the geochemical processes described above on a global scale yields a more 

quantitative picture of the input and output fluxes to the world ocean than depicted in  

Figure I.1. Two of the following chapters deal with lithium and its isotopes as tracers for 

mineral/water interactions in the marine subsurface. Therefore, this element will be used 

here to illustrate how an oceanic mass balance may be obtained.  

The magnitude of the fluvial lithium input has been evaluated by measuring concentrations in 

the world’s major rivers and multiplying the resulting average concentration with the global 
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fluvial discharge into the ocean (Huh et al., 1998). Estimates of the hydrothermal lithium flux 

to the ocean were obtained from the lithium to mantle-derived 3-helium ratio in vent fluids 

extrapolated to the total 3-helium inventory of the ocean. The validity of this calculation is 

based on the fact that extrapolation of the heat to 3-helium ratio measured in hydrothermal 

fluids results in a global heat flux which is similar to that estimated based on the heat flow 

anomaly near to active ridges (Edmond et al., 1979). Later studies refined the hydrothermal 

lithium flux by correcting for off-axis heat flow and by comparing the fluxes to the amount of 

oceanic crust formed per year at mid-ocean ridges (Stoffyn-Egli and Mackenzie, 1984; Chan et 

al., 2002). Lithium inputs through fluid expulsion at convergent plate boundaries have been 

estimated by multiplying averaged concentrations in décollement fluids with the associated 

global dewatering flux (You et al., 1995). 

The rate of lithium removal by uptake onto basalt at low to moderate temperatures has been 

determined by measuring the authigenic lithium enrichment in weathered basalt with 

respect to freshly formed basalt and, again, by extrapolating this concentration difference to 

the global volume of new oceanic crust formed per year (Stoffyn-Egli and Mackenzie, 1984; 

Chan et al., 2002). The diffusive benthic flux of lithium into marine sediments has been 

calculated based on concentration-depth profiles in sediment pore waters. Multiplying the 

average diffusive lithium flux with the total sediment-covered seafloor area where authigenic 

clay mineral formation takes place yields an estimate of the global lithium uptake by 

sediments (Stoffyn-Egli and Mackenzie, 1984; Zhang et al., 1998). 

The resulting oceanic lithium budget is largely balanced which is illustrated in a modified 

version of Figure I.1 in Figure I.4. Most of the flux estimates, however, vary over broad ranges 

demonstrating that parts of the oceanic lithium cycle are still poorly constrained. Input fluxes 

to the ocean, that are less well studied so far, could be missed in that manner. For instance, 

the back-flux of lithium from sediments into the water column in Figure I.4 does not account 

for fluid flow at cold seeps on passive continental margins. Such missing sinks or sources are 

unlikely to be important for the element budget itself, but could exert a certain influence on 

the lithium isotope budget of the ocean. A recent lithium mass balance, published in a paper 

on lithium and its isotopes as tracers for global silicate weathering (Hathorne and James, 

2006), is based on average values for the most important lithium input and output fluxes 

(bold values in Figure I.4). Because of the broad range of the actual flux estimates, however, 

their calibration for the modern ocean underlies large uncertainties. Ongoing refinement of 

element fluxes is therefore an important requirement for the development of new 

environmental tracers and paleo-proxies. 
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I.5. Thesis outline 

The following three chapters represent stand-alone articles which have been published or 

submitted for publication in scientific journals. They revisit different aspects which have been 

raised in the general introduction given above.  

Chapter II deals with the inorganic geochemistry of deep-sourced pore fluids from five mud 

volcanoes that were sampled on a transect across the Gulf of Cadiz in the NE Atlantic Ocean. 

For the first time, lithium isotopes are applied as a tracer for fluid/mineral interactions in the 

context of mud volcanism and fluid seepage on continental margins. A combination of lithium 

and radiogenic strontium isotope data reveals a consistent transition of diagenetic processes 

and fluid sources from the near-shore to the deep-sea locations. Findings from Chapter II are 

revisited in Chapter III to assess how iodine and the 129I/127I system respond to lateral 

changes in tectonic setting and sediment thickness. Comparison of the presented results with 

pore water data from the Ocean Drilling Program (ODP) yields new insights into the cycling 

of iodine and its radioisotope, 129I, in marine sediments. Chapter IV provides a comprehensive 

analysis of lithium isotope systematics in the context of diagenesis and fluid seepage. Data for 

Figure I.4. Schematic representation of the global oceanic lithium budget. The flux values (in 109 mol a-1) are 

taken from Chan et al. (2002), Huh et al. (1998), Stoffyn-Egli and Mackenzie (1984), You et al. (1995) and Zhang et 

al. (1998). Values in bold are average fluxes which were applied for mass balance calculations by Hathorne and 

James (2006). 
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deep-sourced pore fluids from cold seep sites in differing geological settings are compared 

with literature data from pore waters of ODP cores and hydrothermal fluids from bare ridge-

crest and sediment-hosted hydrothermal systems. A numerical transport-reaction model is 

applied to simulate the fractionation of lithium isotopes during fluid advection through 

sediments. This study aims at establishing a general reference frame for Li isotope exchange 

between fluids and silicate minerals in marine systems. 

A general summary and an evaluation of the presented conclusions in the context of the 

current state of research will be given in Chapter V. 

In addition to the work presented here, I contributed to the following, complementary 

articles: 

Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz - 

evidence for multiple sources and transport mechanisms in active sedimentary wedges 

Authors: Nuzzo M., Hornibrook E.R.C., Gill F., Hensen C., Pancost R.D., Haeckel M., Reitz A., 

Scholz F., Magalhães V.H., Brückmann W. and Pinheiro L.M.  

Status: published in Chemical Geology (2009) 266, 359-372. 
 

Active mud volcanoes on the upper slope of the western Nile deep-sea fan - first results 

from the P362/2 cruise of R/V Poseidon 

Authors: Feseker T., Brown K., Blanchet C., Scholz F., Nuzzo M., Reitz A., Schmidt M. and 

Hensen C. 

Status: submitted to GeoMarine Letters. 
 

Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea 

Authors: Reitz A., Pape T., Schmidt M., Haeckel M., Scholz F., Aloisi G., Liebetrau V., 

Wallmann K., Berner U. and Weise S.M. 

Status: in preparation. 
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Abstract 

The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud 

volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths 

between 350 m and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr 

ratios with increasing distance from shore are attributed to systematically changing fluid 

sources across the continental margin. Although highest Li concentrations at the near-shore 

mud volcanoes coincide with high salinities derived from dissolution of halite and late stage 

evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore 

fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids  

(δ7Li: +11.9 ‰), indicate that Li has been mobilized during high-temperature fluid/sediment 
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or fluid/rock interactions in the deep subsurface. Intense leaching of terrigenous clay has led 

to radiogenic 87Sr/86Sr ratios (~0.7106) in pore fluids of the near-shore mud volcanos. In 

contrast, non-radiogenic 87Sr/86Sr ratios (~0.7075) at the distal locations are attributed to 

admixing of a basement-derived fluid component, carrying an isotopic signature from 

interaction with the basaltic crust. This inference is substantiated by temperature constraints 

from Li isotope equilibrium calculations suggesting exchange processes at particularly high 

temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location. 

Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive 

exchange processes with both oceanic crust and terrigenous, fine-grained sediments, 

resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge 

flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of 

Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent 

and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid 

advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic 

signal compared to ridge flank hydrothermal environments. 

II.1. Introduction 

Mud volcanoes (MVs) and cold seeps are ubiquitous manifestations of sediment dewatering 

and degassing on continental margins (Milkov, 2000; Kopf, 2002). In most cases, the chemical 

and isotopic composition of the emitted fluids differs significantly from seawater. Therefore, 

fluid expulsion at MVs and cold seeps has been considered a potentially important recycling 

process in global biogeochemical cycles (e.g. Milkov et al., 2003; Aloisi et al., 2004a,b). The 

composition of a given pore fluid results from various diagenetic reactions occurring at any 

depth of the sedimentary complex beneath the MV. Such processes involve e.g. high-

temperature interactions with sediments and rocks (Martin et al., 1991; Chan and Kastner, 

2000), clay mineral transformation reactions (Kastner et al., 1991; Dählmann and De Lange, 

2003; Saffer and Screaton, 2003; Hensen et al., 2004), the microbial or thermal mineralization 

of organic matter (Martin et al., 1993; Fehn et al., 2007; Tomaru et al., 2007), the admixing of 

evaporated seawater or the dissolution of evaporites (Charlou et al., 2003; Reitz et al., 2007) 

and the dissolution or precipitation of authigenic minerals such as carbonates, barite and 

sulfides (Luff and Wallmann, 2003; Gieskes et al., 2005; Castellini et al., 2006). Some of these 

processes can have opposing effects on the fluid chemistry. Thus, attempts to decipher their 
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respective influence can lead to ambiguous results, and the most promising approach to 

understand the often complex diagenetic evolution of a pore fluid is to combine 

complementary geochemical tracers (Martin et al., 1996; You et al., 2004; Hensen et al., 

2007). 

In a recent article, Hensen et al. (2007) presented geochemical evidence that fluids emanating 

at MVs in the Gulf of Cadiz are dominantly formed by clay mineral dehydration processes at a 

sediment depth of up to 5 km below seafloor. In addition, high concentrations of dissolved Li 

were attributed to interactions with sediments or basement rocks at temperatures beyond 

the range typical for clay mineral diagenetic processes (>150 °C). In consideration of 

apparently hydrothermal signals preserved in shallow MV fluids, the authors suggested a 

close coupling of high- and low-temperature processes in deep-rooted cold seep 

environments.  

In order to further elucidate structural controls on mud volcanism and regional variability 

across the margin, another sampling campaign was carried out in 2006. The sampled MVs are 

aligned on a transect across the entire Gulf of Cadiz from E to W at water depths between  

350 m and 3860 m. During this second campaign, exceptionally high Li concentrations were 

detected in saline fluids at Mercator MV on the Moroccan shelf. Although the admixing of 

brines has been identified before (Hensen et al., 2007), these findings shed new light on fluid 

formation processes in the Gulf of Cadiz and demand a more systematic examination of 

crucial elements such as Li and Sr. Consequently, the present study aims to: (i) identify the 

processes responsible for Li enrichments in pore fluids throughout the study area; (ii) find 

out if 87Sr/86Sr ratios reflect interactions with different types of basement rocks (i.e. locate 

the transition between oceanic and continental crust), and (iii) further constrain the fluid 

origin by involving Li isotope systematics. Lithium isotopes are a promising tracer in that 

context since they have been successfully applied to trace fluid/sediment and fluid/rock 

interactions at different temperatures and to characterize the diagenetic evolution of pore 

fluids in general (e.g. You et al., 1995; Chan and Kastner, 2000; Chan et al., 2002). Overall, the 

multi-elemental and multi-isotopic approach adopted in this study, reveals a systematic 

pattern of diagenetic processes and fluid sources across the Gulf of Cadiz continental margin.  
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II.2. Material and methods 

II.2.1. Geological setting 

The Gulf of Cadiz is located west of the strait of Gibraltar (Figure II.1) at the boundary 

between the African and Eurasian plates. The area has a complex geological history 

comprising several phases of rifting, convergence and strike-slip motion since the Triassic 

(Maldonado et al., 1999). At present, comparably slow plate convergence (4 mm a-1; Argus et 

al., 1989) is accommodated over a wide and diffuse deformation zone with maximum 

compressional stress in WNW-ESE direction (Sartori et al., 1994). The poorly defined 

transition from continental to oceanic crust (Contrucci et al., 2004; Rovere et al., 2004) is 

concealed beneath up to 13 km thick sedimentary deposits (Thiebot and Gutscher, 2006) 

whose emplacement was linked to the build-up of the Arc of Gibraltar in Mid- to Upper 

Miocene (Maldonado et al., 1999). The sedimentary cover consists of Mesozoic and Cenozoic 

limestones, marls and shales which are overlain by up to 1 km thick Plio-Quaternary  

Figure II.1. Structural and bathymetrical map of the Gulf of Cadiz within the NE Atlantic Ocean. The major tectonic 

features (after Medialdea et al., 2004; bathymetry from Diez et al., 2005) are the Marquês de Pombal (MPF) and 

Horseshoe (HsF) thrust faults, the Porto-Bonjardim (PBF) and Gorringe-Horseshoe (GHsF) strike-slip faults as 

well as the basement highs Gorringe Bank, Guadalquivir Bank and Coral Patch Ridge. The five MVs investigated 

within this study (Table II.1) are represented by large triangles; smaller triangles represent other MVs discovered 

to date. 
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Sampling location Gravity core Latitude Longitude Water depth
N W [m]

Mercator MV 239 GC20 35°17.917' 6°38.700' 353

263 GC28 35°17.866' 6°38.797' 351

Captain Arutyunov MV (CAMV) 174 GC9 35°39.736' 7°19.959' 1322

205 GC13 35°39.697' 7°20.082' 1326

Carlos Ribeiro MV (CRMV) 154 GC5 35°47.257' 8°25.357' 2198

Bonjardim MV 130 GC1 35°27.817' 9°00.136' 3049

Porto MV 143 GC3 35°33.703' 9°30.439' 3860

163 GC8 35°33.734' 9°30.438' 3861

Table II.1. Geographical position of MVs sampled in the framework of this study. The MVs are ordered 
from E to W according to increasing water depth.

 

 

hemipelagic sediments and locally penetrated by rising salt diapirs (Hayes et al., 1972; 

Medialdea et al., 2004; Pinheiro et al., 2005). These evaporites were originally deposited 

during the early rifting phase of the N Atlantic Ocean in Triassic to Jurassic time (Evans, 1978; 

Holser et al., 1983). 

Mud volcanism and other phenomena related to seepage of fluids and hydrocarbon gases are 

widespread in the Gulf of Cadiz. The MVs are mainly located along major E-W trending strike-

slip faults delineating the diffuse plate boundary or at intersections of these faults with 

arcuate thrusts associated with the formation of the Gibraltar Arc (Pinheiro et al., 2003; 

Pinheiro et al., 2005; Figure II.1). In comparison with other continental margin settings, the 

intensity of fluid flow has been characterized as moderate in the Gulf of Cadiz  

(<0.05 – 15 cm a-1; Niemann et al., 2006; Hensen et al., 2007).  

This study is based on samples which were obtained during the MSM1-3 cruise of RV Maria S. 

Merian in April and May 2006. The geographical positions of the sampling locations are 

summarized in Table II.1. The recovered sediment cores are composed of greenish to dark 

gray mud, mostly overlain by a thin layer of brownish hemipelagic sediments. Some of the 

cores contain mm- to cm-sized rock clasts, mainly composed of clayey material. Finely 

dispersed gas hydrates were discovered at all MVs with the exception of Mercator MV. Due to 

geographical and geochemical conformities the study sites will be sub-grouped in proximal 

MVs (Mercator MV and Captain Arutyunov MV (CAMV)) and distal MVs (Carlos Ribeiro MV 

(CRMV), Bonjardim MV and Porto MV) in the following sections. 
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II.2.2. Sediment sampling and pore water recovery 

Sediment samples were obtained using a 6 m long gravity corer equipped with plastic liners. 

Companion multiple cores (MUCs) were taken at most of the stations in order to obtain 

bottom water samples and accurate pore water profiles of the sediment/water boundary. 

Upon recovery, the gravity cores (GCs) were sectioned into 1 m segments and then cut 

lengthwise into a work and an archive half. All further sample processing was carried out in a 

cooled laboratory close to in-situ (i.e. seafloor) temperature. Sediment samples were taken 

from the work half at 20 – 40 cm intervals. Multiple cores were stepwise extruded from the 

liner and cut into 1 – 3 cm thick discs. A sediment squeezer operated with argon gas at a 

pressure of 1 – 5 bar was used for pore water recovery. The extruded pore water was filtered 

through 0.2 µm cellulose acetate membrane filters and sub-sampled for on-board and shore-

based analyses. Samples for cation analyses were acidified with HCl (30 %, suprapur) to 

prevent any mineral precipitation or adsorption. The archive core halves, sediment squeeze 

cakes and pore water samples were stored refrigerated or frozen until further processing 

after the cruise. 

II.2.3. Chemical analyses 

Pore water chlorinity and SO42- concentrations were analyzed on-board by Ion Exchange 

Chromatography (761 IC-Compact, Metrohm) within few hours after sampling. The Cl 

concentrations of brine samples were additionally checked by titration with 0.01 N AgNO3 

(Grasshoff et al., 2002). Cation concentrations (Li+, Na+, Mg2+, K+, Ca2+ and Sr2+) were 

determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, JY 170 

Ultrace, Jobin Yvon). Analytical precision based on repeated analysis of IAPSO seawater 

standard was found to be <1 % for Cl and SO42-, <2 % for Na+, Mg2+, K+, Ca2+ and Sr2+ and <5 % 

for Li+.  

For solid phase analyses, rock clasts were collected from the archive core halves at the IFM-

GEOMAR core repository. The total carbon (TC) and total organic carbon (TOC) content of 

freeze-dried and ground sediment samples and air-dried and ground rock clasts was 

determined by flash combustion in a Carlo Erba Element Analyzer (NA1500) with an 

analytical precision of about 1 % for replicate analyses. Carbonate carbon was driven out 

with HCl prior to TOC analysis and total inorganic carbon (TIC) was obtained by subtracting 
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TOC from TC. Further information about the above described analytical techniques is given 

on the IFM-GEOMAR web site. 

II.2.4. Isotope analyses 

Analyses of hydrogen and oxygen isotopes were carried out at UFZ using a High-Temperature 

Pyrolysis (HTP) system coupled with an Isotope Ratio Mass Spectrometer (IRMS, Delta S, 

Finnigan MAT) (Gehre and Strauch, 2003). The results are reported relative to V-SMOW with 

a precision (2σ) of ±1.5 ‰ for δD and ±0.4 ‰ for δ18O. 

Lithium isotope analyses were carried out at GFZ by Multi Collector Inductively Coupled 

Plasma Mass Spectrometry (MC ICP-MS, NEPTUNE ThermoFisher Scientific) after 

chromatographical Li separation following a modified procedure after Tomascak et al. 

(1999). A detailed description of the ion chromatographic and mass spectrometric 

procedures is given in Wunder et al. (2006, 2007). The Li standard NIST SRM 8545 (L-SVEC) 

and seawater were repeatedly included in the chromatographic separation to check the 

accuracy of the procedure. The resulting Li isotope values are given relative to the standard 

NIST SRM 8545 according to δ7Li = ((7Li/6Li)sample/(7Li/6Li)standard – 1) x 1000. Repeated 

analysis of seawater yielded a δ7Li of +30.8 ± 0.2 ‰ (2σ, n = 9).  

For the calculation of isotope fractionation factors it is necessary to define the isotopic 

composition of the solid phase which has interacted with the fluids at depth. The sediment 

matrix is not an appropriate representation of deeply buried sediments since it is composed 

of both deep and shallow material (Stadnitskaia et al., 2008). As a consequence, solid phase 

analyses were carried out on rock clasts which, given their consolidated state, are necessarily 

derived from great depth. In order to separate loosely bound Li from silicate Li, 200 mg of air-

dried and ground sample were treated at 80 °C with 5 ml of 4 N acetic acid (sub-boiled 

distilled) for 24 h. This fraction consists of exchangeable Li from the interlayer positions of 

clay minerals, carbonate- and other loosely bound Li. The remainder was then treated at  

120 °C with 3 ml concentrated HF (sub-boiled distilled) for 48 h, evaporated and 

subsequently treated with 4 N HNO3 (sub-boiled distilled) for further 24 h to dissolve 

precipitated fluorides. Finally, the supernatant was filtered through black ribbon cellulose 

filters to separate the liquid from the remaining solid phase (organic matter, heavy minerals). 

This step aims to extract structural Li from clay minerals. Each leaching step was followed by 

one washing step with bi-distilled water. The leaching and washing solutions were combined, 

evaporated and re-dissolved for ion exchange chromatography.  
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Strontium isotope ratios were determined at IFM-GEOMAR by Thermal Ionization Mass 

Spectrometry (TIMS, TRITON, ThermoFisher Scientific) after chemical separation via cation 

exchange chromatography using SrSpec resin (Eichrom). All isotope ratios were internally 

normalized to an 86Sr/88Sr ratio of 0.1194.  Repeated analysis of the standard NIST SRM 987 

during this study yielded an average value of 0.710232 ± 11 (2σ, n = 30). For comparison 

with literature values all 87Sr/86Sr were normalized to a value of 0.710248 for the NIST SRM 

987.  

II.3. Results 

II.3.1. Pore water chemistry 

Pore water depth profiles of Cl, SO42-, Na, Mg, K, Ca, Li and Sr are shown in Figure II.2. Most of 

the parameters show an almost uniform downward decrease or increase from normal 

seawater concentration towards a near-constant value in the lower core section. The only 

core where the concentrations at the top are considerably below or above the normal value of 

seawater is 154-GC5 from CRMV (Figure II.2). Close-by retrieved MUCs do not show such cut 

off profiles suggesting that approximately 50 cm of surface sediment were lost during 

recovery of this core.  

II.3.2. Isotope data 

Results of the hydrogen and oxygen isotope analyses are plotted in Figure II.3 together with 

previously published data (Hensen et al., 2007) for CAMV, Bonjardim MV and four other MVs 

in the Gulf of Cadiz. The data show a pronounced negative correlation, i.e. decreasing δD and 

increasing δ18O with increasing sediment depth.  

The Li and Sr concentration and isotopic composition of pore waters are summarized in 

Table II.2. Similar to the concentration depth profiles for Li and Sr (Figure II.2g and h), down 

core isotope trends obtained for 143-GC3 and 239-GC20 show a progressive convergence 

from the isotope value of modern seawater towards a near-constant isotopic composition in 

the lower core section. Such rising deep fluids with almost uniform elemental and isotopic 

composition are assumed to be essentially unaltered by mixing with seawater.   



CHAPTER II – CRUSTAL ALTERATION AT MUD VOLCANOES 25 

0 20 40
 SO 4

2- [mM]

300

200

100

0

D
ep

th
 [c

m
]

102 103 104
Cl [mM]

102 103 104
Na [mM]

300

200

100

0

D
ep

th
 [c

m
]

0 5 10 15
K [mM]

0 20 40 60
Mg [mM]

100 101 102
Ca [mM]

101 102 103 104
Li [µM]

0 300 600 900
Sr [µM]

Bonjardim MV 130-GC1

Porto MV 143-GC3

Porto MV 163-GC8

CRMV 154-GC5

CAMV 174-GC9

CAMV 205-GC13

Mercator MV 239-GC20

Mercator MV 263-GC28

(d)(b) (c)(a)

(h)(g)(f)(e)

 

All investigated pore fluids show higher Li concentrations and lighter δ7Li values than 

seawater (Li: 26 µM, δ7Li: +31.0 ‰; Millot et al., 2004) and local bottom water, respectively. 

Exceptionally high Li concentrations were encountered at CAMV and especially Mercator MV 

(up to 3360 µM) where Li concentrations are among the highest reported so far in similar 

environments (Dia et al., 1995; De Lange and Brumsack, 1998; Aloisi et al., 2004a; Hensen et 

al., 2007; Reitz et al., 2007). The largest offset from seawater in δ7Li is observed in deep fluids 

of Mercator MV and Porto MV (δ7Li as low as +11.9 ‰).  

Pore fluids of CAMV and Mercator MV display more radiogenic 87Sr/86Sr ratios (87Sr/86Sr up 

to 0.710626) than modern seawater (87Sr/86Sr: 0.70916; Banner, 2004) whereas the 87Sr/86Sr 

ratios of pore fluids of Bonjardim MV, CRMV and especially Porto MV (87Sr/86Sr as low as 

0.707526) lie below that of modern seawater. The single value obtained for Bonjardim MV is 

in excellent agreement with previously published data for this MV (Hensen et al., 2007).  

The carbon and Li content and Li and Sr isotopic composition of the leached MV clasts is 

summarized in Table II.3. Lithium in the loosely bound fraction of rock clasts is on average 

lighter than Li in the silicate fraction which has a δ7Li around 0 ‰. The 87Sr/86Sr of the 

silicate fraction is always more radiogenic than modern seawater.  

Figure II.2. Pore water profiles of (a) Cl, (b) SO42-, (c) Na, (d) Mg, (e) K, (f) Ca, (g) Li and (h) Sr in sediment cores 

from all study sites. Vertical arrows (on x axis) indicate seawater values. Note logarithmic scale of x-axis in (a), (c), 

(f) and (g).  
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Sampling location Bonjardim MV CAMV Mercator MV

Gravity core 130-GC1 174-GC9 239-GC20

Sediment depth [cm] 283 249 125

TIC [wt.%] 0.09 3.2 1.60

TOC [wt.%] 0.39 0.46 0.36

Loosely bound fraction

Li [mg kg-1] 7.8 8.8 12.7

δ7Li [‰] -4.9 -1.4 -8.4

Silicate fraction

Li [mg kg-1] 40 26.9 43.7

δ7Li [‰] +1.3 +0.4 -1.7
87Sr/86Sr 0.714959 0.709355 0.714173

Table II.3. Carbon and Li content and Li and Sr isotopic composition of rock clasts. 
The Li concentrations were determined by MC ICP-MS.

 

Sampling location Gravity core Sediment depth Sr 87Sr/86Sr Li δ7Li

[cm] [µM] [µM] [‰]

Reference station Bottom water 89.6 0.709179 24.0 +30.9

Bonjardim MV 130-GC1 160 223 0.708694 167 +19.6

180 243 187 +19.6

Porto MV 143-GC3 18 107 0.708676 44.5 +24.2

62 294 0.707668 160 +15.3

92 411 0.707534 202 +12.1

102 459 0.707536 192 +12.1

115 451 0.707526 202

163-GC8 175 436 0.707569 222

175-r 0.707568

CRMV 154-GC5 170 145 0.708327 121

200 144 0.708208 122 +19.7

220 138 0.708208 116 +20.0

CAMV 174-GC9 155 794 0.709931 445

180 773 0.709921 465

205 808 0.709922 479 +16.3

205-GC13 215 642 0.709896 477

253 699 0.709910 497

270 721 503 +17.2

Mercator MV 239-GC20 5 249 0.710151 244 +15.5

90 688 0.710630 1890 +14.1

171 723 0.710626 2770 +12.5

196 739 0.710613 2910 +12.5

263-GC28 116 800 0.710628 3270 +11.9

Seawater 0.709178 +30.8

Table II.2. Concentration and isotopic composition of Sr and Li in deep fluids. The 87Sr/86Sr ratios were 
normalized to a value of 0.710248 for the NIST SRM 987.
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II.4. Discussion 

II.4.1. Diagenetic characterization of pore fluids 

In advective systems such as cold seeps or MVs, two different types of diagenetic signals can 

be distinguished by examining the pore water profiles of surficial sediments. Shallow, i.e. 

early diagenetic processes are demonstrated by the deviation of an element or isotope profile 

from a simple mixing relationship between bottom water and deep fluid. By contrast, the 

depth integrated effect of diagenetic processes beneath the sampled sediment interval is 

represented by the overall difference in chemical or isotopic composition between the deep 

fluid and seawater (e.g. Aloisi et al., 2004a; Haese et al., 2006; Hensen et al., 2007). At most of 

the study sites, pore water SO42- is completely consumed within the topmost 50 – 150 cm 

(Figure II.2b). Sulfate reduction coupled to decomposition of organic matter cannot explain 

this since the TOC content of surface sediments is generally below 0.5 wt%. Instead, shallow 

SO42- depletion in surficial MV deposits in the Gulf of Cadiz is caused by sulfate reduction 

coupled to the anaerobic oxidation of, chiefly thermogenic, methane (AOM) and higher 

hydrocarbons (Niemann et al., 2006; Stadnitskaia et al., 2006; Hensen et al., 2007; Nuzzo et 

al., 2008). Below the AOM zone the downward mixing of bottom water due to pore water 

irrigation and diffusion becomes negligible (Luff and Wallmann, 2003; Hensen et al., 2007), 

enabling the investigation of essentially unaltered deep fluids. 

Figure II.3. Plot of δD versus δ18O for bottom water samples (small symbols) and pore water samples (large 

symbols) from various sediment depths at all study sites. Data from Hensen et al. (2007) for CAMV, Bonjardim MV 

and four other Gulf of Cadiz MVs are shown for comparison. The black line represents a linear regression through 

all pore water data. The gray line represents the global meteoric water line (MWL) (Craig, 1961). 
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Deep fluids of the various sampled MVs are, on average, depleted in Cl, Na, Mg, K and Ca and 

enriched in Li and Sr (Figure II.2). Exceptions are CAMV and Mercator MV where salty brines 

enriched in e.g. Cl and Na are encountered (Figure II.2a and c). In a previous study, clay 

mineral transformation and dehydration processes such as the conversion of smectite to illite 

have been identified as a major mechanism of fluid formation within deeply buried sediments 

of the Gulf of Cadiz (Hensen et al., 2007). During this transformation interlayer water of 

smectite is released into the pore space producing an interstitial fluid with a distinct δD and 

δ18O signature (Kastner et al., 1991; Sheppard and Gilg, 1996; Dählmann and De Lange, 

2003). The hydrogen and oxygen isotope data of pore water samples from various core 

depths of all MVs investigated, including CAMV and Mercator MV, are in line with the typical 

downcore trend of decreasing δD and increasing δ18O (Figure II.3). Additional evidence for 

clay mineral diagenesis is provided in Figure II.4 where element/Cl ratios in the lowermost 

sample of each core are plotted with respect to the dilution and evaporation pathway of 

seawater. Enrichment of Na and depletion of K with respect to diluted seawater (Figure II.4a 

and b) is a direct consequence of Na release and K consumption during the reaction of 

smectite to illite (Środoń, 1999). The major temperature field for the smectite to illite 

conversion ranges between ~60 °C and 150 °C (Środoń, 1999). Grevemeyer et al. (2009) 

reported a geothermal gradient increasing seaward from 30 °C km-1 to 38 °C km-1 across the 

continental margin. It is thus inferred that fluids are formed at an approximate depth of  

~1.5 - 5 km below seafloor.  

Depletion of Mg and Ca (Figure II.4d and e) has been attributed to carbonate precipitation 

and/or dolomitization (Hensen et al., 2007) of Cenozoic and Mesozoic carbonates 

(Maldonado et al., 1999; Medialdea et al., 2004). Coinciding enrichment of Li and Sr  

(Figure II.2g and h; Figure II.4g-i) was interpreted as indication for long-term leaching of 

deeply buried sediments and crustal rocks at temperatures above 150 °C (Hensen et al., 

2007). In this study, however, the highest Sr and Li concentrations were detected in pore 

fluids of CAMV and especially Mercator MV where the diagenetic signal of clay dehydration is 

overprinted by admixing of brines. Such salty solutions are known to accumulate Sr and Li 

depending on their respective evolution and origin (Fontes and Matray, 1993; Bottomley et 

al., 1999). A detailed examination of the minerals and mechanism involved in the generation 

of saline pore fluids at CAMV and Mercator MV is therefore an important prerequisite for the 

understanding of Li and Sr systematics in all pore fluids discussed here.  
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II.4.2. Evolution of saline fluids at the proximal mud volcanoes 

The generation of saline pore fluids in sedimentary environments is usually attributed to 

either admixing of evaporated and subsequently infiltrated seawater (primary brine) or to 

partial dissolution of interbedded evaporite minerals (secondary brine) (Hanor, 1994). Deep 

fluids of CAMV and Mercator MV reveal Na/Cl ratios close to unity (Figure II.4b and c) which 

is a clear indication for dissolution of halite (e.g. De Lange et al., 1990; Reitz et al., 2007). A 

mild leaching of NaCl at CAMV has previously been recognized by Hensen et al. (2007). In the 

case of Mercator MV, however, fluids are saturated with respect to halite (Na and Cl:  
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Figure II.4. Plots of (a) K, (b), (c) Na, (d) Mg, (e), (f) Ca, (g) Sr and (f), (i) Li versus Cl in deep fluids. See Figure II.2 

for symbols. Gray lines and gray squares represent the dilution and evaporation pathway of seawater 

(0 = seawater, 1 = gypsum, 2 = halite, 3 = epsomite, 4 = sylvite, 5 = carnallite; from Fontes and Matray, 1993). Solid 

black lines in (b) and (c) indicate Na/Cl ratios of unity.  Strongly deviating values of Mercator MV are shown in 

separate plots of (c) Na, (f) Ca and (i) Li versus Cl with extended scale in the right column. 
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~5000 mM; Fontes and Matray, 1993) suggesting intense leaching of evaporites in the 

subsurface. During DSDP Leg 79, Holser et al. (1983) sampled a salt diapir SW of Mercator 

MV (Site 546) and identified halite, anhydrite and minor amounts of potash minerals (mainly 

carnallite) within this evaporite deposit. Dissolution of sulfate minerals at Mercator MV is 

indicated by Ca concentrations beyond gypsum equilibrium (Ca: ~40 mM; Fontes and Matray, 

1993) in cores 239-GC20 and 263-GC28 (Figure II.2f, Figure II.4f). Most of the hereby 

liberated SO42- is likely to have been lost due to sulfate reduction. Leaching of potash minerals 

is more difficult to detect since bulk concentrations of K and Mg are governed by different 

processes (see Section II.4.1). The amount of K and Mg potentially derived from such late-

stage evaporite minerals may be estimated by comparison with diluted deep fluids of another 

MV where no interactions with evaporites take place. Accordingly, excess Mg and K in deep 

fluids of Mercator MV (Table II.4) have been calculated by subtracting the concentrations in 

deep fluids of Bonjardim MV (130-GC1) and CRMV (154-GC5) which are the most and least 

depleted in Mg and K (Figure II.2d and e), respectively. The Cl potentially derived from 

potash minerals has been estimated on two different ways: (i) based on excess K and Mg  

(Mg: 2 Cl, K: 1 Cl) and (ii) by subtracting the measured Cl from measured Na. An almost 

perfect fit between calculated and measured excess Cl (both ~80 mM) is achieved using  

154-GC5 as a reference (Table II.4), or in other words, assuming that pore fluids of Mercator 

MV had been similarly depleted in Mg and K as fluids of CRMV prior to interaction with the 

evaporites. This assumption is reasonable considering that similar deviations in δD and δ18O 

from SMOW (Figure II.3) denote comparably intense clay mineral dewatering, and thus 

dilution, at the two sites. The above calculations show that fluids of Mercator MV have indeed 

interacted with late stage evaporite minerals (e.g. sylvite, carnallite), which places the salt 

deposit, similar to that encountered near-by during ODP Leg 79 (Holser et al., 1983), into the 

potash evaporite facies.  

The amount of Sr and Li derived from evaporite dissolution may be estimated by comparing 

the major element to Sr or Li proportion in the fluids with the average Sr and Li content in the 

Pore fluid end members Excess Mg Excess K Excess Cl (2 x Mg + 1 x K) Excess Cl (Cl-Na)
[mM] [mM] [mM] [mM]

239-GC20 (-130-GC1) 20.2 2.99 43.3 79.1

263-GC28 (-130-GC1) 21.4 4.83 47.6 82.4

239-GC20 (-154-GC5) 35.6 8.14 79.3 79.1

263-GC28 (-154-GC5) 36.8 9.98 83.6 82.4

Table II.4. Excess Mg, K (relative to Bonjardim MV and CRMV) and Cl (calculated and measured) in pore fluid 
end members of Mercator MV. See text for further explanation.
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respective evaporite minerals. Gypsum and anhydrite minerals are often enriched in Sr (up to 

5900 mg kg-1 Sr; Usdowski, 1973) and Ca concentrations in fluids of Mercator MV are more 

than one order of magnitude higher than at the other MVs. The Sr concentrations, however, 

range in the same order of magnitude suggesting that Sr derived from dissolving sulfate 

minerals is negligible. Lithium has a preference for anions with high charge/radius ratio and 

thus little affinity to form Cl complexes or minerals (Olsher, 1991). As a consequence, Li 

behaves conservatively in the estuarine mixing zone (Stoffyn-Egli, 1982; Brunskill et al., 

2003) and is not incorporated in evaporite minerals, except at extreme concentrations in the 

parent solution (Sonnenfeld, 1984). Theoretical Li concentrations in potash minerals at 

Mercator MV, calculated based on the relative proportions of excess Mg, K, Li and Cl in the 

lowermost samples of 239-GC20 and 263-GC28, lie in the order of 1600 mg kg-1 for sylvite 

and 8000 mg kg-1 for carnallite. These values are two to three orders of magnitude higher 

than average Li contents of these minerals (sylvite: 16 mg kg-1, carnallite: 9 mg kg-1; 

Sonnenfeld, 1984). Another explanation for coinciding enrichments in Li and Cl could be 

admixing of the primary brine from which the potash minerals had precipitated. Lithium 

concentrations in deep fluids of Mercator MV lie between those of evaporated seawater in the 

stages of sylvite (~2400 µM) and carnallite (~3100 µM) precipitation (Fontes and Matray, 

1993; Figure II.4i). However, admixing of this brine would produce a Na/Cl ratio of 0.16 

which is far lower than the measured ratio of 0.98. It is therefore concluded that neither the 

above demonstrated interactions with late stage evaporites nor admixing of the 

corresponding primary brine can explain the extreme Li enrichments in fluids of Mercator 

MV. Instead, interactions with underlying sediments or basement rocks must be responsible 

for variable but significant Li and Sr enrichments at all MVs investigated.  

II.4.3. Strontium isotope geochemistry of pore flui ds 

Deep interstitial fluids acquire distinct 87Sr/86Sr ratios during diagenetic or hydrothermal 

interactions with underlying sediments or rocks. Strontium isotope ratios well above 

seawater in fluids of the proximal sites Mercator MV and CAMV (Table II.2, Figure II.5) 

indicate interactions with continental crust and terrigenous material, respectively (Elderfield 

and Gieskes, 1982). Large parts of the sedimentary cover in the Gulf of Cadiz consist of 

compacted clays and shale which have their continental origin in the Arc of Gibraltar 

(Maldonado et al., 1999). Furthermore, highly radiogenic 87Sr/86Sr ratios in rock clasts from 

Mercator MV and Bonjardim MV (Table II.3) confirm the terrigenous character of deeply  
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buried sediments and rocks in large parts of the study area. The radiogenic Sr has likely been 

mobilized, upon burial and at increasing temperatures, during clay mineral alteration 

processes and other fluid/sediment and fluid/rock interactions (e.g. Chaudhuri and Clauer, 

1993; Ohnuki et al., 1994).  

Pore fluids of the distal sites Bonjardim MV, CRMV and Porto MV display 87Sr/86Sr ratios 

below that of modern seawater (Table II.2, Figure II.5); although these MVs are also underlain 

by terrigenous sediments (Maldonado et al., 1999) (Table II.3) and even though fluids carry a 

strong signature from clay mineral diagenesis as is indicated by pore water freshening, K 

depletion and characteristic deviations in δD and δ18O from SMOW (Figure II.2a and e, Figure 

II.3, Figure II.4a). Thus, admixing of non-radiogenic Sr from an additional source must have 

led to lower 87Sr/86Sr ratios at these sites. In general, pore water 87Sr/86Sr ratios below that of 

modern seawater may be generated through diagenetic re-crystallization of carbonates or by 

alteration of mafic material such as volcanogenic sediments or oceanic crust (Elderfield and 

Gieskes, 1982). Interactions with volcanic matter can be excluded since no widespread 

occurrence of such material has been reported in the Gulf of Cadiz. In the case of carbonate 

re-crystallization the interstitial 87Sr/86Sr ratios would be close to contemporaneous 

Figure II.5. Plot of 87Sr/86Sr versus Sr-1 for deep fluids of (1) Mercator MV, (2) CAMV, (3) CRMV, (4) Bonjardim MV 

and (5) Porto MV. Seawater is represented by the black star. Dashed lines indicate the average isotopic 

composition of major Sr inputs to the ocean (i.e. continental runoff and hydrothermal exchange; after Palmer and 

Edmond, 1989; Banner, 2004). The 87Sr/86Sr evolution of the ocean from Cretaceous to present is indicated by the 

vertical bar on the right side (Burke et al., 1982; McArthur and Howarth, 2004). The corners of the shaded triangle 

represent assumed Sr sources to the investigated fluids, i.e. seawater as well as interaction with terrigenous 

sediments (upper left corner, represented by the isotopic composition of the most radiogenic clast, Table II.3) and 

oceanic crust (lower left corner). 
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seawater. Comparison with the Phanerozoic seawater evolution curve (stratigraphic bar in 

Figure II.5; Burke et al., 1982; McArthur and Howarth, 2004) yields carbonate ages between 

upper Cretaceous and Miocene at the distal MVs. Thus, diagenetic reactions within the 

widespread Cenozoic and Mesozoic limestones (Maldonado et al., 1999; Medialdea et al., 

2004) could explain decreasing 87Sr/86Sr ratios across the margin. However, interpreting 

87Sr/86Sr ratios in terms of a pure carbonate signal is not appropriate, since admixing of 

radiogenic Sr from the above described interactions with terrigenous sediments must have 

shifted the ratios to higher values. Consequently, the pure, non-radiogenic source at the distal 

MVs has most likely an 87Sr/86Sr ratio below that of Cretaceous seawater or even below 

seawater of any point of time in the Phanerozoic.  

Another process that produces non-radiogenic 87Sr/86Sr ratios in marine pore fluids is 

leaching of oceanic basement rocks (Palmer and Edmond, 1989). Laboratory experiments 

and field studies in ridge flank hydrothermal systems have shown that seawater/basalt 

interactions at low to moderate temperatures produce pore water isotope ratios close to 

those found at the distal MVs in the Gulf of Cadiz (Elderfield et al., 1999; Butterfield et al., 

2001; James et al., 2003). Similarly, Sr isotope ratios intermediate between seawater and 

basalt in advective interstitial fluids from ODP Site 1251 on Hydrate Ridge (Leg 204) have 

been interpreted as a clear indication for interactions with the oceanic basement deep within 

the Cascadia subduction zone (Teichert et al., 2005). Specifically, these fluids represent a 

meaningful analog to those studied here, since they are also influenced by clay mineral 

dehydration processes within terrigenous sediments (Torres et al., 2004). Furthermore, 

fluid/basalt interactions are in line with near-complete Mg depletion at CRMV and Porto MV 

(Figure II.2d, Figure II.4d) (Elderfield and Schulz, 1996). The distal MVs in the Gulf of Cadiz 

are located on E-W trending strike-slip faults (Figure II.1) cutting deep into the underlying 

sedimentary complex and the basement (Maldonado et al., 2004). The upward transport of 

fluids, carrying a strong signal of interactions with basalt, is likely favored by concurrent 

strike slip motion and thrusting along these faults. Subsequent mixing with interstitial water 

from the overlying sediments finally yields a fluid showing both the basement and sediment-

diagenetic signature.  

According to the above discussion, the Sr isotope variability across the margin is best 

explained by three component mixing between seawater and at least two other Sr sources 

(see shaded triangle in Figure II.5). At the proximal MVs, fluids are primarily influenced by 

interactions with terrigenous sediments leading to highly radiogenic interstitial 87Sr/86Sr 

ratios. In contrast, 87Sr/86Sr ratios below that of modern seawater at the distal MVs most 
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likely result from admixing of a basement derived fluid component. Strontium from 

diagenetic alteration of Cenozoic and Mesozoic limestones could have further influenced the 

fluid composition but is unlikely to represent the pure non-radiogenic end member.  

II.4.4. Lithium isotope geochemistry of pore fluids  

II.4.4.1. Lithium in pore fluids: source or temperature controlled? 

Considering the thick sedimentary cover overlying the basement in the Gulf of Cadiz  

(5 – 13 km; Thiebot and Gutscher, 2006), any interactions between deep fluids and the 

oceanic crust likely occur at temperatures beyond the range typical for diagenetic processes 

(i.e. >150 °C). Hensen et al. (2007) interpreted strong Li enrichments in MV fluids in the Gulf 

of Cadiz as an indication for hydrothermal exchange processes at the sediment/basement 

interface. A more comprehensive understanding of Li enrichments in deep interstitial fluids 

and possible implications for their origin may be obtained by applying the temperature-

sensitive Li isotope system. Low-temperature alteration of sediments or rocks is 

accompanied by Li uptake from ambient pore waters. As the light isotope is preferentially 

incorporated in secondary minerals, fluids become increasingly heavy during this process. By 

contrast, during exchange reactions at high temperatures Li is leached from the solid phase, 

Figure II.6. Plot of δ7Li versus Li-1 for deep fluids of (1) Mercator MV, (2) CAMV, (3) CRMV, (4) Bonjardim MV and 

(5) Porto MV. The white star represents the average Li concentration and isotopic composition of deep-sourced 

décollement fluids in the Costa Rica subduction zone (Chan and Kastner, 2000). The shaded array represents 

mixing between seawater (black star) and end members for hydrothermal solutions (gray stars) (after Tomascak, 

2004 and references therein).  
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resulting in Li enrichments and lighter isotopic compositions in the fluid (e.g. Chan et al., 

1994; You et al., 1995; Chan and Kastner, 2000; Chan et al., 2002). Finally, at very high 

temperatures the δ7Li of the fluid approaches the isotopic composition of the ambient solid 

phase (James et al., 2003). As a result, highest Li concentrations and lowest δ7Li values have 

been observed in fluids of mid-ocean ridge hydrothermal vents and sediment covered 

hydrothermal systems (20- to 50-fold seawater concentration, δ7Li: +2.6 to +11.6 ‰; 

Tomascak, 2004 and references therein)  where Li is intensely leached from underlying 

basalt and sediments (Butterfield et al., 1994; Elderfield and Schulz, 1996), respectively.  

All pore fluids investigated within this study display lighter isotopic compositions than 

seawater (Table II.2). For comparison, deep-sourced décollement fluids in the Costa Rica 

subduction zone (Chan and Kastner, 2000) have a slightly heavier Li isotopic composition 

than MV fluids in the Gulf of Cadiz and the lowest δ7Li values, measured in deep fluids of 

Mercator MV and Porto MV, plot close to or along mixing lines between seawater and 

hydrothermal end members (shaded array in Figure II.6). The isotopic similarity between the 

fluids investigated here and those from décollement zone and hydrothermal vent settings 

clearly indicates a high-temperature origin within the deep sub-surface. However, Li 

concentrations and δ7Li values are not correlated at the various locations suggesting that 

they are not controlled by the same source or process. This is particularly evident when 

comparing fluids from Mercator MV and Porto MV showing an almost identical δ7Li but 

strongly diverging Li concentrations (Table II.2, Figure II.6).  

Terrigenous clay and silt are the primary Li source to sediment interstitial fluids (up to 70 mg 

kg-1; Chan et al., 2006). Substitution of Li for Mg or Mg for Al in the structural, octahedral sites 

of clay minerals produces a negative layer charge which is compensated by uptake of Li into 

the interlayers (Huh et al., 1998; Williams and Hervig, 2005). High amounts of total leachable 

Li (up to 56 mg kg-1) in rock clasts (Table II.3) are in line with radiogenic 87Sr/86Sr ratios and 

a terrigenous provenance of deeply buried sediment beneath the MVs. Strontium isotope 

ratios below seawater at the distal MVs were attributed to an additional input of non-

radiogenic Sr from basalt and, possibly, from Mesozoic and Cenozoic carbonates   (see Section 

II.4.3). 

Lithium concentrations in carbonates (Li: 0.5 – 2.6 mg kg-1; Delaney et al., 1985; Hoefs and 

Sywall, 1997; Huh et al., 1998) are much lower than in terrigenous sediments. Moreover, 

laboratory experiments conducted by James et al. (2003) showed that there is no net release 

of Li from basalt at temperatures between 50 °C and 250 °C. By contrast, Li was leached from 
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terrigenous sediments at temperatures as low as 50 °C (James et al., 2003). Consequently, 

irrespective if derived from carbonate diagenesis or interactions with the oceanic crust at 

intermediate temperatures (~150 – 250 °C), non-radiogenic 87Sr/86Sr ratios at the distal 

locations are accompanied by lower Li concentrations.  

During high-temperature fluid/sediment interactions 6Li is preferably retained in the re-

crystallized phase. Referring to hydrothermally altered sediments, Li isotope values below  

0 ‰ in the loosely bound fraction of rock clasts (Table II.3.) are therefore interpreted as the 

immediate result of such high-temperature alterations (Chan et al., 1994; You et al., 1995; 

James et al., 1999). The structural or silicate Li has an average δ7Li of 0 ‰ (Table II.3) which 

is within the range typical for detrital marine sediments (-1.5 to 5 ‰; Chan et al., 2006) or 

shales (δ7Li: -3.2 to +3.9 ‰; Teng et al., 2004) and, furthermore, in perfect agreement with 

the average value for upper continental crust (δ7Li: 0.0 ± 2.0 ‰; Teng et al., 2004). Most of 

the Li in excess over seawater is likely derived from such fine-grained terrigenous sediments 

with a relatively narrow range of δ7Li values around 0 ‰. However, δ7Li values differ 

significantly from each other at the various locations (Table II.3, Figure II.6) suggesting that 

temperature is an additional factor influencing the final δ7Li of the pore fluids.  

II.4.4.2. Lithium isotope constraints on fluid formation temperatures 

The transport of fluids and solid matter in a mud volcano is mediated through interaction of 

multiple processes (e.g. Kopf, 2002; Haese et al., 2006). During periods where the transport of 

fluids and liquefied sediments is coupled and during stagnant periods where no upward 

transport takes place, Li isotopes in pore water may come to equilibrium with the ambient 

solid phase. By contrast, during prolonged periods of fluid flow, without transport of liquefied 

sediments, the Li isotope geochemistry of the fluids may switch to an open system. Because of 

the large number of unknowns regarding the temporal and spatial variability of transport 

processes and mineral-water interactions, a simplified model is applied here to test the 

probability of certain fluid sources and ranges of reaction temperature.  

Assuming that pore water Li in excess of seawater concentration is derived from interactions 

with sediments or rocks the total amount of Li in the pore fluids (PF) can be expressed with a 

mass balance equation: 

[ ] [ ] [ ]INTINTSWSWPF LifLifLi ⋅+⋅=  (II.1) 
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where the indices SW and INT refer to seawater and water/solid (sediment and rock) 

interactions, respectively. Note that fSW + fINT = 1. Lithium isotope values intermediate 

between seawater and the solid phase result from simultaneous release of Li from sediments 

or rocks and uptake into secondary minerals. Both the distribution coefficient between fluid 

and solid and the extent of isotope fractionation during formation of authigenic minerals are 

temperature dependent (Berger et al., 1988; Chan et al., 1994). Assuming that [Li]INT is in 

isotopic equilibrium with deeply buried sediments or rocks, the δ7Li of the pore fluid is given 

by: 

INTINTSWSWPF LifLifLi 777 δδδ ⋅+⋅=  (II.2) 

The Li isotopic composition of the dissolved Li derived from interaction with sediments or 

rocks may then be obtained by rearranging Equation II.2: 

INT

SWSWPF
INT f

LifLi
Li

77
7 δδδ ⋅−

=  (II.3) 

Table II.5 shows δ7LiINT values calculated for all MVs based on average values in deep fluids 

and an average δ7LiSW of +31 ‰ (Millot et al., 2004). The solid phase-fluid fractionation 

factors (αSP-INT) given in Table II.5 were calculated according to: 
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=−  (II.4) 

assuming that the solid phase in equilibrium with the fluids has a δ7Li equal to the structural 

Li of rock clasts and upper continental crust (i.e. δ7LiSP: 0 ‰; Teng et al., 2004), respectively. 

By applying the fractionation factors to the empirical relationship between Li isotope 

fractionation and temperature (Figure II.7a; Chan et al. 1994) it is possible to estimate 

temperature values for fluid/sediment or fluid/rock interaction at the various locations 

(Table II.5). The relationship between the isotopic composition of dissolved Li derived from 

interaction with sediments or rocks ([Li]INT) and temperature is highlighted by the dashed 

lines in Figure II.7b. The temperatures compiled in Table II.5 are regarded as minimum 

estimates since continuous alteration of the Li isotope composition during upward transport 

of fluids cannot be excluded. For instance, admixing of pristine pore water and uptake of 

isotopically light Li by sediments at lower temperatures could have increased the δ7Li of 

fluids (Zhang et al., 1998; James and Palmer, 2000). Another limitation is that clay-rich 

sediments and rocks could represent a finite reservoir for Li which becomes increasingly 

lighter with increasing reaction progress. In a flow through system fluids would also become  
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lighter with time. In this respect, low δ7Li values could also reflect more persistent fluid 

pathways or higher fluid advection rates. Nonetheless, the temperature estimates are in line 

with previous interpretations which are based on findings from other, independent tracers. 

Considering a small off-set due to secondary alteration processes, the  temperatures in Table 

II.5 fall mostly in the range of smectite to illite conversion (~60 – 150 °C; Środoń, 1999). 

Similar observations have been made by Chan and Kastner (2000) who proposed clay 

Sampling location LiPF δ7LiPF fSW fINT δ7LiINT
a αSP-INT

b T

[µM] [‰] [‰] [°C]

Mercator MV 2980 +12.3 0.01 0.99 +12.0 0.988 100

CAMV 463 +16.8 0.06 0.94 +14.9 0.985 55

CRMV 120 +19.9 0.22 0.78 +11.2 0.989 115

Bonjardim MV 177 +19.6 0.15 0.85 +14.2 0.986 64

Porto MV 199 +12.1 0.13 0.87 +7.4 0.993 208
a Calculated assuming δ7LiSW = 31 ‰.
b Calculated assuming δ7LiSP = 0 ‰.

Table II.5. Calculated Li isotope fractionation factors for fluid/sediment or fluid/rock interactions at the 
various locations. See text for further explanation. 

Figure II.7. (a) Empirical relationship between Li isotope fractionation factor (α) and temperature (gray stars, 

black regression line) (from Chan et al., 1994). (b) Plot showing the isotopic composition of dissolved Li in 

equilibrium with the silicate fraction of rock clasts (δ7LiSP: 0 ‰) (Table II.3) as a function of temperature 

(δ7LiINT (T), solid line). The temperature-dependent isotopic composition of Li in equilibrium with other 

sediment and rock types may be obtained by shifting δ7LiINT (T) into the corresponding shaded area (calculated 

based on: δ7Li of biogenic carbonates: >+12 ‰; altered mid-ocean ridge basalt (MORB): -2 to +12 ‰; shale: 

-3.2 to +3.9 ‰; from Teng et al., 2004, Tomascak, 2004). The dashed lines in both (a) and (b) depict the 

relationship between the calculated isotopic composition of dissolved Li derived from interactions with 

sediments or rocks (δ7LiINT) (Table II.5) and temperature at (1) Mercator MV, (2) CAMV, (3) CRMV, 

(4) Bonjardim MV and (5) Porto MV.  
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mineral transformation as the major process contributing light Li to décollement fluids in the 

Costa Rica subduction zone (Figure II.6). Liberation of Li during the conversion of smectite to 

illite might be due to the strongly reduced exchange capacity (2 – 6 times lower; Appelo and 

Postma, 2005) of the reaction product. High temperatures corresponding to deep-reaching 

fluid mobilization and thus more advanced transformation of smectite to illite at CRMV is in 

agreement with intense pore water freshening and K depletion (Figure II.2a and e, Figure 

II.4a). A similar temperature calculated for Mercator MV reinforces the assumption that fluids 

were similarly depleted in Cl, K and Mg as those of CRMV prior to dissolution of evaporite 

minerals (see Section II.4.2). The lower temperatures at CAMV and Bonjardim MV correspond 

to the onset of smectite to illite conversion which is corroborated by less intense K depletion 

compared to CRMV (Figure II.2e, Figure II.4a).  

Porto MV is the only site where the calculated temperature is clearly beyond the range typical 

for diagenetic processes (Table II.5). Non-radiogenic 87Sr/86Sr ratios at the distal MVs are 

attributed to a fluid component derived from interaction with basalt and possibly influenced 

by overlying carbonates. The dashed line corresponding to the δ7LiINT of Porto MV in Figure 

II.7b does not enter the shaded area representing fluids in equilibrium with carbonates at any 

reasonable temperature. Moreover, pore waters corresponding to strongly re-crystallized 

carbonates in the E equatorial Pacific display the heaviest δ7Li values ever reported for 

marine pore fluids (δ7Li up to +55 ‰; You et al., 2003). Consequently, only interaction with 

basalt is compatible with both the light δ7Li and non-radiogenic 87Sr/86Sr of the pore fluids. 

An approximate depth of fluid formation may be estimated by dividing the temperature 

values in Table II.5 by the local background geothermal gradient of 38 °C per km 

(Grevemeyer et al., 2009). The resulting depth of 5.5 km at Porto MV is close the anticipated 

sediment/basement interface in this area (Thiebot and Gutscher, 2006). Thus, Li isotope 

systematics do also reveal a deep-sourced fluid component being generated within the upper 

oceanic crust at a depth of several km below seafloor.  

II.5. Summary and conclusions 

Recently collected data for five MVs, aligned on an E-W transect across the Gulf of Cadiz 

continental margin, reveal generally decreasing 87Sr/86Sr ratios and Li concentrations with 

increasing distance from shore. Exceptionally high Li concentrations are observed in saline 

pore fluids of the proximal MVs which have been formed through interactions with an 
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evaporite deposit composed of halite, gypsum and potash minerals. Mass balance calculations 

reveal that extreme Li concentrations cannot be ascribed to evaporite dissolution. Instead, 

fine-grained, terrigenous sediments are identified as the ultimate Li source to pore fluids 

throughout the study area. Hence, frequently reported correlations between Li and Cl in 

marine pore fluids (e.g. Bernasconi, 1999; Aloisi et al., 2004a; Reitz et al., 2008) are attributed 

to the common coincidence of evaporite deposits and Li-rich, terrigenous sediments in 

continental margin environments. 

Intense diagenetic alteration of terrigenous sediments has led to highly radiogenic 87Sr/86Sr 

ratios in pore fluids of the proximal MVs. At the distal sites, admixing of non-radiogenic Sr 

from an additional source has overprinted the terrigenous isotopic signature. Lithium isotope 

systematics reveal that re-crystallization of carbonates cannot explain the observed Sr 

isotope trend. Instead, 87Sr/86Sr ratios below modern seawater at the distal sites are 

attributed to a basement-derived fluid component, carrying an isotopic signature from 

interactions with the basaltic crust. This inference is substantiated by temperature 

constraints from Li isotope equilibrium calculations suggesting exchange processes at 

temperatures above 200 °C for the least radiogenic pore fluids of the most distal site. The 

injection of basement fluid is likely driven by strike-slip motion and simultaneous thrusting 

along deep-rooted faults belonging to the African-Eurasian plate boundary. Collectively, Sr 

and Li isotope systematics of advective pore fluids sampled close to the sediment/water 

interface reveal a systematic pattern of diagenetic processes and deep fluid sources across 

the Gulf of Cadiz continental margin. The spatial relationship of tectonics, crustal transition, 

sediment input and fluid formation is highlighted in a conceptual box model in Figure II.8.  

With respect to their chemical and isotopic composition, advective interstitial fluids at Gulf of 

Cadiz MVs are remarkably similar to pore and basement fluids in near-shore ridge flank 

hydrothermal systems (e.g. Juan de Fuca Ridge; Elderfield et al., 1999). This analogy arises 

from successive exchange processes with both oceanic crust and terrigenous, fine-grained 

sediments (Elderfield et al., 1999; Wheat et al., 2000; James et al., 2003). James et al. (2003) 

suggested that the geochemical signal from reaction with sediments becomes dominant at 

slow upwelling rates. Following their conclusion, we suggest that deep-rooted MVs in the Gulf 

of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent 

and shallow, marginal cold seep. In such intermediate systems, reduced heat flow, a thicker 

sediment coverage and slower fluid advection rates lead to a more pronounced sediment-

diagenetic signal compared to ridge flank hydrothermal environments. Although the 

particular geological setting of the Gulf of Cadiz complicates broad extrapolations, our 
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findings shed new light on the functioning of deep-rooted cold seeps and their role in global 

element recycling processes. 
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Abstract 

Iodine and its radioisotope, 129I, are powerful tracers for the age and origin of pore waters in 

submarine mud volcanoes and cold seeps because of their close association with organic 

material in deeply buried sediments. We report here iodine concentrations and 129I/I ratios 

for fluids from five mud volcanoes sampled along an E-W transect through the Gulf of Cadiz. 

Iodine concentrations increase consistently seaward from 44 to 180 µM, accompanied by a 

decrease in 129I/I ratios from 6490 x 10-15 to 660 x 10-15. The exceptionally high 129I/I ratios 

reflect the addition of fissiogenic 129I, produced by spontaneous fission of 238U in terrigenous 

sediments from the surrounding continental margins. The observed trends, together with 

similar changes in 87Sr/86Sr ratios, indicate a progressive seaward transition from organic-

poor/continental to organic-rich/marine fluid sources. Age estimates based on 129I/I ratios 
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and mass balance calculations suggest that most organic iodine in pore fluids is derived from 

source formations with minimum ages in the early Miocene. 

Comparison of our results with literature data for varying geological settings reveals a 

general relationship between fissiogenic 129I, radiogenic 87Sr and the lithology or provenance 

of rocks and sediments, respectively. While iodine isotopes in oceanic settings or 

volcanogenic sediments reflect release from organic matter diagenesis, 129I systematics in 

continental rock-hosted aquifers and terrigenous sedimentary systems are dominated by 

fissiogenic 129I. The Gulf of Cadiz represents the full transition between these continental and 

marine 129I/I and 87Sr/86Sr end members. This is the first systematic investigation of the 

controls on fissiogenic 129I production in marine sedimentary environments. 

III.1. Introduction 

III.1.1. Scientific objective 

Submarine mud volcanoes (MVs) and cold seeps represent shortcuts in geochemical cycles 

connecting deeply buried sediments or basement rocks with the global ocean reservoir. 

Numerous articles have been published about the origin and diagenetic evolution of deep-

sourced interstitial waters seeping through continental margin sediments (e.g. Elderfield et 

al., 1990; Dia et al., 1995; Martin et al., 1996; Aloisi et al., 2004; Hensen et al., 2004). 

Nonetheless, the overall relationship between tectonic setting, sediment thickness, 

provenance and/or composition of ambient sediments or rocks and the geochemical signals 

in the rising fluids is still poorly constrained. 

The Gulf of Cadiz is a prime location to study varying controls on fluid chemistry. Mud 

volcanism and other phenomena related to fluid expulsion are widespread in this area, 

occurring from the Iberian and Moroccan shelf to almost 4000 m water depth. In a recent 

study, Scholz et al. (2009) investigated the lateral variability of geochemical signals in deep-

sourced MV fluids in the Gulf of Cadiz. Based on strontium and lithium isotope systematics, 

the authors demonstrated a systematic pattern of fluid sources and deep-seated diagenetic 

processes across the continental margin. At the near-shore locations fluids are primarily 

influenced by interactions with fine-grained, terrigenous sediments. By contrast, at the deep-

sea sites this sediment-diagenetic signature is less pronounced due to admixing of a 

basement-derived fluid component (Scholz et al., 2009). Because of the well-defined controls 
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on fluid chemistry, deep-sourced pore fluids in the Gulf of Cadiz may provide insights into 

how other diagenetic tracers respond to lateral changes in sediment thickness, lithology and 

diagenetic conditions. 

Iodine is commonly associated with organic matter in marine sedimentary environments. As 

a consequence, dissolved concentrations of iodine and its radioisotope 129I are commonly 

applied as tracers for the origin of hydrocarbon gases and the age of organic matter in deep 

subsurface sediments (e.g. Fehn et al., 2000, 2003; Lu et al., 2007, 2008a,b; Tomaru et al., 

2007). In the Gulf of Cadiz, however, pore fluids are additionally affected by in situ 

production of 129I within terrigenous sediments. Common trends in 129I concentrations and 

other geochemical tracers across the margin provide insights into the factors controlling in 

situ production of 129I in marine sedimentary environments. Finally, the presented results 

and literature data are used to derive a general relationship between tectonic or geological 

setting and iodine isotope systematics in interstitial water.      

III.1.2. Geochemistry of iodine in marine sediments  

Due to its strong biophilic character, iodine is assimilated by phytoplankton in surface waters 

(Elderfield and Truesdale, 1980; Harvey, 1980) and reaches the sediment surface associated 

with sinking organic matter (Price and Calvert, 1973, 1977). A considerable amount of the 

delivered iodine is released into the pore water during early diagenesis and undergoes 

shallow recycling in the surficial sediments (Kennedy and Elderfield, 1987a,b). Another 

portion, however, is buried to greater depth (Martin et al., 1993), especially on continental 

margins where high organic matter fluxes lead to long-term storage of organic carbon and 

associated compounds in deeply buried sediments. In such environments, on-going microbial 

or thermal decomposition of organic matter produces high iodine concentrations in deep 

intersitital fluids, often exceeding 1000 µM (e.g. Fehn et al., 2000, 2007; Lu et al., 2007; 

Gieskes and Mahn, 2007). Under the strongly reducing conditions that prevail in deeply 

buried sediments, iodide (hereafter referred to as I-) is the stable species of iodine in pore 

water. Because of its little affinity for interactions with ambient sediments, I- travels over 

large distances in overpressured sedimentary environments (Martin et al., 1993; Fehn et al., 

2000; Lu et al., 2008a). 

Iodine has one stable isotope, 127I, and one long-lived radioisotope, 129I, which decays to 129Xe 

with a half-life of 15.7 Ma. The major, natural production mechanisms of 129I are spallation of 

Xe isotopes in the atmosphere by cosmic rays and spontaneous fission of 238U in the earth 
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crust. Both of these mechanisms contribute equal amounts of 129I to surface reservoirs 

(Fabryka-Martin et al., 1985). Because of its long residence time (300 ka), the ocean is well 

mixed with respect to iodine and has an iodine concentration of 0.44 µM and a 129I/I ratio of 

1500 x 10-15 (Broecker and Peng, 1982; Fehn et al., 2007a). Once iodine is removed from the 

well-mixed surface reservoir, e.g. through sedimentation and burial of organic matter, the 

initial 129I/I ratio will decrease due to continuous decay of 129I. Therefore, iodine released into 

deep interstitial waters carries an age signal which may be deciphered by determining 129I/I 

ratios by accelerator mass spectrometry (AMS) (Elmore et al., 1980). Since I- has a similar 

diffusion coefficient and thus migration behavior as methane, 129I/I ratios in rising pore 

waters have been used to constrain sources and age of, respectively, hydrocarbons and 

organic matter in subduction zones, gas hydrate fields and related settings (Fehn et al., 2000, 

2003; Lu et al., 2007, 2008a, 2008b; Tomaru et al., 2007).  

The iodine age signal in pore water may be altered by addition of 129I from other sources than 

decomposition of deeply buried organic matter. Especially the 129I/I ratio of near-surface 

reservoirs has been increased up to several orders of magnitude through addition of 

anthropogenic 129I from nuclear weapon tests and reprocessing facilities (e.g. Schink et al., 

1995; Wagner et al., 1996). In marine sediments, however, this anthropogenic iodine has not 

penetrated beyond the depth of bioturbation (Moran et al., 1998). Potentially of greater 

relevance for deep-seated fluids is 129I produced in ambient sediments or rocks through 

spontaneous fission of 238U. Although this fissiogenic 129I has been found to be of minor 

importance in marine settings hitherto investigated (Fehn et al., 2000, 2003; Lu et al., 2007, 

2008a,b; Tomaru et al., 2007), it may govern the 129I/I ratio of groundwaters or crustal fluids 

in uranium-rich rock formations (Fabryka-Martin et al., 1989; Bottomley et al., 2002; Fehn 

and Snyder, 2005).     

III.1.3. Geological setting 

The Gulf of Cadiz is located at the eastern end of the Azores-Gibraltar transform, the 

transpressional plate boundary between Africa and Eurasia (inlet in Figure III.1). The area 

has a complex geological history comprising several phases of rifting, convergence and strike-

slip motion since the Triassic (Maldonado et al., 1999). At present time, slow plate 

convergence (4 mm a-1; Argus et al., 1989) is accommodated over a broad and diffuse 

deformation zone (Zitellini et al., 2009) with maximal compressional stress in WNW-ESE 

direction (Sartori et al., 1994). The transition from continental to oceanic crust is concealed  
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beneath up to 13 km thick (Thiebot and Gutscher, 2007), mostly terrigenous sediments which 

have been supplied from the Iberian and N African margins (Maldonado and Nelson, 1999; 

Medialdea et al., 2004). Seismic cross-sections of the area show basement rocks under 

comparably undisturbed Mesozoic and Paleogene strata, overlain by a westward thinning 

wedge of intensely faulted Miocene and Plio-Quaternary sediments (Gutscher et al., 2002; 

Medialdea et al., 2004). Both tectonic and gravitational mechanisms have been invoked to 

explain the accumulation and westward emplacement of this sedimentary unit extending 

from the Iberian and N African margins to the Horseshoe and Seine abyssal plains (e.g. Torelli 

et al., 1997; Gutscher et al., 2002; Medialdea et al., 2004; Thiebot and Gutscher, 2007).  

In the Gulf of Cadiz, the upward transport of fluids and solid matter follows pre-dominantly 

tectonic control (Medialdea et al., 2009). This is demonstrated by the observation that MVs 

and related fluid escape structures are mostly located on deep-seated strike-slip and thrust 

faults which are associated with the transpressional African-Eurasian plate boundary 

Figure III.1. Structural and bathymetrical map of the Gulf of Cadiz within the NE Atlantic Ocean (inlet at lower left 

side). The major tectonic features (after Medialdea et al., 2004; bathymetry from Diez et al., 2005) are the Marquês 

de Pombal (MPF) and Horseshoe (HsF) thrust faults, the Porto-Bonjardim (PBF) and Gorringe-Horseshoe (GHsF) 

strike-slip faults as well as the basement highs Gorringe Bank, Guadalquivir Bank and Coral Patch Ridge. Large 

triangles represent the five MVs investigated within this study (Table III.1). The horizontal red line stretching 

parallel to 35.5 °N depicts the transect across the continental margin shown in Figure III.3. 
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(Pinheiro et al., 2005; Medialdea et al., 2009). Strike-slip motion and thrusting along these 

faults has been proposed as the most likely mechanism by which basement fluids are injected 

into the sedimentary cover (Scholz et al., 2009). Transport/reaction modeling of pore water 

profiles has revealed moderate upwelling rates and a strong spatial and, most likely, temporal 

variability of fluid flow in the Gulf of Cadiz (advection rates of <0.01 – 15 cm a-1; Hensen et al., 

2007) 

The five MVs studied here are aligned on an E-W transect stretching roughly parallel to  

36.5 °N (Figure III.1). Geographical coordinates and water depths of the sampling locations 

are summarized in Table III.1. The retrieved gravity cores are composed of greenish to dark 

gray, fine-grained sediments, mostly overlain by a thin layer of brownish hemipelagic 

material. Finely dispersed gas hydrates were recovered at all sampling sites except for those 

at Mercator MV. Most of the cores contain mm- to cm-sized rock clasts composed of fine-

grained, terrigenous material. Following a previously made classification (Scholz et al., 2009) 

which is based on geographical and geochemical conformities, the sampling sites will be sub-

grouped in proximal (Mercator MV and Captain Arutyunov MV (CAMV)) and distal MVs 

(Carlos Ribeiro MV, Bonjardim MV and Porto MV) in the following sections.   

III.2. Sampling and analytical methods 

Sediment samples were obtained during the MSM1-3 cruise of RV Maria S. Merian in 2006 

using a 6 m long gravity corer (GC) equipped with plastic liners. Upon recovery, GCs were 

sectioned into 1 m segments and then cut lengthwise into work and archive halves. 

Subsequent sampling was carried out in a cooled laboratory close to in situ (i.e. seafloor) 

temperature. Sediment subsamples were taken from the work halves at intervals of  

10 - 30 cm. A sediment squeezer operated with argon gas at a pressure of 1 - 5 bar was used  

Sampling location Gravity core Latitude Longitude Water depth
N W [m]

Mercator MV 239-GC20 35°17.917' 6°38.700' 353

263-GC28 35°17.866' 6°38.797' 351

Captain Arutyunov MV (CAMV) 174-GC9 35°39.736' 7°19.959' 1322

Carlos Ribeiro MV (CRMV) 154-GC5 35°47.257' 8°25.357' 2198

Bonjardim MV 130-GC1 35°27.817' 9°00.136' 3049

Porto MV 143-GC3 35°33.703' 9°30.439' 3860

Table III.1. Geographical coordinates and water depth of the sampling locations. The MVs are order from E to W 
according to increasing water depth.
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for pore water recovery. The extruded pore water was filtered through 0.2 µm cellulose 

acetate membrane filters. Pore water subsamples for shore-based analyses and archive core 

halves were kept frozen or cooled until further processing after the cruise.     

Cl and I- concentrations were measured by Ion Exchange Chromatography (IC, IC-Compact, 

Metrohm). The chlorinity of brine samples was additionally checked by titration with  

0.01 N AgNO3 (Grasshoff et al., 2002). Analytical precision based on duplicate measurements 

of samples and standards was found to be <1 % for Cl and <5 % for I-. 

About 0.5 mg of iodine is needed for measurement in the AMS. The amount of pore water 

obtained during the cruise was, in most cases, below the required volume of ~15 - 100 µl. 

Therefore, additional pore water was recovered from archive core halves in shore based 

laboratories at IFM-GEOMAR. Sediment samples were taken from the lower core end where I- 

concentrations are highest and essentially uniform with depth. The I- concentrations of the 

additional pore water samples were similar to those measured on the original samples from 

the same sediment depth. This demonstrates that cooled storage of sediment cores for about 

14 months does not change the interstitial I- concentrations. For the determination of 129I/I 

ratios, AMS targets were prepared at the Rochester Cosmogenic Isotope Laboratory following 

established methods (Fehn et al., 1992). In brief, iodine was extracted into chloroform, back-

extracted using sodium bi-sulfite and precipitated as AgI by addition of AgNO3. The AMS 

measurements were carried out at IsoTrace Laboratory, University of Toronto. Error ranges 

for individual analyses are listed in Table III.2. 

In order to estimate the amount of fissiogenic 129I derived from decay of 238U in deeply buried 

sediments, three rock clasts from archive core halves were analyzed for their uranium 

content. The dried and ground clasts were digested with concentrated HNO3, HClO4 (both 

sub-boiled distilled) and HF (suprapure) following a standard protocol described in Garbe-

Schönberg (1993). The uranium analyses were carried out by Inductively Coupled Plasma 

Mass Spectrometry (ICP-MS, AGILENT 7500cs) at the ICP-MS laboratory, University of Kiel 

(Garbe-Schönberg, 1993). Accuracy and analytical precision, based on duplicate digestion and 

analysis of samples and reference standards (AGV-2, BVHO-2, SDO-1; USGS; Govindaraju, 

1994), were found to be <10 % and <2 %, respectively.  
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III.3. Results 

Concentration-depth profiles of Cl and I- for all stations are shown in Figure III.2. All pore 

water profiles show a progressive downward decrease or increase from normal seawater 

concentration (Cl: 545 mM; I-: 0.44 µM) towards a near-constant value in the lower core 

section. Following previous studies (Hensen et al., 2007; Scholz et al., 2009), pore waters 

from below the depth where mixing with bottom water occurs will be termed ‘deep fluid’ in 

the following sections. 

Deep fluids of the proximal MVs are enriched in Cl with the highest concentrations measured 

in core 263-GC28 of Mercator MV. By contrast, deep fluids of the distal MVs are depleted in Cl 

with respect to seawater. The lowest Cl concentration were detected in core 154-GC5 of 

CRMV (as low as 199 µM). All deep fluids are enriched in I- by more than two orders of 

magnitude over seawater with the highest concentrations measured in core 143-GC3 of Porto 

MV (up to 161 µM). The I- concentrations in deep fluids decrease in the order Porto MV > 

CRMV > Bonjardim MV > CAMV > Mercator MV.  

Iodine isotope ratios for deep fluids are listed in Table III.2. The only station where 129I/I 

ratios are clearly below that of natural seawater (i.e. seawater free from anthropogenic 129I; 
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Figure III.2. Pore water profiles of Cl and I- for (a) cores 239-GC20 (closed circles) and 263-GC28 (open circles) of 

Mercator MV, (b) 174-GC9 of CAMV, (c) 154-GC5 of CRMV, (d) 130-GC3 of Bonjardim MV and (e) 143-GC3 of Porto 

MV. Vertical arrows on x-axis represent normal seawater values.  
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129I/I: 1500 x 10-15; Fehn et al., 2007a) is Porto MV where the lowest 129I/I ratio measured is 

663 x 10-15. At the other MVs, deep fluids show 129I/I ratios similar to (263-GC28 of Mercator 

MV) or considerably above that of natural seawater (up to 6490 x 10-15 in core 239-GC20 of 

Mercator MV). The 129I/I ratios increase in the order Porto MV > Mercator MV (263-GC28) > 

CRMV > Bonjardim MV > CAMV > Mercator MV (239-GC20). 

III.4. Discussion 

III.4.1. Diagenetic controls on iodide in pore wate rs 

The curved shape of the pore water profiles of Cl and I- at all sampling locations (Figure III.2) 

indicates active upward-directed transport of fluids that are chemically distinct from 

seawater. Hensen et al. (2007) and Scholz et al. (2009) inferred from inversely correlated 

hydrogen and oxygen isotope values that the inorganic geochemistry of deep fluids in the Gulf 

of Cadiz is dominated by clay mineral transformation and dehydration processes (e.g. 

smectite to illite conversion). The resulting trend of pore water freshening (Cl profiles in 

Figure 2c and e) is overprinted at the proximal locations by dissolution of Triassic evaporites 

(mainly halite, NaCl). As a result, deep fluids at CAMV and especially Mercator MV have 

higher Cl concentrations than modern seawater (Cl profiles in Figure III.2a and b) and display 

Na/Cl ratios of unity (Scholz et al., 2009). It is common practice in studies on freshened pore 

fluids to compare element/Cl ratios in order to compensate for dilution effects related to clay 

dehydration or dissociation of gas hydrates (Gieskes and Mahn, 2007). However, given the 

non-conservative behavior of Cl at the near-shore locations, this is not possible in the present 

case. Therefore, minor uncertainties due to varying dilution at the various sites have to be 

taken into account in the interpretation of the I- profiles. Strong I- enrichments in MV fluids in 

the Gulf of Cadiz are consistent with other indicators for organic matter decomposition in the 

subsurface, such as the presence of thermogenic methane and heavier hydrocarbons 

(Stadnitskaia et al., 2006; Niemann et al., 2007; Nuzzo et al., 2009). The detected I- 

concentrations are in the same order of magnitude as those observed at other deep-sourced 

fluid escape structures. For comparison, Lu et al. (2007) reported I- concentrations between 

90 and 650 µM in deep fluids of cold seeps on the Central American convergent margin. 

Considerably higher I- concentrations, sometimes reaching values up to several mM, have 

been measured in pore fluids recovered by means of deep-sea drilling in subduction zones 
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(e.g. Peru Margin; Fehn et al., 2007b; Cascadia Margin; Lu et al., 2008a) and deep-seated gas 

hydrate settings (e.g. Blake Ridge; Egeberg and Dickens, 1999). The comparably low I- 

concentrations in the pore fluids studied here may be attributed to less intense organic 

matter diagenesis but also to dilution with clay-derived water and to lateral admixing of 

pristine pore water during upward transport (Hensen et al., 2007). 

 

Figure III.3. Geological and geochemical cross section over the Gulf of Cadiz continental margin (see Figure III.1 

for location). (a) Sampling locations (red triangles), bathymetry and depth to basement (data from GEBCO 2008 

data base and Thiebot and Gutscher, 2006; gray circles depict the depth to basement at the exact location of the 

MVs), (b) I- concentrations, (c) 129I/I ratios (gray array encompasses 129I/I ratio ≤ natural seawater value), (d) 
87Sr/86Sr ratios (dashed line represents 87Sr/86Sr of modern ocean) and (e) excess 129I in deep fluids of the MVs.  
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Iodide concentrations in deep fluids increase in westward direction and with increasing 

water depth of the MVs (Figure III.3a and c). This might be related to a steadily increasing 

intensity of thermal organic matter diagenesis across the margin. However, Scholz et al. 

(2009) presented isotopic evidence for strongly varying formation temperatures at the 

various locations suggesting that reaction temperature does not control I- concentrations in 

upwelling fluids. Alternatively, varying amounts of organic matter in the subsurface could be 

responsible for the I- trend observed. Most of the Cenozoic sedimentary cover in the Gulf of 

Cadiz consists of a westward thinning wedge of terrigenous sediments (Figure III.3a) which 

have been supplied from the Iberian and N African margins through mass wasting and 

turbidity flows (Maldonado and Nelson, 1999; Medialdea et al., 2004). Considering fairly 

uniform fluxes of organic matter to the sediments throughout the Gulf of Cadiz and westward 

decreasing accumulation rates of terrigenous detrital material, the eventual organic matter 

content of the sediments should increase across the margin. In a similar way, dilution with 

terrigenous matter has been invoked to explain lower organic matter contents of modern 

sediments in the Chilean upwelling area with respect to those in the Peruvian upwelling area 

(Böning et al., 2005). The ability of such a scenario to explain seaward decreasing organic 

matter contents and thus iodine concentration in interstitial fluids will be further 

substantiated in a later section. 

III.4.2. Iodine isotope systematics 

III.4.2.1. Sources of old iodine 

The only site where pore water samples have 129I/I ratios below natural seawater is Porto MV 

(Table III.2). At all other locations, 129I/I ratios above the natural seawater value indicate the 

addition of 129I from another source than organic matter diagenesis (hereafter referred to as 

excess 129I) (Table III.2). Iodine isotope ratios and I- concentrations are negatively correlated 

in most cores. Extending the correlation trend depicted in Figure III.4a to the x-axis suggests 

that the pure organic I- source has a 129I/I ratio ≤ Porto MV and an I- concentration of 180 - 

200 µM. The corresponding iodine ages may be calculated using the standard decay equation: 

)exp( 1290 tRRSA ⋅−⋅= λ  (III.1) 

where RSA and R0 are the 129I/I ratios of samples and initial seawater and λ129 is the decay 

constant of 129I (4.41 x 10-8 a-1). The resulting age of the lowermost sample of core 143-GC3 is 

18.5 Ma or lower Miocene (Figure III.5). In general, ages obtained by this method have to be  
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interpreted as minimum ages because of the potential presence of anthropogenic or 

fissiogenic 129I. This is of particular importance in the present case given the anomalously 

high 129I/I ratios in most cores.  

Most deep-seated marine settings investigated so far revealed considerably lower 129I/I ratios 

than Porto MV (horizontal bars in Figure III.5). Roughly similar ages have been found for cold 

seep fluids from the Central American Margin (20 – 40 Ma; Lu at al., 2007). Pore waters 

recovered at shallow sediment depth in MVs and cold seeps may have migrated over large 

vertical distances. During this transport, admixing of shallower and thus younger pore water 

is likely to have shifted the initially low isotope ratio to higher values. This kind of mixing is 

particularly important in core 263-GC28 of Mercator MV which plots separately from the 

general trend between the highest ratios of core 239-GC20 and a 129I/I ratio and I- 

concentration intermediate between seawater and Porto MV (Figure III.5a). Admixing of an 

Figure III.4. Plots of (a) 129I/I versus I-, (b) 129I/I versus 87Sr/86Sr, (c) I- versus 87Sr/86Sr and (d) excess 129I versus 
87Sr/86Sr in deep fluids of (1) Mercator MV, (2) CAMV, (3) CRMV, (4) Bonjardim MV and (5) Porto MV. Gray stars 

represent natural seawater values. Black lines depict the major correlation trends. Only bold circles are 

considered in the linear regression (deviating symbols in (a) and (b) represent core 263-GC28 of Mercator MV). 

The gray arrow in (a) indicates mixing with shallower pore water at Mercator MV.  
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exceptionally high portion of shallower pore water in this core is consistent with a lower 

thermal maturity of dissolved hydrocarbon gases with respect to 239-GC20 (Nuzzo et al., 

2009). In general, mixing of shallower and deep-sourced organic components of at least 

lower Miocene age is in agreement with several other studies focusing on biomarkers and the 

isotopic composition of hydrocarbon gases (Stadnitskaia et al., 2006, 2008; Nuzzo et al., 

2009). A more detailed recognition of the source strata is inhibited by the poorly defined 

stratigraphic framework in the area and by the presence of excess 129I in most fluids.  

III.4.2.2. Sources of excess 129I 

Input of either anthropogenic or fissiogenic 129I could be the reason for anomalously high 

129I/I ratios in pore fluids of the Gulf of Cadiz. All samples which have been subjected to 

iodine isotope measurement are derived from below the depth of pore water irrigation and 

bioturbation. An in situ contamination of the pore fluids with anthropogenic 129I is therefore 

excluded (Moran et al., 1998). Because of the low iodine concentrations in meteoric waters, 

contamination of samples during lab work is also unlikely. In the present case, between 25 % 

and 70 % of the sample volume would have to be derived from contaminated meteoric water 

(I-: 8 µM; 129I/I: 1 x 10-7; Fehn et al., 2007a) to produce the 129I/I ratio and I- concentration 

observed. Iodine isotope ratios show a pronounced E-W decrease across the continental 

margin (Figure III.3c) and are positively correlated with 87Sr/86Sr ratios (Figure III.4b). The 

correlation of 129I/I with geometric properties (Figure III.3a and c) and other isotopic 
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Figure III.5. Decay curve illustrating decreasing concentrations of cosmogenic 129I after isolation from the active 

surface reservoir. Open circles and dashed lines depict the relationship between measured 129I/I ratios and iodine 

ages in core 143-GC3 of Porto MV. A stratigraphic bar encompassing ages from Cretaceous to present is shown on 

the upper axis. The horizontal gray bars represent age ranges found for fluids in other deep-seated marine 

settings (data from Fehn et al., 2000, 2007; Lu et al., 2007, 2008a,b; Tomaru et al., 2007).  
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parameters, that are independent from anthropogenic inputs, suggest that the excess 129I has 

a natural, i.e. fissiogenic origin within the underlying sediments or rocks. 

Assuming that the iodine age at Porto MV applies to all sampling locations studied here, the 

amount of excess 129I may be estimated by subtracting the number of 129I atoms L-1 after  

18.5 Ma (at the given I- concentration) from the actually measured concentration of 129I 

(Table III.2). Interestingly, concentrations of both total and excess 129I in the pore fluids 

(Table III.2) are in good agreement with those reported for brines in the Canadian Shield 

(total number of 129I atoms L-1: 3.0 – 34 x 10-7, I-: 140 µM) which have gained their 129I/I 

signature through interaction with organic matter-rich marine sediments and basement 

rocks (Bottomley et al., 1999, 2002). Fabryka and Martin (1989) developed the following 

equation to describe the concentration of fissiogenic 129I in crystalline rocks (N129 in  

atoms g-1) as a function of time: 










−
⋅−−

⋅⋅⋅=
129

129
129238129

)exp(1

λ
λλ t

YNN SW  (III.2) 

where N238 = 238U atoms g-1 rock, λsf = spontaneous fission decay constant for 238U  

(8.5 x 10-17 a-1, Decarvalho et al., 1982), Y129 = spontaneous fission yield of 238U at mass 129  

(3 x 10-4; Sabu, 1971), λ129 = decay constant of 129I (4.41 x 10-8 a-1) and t = residence time of 

uranium in the rock. The concentration of 129I in the ambient groundwater (C129 in atoms L-1) 

was estimated by multiplying N129 by the ratio of rock density (ρ) and escape efficiency (ε, 

value of 1 implies total release of 129I into the water) to effective porosity (φ) (Fabryka and 

Martin, 1989): 

φ
ερ ⋅⋅= 129129 NC  (III.3) 

In the present case, however, the production and release mechanism of fissiogenic 129I most 

likely differs from that in a rock-hosted groundwater aquifer. Much of the rising pore fluids 

are produced through transformation of terrigenous clay minerals in deeply buried sediment 

and compacted shale (Hensen et al., 2007; Scholz et al., 2009). During this mineral 

replacement and liquefaction process, all mineral-bound 129I is likely transferred into the 

pore water (i.e. ε = 1). The final concentration of 129I in the fluid is thus a function of the 

weight of the rock (ρVR) to the volume of water (VW) (Katz and Starinsky, 2003). Accordingly, 

concentrations of 129I in deep-sourced pore waters are calculated as follows: 
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Figure III.6. 129I/I ratios as a function of excess 129I and I- concentrations. The 129I/I ratios (black lines) were 

calculated by dividing 129I concentrations by the total number of iodine atoms in solution at 0 – 600 µM. The 129I 

concentrations were calculated by combining cosmogenic 129I with excess 129I (excess 129I = measured 129I – 

cosmogenic 129I). Cosmogenic 129I was calculated applying (a) the iodine age estimated for Porto MV (18.5 Ma) and 

(b) an iodine age of 40 Ma, i.e. the average age found for other deep-seated marine settings (see Figure III.5). 

Circles represent the actually measured 129I/I ratios and I- concentrations of the deepest samples of cores (1) 239-

GC20 of Mercator MV, (2) 174-GC9 of CAMV, (3) 154-GC5 of CRMV, (4) 130-GC1 of Bonjardim MV and (5) 143-GC3 

of Porto MV. An I- concentration of 200 µM for the theoretical end member (6) in (b) (iodine age of 40 Ma) was 

chosen according to the correlation trend in Figure III.4a. Gray arrays encompass 129I/I ratio ≤ natural seawater 

value.  
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⋅
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ρ
129129  (III.4) 

Uranium concentrations in three shale clasts from cores 130-GC1, 174-GC9 and 239-GC20 

range between 1.6 and 2.7 mg kg-1 which is within the range typical for fine-grained 

terrigenous sediments and shale (1.5 – 8 mg kg-1 U; Wedepohl, 1978). Applying a range of  

1.5 – 3 mg kg-1 uranium, a grain density of 2.65 g cm-3, a VR/VW ratio of 20 (corresponding to a 

porosity of ~5 % at a burial depth of ~5 km; Baldwin and Butler, 1985) and a residence time 

of 18.5 Ma (iodine age at Porto MV) yields concentrations of excess 129I of 7 x 107 – 13 x 107 

atoms L-1. This range covers most of the excess 129I concentrations listed in Table III.4. 

Moreover, it has to be considered that the adopted residence time is a minimum estimate. A 

slightly modified combination of input values, e.g. a higher residence time and/or uranium 

concentration, would yield excess 129I concentrations fitting the whole range of data 

observed. It is therefore concluded that release of fissiogenic 129I during clay mineral 
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alteration processes within deeply buried sediments and shale is the most likely reason for 

anomalously high 129I/I ratios in deep-sourced interstitial fluids in the Gulf of Cadiz. 

III.4.2.3. Controls on fissiogenic 129I in deep-seated marine interstitial fluids 

The influence of in situ-produced fissiogenic 129I on the 129I/I ratio is most significant at low I- 

concentrations, since the fissiogenic production is independent of the amount of stable iodine 

in solution (Snyder and Fabryka-Martin, 2007). Iodide concentrations in deep-sourced 

interstitial fluids in the Gulf of Cadiz decrease across the continental margin (Figure III.3b) 

and are inversely correlated with 87Sr/86Sr ratios (Figure III.4c). The seaward decrease in 

87Sr/86Sr (Figure III.3d) has been attributed to admixing of a basement-derived fluid 

component carrying an isotopic signature from interaction with the basaltic crust (Scholz et 

al., 2009). In any case, non-radiogenic 87Sr/86Sr ratios at the distal locations indicate less 

intense interaction with terrigenous sediments. This is in accordance with reduced dilution of 

buried organics with detrital matter and, thus, with higher amounts of organic matter-

derived I- in interstitial fluids (see Section III.4.1). Because of, in general, much lower iodine 

concentrations of terrestrial organic material (e.g. Muramatsu and Wedepohl, 1998) possible 

inputs of land-derived organic matter at the proximal locations cannot compensate for this 

dilution effect.  

The effect of varying I- concentrations on the 129I/I ratio of fluids containing fissiogenic 129I is 

highlighted in Figure III.6. The impact of fissiogenic 129I on 129I/I decreases with increasing I- 

concentration and, consequently, in seaward direction across the Gulf of Cadiz continental 

margin. Potentially present excess 129I in fluids of Porto MV has therefore a smaller influence 

on 129I/I compared to the other sites. The 129I/I ratios in Figure III.6b were calculated 

assuming that the pure organic iodine source (theoretical end member) has an iodine age of 

40 Ma. Even in that case, I- concentrations would have to be <60 µM to shift the 129I/I ratio of 

Porto MV above the normal marine value. If, in turn, all fluids had a common I- concentration 

of 180 µM (i.e. like fluids of Porto MV), 129I/I ratios of the other locations would still be higher 

than the normal marine value. Hence, comparably low I- concentrations are one important, 

but not the only reason for anomalously high 129I/I ratios at most mud volcanoes in the Gulf of 

Cadiz. 

Excess 129I concentrations (calculated with respect to Porto MV, Table III.2) are plotted vs. 

87Sr/86Sr ratios in Figure III.4d. Most sampling locations plot on a trend line corresponding to 

concomitantly increasing amounts of fissiogenic 129I and radiogenic 87Sr in the fluids. Both of 
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these isotopes are produced through radioactive decay within ambient sediments and rocks. 

The parent isotopes are 238U and 87Rb, respectively. The coupled trend in interstitial fluids 

may be explained with the similar behavior of uranium and rubidium during the formation of 

primary rocks. Both elements become enriched during magma differentiation resulting in one 

to two orders of magnitude higher concentrations in felsic rocks compared to mafic rocks 

(Wedepohl, 1978). Terrigenous sediments in the Gulf of Cadiz are derived from the Iberian 

and N African margins where the Variscan basement consists of felsic metamorphic rocks 

(Weijermars, 1991; Maldonado et al., 1999). These sediments have accumulated considerable 

amounts of 87Sr (87Sr/86Sr up to 0.7150; Scholz et al., 2009) and 129I (see Section III.4.2.2) 

which are transferred into pore fluids during clay mineral diagenesis. By contrast, the 

underlying oceanic basement in the outer reaches of the Gulf of Cadiz has low uranium and 

rubidium concentrations. Decreasing 87Sr/86Sr ratios due to admixing of basement fluid are 

therefore accompanied by a decrease in excess 129I (Figure III.3d and e, Figure III.4d). 

Deviating values of Mercator MV might be related to the thinner sediment coverage (Figure 

III.3a) or to admixing of shallower pore water (Section III.4.2.1, Figure III.4a). In the least 

radiogenic pore fluids of Porto MV, excess 129I is virtually absent so that 129I/I ratios are 

governed by cosmogenic 129I from sediment organic matter. 

Table III.3 compares 129I/I and 87Sr/86Sr ratios of this study with data from other studies 

carried out in different geological settings. In most other marine systems, where iodine 

isotope dating has been carried out, interstitial 87Sr/86Sr ratios are less radiogenic than 

Location 129I/I x 10-15 a I- b 87Sr/86Src

[µM]

Cascadia Margind 111/760 510/640 0.7072 - 0.7092

Central American Margine 80/790 242/84 0.7075 - 0.7092

Peru Marginf 140/990 1171/325 0.7092 - 0.7099

Nankai Troughg 181/1490 230/100 0.7070 - 0.7087

Yellowknife, Canadian Shieldh ≤4000 ≤140 ≤0.7140

Gulf of Cadiz 663/6490 181/44.1 0.7075 - 0.7106
a Highest/lowest 129I/I reported.
b I- concentrations corresponding to highest/lowest 129I/I.
c Range of 87Sr/86Sr reported. 
d ODP Leg 204, Sites 1244 - 1252 (Lu et al., 2008b; Teichert et al., 2005).
e Cold seeps and ODP Leg 205, Site 1253 - 1255 (Lu et al., 2007; Kastner et al., 2006).
f ODP Leg 201, Site 1230 and ODP Leg 112, Site 685 (Fehn et al., 2007; Elderfield et al., 1990).
g BH-1 and ODP Leg 131, Site 808 (Fehn et al., 2003; Kastner et al., 1993).
h 129I/I was calculated using the 129I and I- concentrations reported (Bottomley et al., 1999, 2002).

Table III.3. Compilation of 129I/I and 87Sr/86Sr data for different geological settings.
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seawater. The only case where 87Sr/86Sr ratios slightly more radiogenic than seawater are 

coupled to 129I/I ratios below natural seawater are ODP pore fluids from the Peru Margin. 

Because of the very high concentrations of old iodine (>1000 µM), however, potentially 

present fissiogenic 129I is most likely not perceptible. A meaningful analog to the fissiogenic 

129I-rich pore fluids presented here is the Yellowknife brine in the Canadian Shield. In that 

case, interaction with basement rocks have produced 129I/I and 87Sr/86Sr ratios above natural 

seawater. Most of the other studies listed in Table III.3 have been carried out in subduction 

zone settings where sediments mostly consist of andesitic volcanic matter from the volcanic 

arc. Because of the comparably low uranium and rubidium contents of these sediments, 129I/I 

ratios are generally governed by 129I from organic matter diagenesis. The Gulf of Cadiz 

represents a transition between the Yellowknife and subduction zone cases. At the near-

shore locations, 129I/I ratios are dominated by fissiogenic 129I that has been produced within 

terrigenous, clay-rich sediments. With increasing distance from shore, however, reduced 

interaction with terrigenous matter results in an almost pure iodine age signal at the most 

distal location. 

III.5. Summary and conclusions 

Iodide and iodine isotope systematics have been successfully used to track the age and origin 

of organic components in deep-sourced marine interstitial fluids. In the Gulf of Cadiz, in situ 

production of 129I within deeply buried sediments and shale complicates iodine dating, but 

yet provides additional information on the inorganic sources to the fluids. This particular 

situation is due to a complex interplay of tectonic, sedimentological and geochemical factors. 

Terrigenous sediments in the Gulf of Cadiz are derived from uranium-rich, Paleozoic 

basement rocks on the Iberian and N African margins. Spontaneous fission of 238U produces 

129I which is released into pore water during fluid/sediment and fluid/rock interactions. With 

the westward thinning of terrigenous sediments, the proportion of fissiogenic 129I and thus 

129I/I ratios decrease across the margin. This trend is further amplified by increasing 

concentrations of stable iodine from organic matter diagenesis, which, in turn, is attributed to 

the reduced dilution of buried organics with terrigenous matter. A similar lateral trend is 

observed in the 87Sr/86Sr systematics of the pore fluids. At the proximal locations, 87Sr/86Sr 

ratios are more radiogenic than seawater reflecting high Rb/Sr ratios typical for terrigenous 

material. In contrast, fluids in the outer reaches of the Gulf of Cadiz show non-radiogenic 
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87Sr/86Sr ratios derived from alteration processes within the oceanic basement. Our results 

reveal a close coupling between 129I/I and 87Sr/86Sr ratios, which is related to the common 

enrichment of the parent isotope elements, uranium and rubidium, during differentiation of 

primary rocks.  

At the farthest off-shore MV, 129I/I ratios are lower than the natural seawater value, indicating 

that the isotopic composition is dominated by 129I from organic matter diagenesis. Isotopic 

dating of these fluids reveals a mixture of shallow and deep-sourced organic components, the 

latter produced within sediments with minimum ages in the lower Miocene (i.e. older than 

18.5 Ma). This source age is compatible with results from other cold seep and gas hydrate 

settings, although at the younger end of the overall age range observed in previous studies. 

Comparison of the results presented here with literature data demonstrates a general 

relationship between iodine isotope systematics and the lithology and provenance of rocks 

and sediments, respectively. In continental rock-hosted groundwater aquifers and 

terrigenous sedimentary systems iodine isotope systematics are dominated by in situ-

produced fissiogenic 129I. In contrast, in uranium-poor, e.g. volcanogenic sediments with 

mafic to intermediate composition, iodine isotope systematics are governed by 129I from 

organic matter diagenesis. The Gulf of Cadiz represents the full transition between these 

continental and oceanic/volcanic end members.       
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Abstract 

Lithium concentration and isotope data (δ7Li) were collected for pore fluids from 18 cold 

seep locations and reference fluids from shallow marine sediments, a sediment-hosted 

hydrothermal system and two Mediterranean brine basins. The new reference data and 

literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow 

an empirical relationship between Li concentration and δ7Li (δ7Li = -6.0(±0.3) · ln[Li] + 

51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral 

authigenesis. Cold seep fluids display δ7Li values between +7.5 ‰ and +45.7 ‰, mostly in 

agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in 

all cold seep fluids indicate that authigenic smectite-illite is the major sink for light pore 

water Li in deeply buried continental margin sediments. Deviations from the general 
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relationship are attributed to the varying provenance and composition of sediments or to 

transport-related fractionation trends: Pore fluids on passive margins receive 

disproportionally high amounts of Li from intensely weathered and transported terrigenous 

matter. By contrast, on convergent margins and in other settings with strong volcanogenic 

input, Li concentrations in pore water are lower because of intense Li uptake by alteration 

minerals and, most notably, adsorption of Li onto smectite. The latter process is not 

accompanied by isotope fractionation, as revealed from a separate study on shallow 

sediments. A numerical transport-reaction model was applied to simulate Li isotope 

fractionation during upwelling of pore fluids. It is demonstrated that slow pore water 

advection (order of mm a-1) suffices to convey much of the deep-seated diagenetic Li signal 

into shallow sediments. If cautiously applied, Li isotope systematics may, thus, provide a 

valuable record of fluid/mineral interaction that has been inherited several hundreds or 

thousands of meters below the actual seafloor fluid escape structure.  

IV.1. Introduction 

In the past two decades, the behavior of Li isotopes has been studied in various marine 

systems, including mid-ocean ridge and sediment-hosted hydrothermal systems (Chan et al., 

1993; Chan et al., 1994; James et al., 1999), subduction zone settings (You et al., 1995; Chan 

and Kastner, 2000) and normal coastal and deep-sea sediments recovered by means of deep-

sea drilling (Zhang et al., 1998; James and Palmer, 2000). Major processes identified to cause 

deviations from the seawater isotopic composition are adsorption/desorption reactions 

(Zhang et al., 1998; James and Palmer, 2000), formation and transformation of silicate 

minerals (Chan and Kastner, 2000; Williams and Hervig, 2005) and leaching of Li from 

sediments or underlying crust at high temperature (Chan et al., 1993, Chan et al., 1994; James 

et al., 1999). As a result of the accomplished work, Li isotopes are considered a promising 

tracer for the diagenetic evolution and provenance of pore fluids in overpressured 

sedimentary environments.  

The Li isotopic composition of seawater (δ7Li: +31 ‰; Millot et al., 2004) is distinct from 

mid-ocean ridge basalt (MORB) (δ7Li: +3.4 ± 1.4 ‰; Tomascak et al., 2008) and clastic, 

marine sediments (δ7Li: -1.5 - +5 ‰; Chan et al., 2006) and the direction of Li exchange 

among these reservoirs is temperature-dependent. Under normal seafloor conditions, 

seawater Li is sequestered by authigenic clay minerals. Since the light isotope, 6Li, is 
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preferentially taken up, the remaining Li-depleted fluids become isotopically heavier during 

this process. By contrast, at elevated temperatures, simultaneous leaching of Li from primary 

minerals and uptake into secondary minerals shifts the Li isotope value of fluids between that 

of seawater and the initial solid (e.g. Chan et al., 1993, 1994; Zhang et al., 1998; James et al., 

2003). Since both the distribution coefficient between solid and fluid and the extent of 

isotope fractionation during mineral authigenesis are a function of temperature (Berger et al., 

1988; Chan et al., 1994), mobile fluids in porous media may undergo multiple stages of Li 

uptake and loss. The complex Li isotope signature resulting from this bears a valuable record 

of fluid/mineral interaction that is, however, challenging to unravel. 

To better constrain the Li isotope signature of advecting pore fluids in continental margin 

sediments, pore water samples from 18 cold seep locations in varying geological settings 

were analyzed for their Li concentration and isotopic composition. Literature data of 

hydrothermal fluids and pore waters from the Ocean Drilling Program (ODP) were compiled 

in order to establish a frame of reference for Li isotope exchange between fluids and solids in 

related marine systems. Comparison of the presented results with that reference frame yields 

insights into the provenance and diagenetic evolution of cold seep fluids. Two evolutionary 

distinct Messinian brines from the Mediterranean Sea were included in this study to test 

whether hypersaline pore fluids are subject to individual fractionation mechanisms. 

Eventually, a transport-reaction model is used to retrace fractionation trends during 

upwelling of fluids to the seafloor. Besides being of relevance to studies on the origin and 

evolution of cold seep fluids, this article reviews general principles for the interpretation of Li 

isotope variations in the context of diagenesis and pore water/mineral interaction in marine 

sediments.  

IV.2. Samples 

The following section gives a brief overview about the geological characteristics of the 

studied seepage areas (Figure IV.1) and major processes affecting the composition of pore 

fluids. More detailed information may be obtained from the references cited in the text. The 

geographical position and water depth of the sampling locations are summarized in  

Table IV.1. 
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IV.2.1. Regional settings 

Upward movement of overpressured fluids is often associated with compressional tectonics 

and subduction related processes (Hyndman and Davis, 1992). Mound 11, Mud Pie and 

Mound Ridge are cold seeps on the Central American margin (map 1 in Figure IV.1) where the 

Cocos plate is subducted beneath the Caribbean plate (Ranero and Von Huene, 2000; Hensen 

et al., 2004). Fluid seepage and mud volcanism on the Mediterranean Ridge is related to 

subduction of the African plate beneath the Eurasian plate (Camerlenghi et al., 1992; 

Robertson et al., 1996; Robertson and Kopf, 1998). The major mud volcano (MV) areas on the 

Mediterranean Ridge are the Olimpi Field on the accretionary prism south of Crete (Napoli 

Dome) and, further east, the Anaximander Mountains (Kazan and Amsterdam MVs) located at 

the junction of the Hellenic and Cyprus Arcs (map 4 in Figure IV.1; Zitter et al., 2005). 

Although not directly related to subduction, mud volcanism in the Black Sea  

Figure IV.1. Global map showing the study areas: (1) Central American margin, (2) Gulf of Mexico, (3) Gulf of 

Cadiz, (4) Eastern Mediterranean Sea, (5) Black Sea and (6) Okinawa Trough. Major tectonic plate boundaries are 

represented by red lines. Detailed maps with bathymetric information are shown for (1), (3) and (4). Stars 

indicate the position of sampling sites or sub-regions. See Table IV.1 for geographical positions and water depths. 



CHAPTER IV – LITHIUM ISOTOPES IN MARINE PORE WATERS 77 

(Dvurechenskii MV and Pechori Mound) occurs likewise in the tectonic context of plate 

convergence between Africa and Eurasia (Limonov et al., 1997; Bohrmann et al., 2003; 

Nikishin et al., 2003). By contrast, in the northern Gulf of Mexico (Green Canyon Bush Hill and 

415 East) and on the Nile deep-sea fan (Giza and North Alex MVs) in the eastern 

Mediterranean Sea (Roberts and Carney, 1997; Loncke et al., 2004; Loncke et al., 2006), fluid 

seepage and mud volcanism are caused by thin-skinned tectonic processes. In these areas, 

huge sediment accumulation rates and actively moving salt bodies in the subsurface create 

faults along which fluids, gas and mud are transported to the seafloor. In the Gulf of Cadiz, 

mud volcanisms and related phenomena are concentrated along deeply cutting thrust and 

strike-slip faults that are associated to the boundary between the African and Eurasian plates 

(Pinheiro et al., 2005; Medialdea et al., 2009). In a recent study, Scholz et al. (2009) 

investigated five MVs located on an E-W transect across the Gulf of Cadiz (map 3 in Figure 

IV.1). Deep-sourced pore fluids from this transect reflect a consistent transition from 

continental-sedimentary to oceanic-crustal fluid sources. Scholz et al. (2009) inferred from Sr 

and Li isotope systematics that deep-seated faults serve as conduits for fluids originating in 

the underlying oceanic basement and drew parallels to ridge flank hydrothermal systems.  

IV.2.2. Diagenetic characterization of pore fluids 

Deeply buried sediments on continental margins are strongly reducing environments. 

Accordingly, deep-sourced pore fluids are, in most cases, devoid of SO42- but strongly 

enriched in reduced components such as NH4+, I- and CH4 (e.g. Aloisi et al., 2004;  

Wallmann et al., 2006a; Fehn et al., 2007; Gieskes and Mahn, 2007). Most of the pore fluids 

investigated here have lower salinities than normal seawater. Although dissociation of gas 

hydrates has been identified in a few cases (Suess et al., 1999), dehydration of clay minerals 

in the deep subsurface is commonly regarded as the major reason for pore water freshening 

(Moore and Vrolijk, 1992; Dählmann and De Lange, 2003; Hensen et al., 2004; Hensen et al., 

2007). Clay mineral dehydration processes such as the conversion of smectite to illite chiefly 

occur at temperatures between 60 and 150 °C and are accompanied by K consumption and 

the release of Na, Li and B into the ambient pore water (Ishikawa and Nakamura, 1993; 

Środoń, 1999; Chan and Kastner, 2000). The release of mobile cations from sediments 

continues at temperatures beyond the typical range for clay diagenesis leading to very high B 

and Li concentrations in décollement fluids at subduction zones and in fluids of sediment-

hosted hydrothermal systems (Butterfield et al., 1994; You et al., 1996; James et al., 1999;  
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Kastner and Rudnicki, 2004). In some cases (e.g. Green Canyon 415 East in the Gulf of Mexico, 

Napoli Dome in the Mediterranean Sea, Dvurechenskii MV in the Black Sea), the clay mineral 

diagenetic signal of pore water dilution is overprinted by admixing of evaporated seawater or 

by dissolution of evaporite minerals (e.g. Dählmann and De Lange, 2003; Aloisi et al., 2004; 

Reitz et al., 2007). In order to investigate the above-described processes independently from 

each other, reference fluids with a less complex geochemical evolution have been included in 

this study. Shallow pore waters from the Nile deep-sea fan and the eastern Black Sea show 

downcore decreasing Li concentrations indicating Li uptake by sediments during early 

diagenesis (Zhang et al., 1998; James et al., 2000). Lithium-rich pore fluids from sediments in 

the Okinawa Trough hydrothermal system are formed through interaction of seawater with 

andesitic volcanic rocks and terrigenous sediments at temperatures above 300 °C (Glasby 

and Notsu, 2003; Konno et al., 2006). Brine samples have been obtained from two 

evolutionary distinct brine basins in the eastern Mediterranean Sea. While Bannock brine has 

evolved through twelve fold evaporation of seawater and subsequent burial (Vengosh et al., 

1998), Discovery brine has formed through dissolution of late stage evaporite minerals 

(mainly bischofite, MgCl2 • 6 H2O) by sediment pore waters (Wallmann et al., 1997).  

IV.3. Methods 

IV.3.1. Sediment sampling and pore water recovery 

Pore water samples for this study were obtained on several cruises using piston and gravity 

corers equipped with PVC or tube foil liners, multi or mini corers and ROV-guided push cores 

(Table IV.1). Brine samples were collected with Niskin bottles mounted on a CTD/rosette  

(De Lange et al., 1990). Upon recovery, core liners were sectioned, sealed and transferred 

into a cooled laboratory to assure subsampling under in-situ (i.e. seafloor) temperature. 

Subsamples were taken within regular distance from the lengthwise-cut sediment cores. 

Multi and mini cores were stepwise extruded from the liners and cut into 1 - 3 cm thick slices. 

Pore water recovery was done by pressure filtration (argon gas at 2 - 5 bar) or by 

centrifuging (4000 rpm for 20 min). Pore waters were filtered through 0.2 µm cellulose-

acetate membrane filters and then divided into aliquots for ship-board and shore-based 

analyses. Aliquots for cation analyses were acidified (HCl or HNO3, suprapur) to prevent any 

mineral precipitation or adsorption. For the same purpose, brine samples were additionally 
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diluted 1:3 with bi-distilled water. Pore water and brine samples were stored cooled until 

further processing on land.  

IV.3.2. Laboratory analyses 

Chlorinity measurements were carried out on-board by Ion Chromatography (761 IC-

Compact, Metrohm) or titration with 0.01 N AgNO3 (Grasshoff et al., 2002). Lithium was 

analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, JY 170 

Ultrace, Jobin Yvon). The analytical precision based on repeated analysis of IAPSO seawater 

standard is <1 % for Cl and <5 % for Li. Further information about these routine methods 

may be obtained from the IFM-GEOMAR web page. 

Lithium isotope analyses were carried out by Multi Collector Inductively Coupled Plasma 

Mass Spectrometry (MC ICP-MS, NEPTUNE, ThermoFisher Scientific) after chromatographical 

Li separation following a modified protocol after Tomascak et al. (1999). For ion exchange 

chromatography, a sample aliquot containing 0.5 µg Li was evaporated and re-dissolved in  

1 N HNO3 and 80 % methanol. Samples with an unfavorable molar Li to Na proportion  

(Na/Li > ~2 x 105) were subjected to a second or third chromatographical step using 0.5 N 

HCl and 80 % methanol as solvent (modified after Jeffcoate et al., 2004). Lithium 

concentrations before and after the actual Li eluate were typically less than 0.1 % of the total 

Li in the sample and, therefore, did not cause a detectable isotopic shift due to sample 

purification. Further details on the ion chromatographic and mass spectrometric procedures 

are given in Wunder et al. (2006; 2007). The Li standard NIST SRM 8545 (L-SVEC) and 

seawater were repeatedly included in the chromatographic separation to check the accuracy 

of the procedure. The resulting Li isotope values are given relative to the standard NIST SRM 

8545 according to δ7Li = ((7Li/6Li)sample/(7Li/6Li)standard – 1) x 1000. Repeated analysis of 

seawater during this study yielded a δ7Li of +30.9 ± 0.3 ‰ (2σ, n = 9).  

Strontium isotope ratios were determined by Thermal Ionization Mass Spectrometry (TIMS, 

TRITON, ThermoFisher Scientific) after chemical separation via cation exchange 

chromatography using a Sr-specific resin (Eichrom). All isotope ratios were internally 

normalized to an 86Sr/88Sr ratio of 0.1194.  Repeated analysis of the standard NIST SRM 987 

over the course of this study yielded an average value of 0.710220 ± 17 (2σ, n = 12). For 

comparison with literature values all 87Sr/86Sr were normalized to a value of 0.710248 for the 

NIST SRM 987.  
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IV.3.3. Transport-reaction modeling 

A one-dimensional, numerical transport-reaction model was developed to simulate Li isotope 

fractionation during upward advection of pore fluids. Partial differential equations for solutes 

follow the classical approach of Berner (1980):  

[ ]
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 (IV.1) 

where [C] is the concentration of dissolved species in pore water, x is depth, t is time, φ is 

porosity, DS is the molecular diffusion coefficient in sediments, ν is the vertical advection 

velocity of the pore water and R defines all reactions occurring in the simulated sediment 

domain. The model calculates the concentration-depth profiles of three dissolved species 

(total dissolved Li, 7Li and 6Li) considering the decrease in porosity with sediment depth, 

molecular diffusion, advective transport of solutes via sediment burial, steady state 

compaction and pressure-driven flow as well as the temperature-dependent precipitation of 

Li and the related isotope fractionation.  

Sediment porosity decreases with depth due to sediment compaction. Assuming steady-state 

compaction, the profile can be approximated by: 

( ) BOTBOTTOP xconst φφφφ +⋅−⋅−= )exp(  (IV.2) 

where φBOT and φTOP are the porosity at the lower and upper boundary and const is the 

attenuation coefficient for the exponential decrease of porosity with depth. The burial 

velocity of solids is expressed as steady-state compaction with: 

BOT
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x
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1
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−
−

=  (IV.3) 

where ω(x) represents the depth-dependent burial velocity and ωBOT is the sediment burial 

velocity at the base of the model domain. The upward directed pore water velocity through 

sediments is composed of the downward burial component modified by compaction and the 

upward fluid advection: 

)(
)(

x
x TOPTOPBOTBOT

φ
φνφων ⋅−⋅

=  (IV.4) 

where ν(x) represents the depth-dependent fluid velocity and νTOP is the upward fluid 

advection velocity at the sediment surface.  
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Temperature-dependent molecular diffusion coefficients of Li were calculated after Boudreau 

et al. (1997) and corrected for tortuosity using the following relationship (Boudreau, 1996): 

2))(ln(1

)(
)(

x

xD
xD M

S φ−
=  (IV.5) 

where DM is the molecular diffusion coefficient in seawater. The same value of DM was used 

for both Li isotopes. Temperature variations from bottom water to the lower boundary of the 

simulated sediment column were also considered in a depth-dependency of DM. 

The rate law for Li precipitation and isotope fractionation as well as the boundary conditions 

and fitting parameters for the model runs are specified in Section IV.5.2. The model was run 

to steady state from arbitrary initial conditions. Finite difference techniques (the method-of-

lines code) were applied to solve the partial differential equations (PDEs). A set of three PDEs 

(one for each species) is converted into 200 ordinary differential equations (ODE) giving the 

temporal change of species concentration at each depth interval. The ODE system was set up 

on an uneven grid with higher resolution at the surface and solved using the NDSolve object 

of MATHEMATICA Version 7.0 (cf. Hensen and Wallmann, 2005; Wallmann et al., 2006a, 

2008). 

IV.4. Results 

Depth profiles for dissolved Li concentrations and molar Li/Cl ratios are plotted in Figure 

IV.2. Ratios of Li/Cl highlight deviations from the general salinity trend, i.e. denote 

consumption or release of Li during chemical reactions. A compilation of δ7Li, 87Sr/86Sr as 

well as Cl and Li concentration data is given in Table IV.2. Lithium isotope data of MVs in the 

Gulf of Cadiz have previously been published by Scholz et al. (2009).  

Hemipelagic reference cores are characterized by downcore decreasing Li/Cl ratios but 

seawater-like δ7Li values (Figure IV.2a and b, Table IV.2). Hydrothermal fluids from the 

Okinawa Trough are considerably enriched in Li and show comparably light δ7Li values 

between -0.7 and +5.8 ‰. The δ7Li of brine samples varies over a narrow range from +24.3 

to +25.1 ‰.  

Most pore water profiles of cold seeps display a mixing relationship between bottom water 

concentrations at the top und an almost uniform concentration in the lower core section.
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Figure IV.2. Pore water profiles of Li concentration (black circles) and Li/Cl ratio (open circles) for all studied 

sediment cores. Arrows on upper axis indicate normal seawater Li concentration (26 µM). Pore water profiles of 

different cores from the same site are similar to each other. Therefore, only one profile per site is shown 

((l)  174-GC9, (n) 239-GC20, (p) AX18GC1, (q) AX02AP2, (r) GC5, (t) GeoB11977). Abbreviations for study areas 

are as follows: NDSF = Nile deep sea fan; BS = Black Sea; OT = Okinawa Trough; CAM = Central American margin; 

GoM = Gulf of Mexico; GoC = Gulf of Cadiz; MS = Mediterranean Sea.  
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Area Location Core Depth Cl Li δ7Li 87Sr/86Sr
[cm] [mM] [µM] [‰]

Reference sites

Gulf of Cadiz 139-MUC2 BW 559 24.0 30.9 0.709179

Nile deep-sea fan MUC28 BW 618 24.6 30.9 0.709200

GC2 109.5 615 19.1 29.1

297.5 610 10.1 30.9 0.709130d

415.5 609 7.2 29.6 0.709100d

Black Sea GeoB11905 1.0 353 14.4 32.3 0.709136d

GeoB11974 301.5 300 4.1 31.9

Okinawa Trough Abyss Vent MUC28 21.0 546 204 5.8 0.709323

44PC33 21.0 553 441 2.7 0.709483

Swallow Chimney 34GC1 36.0 441 347 1.1 0.709788

265.0 392 301 -0.7 0.709829

Mediterranean Sea Discovery brine PP28CTc 3672.0 9550 310 25.0

3677.0 9550 310 25.1 0.708961

3672.0 9560 320 25.0

Bannock brine PP09CTc I-3460 5300 270 24.5

I-3505 5320 280 24.8 0.708650

II-3612 5350 300 24.3 0.708629

Seep sites

Central American margin Mound 11 TVMUC127 19.0 230 13.2 29.6

23.5 230 13.4 29.9 0.708699

Mud Pie 108/78/27 9.0 339 83.9 23.7 0.707320

11.0 345 84.1 24.4

Mound Ridge GC219 510.0 445 11.2 27.6

540.0 424 11.0 27.2 0.709126

Gulf of Mexicoa GC 415 East TGC3 202.5 5200 414 45.7 0.708629

252.5 5210 428 45.4

302.5 5240 430 44.8 0.708625

302.5-r 44.7

GC Bush Hill GC8 245.0 849 148 23.3

277.5 903 168 23.6 0.708663

18.0 539 44 24.2 0.708676

62.0 380 160 15.3 0.707668

Gulf of Cadizb Porto MV 143-GC3 102.0 353 204 12.1 0.707534

115.0 344 203 12.2 0.707536

Bonjardim MV 130-GC1 160.0 480 167 19.6 0.708694

180.0 458 188 19.5

Carlos Ribeiro MV 154GC5 200.0 199 122 19.7 0.708208

220.0 199 116 20.0 0.708208

a 87Sr/86Sr data from Reitz et al. (2007).
b Data from Scholz et al. (2009).
c Water depth in meter below sea surface.
d Measured on samples from neighboring depth interval.

Table IV.2. Pore water and bottom water (BW) data for Cl, Li, δ7Li and 87Sr/86Sr. 

continued on next page
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In accordance with previous studies (e.g. Hensen et al., 2007; Scholz et al., 2009), pore waters 

from below the mixing zone between seawater and upwelling fluid will be referred to as 

‘deep fluid’ in the following sections. Most deep fluids display Cl concentrations below local 

bottom water values (Table IV.2), which indicates that they have been affected by clay 

mineral dewatering (cf. Dählmann and De Lange, 2003; Hensen et al., 2004, 2007; Haese et al., 

2006). Chloride concentrations above seawater at a few locations are related to dissolution of 

evaporite minerals (e.g. Green Canyon 415 East, Reitz et al., 2007; Mercator MV, Scholz et al., 

Area Location Core Depth Cl Li δ7Li 87Sr/86Sr

[cm] [mM] [µM] [‰]

Gulf of Cadizb Captain Arutyunov MV 174-GC9 245.0 633 479 16.3 0.709922

205-GC13 270.0 623 503 17.2 0.709910d

Mercator MV 239-GC20 171.0 4280 2770 12.5 0.710626

196.0 4510 2910 12.5 0.710613

263-GC28 116.0 5080 3270 11.9 0.710628

Mediterranean Sea Napoli Dome KC11 832.0 4190 162 17.1

1228.0 4190 159 17.2

1433.0 4190 159 17.7 0.708407

Kazan MV AX18GC1 46.0 254 57.3 16.6

62.5 198 68.0 16.6 0.707938

MS07GT 11.0 672 30.1 30.9

36.0 508 116 14.7 0.707932

173.0 470 60.7 22.7

Amsterdam MV AX02AP2 37.0 383 64.4 22.0

100.0 273 63.8 20.6

AX02AP3 55.0 299 66.8 22.2

76.0 246 65.6 22.1 0.708550

Giza MV GC5 96.5 506 32.4 23.0

190.5 172 20.2 22.8

255.5 137 29.2 20.7 0.707820

GC34 219.5 165 29.1 21.9 0.707642d

North Alex MV GC100 53.0 427 43.5 20.6 0.706590d

128.0 199 26.3 21.9 0.706587d

203.0 179 30.3 19.6

Black Sea Dvurechenskii MV GeoB11977 30.5 805 1322 7.5 0.708310

33.5 784 1300 7.7

GeoB11978 30.5 786 1240 7.5

33.5 789 1230 7.6

Pechori Mound GeoB11955 121.5 180 249 14.0 0.707890

135.5 170 258 14.1
a 87Sr/86Sr data from Reitz et al. (2007).
b Data from Scholz et al. (2009).
c Water depth in meter below sea surface.
d Measured on samples from neighboring depth interval.

Table IV.2. Continued.
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2009; Napoli Dome, Dählmann and De Lange, 2003; Dvurechenskii MV, Aloisi et al., 2004). 

Lithium enrichments above local bottom water values or elevated Li/Cl ratios in most cores 

indicate release of Li from sediments or rocks during diagenetic processes. Exceptions are 

two sites at the Central American margin (Mound 11, Mound Ridge; Figure IV.2e and g) 

where Li concentrations and Li/Cl ratios are constant or even decrease with depth. The δ7Li 

of deep fluids varies over a broad range from +7.5 ‰ at Dvurechenskii MV in the Black Sea to 

+45.7 ‰ at Green Canyon 415 East in the Gulf of Mexico (Table IV.2).  

IV.5. Discussion 

IV.5.1. Controls on the lithium isotope composition  of marine pore fluids 

Most of the cold seep fluids investigated here originate from much greater sediment depths 

than may be reached by conventional coring techniques. A general concept of the controls on 

their Li isotope signature may be obtained by comparing the presented results with reference 

data that have been collected in related marine settings. Figure IV.3a presents a compilation 

of Li concentration and δ7Li data of vent and pore fluids from normal ridge crest and 

sediment-hosted hydrothermal systems and of deep-seated interstitial fluids from the ODP 

(see Appendix A for table of data and references). The interstitial fluids are grouped into low-

temperature and high-temperature diagenetic pore fluids according to the original data 

interpretation. Processes referred to as low-temperature diagenesis are cation-exchange and 

Li uptake by authigenic clay minerals in shallow sediments (e.g. Zhang et al., 1998; James and 

Palmer, 2000). In contrast, Li release from primary minerals at elevated temperatures  

(>~50 °C) (You et al., 1995; Chan and Kastner, 2000) coupled to uptake of Li by secondary 

minerals (James and Palmer, 2000) represents the major high-temperature diagenetic 

process. The reference data plotted in Figure IV.3a show a pronounced negative correlation 

between δ7Li and Li concentration. This general trend may be expressed by the following 

empirical relationship: 

( ) [ ] ( )2.151ln3.00.67 ±+⋅±−= LiLiδ  (IV.6) 

The different fluid types define distinct Li and δ7Li ranges which are ordered according to 

increasing reaction temperature within the respective geological systems (low-temperature 

diagenetic – high-temperature diagenetic – hydrothermal). This general sequence is also 
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confirmed by the new reference data of pore waters from shallow, hemipelagic sediments 

and hydrothermal pore fluids from the Okinawa Trough (Figure IV.3a). 

 

Figure IV.3. Plots of δ7Li versus Li concentration for reference data (a) and cold seep fluids (b). Note logarithmic 

scale of x-axis. Reference data are grouped into low-temperature diagenetic fluids, high-temperature diagenetic 

fluids, vent fluids from ridge crest hydrothermal systems and vent and pore fluids from sediment-hosted 

hydrothermal systems (Chan et al., 1993, 1994; You et al., 1995; Zhang et al., 1998; James et al., 1999; Chan and 

Kastner, 2000; James and Palmer, 2000; You et al., 2003; Foustoukos et al., 2004). A table including all literature 

data is given in Appendix A. Vertical bars in the inlet on the right-hand side depict the average isotopic 

composition of MORB (Tomascak et al., 2008), upper continental crust (Teng et al., 2004) and detrital marine 

sediments (Chan et al., 2006). Thick black lines in both diagrams represent the logarithmic regression through all 

reference data (δ7Li = -6.0(±0.3) · ln[Li] + 51(±1.2); R2 = 0.76). Shaded arrays in (a) indicate mixing between 

seawater Li and Li from fresh MORB (upper array) and the upper continental crust (lower array). The gray lines in 

(a) have been calculated using a Rayleigh fractionation model in order to exemplify the evolution of pore fluids 

during progressive Li uptake by authigenic clay minerals at 5 and 350 °C. Nodes on the gray lines depict the 

fraction of initial Li (26, 260 and 2600 µM) remaining in the fluid ([Li]PF/[Li]F = 1.0 – 0.1). Colored domains in (b) 

encompass the Li concentration and δ7Li ranges of reference fluid types: I = low-temperature diagenesis; II = high-

temperature diagenesis; III = ridge-crest hydrothermal systems; IV = sediment-hosted hydrothermal systems. See 

text for further explanation. 
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IV.5.1.1. Hydrothermal fluids 

Fluids from hydrothermal systems plot close to or within the average range of δ7Li values 

reported for MORB and detrital sediment, respectively (bars on right-hand side of Figure 

IV.3a). A straightforward explanation for this isotopic composition could be simple leaching  

of Li from minerals without any further reaction. The δ7Li of a fluid (subscript F) resulting 

from binary mixing between seawater Li (subscript SW) and solid phase Li (subscript SP) can 

be written as follows: 

SP
F

SP
SW

F

SW
F Li

Li

Li
Li

Li

Li
Li 777

][

][

][

][ δδδ ⋅+⋅=  (IV.7) 

The shaded mixing arrays in Figure IV.3 were calculated applying a δ7LiSW of +31 ‰  (Millot 

et al., 2004) and recently reported δ7Li ranges reported for MORB (+3.4 ± 1.4 ‰; Tomascak 

et al., 2008) and for upper continental crust (0.0 ± 1.4 ‰; Teng et al., 2004). The average δ7Li 

of the upper continental crust by Teng et al. (2004) is based on a variety of shales, loess, 

granites and other crustal composites. This average value is considered the best estimate of 

the isotopic composition of terrigenous sediments prior to interaction with fluids in 

diagenetic or near-shore hydrothermal environments. 

Some of the fluids from sediment-hosted hydrothermal systems (e.g. those from the Okinawa 

Trough) plot within the mixing array between seawater and the upper continental crust 

(Figure IV.3a) suggesting that their δ7Li is dominated by simple Li release from minerals. 

Most of the hydrothermal fluids, however, show a distinct offset from the mixing arrays 

towards heavier δ7Li values. Since isotope fractionation during incongruent mineral 

dissolution was found to be negligible (Pistiner and Henderson, 2003), this offset is 

commonly attributed to subsequent incorporation of isotopically light Li into secondary clay 

minerals (e.g. Chan et al., 1993; James et al., 1999). The average δ7Li of hydrothermal fluids is 

+8.6 ± 1.3 ‰ for sediment-free systems and +5.7 ± 3.1 ‰ for sediment-hosted systems (the 

shallowest three samples from ODP Site 1038 in the Escabana Trough have not been 

considered in this calculation because of their disproportionally high content of pristine 

seawater; cf. James et al., 1999). Interestingly, the isotopic offset between fluids from 

sediment-free systems and MORB (5.2 ‰) and fluids from sediment-hosted systems and the 

upper continental crust (5.7 ‰) are in remarkable agreement. Differences in δ7Li between 

the two fluid types reflect the isotopic difference between the upper continental crust and the 

upper mantle, which, in turn, has been attributed to preferential retention of the light Li 
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isotope during weathering of crustal material (Teng et al., 2004). Preservation of this primary 

signal in hydrothermal fluids is remarkable, considering the extent of alteration occurring 

subsequently to the release of Li in the hydrothermal reaction zone. Higher Li concentrations 

in fluids from sediment-hosted hydrothermal systems are attributed to higher Li 

concentrations in clastic marine sediment with respect to MORB (Chan et al., 2006; Tomascak 

et al., 2008) and, in addition, to the higher extraction efficiency of Li from sediments (James et 

al., 2003).  

IV.5.1.2. Sediment interstitial fluids 

In conformity with pore fluids of sediment-hosted hydrothermal systems, high-temperature 

diagenetic pore fluids are affected by Li release from sediments. Because of the lower 

temperatures prevailing in diagenetic environments, however, less Li is extracted from 

primary minerals and relatively more Li is sequestered by secondary minerals (Berger et al., 

1988; James and Palmer, 1999; James et al., 2003). As a consequence, the pore fluids’ Li 

concentrations are lower and their δ7Li values are heavier compared to hydrothermal fluids 

(Figure IV.3a). 

Depending on factors such as concentration-depth gradient, pore pressure and heat flow, Li 

in interstitial fluids undergoes advective and diffusive transport. In either case, pore water Li 

is unlikely to remain in contact with alteration products. As a consequence, the δ7Li of the 

remaining pore fluid (subscript PF) can be approximated by a Rayleigh-type equation: 

[ ]
[ ]
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( ) 337
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PF Li
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Li δδ
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 (IV.8) 

The Li concentration and δ7Li evolution of fluids during progressive Li loss to authigenic clay 

minerals is illustrated in Figure IV.3a. Starting values lie on the mixing line between seawater 

Li and Li derived from sediments at hundred-fold, ten-fold and normal seawater 

concentration. Fractionation factors between authigenic clay minerals and pore fluids for low 

and high temperature end members were taken from Chan et al. (1994): αmineral-fluid = 0.981 

for 5 °C and αmineral-fluid = 0.996 for 350 °C.  

Most pore water Li data that have been published so far for diagenetic environments may be 

explained with a combination of mixing with Li from sediments or rocks (see Section IV.4.1.1) 

and Raleigh fractionation during formation of secondary minerals (Figure IV.3b). The 

increasing distance of the general trend from the mixing arrays towards lower Li 
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concentrations reflects the enhanced isotope fractionation at lower temperatures (Chan et al., 

1994). Fluids from low-temperature diagenetic environments are characterized by lower Li 

concentrations than seawater. Most of the fluids in this category display heavier δ7Li values 

than seawater and plot close to the Rayleigh distillation line corresponding to Li uptake by 

secondary minerals at 5 °C (Figure IV.3a). Other low-temperature diagenetic fluids, however, 

show δ7Li values equal to or even below seawater. Likewise, new Li data of pore waters from 

surficial hemipelagic sediments on the Nile deep-sea fan and in the eastern Black Sea show 

seawater-like δ7Li values throughout the core (Table IV.2) although downward decreasing Li 

concentrations within the upper four meters indicate shallow Li removal (Figure IV.2a and b). 

This combination of δ7Li and Li concentration cannot be produced through isotope 

fractionation during incorporation of seawater Li into secondary minerals at low 

temperature. Instead, another Li-consuming process, involving less or no isotope 

fractionation, has to be considered.  

In the crystal lattice of clay minerals, Li either replaces Mg in the structural, octahedral sites 

or it occupies the interlayers as adsorbed cation. While structural incorporation produces a 

significant isotope fractionation, this is not necessarily the case for Li adsorption (Vigier et al., 

2008). For instance, sorption experiments with vermiculite and kaolinite resulted in a 

significant Li isotope fractionation (αmineral-fluid up to 0.971 (Zhang et al., 1998)). By contrast, 

Pistiner and Henderson (2003) and Vigier et al. (2008) observed no isotope fractionation 

during Li adsorption onto smectite. Smectite is the predominant clay mineral on the Nile 

deep-sea fan and in the eastern Black Sea (Venkatarathnam and Ryan, 1971; Stoffers and 

Müller, 1978). Accordingly, the downcore Li decrease in pore water at these sites is 

attributed to adsorption rather than structural incorporation. The large scattering of the low-

temperature diagenetic fluids around seawater values suggests that adsorption onto 

smectite, or other mechanisms involving no or little isotope fractionation, play an important 

role in shallow marine sediments.   

IV.5.1.3. Cold seep fluids 

The overall pattern of processes identified in the previous section may be used as a general 

frame of reference for Li isotope exchange between fluids and silicate minerals in marine 

systems. Comparing signatures of the cold seep fluids with that reference frame is anticipated 

to reveal information about their origin and diagenetic evolution.  
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Figure IV.3b shows the Li concentration and δ7Li data of deep fluids from cold seeps along 

with the compositional ranges of reference fluids (cf. Figure IV.3a). Most of the cold seep 

fluids plot within the domain characteristic for high-temperature diagenetic environments. 

Many of the reference samples in this domain are décollement fluids whose Li isotopic 

composition has been explained with sediment dehydration reactions deep within 

subduction zones. Laboratory experiments conducted by Williams and Hervig (2005) 

revealed extensive uptake of isotopically light Li from solution during illitization of smectite. 

Release of Li from sediments at temperatures >60 °C and incorporation into authigenic 

smectite-illite is in excellent agreement with the ubiquitous diagenetic signal of pore water 

freshening and other indicators for high-temperature fluid/sediment interactions at all seep 

locations investigated (Table IV.2; Dählmann and De Lange, 2003; Aloisi et al., 2004; Hensen 

et al., 2004; Haese et al., 2006; Hensen et al., 2007; Reitz et al., 2007). However, some of the 

cold seep fluids plot within other domains (e.g. hydrothermal or low-temperature diagenetic) 

suggesting a differing or more diverse combination of processes or influencing factors. 

Pore fluids of two seep locations on the Central American margin, Mound 11 and Mound 

Ridge, display comparably heavy isotopic compositions close to seawater. At these sites, little 

downcore deviation from the Li/Cl ratio of seawater indicates that Li has not been involved in 

chemical reactions to a significant extent (Figure IV.2e and f).    

Two seep sites, Dvurechenskii MV in the Black Sea and Mercator MV in the Gulf of Cadiz, plot 

within the domain of sediment-hosted hydrothermal systems. The fluid composition of 

Dvurechenskii MV is in excellent agreement with the empirical relationship between δ7Li and 

Li concentration in marine systems (Figure IV.3b). Therefore, it is reasonable to anticipate 
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Mound Ridge have been excluded since they show little evidence for exchange with sediments). 



CHAPTER IV – LITHIUM ISOTOPES IN MARINE PORE WATERS 93 

fluid-sediment interactions at temperatures beyond the range typical for clay mineral 

diagenesis (>150 °C) at this location. In case of Mercator MV, however, fluids have 

disproportionately high Li concentrations compared to their δ7Li value (Figure IV.3b). Scholz 

et al. (2009) attributed the exceptionally high Li content of deep-sourced pore fluids in the 

Gulf of Cadiz to the terrigenous/continental provenance of sediments in this area. Felsic 

continental rocks are moderately enriched in Li compared to mafic material (Wedepohl, 

1978). During chemical weathering, Li is retained in minerals and additional Li is taken up 

during transport of eroded solids into the ocean (Rudnick et al., 2004; Kısakürek et al., 2005). 

As a result, terrigenous sediments and sedimentary rocks have very high Li concentrations, 

sometimes exceeding 100 mg kg-1 (Teng et al., 2004; Chan et al., 2006). The influence of the 

provenance and/or composition of marine sediments on the Li concentration of adjacent 

pore fluids is further illustrated in a plot of 87Sr/86Sr versus Li concentration in Figure IV.4. All 

cold seep fluids which have undergone appreciable interaction with sediments or rocks show 

a positive correlation between 87Sr/86Sr and Li concentration. Pore fluids of Mercator MV, the 

shallowest seep site in the Gulf of Cadiz (map 3 in Figure IV.1), have the most radiogenic 

87Sr/86Sr ratios and the highest Li concentrations (Table IV.2). Accordingly, they are 

considered the terrigenous/continental deep fluid end member.  

In contrast to that, pore fluids of Mud Pie on the Central American margin and seep locations 

on the Nile deep-sea fan display the least radiogenic 87Sr/86Sr ratios and the lowest Li 

concentrations (Table IV.2, Figure IV.4). Siliciclastic sediments in these areas are derived 

from Cenozoic, mostly mafic volcanic rocks in the Central American Arc (Kimura et al., 1997) 

and the Ethiopian highlands (Ryan et al., 1973; Foucault and Stanley, 1989), respectively. 

Such pristine, volcanogenic material contains little readily leachable Li compared to the 

extensively weathered and transported terrigenous matter of the Gulf of Cadiz. Moreover, 

alteration of labile volcanic minerals and ash particles to smectite and zeolites may further 

deplete ambient pore fluids in Li (Kastner and Rudnicki, 2004). Therefore, non-radiogenic 

87Sr/86Sr ratios are coupled to lower dissolved Li concentrations in these areas. Owing to 

intense alteration of volcanic matter, smectite is a major constituent of sediments on both the 

Nile deep-sea fan and the Central American margin (Venkatarathnam and Ryan, 1971; 

Spinelli and Underwood, 2004). It was shown in Section IV.4.1.2 that adsorption of Li onto 

smectite may remove a considerable portion of dissolved Li from pore water, without causing 

any isotope fractionation. Due to this process, seep fluids of the Nile deep-sea fan display 

disproportionally low Li concentrations compared to their δ7Li values and plot in the 

transition area between the high-temperature and the low-temperature diagenetic domains 
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in Figure IV.3b. Smectite has the largest cation exchange capacity of the common clay 

minerals in marine sediments (Stumm and Morgan, 1995) and is most abundant on 

convergent margins and in other volcanogenic settings (Griffin et al., 1968). In addition to 

alteration of ash, Li adsorption is likely to limit pore water Li concentrations in such areas. As 

a consequence, seep fluids with the least-radiogenic 87Sr/86Sr ratios and low Li 

concentrations in Figure IV.4 are considered the volcanogenic deep fluid end member. 

Pore fluids of the cold seep Green Canyon 415 East in the Gulf of Mexico display particularly 

high Li concentrations and δ7Li values beyond any of the reference domains (Figure IV.3b). 

Comparison with the Rayleigh distillation lines in Figure IV.3a demonstrates that near-

complete scavenging of Li during transport at low temperature could have produced this fluid 

composition. Alternatively, anomalously high δ7Li values and Li concentrations could be 

related to the strongly increased salinity of the fluids (Cl >5000 mM; Table IV.2), i.e. to 

individual fractionation mechanisms during brine formation.  

IV.5.1.4. Marine brines 

Evaporite beds and local occurrences of evaporated and infiltrated seawater, also referred to 

as primary brines, are common features in deeply buried continental margin sediments. 

Interaction of pore fluids with evaporite minerals or mixing with a primary brine can lead to 

a significant alteration of the original diagenetic signal. In general, coinciding enrichment of 

Li, Cl and Na in many deep-seated interstitial fluids (Figure IV.5; e.g. Bernasconi, 1999; Aloisi 

et al., 2004; Reitz et al., 2007; Scholz et al., 2009) calls for a systematic investigation of Li 

isotopes in hypersaline, sedimentary environments. Figure IV.5a shows Na and Cl data for all 

cold seep fluids with elevated salinity as well as for the Discovery and Bannock brines. The 

evaporation pathway of seawater and a line denoting Na/Cl ratios of unity are shown for 

comparison. All hypersaline pore fluids contain equimolar proportions of Na and Cl which 

indicates that dissolution of halite (NaCl) is the most common reason for elevated pore water 

salinities at cold seeps. Proportions of Li to Cl, however, strongly diverge from each other 

(Figure IV.5b) suggesting that the Li enrichments are not related to halite dissolution. This 

inference is corroborated by the chemical composition of Discovery brine which has evolved 

through dissolution of late-stage evaporite minerals (mainly bischofite; Wallmann et al., 

1997). Although late-stage evaporite minerals are by far more enriched in Li than halite 

(Sonnenfeld, 1984), Li concentrations of the Discovery brine fail to reach those measured in 

pore fluids.  
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Since Li contributions from evaporite minerals are minor, significant effects on the δ7Li of 

pore fluids are only to be expected if the isotopic composition of the evaporite-derived Li 

strongly diverges from that of the fluids. The δ7Li of pore fluids and brines is plotted versus Li 

concentrations in Figure IV.5c. Most of the samples, including the Bannock and Discovery 

brines, plot close to the general relationship between δ7Li and Li concentration in marine 

systems (cf. Figure IV.3a). The isotopic compositions of the Bannock and Discovery brines are 

almost indistinguishable, although their chemical evolution is entirely different. This clearly 

shows that the offset in δ7Li from seawater in both cases has not been produced during 

evaporation or precipitation of evaporite minerals. Two studies have addressed the Li 

isotopic composition of brines so far. Bottomley et al. (1999) analyzed brines of the Canadian 

Shield and inferred a marine origin based on δ7Li values close to modern seawater. In 

contrast, Chan et al. (2002) found δ7Li values lighter than seawater (δ7Li: +18.2 – +27.0 ‰) in 

Messinian oil field brines in Israel and attributed this to Li release from ambient sediments. 

This explanation is somewhat problematic in the present case, since Li concentrations of the 

Figure IV.5. Plots of Na versus Cl (a), Li versus Cl (b) and δ7Li versus Li (c) for hypersaline cold seep fluids as well 

as the Bannock and Discovery brines. Pore water profiles of different cores from the same site resemble each 

other. Therefore, only one core per site is shown (cf. Figure IV.2). Gray lines and squares in (a) and (b) depict the 

chemical evolution of seawater during progressive evaporation and precipitation of evaporite minerals: 

0 = seawater, 1 = gypsum, 2 = halite, 3 = epsomite, 4 = sylvite, 5 = carnallite and 6 = bischofite (from Fontes and 

Matray, 1993). The dashed line in (a) depicts Na/Cl ratios of unity. Due to the reduced salinity in the Black Sea, Na 

and Cl data of Dvurechenskii MV are shown in a separate plot with adapted scale. The black line in (c) represents 

the empirical relationship between δ7Li value and Li concentration in marine systems (cf. Figure IV.3a). Note 

logarithmic scale of x-axis in (c). 
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Bannock brine are in good agreement with its evolution through twelve-fold evaporation of 

seawater (Cl = ~5300 mM; Table IV.2).  

Another possible, but yet unexplored, reason for isotopic differences between brines and 

modern seawater are temporal changes in basin chemistry due to prolonged isolation from 

the global ocean. Müller and Mueller (1991) reported a shift of 87Sr/86Sr ratios below that of 

Messinian seawater in Mediterranean evaporites of upper Messinian age (87Sr/86Sr decrease 

from 0.7089 to 0.7086). The authors attributed this trend to the increasing proportion of Sr 

derived from the Nile river (87Sr/86Sr = 0.7076; Müller and Mueller, 1991) in the isolated 

Mediterranean basin. In general, Li dissolved in river water has an isotopic composition 

intermediate between seawater and the catchment rocks (mean δ7Li of major world rivers: 

+23.4 ‰; Huh et al., 1998). Consequently, a temporal shift towards less radiogenic 87Sr/86Sr 

ratios in the isolated Mediterranean basin should have been accompanied by a decrease in 

δ7Li as well. The 87Sr/86Sr ratio of the Bannock brine is in agreement with the decreased 

Mediterranean seawater ratio during the late Messinian (87Sr/86Sr = ~0.7086; Table IV.2) 

and, thus, with an offset in δ7Li from the world ocean. By contrast, the 87Sr/86Sr ratio of the 

Discovery brine is equal to the global Messinian ratio (87Sr/86Sr = ~0.7089; Table IV.2). 

Therefore, temporal changes in basin chemistry towards the upper Messinian could explain 

for differences in δ7Li among the two brines (0.5 ‰ on average). The overall isotopic offset 

from global seawater (≥6 ‰), however, must be caused by a different mechanism.  

The above discussion has demonstrated that the Li isotope signature of brines is entirely 

independent from the actual brine formation. Instead, isotopic exchange with ambient 

sediments during burial or upward transport must have transferred isotopically light Li into 

the saline solutions. The Li isotope signature resulting therefrom follows the empirical 

relationship between δ7Li and Li concentration in marine systems (Figure IV.5c). It is 

therefore deduced that Li isotope systematics of marine brines does not underlie individual 

fractionation mechanisms. 

IV.5.2. Lithium isotope fractionation during fluid advection 

Lithium isotope constraints on the origin and evolution of pore fluids from comparison with 

reference fluids are limited by the differing modes of transport in the respective geological 

systems. In bare ridge-crest and most sediment-hosted hydrothermal systems, fluids are 

rapidly transferred to the seafloor through vigorous convection within the oceanic crust or 
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overlying sediments (Fisher, 2004). In non-advective interstitial waters of hemipelagic 

sediments, Li moves slowly along a concentration-depth gradient through molecular 

diffusion. In either case, most of the Li isotope fractionation recorded in the δ7Li of fluids is 

likely to have occurred in a relatively narrow temperature range. This is an important 

prerequisite for the validity of the Rayleigh distillation approach outlined in Section IV.4.1.2. 

Compared to hydrothermal systems, fluid advection at cold seeps is much slower and subject 

to strong temporal fluctuations (e.g. Castec et al., 1995; Haese et al., 2006; Hensen et al., 

2007). Pore fluids leach Li from deeply buried sediments at a depth of several km below 

seafloor and at temperatures between 50 °C and ~200 °C. Because of slow Darcy velocities, 

fluids may cool down during upward transport and Li exchange due to mineral authigenesis 

is likely to occur at multiple temperatures. Consequently, the accompanying isotope 

fractionation cannot be approximated with a single fractionation factor and the 

aforementioned Rayleigh approach is not applicable anymore.   

In order to evaluate the influence of varying transport modes on the extent of Li isotope 

fractionation, we applied a transport-reaction model to simulate the ascent of deep-seated 

pore fluids to the seafloor. The height of the modeled sediment column and the boundary 

conditions were chosen to embrace as much of the heterogeneity encountered at the various 

seep and reference sites as possible. Although such a generalized model scenario cannot 

explain specific pore water profiles at single sites, it may well be used to retrace the major 

fractionation trends identified in Figure IV.3. The adopted sediment thickness of 2 km 

represents an intermediate value between typical fluid mobilization depths at cold seeps  

(~2 – >5 km; Kopf, 2002) and basement depths at sediment-hosted or ridge-flank  

Parameter Value

Column length 2000 m

Temperature, sediment surface, TTOP 5 °C

Temperature, lower boundary, TBOT 65 °C

Porosity, sediment surface, φTOP 0.8

Porosity, lower boundary,  φBOT 0.2

Attenuation coefficient, const 1 x 10-5 cm-1

Sediment burial velocity, lower boundary, ωBOT 0.01 cm a-1

Upward fluid velocity, νTOP 0 - 0.3 cm a-1

Rate constant for Li precipitation, kPPT 1 x 10-4 a-1 

Li concentration, sediment surface, [Li]TOP 26 µM

Li concentration, lower boundary, [Li]BOT 2600 µM

δ7Li, sediment surface +31 ‰

δ7Li, lower boundary +0.3 ‰

Table IV.3. Properties and boundary conditions applied in the numerical 
transport-reaction model. 
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hydrothermal systems (~0.1 - >1 km; e.g. Davis et al., 1997; Fouquet et al., 1998). The Li 

concentration and δ7Li value at the upper boundary correspond to average seawater values. 

The δ7Li value at the lower boundary has been calculated from the mixing relationship 

between seawater and continental crust (Equation IV.7) assuming a Li concentration 

hundred times that of seawater (i.e. 2600 µM). This concentration is in the upper range of 

values observed for cold seep and hydrothermal fluids (Figure IV.3a). Concentrations of 6Li 

and 7Li were calculated from δ7Li values assuming a 7Li/6Li ratio of 12.02 for the NIST-SRM 

8545 (Flesch et al., 1973).  

It is known from laboratory experiments that the Li distribution coefficient between 

secondary minerals and fluids increases exponentially with decreasing temperature (Berger 

et al., 1988). However, the actual amount of Li sequestered by different minerals at a given 

temperature turned out to be strongly variable (Berger et al., 1988). For the present 

transport-reaction model, we have to consider a wide variety of mineral assemblages. 

Moreover, the amount of secondary minerals formed at the various sites is essentially 

unknown. For that reason, the following function was applied as a first order rate law for Li 

removal into secondary minerals: 

),(][)5.0exp(),( txLiTktxR PFPPTLiPPT
⋅⋅−⋅=  (IV.9) 

In agreement with Berger et al. (1988), the amount of Li precipitated (subscript PPT)  

depends on the Li concentration in the fluid and increases exponentially with decreasing 

temperature (T). The coefficient in the exponent was determined by adjusting the model to 

the general relationship between Li concentration and δ7Li depicted in Figure IV.3. The rate 

constant for Li precipitation, kPPT, characterizes the ability of different sediment types to form 

authigenic clay minerals. A kPPT of 1 x 10-4 a-1 has proven to fit most of the variance in the data 

set. Temperature-dependent Li fractionation factors for Li uptake by authigenic minerals 

were calculated according to the empirical relationship by Chan et al. (1994)  

(αPPT-PF = -1 · 10-7 · T2 + 8·10-5 · T + 0.981; T in °C). The amount of 6Li and 7Li precipitated was 

obtained from the general equation defining the isotope fractionation factor: 
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by substituting [7Li]PPT with [Li]PPT - [6Li]PPT: 
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Note that ongoing leaching of Li during transport is not considered in the model. All 

parameters used to produce the model curves are summarized in Table IV.3 and in the 

caption of Figure IV.6.  

Model scenarios 1 to 4 (lines in Figure IV.6 and IV.7) simulate transport of deep-seated fluids 

through sediments at a common rate constant, kPPT, but varying upward fluid advection rates. 

Fluid advection rates were chosen to represent regional averages for sedimentary settings 

that are influenced by fluid seepage (e.g. Davie and Buffet, 2003; Hensen and Wallmann, 

2005). At the absence of active upward advection, most of the dissolved Li is rapidly 

precipitated and the model curve traverses the domain of low-temperature diagenetic pore 

fluids (curve 1; Figure IV.6). Since much of the isotope fractionation in that scenario occurs in 

a narrow temperature range close to bottom water conditions, the resulting curve runs 

roughly parallel to the 5 °C-Rayleigh distillation line in Figure IV.3a. At a low advection rate of 

0.003 cm a-1, the effects of sediment burial, compaction and active fluid flow cancel out each 

other. A linear concentration-depth gradient (curve 2; Figure IV.7a) indicates that deep-

sourced Li is transported upwards by molecular diffusion. Because of the slowness of this 

transport mechanism, however, intense precipitation of light Li prevents the deep-seated 

signal from reaching the sediment surface (Figure IV.6). The model curve corresponding to a 

moderate advection rate of 0.03 cm a-1 traverses the lower half of the high-temperature 

diagenetic domain and follows the major trend of cold seep fluids (curve 3; Figure IV.6). The 

mixing zone between seawater and the original deep fluid is shifted into the uppermost  

200 m of the modeled sediment column (Figure IV.7). This demonstrates that moderate pore 

water movement suffices to transmit a considerable portion of the deep-seated Li isotope 

signal into shallow sediments.  

Increasing the advection rate by another order of magnitude results in Li concentrations and 

δ7Li values equal to that of the original deep fluid in the entire sediment column (curve 4; 

Figure IV.6 and IV.7). This is in agreement with field observations at the eastern flank of the 

Juan de Fuca Ridge where hydrothermal basement fluids percolate through up to 900 m thick 

hemipelagic sediments. Because of low basement temperatures, the original Li concentration 

of fluids in that area is quite different from the one adopted in the present model.  
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Nonetheless, Wheat and Mottl (2000) demonstrated, based on a comparative study of spring 

and pore fluids, that almost unaltered basement fluids may reach the top of the sediment  

column if fluid advection rates exceed a few mm a-1. In an analogous manner, preservation of 

the deep-seated Li signal in fluids of Dvurechenskii MV may be explained with the high fluid 

advection rates prevailing at this site (Figure IV.2t and IV.3b; Aloisi et al., 2004). Higher 

temperatures at the model boundaries would further decrease Li precipitation during 
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Figure IV.6. Plot of δ7Li versus Li concentration showing results of the transport-reaction modeling. Note 

logarithmic scale of x-axis. The model simulates Li isotope fractionation during vertical transport of deep-seated 

pore fluids to the seafloor at different upward advection rates: 1: νTOP = 0.0 cm a-1; 2: νTOP = 0.003 cm a-1; 

3: νTOP = 0.03 cm a-1; 4: νTOP = 0.3 cm a-1. Circles represent measured data of cold seep fluids. The colored domains 

depict the compositional ranges of reference fluid types: I = low-temperature diagenesis; II = high-temperature 

diagenesis; III = ridge-crest hydrothermal systems; IV = sediment-hosted hydrothermal systems.  
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upward transport and, thus, result in an even more pristine isotope signal at the sediment 

surface. The effect of high-temperatures (>300 °C) and advection rates on the δ7Li of pore 

fluids is clearly demonstrated at Swallow Chimney, Okinawa Trough (Figure IV.3). At this site, 

rapid upward transport of fluids has pushed the mixing zone between seawater and 

hydrothermal pore fluids beyond the sediment/bottom water interface (Figure IV.2d) and the 

δ7Li values are the lightest observed throughout this study.  

IV.6. Summary and conclusions 

In the present study, we evaluated the applicability of Li isotope systematics as a tracer for 

the origin and diagenetic evolution of pore fluids at cold seeps and similar submarine fluid 

escape structures. For that purpose, we established a general reference frame for Li isotope 

fractionation in marine systems. The major findings are summarized as follows: 

(1) Literature data for fluids from bare ridge crest and sediment-hosted hydrothermal 

systems as well as interstitial waters from normal ODP cores show a pronounced negative 

correlation between δ7Li and Li concentration reflecting Li release from sediments or 

rocks and/or uptake of Li during clay mineral authigenesis.  

(2) Most cold seep fluids are in good agreement with this general trend and show higher Li 

concentrations and lower δ7Li values than seawater. A common signal of clay mineral 

dehydration in most cold seep fluids indicates that diagenetic smectite/illite is the major 

sink for light pore water Li. Deviations from the general correlation trend are attributed 

to particularities in sediment composition and to transport-related fractionation 

mechanisms.  

(3) Pore fluids on passive margins receive high amounts of Li from intensely weathered, 

terrigenous and continental material. In contrast, on convergent margins and in other 

settings with strong volcanogenic input, Li concentrations in pore water are lower 

because of intense Li uptake during alteration of volcanic glass and other labile 

components. In addition, adsorption of Li by smectite at low temperature exerts an 

important control on pore water Li in volcanogenic settings. Separate investigation in 

shallow sediments revealed that this process is not accompanied by isotope fractionation.  

(4) The isotopic composition of two evolutionary distinct Mediterranean brines is in good 

agreement with the general correlation trend. It is inferred that saline pore fluids are 
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generally not affected by individual fractionation mechanisms related to evaporation or 

evaporite dissolution.  

(5) Application of a numerical transport-reaction model, simulating Li isotope fractionation 

during active upward transport of fluids, revealed that little upward advection suffices to 

transfer deep-seated diagenetic Li signals into shallow sediments. Once the advection rate 

exceeds a few mm a-1 (assuming normal sedimentation rates) deep fluids that are almost 

unaltered by shallow fractionation processes may reach the upper end of the sediment 

column. The modeling results show that, if cautiously applied, Li isotope systematics of 

cold seep fluids may provide a valuable record of fluid/sediment or fluid/rock interaction 

that has been inherited several hundreds or thousands of meters below the seafloor.  
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Synthesis 

A two-tier approach was adopted in this thesis to investigate how geological factors, such as 

the tectonic setting or the composition and provenance of sediments, affect diagenetic signals 

in deep-seated pore fluids. Chapter II and III dealt with a geochemical transect across the Gulf 

of Cadiz continental margin. Deep-sourced seep fluids in this area reflect the seaward 

decreasing intensity of interactions with terrigenous sediments and the increasing influence 

of crustal fluids, originating in the oceanic basement, across the margin. In view of this well-

defined transition, the Gulf of Cadiz turned out to be a prime locality to investigate regional 

differences in controls on fluid chemistry. A more global approach was chosen in Chapter IV, 

where new and literature data for seep and vent sites in different ocean basins and in a large 

variety of geological settings were compiled. Contrasting seep fluids with hydrothermal fluids 

and pore waters from ODP cores sharpened the understanding of how specific isotopic 

proxies respond to varying environmental conditions.  

An important finding of this study is that many tracers for diagenetic or hydrothermal 

exchange processes behave markedly different in different geological settings. Especially the 

provenance of sediments, e.g. terrigenous on passive margins versus volcanogenic on 

convergent margins, exerts an important control on the presence and intensity of diagenetic 

processes in the subsurface. Such differences have to be considered and thoroughly cross-

checked (e.g. using 87Sr/86Sr ratios) when defining global systematics for the geochemistry of 

seep fluids.  

Particular emphasis was given to cosmogenic iodine isotopes and stable Li isotopes in this 

study. The Gulf of Cadiz is the first marine setting where 129I/I ratios in pore water are found 

to be governed by in situ production of 129I through spontaneous fission of 238U rather than 

organic matter diagenesis. Seaward decreasing 129I/I ratios along the continent-ocean 

transect revealed that the relative amount and thickness of terrigenous sediments is the 

major factor controlling 129I accumulation in pore water. Comparison of the presented results 

with literature data for ODP cores and terrestrial groundwater aquifers provided 

fundamental insights into the behavior and cycling of 129I in earth surface reservoirs.  
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A large set of Li isotope data was collected for seep fluids from different ocean basins and 

geological settings in order to better constrain the behavior of Li isotopes during diagenesis 

and fluid transport. A compilation of the new seep data and literature data for ODP cores and 

hydrothermal fluids was used to establish a general frame of reference for Li isotope 

exchange between fluids and minerals in marine systems. Transport-related isotope fraction 

trends were evaluated by the aid of a transport-reaction model. It could be demonstrated that 

little pore water movement suffices to convey much of the Li isotope signal generated at 

depth into shallow sediments.  

Application and re-evaluation of up-to-date isotopic proxies revealed that deep-sourced fluid 

flow may occur in much more diverse manifestation than previously thought. Many cold seep 

fluids share geochemical characteristics with fluids from sediment-covered ridge crest and 

ridge flank hydrothermal systems. Pore fluids at the distal mud volcanoes in the Gulf of Cadiz 

carry a signature from interaction with the oceanic basement. This is a remarkable finding 

considering the 6 km thick sediment cover in this area. It represents new geochemical 

evidence for a hydrological connection between oceanic crust and the water column at this 

crustal age (>140 Ma; Müller et al., 2008) and distance from the spreading axis. Apparently, 

consecutive fluid flow through basement rocks and sediments is not restricted to near-shore 

ridge crests and flanks or convergent ocean margins. Further manifestations of such 

‘intermediate fluid pathways’ (Scholz et al., 2009) are likely to become discovered when 

centering geophysical and geochemical research activities on sediment-covered seamounts 

and fracture zones in the deep-sea.  Exploration of these largely disregarded structures is 

essential for a sound understanding of material exchange between the oceanic lithosphere 

and the ocean.  
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Appendix A. Supporting material to chapter IV 
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